JP4622842B2 - レゾルバの故障診断装置および故障診断方法 - Google Patents

レゾルバの故障診断装置および故障診断方法 Download PDF

Info

Publication number
JP4622842B2
JP4622842B2 JP2005359706A JP2005359706A JP4622842B2 JP 4622842 B2 JP4622842 B2 JP 4622842B2 JP 2005359706 A JP2005359706 A JP 2005359706A JP 2005359706 A JP2005359706 A JP 2005359706A JP 4622842 B2 JP4622842 B2 JP 4622842B2
Authority
JP
Japan
Prior art keywords
sine wave
resolver
output
signal
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359706A
Other languages
English (en)
Other versions
JP2007163287A (ja
Inventor
功史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005359706A priority Critical patent/JP4622842B2/ja
Publication of JP2007163287A publication Critical patent/JP2007163287A/ja
Application granted granted Critical
Publication of JP4622842B2 publication Critical patent/JP4622842B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、レゾルバのインピーダンス異常、特にレゾルバのレアショート異常を診断可能とするレゾルバの故障診断装置および故障診断方法に関する。
従来から、下記特許文献1〜3に示されているように、車両の操舵アシスト装置において、レゾルバを用いて各部の回転角(電気角)を検出することはよく知られている。このようなレゾルバにおいては、正弦波信号からなる励磁信号をレゾルバの1次コイルに出力し、レゾルバの正弦波用および余弦波用の一対の2次コイルからの各出力信号を所定のレートでサンプリングする。そして、これらのサンプリングしたサンプリング値を用いて、各出力信号を最小2乗法によって前記励磁信号と同一周期の正弦波相信号および余弦波相信号にそれぞれ近似し、同近似した正弦波相信号および余弦波相信号の振幅の比を逆対数変換することにより各部の回転角(電気角)を検出するようにしている。
そして、このようなレゾルバの故障を検出することも種々考えられているが、レゾルバのレアショート異常(コイルを構成する隣合う線材間におけるわずかな電流漏れ)を直接検出することは難しかった。そのために、レゾルバおよび電子制御ユニットを含むシステムの故障検出時には、レゾルバの単体抵抗および線間抵抗を測定して、レゾルバの異常が検出されれば電子制御ユニットを含まないレゾルバを含む小部分を交換する。しかし、前記レゾルバの異常が検出されない場合には、電子制御ユニットを交換して、システム全体の動作確認を行い、システム全体の動作がなおも異常である場合に、レゾルバを含む小部分を交換する。そして、これらのレゾルバを含む小部分の交換後に、システム全体の動作を再度確認するという作業を行っていた。すなわち、システムの故障検出時に、レゾルバの単体抵抗および線間抵抗の測定による異常が検出されない場合には、電子制御ユニットが正常であっても、電子制御ユニットを取り換えざるを得なかったという問題がある。
一方、コイルのレアショート異常を検出する方法としては、発電機におけるレアショート異常の検出方法が下記引用文献4に示されている。この発電機のレアショート異常の検出においては、交流定電流発生装置および交流電圧計を用いて、発電機の回転速度を連続的に変化させながら回転子のインピーダンスを測定し、測定インピーダンスの変化に基づいて発電機におけるレアショート異常を検出するようにしている。しかし、前記のような交流定電流発生装置および交流電圧計を用いたレアショート異常の検出は、高価であるとともに手間がかかる。このような発電機のレアショート異常の検出と同様に、LCRメータを用いてレゾルバのレアショート異常を検出することも可能であるが、LCRメータを使った方法も、高価であるとともに複雑となる。
特開2002−196025号公報 特開2002−350181号公報 特開2005−181094号公報 特開平11−326469号公報
本発明は、上記問題に対処するためになされたもので、その目的は、簡単かつ安価に、レゾルバのインピーダンス異常、特にレアショート異常を検出できるようにしたレゾルバの故障診断装置および故障診断方法を提供することにある。
上記目的を達成するために、本発明の特徴は、互いに異なる周波数を有する複数の正弦波信号を励磁信号としてレゾルバの1次コイルに順次出力する励磁信号出力手段と、レゾルバの2次コイルから出力される複数の正弦波信号に対応した複数の出力信号を入力して、複数の出力信号の振幅をそれぞれ計算する出力信号処理手段と、計算された複数の振幅の変化状態に応じて1次および2次コイルのインピーダンス異常を診断する診断手段とを備えたことにある。この場合、励磁信号出力手段は、複数の正弦波信号を記憶した正弦波信号記憶部を有し、正弦波信号記憶部に記憶されている複数の正弦波信号を励磁信号としてそれぞれ読み出し出力するようにするとよい。
レゾルバにおいては、一般的に、図6に示すように、1次コイルに入力される正弦波信号の周波数が高くなるに従って、2次コイルから出力される出力信号の振幅は大きくなる。しかし、1次または2次コイルにインピーダンス異常(特に、レアショート異常)が発生すると、異常が発生していない場合に比べて、1次コイルに入力される正弦波信号の周波数の増加に対して、出力信号の振幅の変化が小さくなる。したがって、上記のように構成した本発明の特徴によれば、診断手段により、レゾルバの1次および2次コイルのインピーダンス異常が検出される。その結果、LCRメータのような高価な装置を用いることなく、レゾルバの1次および2次コイルのインピーダンス異常を簡単かつ安価に検出できるようになる。また、診断手段は、複数の振幅の変化状態に応じて1次および2次コイルのインピーダンス異常を診断するので、温度などの環境の変化に対する誤診断を回避することもできる。
また、前記本発明の特徴において、励磁信号出力手段を、励磁信号として、互いに「2」の整数倍関係にある周期の複数の正弦波信号を出力するように構成し、かつ出力信号処理手段を、複数の出力信号を互いに「2」の整数倍関係にあるサンプリングレートでサンプリングした出力信号値を入力する信号入力部と、入力した出力信号値を用いて複数の出力信号を最小2乗法によって正弦波信号にそれぞれ近似し、かつ同近似した複数の正弦波信号の振幅を複数の出力信号の振幅としてそれぞれ演算する振幅演算部とで構成するようにするとよい。
これによれば、振幅演算手段は、出力信号を最小2乗法によって正弦波信号に近似し、かつこの近似した正弦波信号を用いて出力信号の振幅を計算するので、出力信号の振幅が精度よく計算され、レゾルバの1次および2次コイルのインピーダンス異常が高精度で検出されるようになる。また、複数の励磁信号として互いに「2」の整数倍関係にある周期の正弦波信号が採用され、互いに「2」の整数倍関係にあるサンプリングレートで複数の出力信号をサンプリングした出力信号値が入力されるので、長い周期の出力信号のサンプリングタイミングを、短い周期の出力信号のサンプリングタイミングのいずれかに一致させることができ、サンプリングのタイミング制御が簡単になる。さらに、長い周期の出力信号であっても、短い周期の出力信号であっても、1周期のサンプリング数は同じとなるので、正弦波信号への近似のための最小2乗法の適用においては同一演算態様(同一のアルゴリズム)を採用でき、装置全体を簡単に構成できる。
特に、レゾルバ、励磁信号出力手段および出力信号処理手段は、車両に搭載されており、かつ励磁信号出力手段および出力信号処理手段を、レゾルバによる車両制御のための回転角の検出に用いるようにするとよい。これによれば、回路装置および演算装置のより多くの共用化を図ることができる。
本発明は、レゾルバの故障診断装置の発明として構成しかつ実施することができるのみならず、レゾルバの故障診断方法の発明としても構成しかつ実施することもできる。
以下、本発明の一実施形態について図面を用いて説明する。図1は、本発明に係るレゾルバの故障診断装置を含む車両の電動パワーステアリング装置10に、レゾルバの故障診断を要求するサービスツール50を接続した状態を示す概略図である。
この電動パワーステアリング装置10は、操舵ハンドル11の回動操作をラックアンドピニオン機構12を介して操舵輪である左右前輪FW1,FW2に伝達する操舵軸13に組み付けられた電動モータ14を備えている。電動モータ14は、その回転に応じて操舵ハンドル11の回動操作に対してアシスト力を付与するもので、その回転は減速機構15を介して操舵軸13に伝達されるようになっている。電動モータ14には回転角センサとしてのレゾルバ16が内蔵され、操舵軸13にはトルクセンサ20が組み付けられている。
レゾルバ16は、励磁コイルである1次コイル16aおよび検出コイルである一対の2次コイル16b,16cからなる。1次コイル16aは電動モータ14のロータに組み付けられ、2次コイル16b,16cは電動モータ14のステータに電気角にしてπ/2だけずらして組み付けられている。なお、1次コイル16aを前記ステータに組み付け、2次コイル16b,16cを前記ロータに組み付けるようにしてもよい。
トルクセンサ20は、操舵軸13に介装されて上端および下端を操舵軸13に接続してなるトーションバー21と、トーションバー21の上端部および下端部にそれぞれ組み付けられたレゾルバ22,23とからなる。レゾルバ22は、励磁コイルである1次コイル22aおよび検出コイルである一対の2次コイル22b,22cからなる。1次コイル22aは回転体であるトーションバー21に組み付けられ、2次コイル22b,22cはトーションバー21を軸線回りに回転可能に支持するケーシング(図示しない)に電気角にしてπ/2だけずらして組み付けられている。レゾルバ23も、励磁コイルである1次コイル22aおよび検出コイルである一対の2次コイル23b,23cからなる。1次コイル23aはトーションバー21に組み付けられ、2次コイル23b,23cは前記ケーシングに電気角にしてπ/2だけずらして組み付けられている。なお、1次コイル22a,23aを前記ケーシングに組み付け、2次コイル22b,22c,23b,23cをトーションバー21に組付けるようにしてもよい。
これらのレゾルバ16,22,23は、電動パワーステアリング装置10の一部を構成する電子制御ユニット(ECUという)30に接続されている。ECU30は、CPU、ROM、RAMなどからなるコンピュータ装置を主要構成部品とするものである。この電子制御ユニット30は、図示しないプログラムの実行により、車両走行時には、トルクセンサ20内のレゾルバ22,23からの出力信号に基づいて検出したトルクと、回転角センサ(レゾルバ)16からの出力信号に基づいて検出した電動モータ14の回転角とを用いて電動モータ14の回転を制御して、運転者による操舵ハンドル11の回動操作に対して操舵アシストトルクを操舵軸13に付与する。
この操舵アシスト動作について、図2のECU30の機能ブロック図を用いて簡単に説明しておく。この場合、サービスツール50はECU30には接続されておらず、通信部31はサービスツール50と通信することはなく、作動制御部32は、アシスト制御機能を果たすように各機能ブロックの作動を制御する。まず、作動制御部32は、正弦波信号記憶部33を制御して第1正弦波テーブル33aに記憶されている正弦波信号を読み出して出力する。正弦波信号記憶部33は、第1〜第3正弦波テーブル33a〜33cおよび選択部33dを備えている。第1正弦波テーブル33aは、図4に示すように、所定の読み出しレートで読み出した際に、所定の基本周波数foを有する正弦波信号を出力するディジタル形式の第1正弦波信号を記憶している。第2正弦波テーブル33bは、前記と同じ所定の読み出しレートで読み出した際に、前記基本周波数foの1/2の周波数fo/2を有する正弦波信号を出力するディジタル形式の第2正弦波信号を記憶している。第3正弦波テーブル33cは、前記と同じ所定の読み出しレートで読み出した際に、前記基本周波数foの1/4の周波数fo/4を有する正弦波信号を出力するディジタル形式の第3正弦波信号を記憶している。
この操舵アシスト動作においては、作動制御部32は、選択部33dを制御して第1正弦波テーブル33a内に記憶されている第1正弦波信号を前記所定の読み出しレートで読み出して信号出力部34に出力する。信号出力部34は、作動制御部32によって制御されて、前記第1正弦波信号をD/A変換器35a〜35cに出力する。D/A変換器35a〜35cは、ディジタル形式の第1正弦波信号をD/A変換して図5(A)に示すような励磁信号Srを生成して、増幅器36a〜36cを介してレゾルバ22,23,16の1次コイル22a,23a,16aを励磁する。これらの励磁により、レゾルバ22,23,16の2次コイル22b,23b,16bは、図5(B)に示すような正弦波相信号Ssを出力する。レゾルバ22,23,16の2次コイル22c,23c,16cは、図5(C)に示すような余弦波相信号Scを出力する。
レゾルバ22,23,16の2次コイル22b,22c,23b,23c,16b,16cからの正弦波相信号Ssおよび余弦波相信号Scは、増幅器37a〜37fを介して、A/D変換器38a〜38fにそれぞれ供給される。A/D変換器38a〜38fは、入力した正弦波相信号Ssおよび余弦波相信号ScをA/D変換して、信号入力部41に供給する。信号入力部41は、この操舵アシスト動作においては、A/D変換器38a〜38fとの協働により、図4に示すように、励磁信号Sr(すなわち正弦波相信号Ssおよび余弦波相信号Sc)の1周期当たり複数かつ等間隔のサンプリングタイミングt1,t2,t3、t4・・・ごとに、正弦波相信号Ssおよび余弦波相信号Scの瞬時値を取り込む。なお、本実施形態においては、1周期当たりのサンプリング数は4個であり、図4の黒丸に対応する。
この取り込まれた正弦波相信号Ssおよび余弦波相信号Scのサンプリング値は、振幅演算部42に供給される。振幅演算部42は、レゾルバ22,23,16の各正弦波相信号Ssの1周期当たり複数のサンプリング値を用いた最小2乗法演算の実行により、励磁信号Sr(=Ar・sin2π・fo・t)と同一周波数および同一位相の正弦波関数に各正弦波相信号Ssを近似させて、下記式1で表される近似曲線Ps(t)の振幅値Asを計算する。
Ps(t)=As・sin2π・fo・t+Aso …式1
なお、式1中のAsoはオフセット値である。そして、この計算されたレゾルバ22,23,16に関する各正弦波相信号Ssの振幅値Asが回転角演算部43に出力される。
また、振幅演算部42は、レゾルバ22,23,16の各余弦波相信号Scの1周期当たり複数のサンプリング値を用いた最小2乗法演算の実行により、励磁信号Sr(=Ar・sin2π・fo・t)と同一周波数および同一位相の正弦波関数に各余弦波相信号Scを近似させて、下記式2で表される近似曲線Pc(t)の振幅値Acを計算する。
Pc(t)=Ac・cos2π・fo・t+Aco …式2
なお、式2中のAcoはオフセット値である。そして、この計算されたレゾルバ22,23,16に関する各余弦波相信号Scの振幅値Acが回転角演算部43に出力される。
回転角演算部43は、レゾルバ22,23,16の各2次コイル22b,22c,23b,23c,16b,16cに対する各1次コイル22a,23a,16aの回転角(電気角)θ1,θ2,θ3を、レゾルバ22,23,16に関する各正弦波相信号Ssおよびレゾルバ22,23,16に関する各余弦波相信号Scを用いてそれぞれ計算する。この場合、レゾルバ22,23,16に関する各正弦波相信号Ssの振幅をAsとするとともに、レゾルバ22,23,16に関する各余弦波相信号Scの振幅Acとすると、回転角(電気角)θ1,θ2,θ3はそれぞれtan-1As/Acの関係に基づいて計算される。
レゾルバ22,23に関する回転角θ1,θ2はトルク演算部44に供給される。トルク演算部44は、トルクセンサ20を構成するレゾルバ22,23に関する回転角θ1,θ2に基づいて操舵軸13すなわちトーションバー21に付与される操舵トルクTsを計算する。この場合、トーションバー21に付与される操舵トルクTsは、トーションバー21の上端部と下端部の回転角の差に比例するので、操舵トルクTsは、k(θ1−θ2)のように計算される。なお、kは比例定数である。この計算された操舵トルクTsは、レゾルバ16に関する回転角θ3すなわち電動モータ14の回転角と共に、アシスト制御部45に供給される。そして、アシスト制御部45は、操舵トルクTsおよび電動モータ14の回転角を用いて電動モータ14の回転を制御するので、運転者による操舵ハンドル11の回動操作は電動モータ14によってアシストされる。
次に、レゾルバ22,23,16のレアショート診断動作について説明する。診断者は、まずサービスツール50をECU30に接続し、サービスツール50を操作することにより、通信部31にレゾルバ22,23,16のレアショートの診断を要求する。ECU30は、この診断要求に応答して、図3のプログラムの実行をステップS10にて開始する。この開始後、ステップS11にて診断開始前処理を実行する。この診断開始前処理においては、アシスト制御機能を停止させる。この診断開始前処理は、図2の機能ブロック図において、作動制御部32が、回転角演算部43、トルク演算部44およびアシスト制御部45の作動を停止させることを意味する。
次に、ステップS12にてレゾルバ22,23,16のうちで1つの診断レゾルバを指定する。このレゾルバ22,23,16の診断は、レゾルバ22,23,16の各1次コイル22a,23a,16aと、レゾルバ22,23,16の各2次コイル22b,22c,23b,23c,16b,16cとの間のレアショートを診断するものである。最初、ステップS12の処理によってレゾルバ22が指定され、ECU30は、ステップS13の処理により、1次コイル22aを基準周波数foを有する第1正弦波信号(図4参照)で励磁し、2次コイル22b,22cから信号を入力して振幅演算処理を実行する。この場合、作動制御部32は、選択部33dを制御して第1正弦波テーブル33a内に記憶されている第1正弦波信号を前記と同じ所定の読み出しレートで読み出して信号出力部34に出力する。信号出力部34は、作動制御部32によって制御されて、前記第1正弦波信号をD/A変換器35aに出力して、D/A変換器35aがディジタル形式の第1正弦波信号をD/A変換して図5(A)に示すような励磁信号Srを生成し、増幅器36aを介してレゾルバ22の1次コイル22aを励磁する。この励磁により、レゾルバ22の2次コイル22bは、図5(B)に示すような正弦波相信号Ssを出力する。レゾルバ22の2次コイル22cは、図5(C)に示すような余弦波相信号Scを出力する。
レゾルバ22の2次コイル22b,22cからの正弦波相信号Ssおよび余弦波相信号Scは、増幅器37a,37bを介して、A/D変換器38a,38bにそれぞれ供給される。A/D変換器38a,38bは、入力した正弦波相信号Ssおよび余弦波相信号ScをA/D変換して、信号入力部41に供給する。信号入力部41は、A/D変換器38a,38bとの協働により、図4に示すように、励磁信号Sr(第1正弦波信号)の1周期当たり複数かつ等間隔のサンプリングタイミングt1,t2,t3、t4・・・ごとに、正弦波相信号Ssおよび余弦波相信号Scの瞬時値を取り込む。なお、この場合も、1周期当たりのサンプリング数は4個であり、図4の黒丸に対応する。
この取り込まれた正弦波相信号Ssおよび余弦波相信号Scのサンプリング値は、振幅演算部42に供給される。振幅演算部42は、前述した場合と同様に、レゾルバ22の正弦波相信号Ssの1周期当たり複数のサンプリング値を用いた最小2乗法演算の実行により、励磁信号Sr(=Ar・sin2π・fo・t)と同一周波数および同一位相の正弦波関数に正弦波相信号Ssを近似させて、上記式1で表される近似曲線Ps(t)の振幅値As1を計算する。そして、この計算されたレゾルバ22に関する正弦波相信号Ssの振幅値As1は診断部46に出力される。また、振幅演算部42は、前述した場合と同様に、レゾルバ22の余弦波相信号Scの1周期当あたり複数のサンプリング値を用いた最小2乗法演算の実行により、励磁信号Sr(=Ar・sin2π・fo・t)と同一周波数および同一位相の正弦波関数に余弦波相信号Scを近似させて、上記式2で表される近似曲線Pc(t)の振幅値Ac1を計算する。そして、この計算されたレゾルバ22に関する余弦波相信号Scの振幅値Ac1も診断部46に出力される。
このような正弦波相信号Ssの振幅値As1および余弦波相信号Scの振幅値Ac1の演算が終了すると、ECU30は、図3のステップS14にて「Yes」と判定して、ステップS15の処理により、1次コイル22aを基準周波数foの1/2の周波数を有する第2正弦波信号(図4参照)で励磁し、前記第1正弦波信号の場合と同様に、2次コイル22b,22cからの信号をA/D変換した正弦波相信号Ssおよび余弦波相信号Scを入力して振幅演算処理を実行する。しかし、この場合には、信号入力部41は、A/D変換器38a,38bとの協働により、図4に示すように、励磁信号Sr(すなわち第2正弦波信号)の1周期当たり複数かつ等間隔のサンプリングタイミングt1,t3,t5・・・ごとに、正弦波相信号Ssおよび余弦波相信号Scの瞬時値を取り込む。なお、この場合も、1周期当たりのサンプリング数は4個であり、図4の黒四角に対応する。
この取り込まれた正弦波相信号Ssおよび余弦波相信号Scのサンプリング値は、振幅演算部42に供給される。振幅演算部42は、前述した場合と同様に、レゾルバ22の正弦波相信号Ssの1周期当たり複数のサンプリング値を用いた最小2乗法演算の実行により、fo/2の周波数を有する励磁信号Sr(第2正弦波信号)と同一周波数および同一位相の正弦波関数に正弦波相信号Ssを近似させて振幅値As2を計算する。また、振幅演算部42は、前述した場合と同様に、レゾルバ22の余弦波相信号Scの1周期当たり複数のサンプリング値を用いた最小2乗法演算の実行により、fo/2の周波数を有する励磁信号Sr(第2正弦波信号)と同一周波数および同一位相の正弦波関数に余弦波相信号Scを近似させて振幅値Ac2を計算する。そして、この計算されたレゾルバ22に関する正弦波相信号Ssの振幅値As2および余弦波相信号Scの振幅値Ac2も診断部46に出力される。
このような正弦波相信号Ssの振幅値As2および余弦波相信号Scの振幅値Ac2の演算が終了すると、ECU30は、図3のステップS16にて「Yes」と判定して、ステップS17の処理により、1次コイル22aを基準周波数foの1/4の周波数を有する第3正弦波信号(図4参照)で励磁して、前記第1および第2正弦波信号の場合と同様に、2次コイル22b,22cからの信号をA/D変換した正弦波相信号Ssおよび余弦波相信号Scを入力する。しかし、この場合には、信号入力部41は、A/D変換器38a,38bとの協働により、図4に示すように、励磁信号Sr(すなわち第3正弦波信号)の1周期当たり複数かつ等間隔のサンプリングタイミングt1,t5,t9・・・ごとに、正弦波相信号Ssおよび余弦波相信号Scの瞬時値を取り込む。なお、この場合も、1周期当たりのサンプリング数は4個であり、図4の黒三角に対応する。
この取り込まれた正弦波相信号Ssおよび余弦波相信号Scのサンプリング値は、振幅演算部42に供給される。振幅演算部42は、前述した場合と同様に、レゾルバ22の正弦波相信号Ssの1周期当たり複数のサンプリング値を用いた最小2乗法演算の実行により、fo/4の周波数を有する励磁信号Sr(第3正弦波信号)と同一周波数および同一位相の正弦波関数に正弦波相信号Ssを近似させて振幅値As3を計算する。また、振幅演算部42は、前述した場合と同様に、レゾルバ22の余弦波相信号Scの1周期当たり複数のサンプリング値を用いた最小2乗法演算の実行により、fo/4の周波数を有する励磁信号Sr(第3正弦波信号)と同一周波数および同一位相の正弦波関数に余弦波相信号Scを近似させて振幅値Ac3を計算する。そして、この計算されたレゾルバ22に関する正弦波相信号Ssの振幅値As3および余弦波相信号Scの振幅値Ac3も診断部46に出力される。
このような正弦波相信号Ssの振幅値As3および余弦波相信号Scの振幅値Ac3の演算が終了すると、ECU30は、図3のステップS18にて「Yes」と判定して、ステップS19にてインピーダンス診断処理を実行する。このインピーダンス診断処理は、図2の診断部46の機能に対応する。診断部46は、正弦波相信号Ssの振幅値As1,As2,As3の変化状態に基づいて、レゾルバ22における1次コイル22aおよび2次コイル22bのレアショートを診断する。また、診断部46は、余弦波相信号Scの振幅値Ac1,Ac2,Ac3の変化状態に基づいて、レゾルバ22における1次コイル22aおよび2次コイル22cのレアショートを診断する。
正弦波相信号Ssの振幅値As1,As2,As3は、レゾルバ22の1次コイル22aと2次コイル22bとの間のインピーダンスに対応し、1次コイル22aまたは2次コイル22bのレアショートによって振幅値As1,As2,As3は小さくなる傾向を示す。また、余弦波相信号Scの振幅値Ac1,Ac2,Ac3は、レゾルバ22の1次コイル22aと2次コイル22cとの間のインピーダンスに対応し、1次コイル22aまたは2次コイル22cのレアショートによって振幅値Ac1,Ac2,Ac3は小さくなる傾向を示す。そして、前記レアショートが発生しない場合には、これらの振幅値As1,As2,As3および振幅値Ac1,Ac2,Ac3は、図6の実線で示すように励磁信号Srの上昇に従って上昇する。前記レアショートが発生すると、図6の破線で示すように、前記レアショートが発生しない場合に比べて、これらの振幅値As1,As2,As3および振幅値Ac1,Ac2,Ac3の上昇の変化率が小さくなるとともに、振幅値As1,As2,As3および振幅値Ac1,Ac2,Ac3自体が小さくなる。
診断部46は、このような現象を用いて、レゾルバ22のレアショートを診断する。この場合、診断部46は、正弦波相信号Ssの振幅値As1,As2,As3を用いて、振幅値As1,As2,As3が通る近似直線を計算する。そして、励磁信号Srの周波数が基準周波数foであるときの近似直線上の振幅値から、励磁信号Srの周波数がfo/4であるときの近似直線上の振幅値を減算し、その減算結果が予め決めた所定値よりも小さいときレアショートと判定し、それ以外のときレアショートでないと判定する。この差分を計算する代わりに、前記計算した近似直線の傾きを計算して、同傾きが予め決めた所定値よりも小さいとき1次または2次コイル22a,22bのレアショートと判定し、それ以外のとき1次または2次コイル22a,22bのレアショートでないと判定してもよい。また、このような差分または傾きに加えて、振幅値Ac1,Ac2,Ac3が予め決めた所定値よりも小さいことをレアショートの条件に加えるようにしてもよい。また、診断部46は、余弦波相信号Scの振幅値Ac1,Ac2,Ac3に関しても、前記正弦波相信号Ssの場合と同様にして、1次または2次コイル22a,22bのレアショートの判定処理を実行する。
前記ステップS19の処理後、ECU30は、ステップS20にて全てのレゾルバ22,23,16に関する診断が終了したか否かを判定する。この場合、レゾルバ22に関する診断のみが終了した状態にあるので、ECU30は、ステップS20にて「No」と判定して、ステップS12にてレゾルバ23を指定して、前述したステップS13〜S19からなる処理を実行する。この場合、信号出力部34は、作動制御部32によって制御され、第1〜第3正弦波テーブルからの第1〜第3正弦波信号を励磁信号Srとして読み出し、D/A変換器35bおよび増幅器36bを介してレゾルバ23の1次コイル23aを順次励磁する。また、信号入力部41は、レゾルバ23の2次コイル23b,23cからの出力信号を増幅器37c,37dおよびA/D変換器38c,38dを介して前記レゾルバ22の場合と同様に取り込む。これにより、レゾルバ23に関しても、1次または2次コイル22a,22bのレアショートの診断処理がなされる。
このようにしてレゾルバ23に関する診断が終了すると、ECU30は、図3のステップS20にてふたたび「No」と判定して、ステップS12にてレゾルバ16を指定して、前述したステップS13〜S19からなる処理を実行する。この場合、信号出力部34は、作動制御部32によって制御され、第1〜第3正弦波テーブルからの第1〜第3正弦波信号を励磁信号Srとして読み出し、D/A変換器35cおよび増幅器36cを介してレゾルバ16の1次コイル16aを励磁する。また、信号入力部41は、レゾルバ16の2次コイル16b,16cからの出力信号を増幅器37e,37fおよびA/D変換器38e,38fを介して前記レゾルバ22,23の場合と同様に取り込む。これにより、レゾルバ16に関しても、1次または2次コイル22a,22bのレアショートの診断処理がなされる。
そして、全てのレゾルバ22,23,16の診断が終了すると、ECU30は、ステップS20にて「Yes」と判定し、ステップS21にて診断結果をサービスツール50に出力して、ステップS22にてプログラムの実行を終了する。このステップS21の処理は、診断部46が通信部31を介してサービスツール50にレゾルバ22,23,16の診断結果を出力することに対応する。サービスツール50は、この診断結果を表示器に表示し、診断者はレゾルバ22,23,16の診断情報を得ることができる。
上記作動説明からも理解できるとおり、上記実施形態によれば、LCRメータのような高価な装置を用いることなく、レゾルバ22,23,16のインピーダンス異常を簡単かつ安価に検出できるようになる。また、診断部46は、複数の振幅の変化状態に応じてレゾルバ22,23,16のインピーダンス異常を診断するので、温度などの環境の変化に対する誤診断を回避することもできる。
また、上記実施形態においては、正弦波信号記憶部33および信号出力部34が、互いに「2」の整数倍関係にある周波数(周期)の第1〜第3正弦波信号からなる複数の励磁信号Srでレゾルバ22,23,16の各1次コイル22a,23a,16aを励磁する。そして、信号入力部41が互いに「2」の整数倍関係にあるサンプリングレートでサンプリングしたレゾルバ22,23,16からの出力信号値を入力し、振幅演算部42が、最小2乗法を用いた演算の実行により、前記入力した出力信号値を用いて正弦波相信号Ssの振幅値As1,As2,As3および余弦波相信号Scの振幅値Ac1,Ac2,Ac3を計算するようにした。したがって、正弦波相信号Ssの振幅値As1,As2,As3および余弦波相信号Scの振幅値Ac1,Ac2,Ac3が精度よく計算され、レゾルバ22,23,16のインピーダンス異常が高精度で検出されるようになる。
また、複数の励磁信号Srとして互いに「2」の整数倍関係にある周期の第1〜第3正弦波信号が採用され、互いに「2」の整数倍関係にあるサンプリングレートで複数の出力信号をサンプリングした出力信号値が入力されるので、長い周期の出力信号のサンプリングタイミングを、短い周期の出力信号のサンプリングタイミングのいずれかに一致させることができ、サンプリングのタイミング制御が簡単になる。さらに、長い周期の出力信号であっても、短い周期の出力信号であっても、1周期のサンプリング数は同じとなるので、振幅演算部42における正弦波信号への近似のための最小2乗法の適用においては同一演算態様(同一のアルゴリズム)を採用でき、装置全体を簡単に構成できる。
さらに、振幅演算部42における正弦波相信号Ssの振幅値As1,As2,As3および余弦波相信号Scの振幅値Ac1,Ac2,Ac3の計算は、操舵アシスト制御する場合と同じアルゴリズムであるので、回路装置および演算装置のより多くの共用化を図ることができる。
さらに、本発明の実施にあたっては、上記実施形態及びその変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、上記実施形態においては、1周期当たり4個のサンプリング値を用いて、正弦波相信号Ssおよび余弦波相信号Scを最小2乗法により正弦波信号に近似させるようにした。しかし、このサンプリング値の数に関しては、これに限定されるものでなく、正弦波信号への近似が可能であれば、1周期当たりサンプリング値の数を上記実施形態とは異ならせるようにしてもよい。
また、上記実施形態においては、正弦波相信号Ssの3個の振幅値As1,As2,As3および余弦波相信号Scの3個の振幅値Ac1,Ac2,Ac3を用いてレゾルバ22,23,16のレアショートを検出するようにした。しかし、正弦波相信号Ssの振幅値および余弦波相信号Scの振幅値の数に関しては、少なくとも2以上の複数であればよい。
また、上記実施形態においては、診断部46をアシスト制御用のECU30に内蔵させるようにしたが、サービスツール50側に設けるようにしてもよい。この場合、振幅演算部42にて計算されたレゾルバ22,23,16に関する正弦波相信号Ssの振幅値As1,As2,As3および余弦波相信号Scの振幅値Ac1,Ac2,Ac3を、通信部31を介してサービスツール50に供給するようにして、サービスツール50側にて診断部46と同様な診断のための演算を実行するようにするとよい。
さらに、上記実施形態に係るレゾルバの診断装置および診断方法は、車両の電動パワーステアリング装置10内に設けたレゾルバ以外にも広く適用できる。すなわち、車両に搭載された他のレゾルバおよび車両以外の装置に組み込まれるレゾルバについても、上記実施形態のレゾルバの診断装置および診断方法は適用され得るものである。
本発明の一実施形態に係るレゾルバの故障診断装置を含む車両の電動パワーステアリング装置に、レゾルバの故障診断を要求するサービスツールを接続した状態を示す概略図である。 図1の電子制御ユニットの機能を説明するための機能ブロック図である。 図1の電子制御ユニットにて実行されるプログラムのフローチャートである。 図1のレゾルバの励磁信号および同レゾルバからの出力信号を説明するための波形図である。 (A)〜(C)は、図1のレゾルバの励磁信号および同レゾルバからの正弦波相信号および余弦波相信号を説明するための波形図である。 図1のレゾルバの励磁信号の周波数を変化させた場合における正弦波相信号および余弦波相信号の振幅値の変化を説明するためのグラフである。
符号の説明
10…電動パワーステアリング装置、11…操舵ハンドル、13…操舵軸、14…電動モータ、16,22,23…、20…トルクセンサ、21…トーションバー、30…電子制御ユニット、31…通信部、33…正弦波信号記憶部、34…信号出力部、41…信号入力部、42…振幅演算部、46…診断部、50…サービスツール。

Claims (5)

  1. 互いに異なる周波数を有する複数の正弦波信号を励磁信号としてレゾルバの1次コイルに順次出力する励磁信号出力手段と、
    レゾルバの2次コイルから出力される前記複数の正弦波信号に対応した複数の出力信号を入力して、前記複数の出力信号の振幅をそれぞれ計算する出力信号処理手段と、
    前記計算された複数の振幅の変化状態に応じて前記1次および2次コイルのインピーダンス異常を診断する診断手段と
    を備えたことを特徴とするレゾルバの故障診断装置。
  2. 前記励磁信号出力手段を、前記励磁信号として、互いに「2」の整数倍関係にある周期の複数の正弦波信号を出力するように構成し、かつ
    前記出力信号処理手段を、
    前記複数の出力信号を互いに「2」の整数倍関係にあるサンプリングレートでサンプリングした出力信号値を入力する信号入力部と、
    前記入力した出力信号値を用いて前記複数の出力信号を最小2乗法によって正弦波信号にそれぞれ近似し、かつ同近似した複数の正弦波信号の振幅を前記複数の出力信号の振幅としてそれぞれ演算する振幅演算部と
    で構成するようにした請求項1に記載したレゾルバの故障診断装置。
  3. 前記励磁信号出力手段は、複数の正弦波信号を記憶した正弦波信号記憶部を有し、前記正弦波信号記憶部に記憶されている複数の正弦波信号を前記励磁信号としてそれぞれ読み出し出力する請求項1または2に記載したレゾルバの故障診断装置。
  4. 前記レゾルバ、励磁信号出力手段および出力信号処理手段は、車両に搭載されており、かつ
    前記励磁信号出力手段および出力信号処理手段は、前記レゾルバによる車両制御のための回転角の検出に用いられる請求項1ないし3のうちのいずれか一つに記載したレゾルバの故障診断装置。
  5. 互いに異なる周波数を有する複数の正弦波信号を励磁信号としてレゾルバの1次コイルに順次出力し、
    レゾルバの2次コイルから出力される前記複数の正弦波信号に対応した複数の出力信号を入力して、前記複数の出力信号の振幅をそれぞれ計算し、
    前記計算された複数の振幅の変化状態に応じて前記1次および2次コイルのインピーダンス異常を診断する
    ようにしたことを特徴とするレゾルバの故障診断方法。
JP2005359706A 2005-12-14 2005-12-14 レゾルバの故障診断装置および故障診断方法 Expired - Fee Related JP4622842B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359706A JP4622842B2 (ja) 2005-12-14 2005-12-14 レゾルバの故障診断装置および故障診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359706A JP4622842B2 (ja) 2005-12-14 2005-12-14 レゾルバの故障診断装置および故障診断方法

Publications (2)

Publication Number Publication Date
JP2007163287A JP2007163287A (ja) 2007-06-28
JP4622842B2 true JP4622842B2 (ja) 2011-02-02

Family

ID=38246351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359706A Expired - Fee Related JP4622842B2 (ja) 2005-12-14 2005-12-14 レゾルバの故障診断装置および故障診断方法

Country Status (1)

Country Link
JP (1) JP4622842B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046925A1 (de) 2009-11-20 2011-05-26 Lenze Automation Gmbh Verfahren, Vorrichtung und System zum Überwachen des Bestimmens eines Rotorwinkels einer rotierenden Welle mittels eines Resolvers
FR2995992B1 (fr) * 2012-09-26 2016-01-01 Thales Sa Procede et dispositif de traitement des signaux de sortie d'un capteur inductif de deplacement
JP6149271B2 (ja) * 2013-02-06 2017-06-21 日立オートモティブシステムズ株式会社 角度センサ、トルクセンサおよびパワーステアリング装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326469A (ja) * 1998-05-18 1999-11-26 Chubu Electric Power Co Inc 発電機回転中回転子インピーダンス測定試験によるレアショート判定方法
JP2002196025A (ja) * 2000-10-17 2002-07-10 Toyota Motor Corp 正弦波測定装置及び同測定方法、インピーダンス測定装置、並びに回転角検出装置
JP2002350181A (ja) * 2001-05-30 2002-12-04 Toyota Motor Corp レゾルバ及び回転角検出装置
JP2003315097A (ja) * 2002-04-25 2003-11-06 Toyoda Mach Works Ltd レゾルバディジタル変換方法、レゾルバディジタル変換装置および電気式動力舵取装置
JP2005181094A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp トルクセンサ装置および同装置の補正値検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326469A (ja) * 1998-05-18 1999-11-26 Chubu Electric Power Co Inc 発電機回転中回転子インピーダンス測定試験によるレアショート判定方法
JP2002196025A (ja) * 2000-10-17 2002-07-10 Toyota Motor Corp 正弦波測定装置及び同測定方法、インピーダンス測定装置、並びに回転角検出装置
JP2002350181A (ja) * 2001-05-30 2002-12-04 Toyota Motor Corp レゾルバ及び回転角検出装置
JP2003315097A (ja) * 2002-04-25 2003-11-06 Toyoda Mach Works Ltd レゾルバディジタル変換方法、レゾルバディジタル変換装置および電気式動力舵取装置
JP2005181094A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp トルクセンサ装置および同装置の補正値検出方法

Also Published As

Publication number Publication date
JP2007163287A (ja) 2007-06-28

Similar Documents

Publication Publication Date Title
JP3758563B2 (ja) 位置検出器の補正方法、及び、電気式動力舵取装置
KR20180067546A (ko) 기능적 안전성을 구비한 스티어링 각센서
JP2005037305A (ja) レゾルバの検出位置補正方法及び装置
WO2014184833A1 (ja) レゾルバの異常検出方法、角度検出装置、モータ及び搬送装置
JP4622842B2 (ja) レゾルバの故障診断装置および故障診断方法
JP2012021842A (ja) 回転角検出装置及び電動パワーステアリング装置
JP3953889B2 (ja) 回転角検出装置とその温度補正方法
JP7066306B2 (ja) 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
JP4269278B2 (ja) ブラシレスモータの回転トルク方向検出装置
JP5082481B2 (ja) 回転角度位置算出装置及びモータ
JP5865059B2 (ja) 波形測定器
KR20060101999A (ko) 교류모터의 로터위치 감지장치의 감지신호 보상 방법
JP2002350181A (ja) レゾルバ及び回転角検出装置
US8942890B2 (en) Torque detecting device and electric power steering system
CN107210691B (zh) 位置检测器的角度误差校正装置以及角度误差校正方法
EP3690410A2 (en) Inspection device and inspection learning model generation device
JP2012083279A (ja) トルク検出装置
JP4380317B2 (ja) トルクセンサ装置の補正値検出方法
JP2020190533A (ja) レゾルバ信号処理装置
US10989572B2 (en) Apparatus and method for checking the plausibility of an excitation signal for a rotary encoder
JP4762622B2 (ja) 回転センサ
CN109073691B (zh) 测量线圈的至少一个特性的方法和设备、测量操纵构件的位置的方法和设备以及机动车
JP2008215998A (ja) 回転軸の絶対回転角検出装置
JP7101827B2 (ja) 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
JP6048060B2 (ja) トルク検出装置及び電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees