JP4612207B2 - Carbon fiber fabric and prepreg using the same - Google Patents

Carbon fiber fabric and prepreg using the same Download PDF

Info

Publication number
JP4612207B2
JP4612207B2 JP2001044035A JP2001044035A JP4612207B2 JP 4612207 B2 JP4612207 B2 JP 4612207B2 JP 2001044035 A JP2001044035 A JP 2001044035A JP 2001044035 A JP2001044035 A JP 2001044035A JP 4612207 B2 JP4612207 B2 JP 4612207B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundle
carbon
bundle
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001044035A
Other languages
Japanese (ja)
Other versions
JP2002249956A (en
Inventor
重一 武田
真仁 田口
智雄 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001044035A priority Critical patent/JP4612207B2/en
Publication of JP2002249956A publication Critical patent/JP2002249956A/en
Application granted granted Critical
Publication of JP4612207B2 publication Critical patent/JP4612207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化複合材料の強化材として使用される炭素繊維織物に関する。
【0002】
【従来の技術】
繊維強化複合材料の強化材として、炭素繊維、ガラス繊維、アラミド繊維等が使用されている。中でも、炭素繊維は、比強度、比弾性率、耐熱性、耐薬品性等に優れ、航空機用途、ゴルフシャフト、釣り竿等のスポーツ用途、一般産業用途の繊維強化複合材料に使用されている。
また、炭素繊維は強化材として用いられる場合、炭素繊維を縦糸および横糸に用いた織物の形態で利用されることが多い。炭素繊維織物を用いた繊維強化複合材料は、例えば、以下のようにして製造される。
【0003】
まず、ポリアクリロニトリル系重合体の単繊維を数千から数万本束ねた前駆体繊維束を、耐炎化工程(焼成工程)にて空気などの酸化性気体中、200〜300℃の温度で焼成して耐炎繊維束を得る。次いで、炭素化工程(焼成工程)にて、不活性雰囲気中、300〜2000℃の温度で耐炎繊維束を炭素化して炭素繊維束を得る。そして、この炭素繊維束を縦糸および横糸として製織し、織物とした後、これに合成樹脂を含浸させ、所定形状に成形することにより繊維強化複合材料を得る。
【0004】
【発明が解決しようとする課題】
炭素繊維束の製造に用いられる前駆体繊維束には、焼成工程において繊維束がばらけて、繊維束を構成する単繊維が隣接する繊維束に絡まったり、ローラに巻き付いたりしないように、高い集束性が要求される。
しかし、集束性の高い前駆体繊維束から得られる炭素繊維束は、同様に集束性が高い。そのため、このような炭素繊維束を製織して得られた炭素繊維織物においては、炭素繊維束の集束性が高いため単繊維が均一にばらけにくく、縦糸および横糸である炭素繊維束の幅にむらが生じやすかった。炭素繊維束の幅にむらがあると、織物の外観が劣るとともに開口率が大きくなり、樹脂が均一に含浸しにくくボイドを発生しやすいという問題、すなわち樹脂含浸性に劣るという問題があった。
【0005】
よって、本発明の目的は、縦糸および横糸である炭素繊維束の幅にむらがなく、低開口率で、樹脂含浸性に優れ、織物の外観品位も良好な炭素繊維織物を提供することにある。
【0006】
【課題を解決するための手段】
本発明の炭素繊維織物は、複数の炭素繊維の単繊維が集束した炭素繊維束からなる縦糸と横糸が製織された炭素繊維織物であり、縦糸および横糸それぞれの任意のn箇所で糸幅を測定し、得られた糸幅の測定値a、…、aと、これら測定値の平均値xとから下記式(1)を用いて算出した縦糸および横糸の糸幅変動率CV(%)が、いずれも10%以下であり、単繊維の繊維断面の長径と短径との比(長径/短径)が1.05〜1.6であり、炭素繊維束は、単繊維の表面に単繊維の長手方向に延びる複数の皺を有し、単繊維の円周長さ2μmの範囲で最高部と最低部の高低差が80nm以上であることを特徴とする。
【数2】

Figure 0004612207
素繊維束のSi量は500ppm以下が好ましい。
また、JIS−L1013に準拠して測定される炭素繊維束の引掛強さにおいて、断面積1mmとして換算した強さが450N以上であることが好ましい。
また、炭素繊維束のフィラメント数は1000〜12000本であることが好ましい。
また、開口率は10%以下であることが好ましい。
本発明のプリプレグは、上記の炭素繊維織物に対して、30〜60重量%の樹脂が含浸されていることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の炭素繊維織物は、炭素繊維束からなる縦糸と横糸が製織された、平織、朱子織、綾織等の織物である。炭素繊維束は複数の炭素繊維の単繊維が集束したものであり、通常、アクリロニトリル系重合体、ピッチ等の単繊維を束ねた前駆体繊維束(トウ)を焼成して製造される。
そして、本発明の炭素繊維織物においては、下記式(1)で表される縦糸および横糸の糸幅変動率CV(%)が、いずれも10%以下である。
【0008】
【数3】
Figure 0004612207
【0009】
糸幅変動率CV(%)は、縦糸および横糸それぞれについて、任意のn箇所で糸幅を測定し、得られた糸幅の測定値a1、…、anと、これら測定値の平均値xとから上記式(1)を用いて算出した値であり、縦糸および横糸それぞれについて求められる。
ここで、糸幅を測定する場合、通常、織物の中央部の縦糸および横糸を100本ずつ選択し、1本の糸について1箇所の糸幅を測定する。つまり、縦糸および横糸それぞれについて100箇所の糸幅を測定し、得られたa1〜a100の100個のデータから平均値xを求め、縦糸および横糸それぞれの糸幅変動率CV(%)を算出する。
【0010】
このように縦糸および横糸についてそれぞれ算出された糸幅変動率CV(%)の少なくとも一方が10%を超えると、開口率が増加し、炭素繊維織物の外観が劣るとともに、プリプレグ製造時の樹脂含浸性が低下し、繊維強化複合材料の強化材として適さない。糸幅変動率CV(%)のより好ましい範囲は7%以下である。
【0011】
炭素繊維織物の縦糸および横糸である炭素繊維束は、複数の炭素繊維の単繊維が集束したものである。この単繊維の繊維断面の形状には特に制限はないが、繊維断面の長径と短径との比(長径/短径)が、1.05〜1.6であることが好ましく、さらに好ましくは、1.10〜1.4であり、より好ましくは1.15〜1.30である。長径/短径比がこの範囲内にあれば、炭素繊維束の集束性が優れ、炭素繊維織物の外観も優れるとともに樹脂含浸性がさらに向上し、かつ強度も高くなる。長径/短径比が1.05未満では、単繊維間の空隙が減少し、炭素繊維織物の樹脂含浸性が低下する場合がある。長径/短径比が1.6を超えると、繊維束の集束性が低下し、炭素繊維束を製造する際の焼成工程通過性が悪化し、炭素繊維束が安定に得られない場合がある、また、繊維断面が不均一化するため、炭素繊維束のストランド強度および引掛強さが低下し、炭素繊維織物の強度が不十分となる場合がある。さらに、毛羽などが多発し、その結果炭素繊維織物の外観も劣る場合がある。
【0012】
ここで、単繊維の繊維断面の長径と短径との比(長径/短径)は、以下のようにして決定される。
内径1mmの塩化ビニル樹脂製のチューブ内に測定用の炭素繊維束を通した後、これをナイフで輪切りにして試料を準備する。ついで、該試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、PHILIPS社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径および短径を測定し、長径÷短径で長径/短径比率が決定される。
【0013】
また、使用する炭素繊維束のSi量は、500ppm以下であることが好ましく、さらに好ましくは300ppm以下であり、より好ましくは200ppm以下である。Si量がこの範囲内にあれば、炭素繊維織物の樹脂含浸性がさらに優れ、かつ外観品位が高い炭素繊維織物となる。Si量が500ppmより多くなりすぎると、得られる炭素繊維束がばらけにくくなり、炭素繊維織物のドレープ性等の織物品位が悪くなる傾向にある。また、炭素繊維束製造工程における焼成時にシリカが多く飛散して焼成安定性が悪くなり、炭素繊維束を安定して得ることができなくなるおそれがある。
【0014】
このSi量は、前駆体繊維束を製造する際に使用されるシリコン系油剤に由来するものである。ここで、Si量は、ICP発光分析装置によって測定することができる。測定は以下のように実施される。
試料を風袋既知の白金るつぼに入れ600〜700℃マッフル炉で灰化し、その重量を測定して灰分を求める。次に炭酸ナトリウムを規定量加え、バーナーで溶融し、DI水で溶解しながら50mlポリメスフラスコに定容する。本試料をICP発光分析法によりSiの定量を行う。
【0015】
また、本発明の炭素繊維織物に使用する炭素繊維束を構成している単繊維は、その表面に単繊維の長手方向に延びる複数の皺を有していることが好ましい。このような皺の存在により、炭素繊維束の集束性が優れるとともに炭素繊維織物の樹脂含浸性がさらに向上する。
このような皺の深さは、単繊維の円周長さ2μmの範囲で最高部と最低部の高低差によって規定される。高低差は、走査型原子間力顕微鏡(AFM)や走査型トンネル顕微鏡(STM)を用いて単繊維の表面を走査して表面形状を測定することができる。具体的には以下の通りである。
【0016】
炭素繊維の単繊維を数本試料台上にのせ、両端を固定し、さらに周囲にドータイトを塗り測定サンプルとする。原子間力顕微鏡(セイコーインスツルメンツ製、SPI3700/SPA−300)によりシリコンナイトライド製のカンチレバーを使用してAFMモードにて測定を行う。単繊維の2〜7μmの範囲を走査して得られた測定画像を二次元フーリエ変換にて低周波成分をカットしたのち逆変換を行い繊維の曲率を除去する。このようにして得られた平面画像の断面より、皺の深さを定量する。
【0017】
本発明の炭素繊維束における単繊維の表面の皺の深さは、好ましくは80nm以上であり、より好ましくは100nm以上であり、さらに好ましくは150nm以上である。皺の深さが80nm未満では、単繊維間の空隙が減少し、樹脂含浸性が悪くなる。また、単繊維が均一にばらけにくくなり、織布の外観品位が悪化する。一方、皺の深さが深くなりすぎると繊維束の集束性が低下し、炭素繊維束を製造する際の焼成工程通過性が悪化し、炭素繊維束を安定して得ることができなくなる。また、炭素繊維束の表面欠陥が増え、ストランド強度が低下する。さらに、単繊維間の摩擦が増加して、引掛強さが低下する傾向にある。
【0018】
本発明の炭素繊維束の引掛強さは、断面積1mm2 として換算した強さが450N以上であることが望ましい。より好ましくは500N以上であり、さらに好ましくは550N以上である。引掛強さが450N未満では、糸切れしやすくなるため、炭素繊維束を製造する際の焼成工程通過性が悪化し、炭素繊維束を安定して得ることができなくなる。
【0019】
ここで、引掛強さは、JIS−L 1013に記載された試験法に準拠して測定される。以下の測定方法について詳しく説明する。
図1のように、U字状の炭素繊維束1に、炭素繊維束2を引っ掛け、これをU字状にし、これら炭素繊維束1,2の交差部分から100mmの位置に、長さ25mmの掴み部3,4を取り付けて、試験体とする。試験体の作製の際、0.1×10-3N/デニールの荷重を掛けて炭素繊維束の引き揃えを行う。引張時のクロスヘッド速度は100mm/minで実施する。
【0020】
本発明の炭素繊維織物に使用する炭素繊維束は、フィラメント数が1000〜12000本であることが好ましい。フィラメント数が1000本未満では、織布にする際に必要な炭素繊維本数が多くになりコスト高となる。また,フィラメント数12000本以上では開口率10%以下の炭素繊維織物を得るには開繊処理が必須となり、しかも取扱い性が極めて悪い織物となる場合がある。好ましくは、1000〜9000本である。
【0021】
また、本発明で使用される炭素繊維束のストランド強度は、好ましくは380kgf/mm2 以上であり、より好ましくは400kgf/mm2 以上であり、さらに好ましくは420kgf/mm2 以上である。ストランド強度が380kgf/mm2 未満では、糸切れしやすくなるため、炭素繊維束を製造する際の焼成工程通過性が悪化し、炭素繊維束を安定して得られない場合がある。また、この炭素繊維束からなる炭素繊維織物を用いた繊維強化複合材料のコンポジット特性、例えば、繊維の直角方向の曲げ強度(FS0゜)などが低下する場合がある。
ここで、ストランド強度強度は、JIS R 7601に記載された試験法に準拠して測定される。
【0022】
炭素繊維織物の開口率は10%以下であることが好ましい。開口率が10%を超えると織物外観が劣るとともに、樹脂含浸性が低下したり、強化材として使用した場合に炭素繊維の有する強度等の機械的特性が十分に発現しない場合がある。
ここでいう開口率とは、織物において、100mm×100mmの単位面積における、縦糸または横糸のいずれもが存在しない開口部の合計面積の比率である。開口部の面積測定は、(株)キーエンス製、CV−100等の市販の画像処理センサーを使用し、下記の計算式により求めることができる。
開口率(%)=開口部の面積の和(mm2)×100/10000(mm2
また、本発明の炭素繊維織物は、織物密度(1インチあたりの炭素繊維束の本数)が5〜40本/吋であることが好ましい。5本/吋未満では、織物密度が粗すぎて開口率が増大し、繊維強化複合材料としての機能が薄れ、40本/吋を超えると高密度になりすぎて製織性不良となり、樹脂含浸性が悪く,強度発現性が低下する場合がある。
【0023】
次に、本発明の炭素繊維織物の製造方法について説明する。
本発明の炭素繊維束は、例えば前駆体繊維束としてアクリロニトリル系重合体の繊維束を用いた場合、以下のようにして製造することができる。
まず、湿式紡糸などによってアクリロニトリル系重合体の単繊維からなる前駆体繊維束を紡糸する。
ついで、複数の前駆体繊維束を平行に揃えた状態で耐炎化炉に導入し、200〜300℃に加熱された空気などの酸化性気体を前駆体繊維束に吹き付けることによって、前駆体繊維束を耐炎化して耐炎繊維束を得る。
ついで、この耐炎繊維束を炭素化炉に導入し、不活性雰囲気中、1200〜2000℃の温度で炭素化して炭素繊維束を得る。さらに、2000〜2800℃の温度で黒鉛化して高弾性炭素繊維束を得る。
【0024】
得られた炭素繊維束に、マトリックス樹脂との親和性を向上させる目的で表面酸化処理を施す。表面酸化処理法は、特に制限はなく気相酸化処理、溶剤酸化処理、あるいは電解酸化処理などにより実施される。
続いて、繊維の保護およびマトリックス樹脂との親和性向上の目的でサイジング処理を施す。サイジング処理は、ローラー浸漬法、ローラー接触法など一般に工業的に用いられている方法などによって行われる。
サイジング剤を付着した炭素繊維は、続いて乾燥処理され、サイジング剤を付着させる際に同時に付着したサイジング剤溶液に含まれていた水、あるいは有機溶媒などの除去が行われる。ここでの乾燥処理は、熱風、熱板、ローラー、各種赤外線ヒーターなどを熱媒として利用した方法などによって行われる。
【0025】
そして得られた炭素繊維束を縦糸および横糸として、レピア織機、シャトル織機、グリッパ織機、ジェット織機等の織機を用いて、平織、朱子織、綾織等の炭素繊維織物を製織する。
【0026】
このようにして製造された炭素繊維織物は、樹脂が溶解している樹脂溶液に浸漬されるラッカー法(溶剤法)や、樹脂フィルムを熱圧着させるホットメルト法等の公知の方法でプリプレグとされ、繊維強化複合材料の強化材として使用される。この場合、必要に応じて、炭素繊維織物の開繊処理を行ってもよい。
プリプレグに使用される樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂等の熱硬化性樹脂の他、ナイロン樹脂、ポリエステル樹脂、ポリブチレンテレフタレート樹脂等の熱可塑性樹脂が挙げられる。
プリプレグ中においては炭素繊維織物の重量を100重量%とした場合、この炭素繊維織物に対して30〜60重量%の樹脂が含浸されていることが好ましい。含浸量が30重量%未満では、ボイドが発生しやすく、強度低下を招く場合があり、60重量%を超えると樹脂フローが起こり所定の厚みが得られない場合がある。
【0027】
このような炭素繊維織物は、複数の炭素繊維の単繊維が集束した炭素繊維束からなる縦糸と横糸が製織された炭素繊維織物であり、縦糸および横糸それぞれの任意のn箇所で糸幅を測定し、得られた糸幅の測定値a1、…、anと、これら測定値の平均値xとから上記式(1)を用いて算出した縦糸および横糸の糸幅変動率(%)が、いずれも10%以下であるので、縦糸および横糸の糸幅にむらがなく均一で、低開口率で、樹脂含浸性に優れ、織物の外観品位も良好である。このような炭素繊維織物はプリプレグとして、繊維強化複合材料とするのに最適である。
【0028】
【実施例】
以下、本発明を実施例を示して詳しく説明する。
炭素繊維前駆体繊維束は、アクリルニトリル系重合体をジメチルアセトアミドに溶解し紡糸原液を調製し、湿式紡糸にて作製した。紡糸原液は、濃度50〜70重量%、温度30〜50℃のジメチルアセトアミド水溶液からなる第一凝固浴中に吐出させて凝固糸とした。次いで該凝固糸を濃度50〜70重量%、温度30〜50℃のジメチルアセトアミド水溶液からなる第2凝固浴中にて所定量の延伸を施し、さらに4倍以上の湿熱延伸を行い、炭素繊維前駆体繊維束を得た。炭素繊維前駆体繊維束の断面の長径と短径との比、皺の深さは、凝固浴濃度および温度、さらに延伸条件を変更することにより調整した。
【0029】
[実施例1]
フィラメント数3000本(繊度1980dtex)の炭素繊維を縦糸および横糸として使用して、レピア織機で平織し、織物目付けが200g/mの炭素繊維織物を製造した。
なお、使用した炭素繊維束は、単繊維の繊維断面の長径と短径との比(長径/短径)が1.20で、皺の深さが210nmで、Si量は160ppm、ストランド強度は4680MPa、引掛強さは760Nであった。
得られた織物の縦糸および横糸の糸幅変動率(%)、開口率(%)を測定し、織物外観品位を下記の方法で評価した結果を表1に示す。
また、得られた炭素繊維織物にホットメルト法でエポキシ樹脂を含浸させたところ、樹脂含浸性が優れていた。
【0030】
(1)糸幅変動率CV(%)
得られた織物の中央部の縦糸および横糸を100本ずつ選択し、1本の糸について1箇所の糸幅を測定した。そして得られた測定値a1〜a100から平均値xを求め、上記式(1)を使用して糸幅変動率CV(%)を算出した。
(2)開口率(%)
100mm×100mmの単位面積における、縦糸または横糸のいずれもが存在しない開口部の合計面積の比率である。開口部の面積測定は、(株)キーエンス製、CV−100等の市販の画像処理センサーを使用し、下記の計算式により求めた。
開口率(%)=開口部の面積の和(mm2)×100/10000(mm2
(3)織物外観品位
目視で評価した。
【0031】
[比較例1]
フィラメント数3000本(繊度1980dtex)の炭素繊維を縦糸および横糸として使用して、レピア織機で平織し、織物目付けが200g/mの炭素繊維織物を製造した。
なお、使用した炭素繊維束は、単繊維の繊維断面の長径と短径との比(長径/短径)が1.0で、皺の深さが50nmで、Si量は250ppm、ストランド強度は4800MPa、引掛強さは950Nであった。
実施例1と同様にして、得られた織物の糸幅変動率(%)、開口率(%)を測定し、織物外観品位を評価した結果を表1に示す。
また、得られた炭素繊維織物にホットメルト法でエポキシ樹脂を含浸させたところ、ピンホールが多発し樹脂含浸性が劣っていた
【0032】
【表1】
Figure 0004612207
【0033】
【発明の効果】
以上説明したように本発明の炭素繊維織物は、縦糸および横糸の糸幅にむらがなく均一で、低開口率で、樹脂含浸性に優れ、織物の外観品位も良好である。このような炭素繊維織物は、プリプレグとして繊維強化複合材料を製造するのに最適であり、炭素繊維の有する強度等の機械的特性が発現した繊維強化複合材料を製造できる。
【図面の簡単な説明】
【図1】引掛強さの測定方法を説明する説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber fabric used as a reinforcing material for a fiber-reinforced composite material.
[0002]
[Prior art]
Carbon fibers, glass fibers, aramid fibers, and the like are used as reinforcing materials for fiber reinforced composite materials. Among these, carbon fibers are excellent in specific strength, specific elastic modulus, heat resistance, chemical resistance, and the like, and are used in fiber reinforced composite materials for aircraft applications, sports applications such as golf shafts and fishing rods, and general industrial applications.
Moreover, when carbon fiber is used as a reinforcing material, it is often used in the form of a woven fabric using carbon fiber for warp and weft. A fiber reinforced composite material using a carbon fiber fabric is manufactured as follows, for example.
[0003]
First, a precursor fiber bundle obtained by bundling thousands to tens of thousands of single fibers of a polyacrylonitrile-based polymer is fired at a temperature of 200 to 300 ° C. in an oxidizing gas such as air in a flameproofing process (firing process). Thus, a flame resistant fiber bundle is obtained. Next, in the carbonization step (firing step), the flame resistant fiber bundle is carbonized at a temperature of 300 to 2000 ° C. in an inert atmosphere to obtain a carbon fiber bundle. And after weaving this carbon fiber bundle as warp and weft to make a woven fabric, it is impregnated with a synthetic resin and molded into a predetermined shape to obtain a fiber-reinforced composite material.
[0004]
[Problems to be solved by the invention]
Precursor fiber bundles used in the production of carbon fiber bundles are high so that the fiber bundles are scattered in the firing process and the single fibers constituting the fiber bundles are not entangled with adjacent fiber bundles or wound around rollers. Convergence is required.
However, the carbon fiber bundle obtained from the precursor fiber bundle having high convergence is similarly high in convergence. Therefore, in the carbon fiber woven fabric obtained by weaving such a carbon fiber bundle, the single fiber is difficult to be uniformly dispersed due to the high convergence of the carbon fiber bundle, and the width of the carbon fiber bundle that is the warp and weft is reduced. Unevenness was likely to occur. If the width of the carbon fiber bundle is uneven, the appearance of the fabric is inferior and the aperture ratio is increased, and there is a problem that the resin is not uniformly impregnated and voids are easily generated, that is, the resin impregnation property is inferior.
[0005]
Accordingly, an object of the present invention is to provide a carbon fiber woven fabric having uniform width of carbon fiber bundles which are warp and weft, a low opening ratio, excellent resin impregnation property and good appearance quality of the woven fabric. .
[0006]
[Means for Solving the Problems]
The carbon fiber woven fabric of the present invention is a carbon fiber woven fabric in which warp and weft are woven from a bundle of carbon fibers in which a plurality of carbon fibers are bundled, and the yarn width is measured at any n locations of the warp and weft. Then, the obtained yarn width measured values a 1 ,..., An and the average value x of these measured values, and using the following formula (1), the warp and weft yarn width variation rate CV (%) but both Ri der than 10%, the ratio of the major axis to the minor axis of the fiber cross section of the single fiber (major axis / minor axis) of 1.05 to 1.6, the carbon fiber bundle, the single fiber surface And a plurality of wrinkles extending in the longitudinal direction of the single fiber, and the difference in height between the highest part and the lowest part is 80 nm or more in the range of the circumferential length of the single fiber of 2 μm .
[Expression 2]
Figure 0004612207
Si content of coal Moto繊維束is preferably 500ppm or less.
Moreover, in the hook strength of the carbon fiber bundle measured based on JIS-L1013, it is preferable that the strength converted into a cross-sectional area of 1 mm 2 is 450 N or more.
Moreover, it is preferable that the number of filaments of a carbon fiber bundle is 1000-12000.
The aperture ratio is preferably 10% or less.
The prepreg of the present invention is characterized in that the carbon fiber fabric is impregnated with 30 to 60% by weight of resin.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The carbon fiber woven fabric of the present invention is a woven fabric such as plain weave, satin weave, twill weave, etc., in which warp and weft made of carbon fiber bundles are woven. The carbon fiber bundle is a bundle of a plurality of single fibers of carbon fibers, and is usually manufactured by firing a precursor fiber bundle (tow) in which single fibers such as acrylonitrile polymer and pitch are bundled.
In the carbon fiber fabric of the present invention, the warp yarn and weft yarn width variation rate CV (%) represented by the following formula (1) are both 10% or less.
[0008]
[Equation 3]
Figure 0004612207
[0009]
The yarn width variation rate CV (%) is measured with respect to each of the warp and weft yarns at arbitrary n locations. The obtained yarn width measured values a 1 ,..., An and the average value of these measured values This is a value calculated from x and using the above formula (1), and is obtained for each of the warp and the weft.
Here, when measuring the yarn width, 100 warp yarns and weft yarns in the center of the woven fabric are usually selected one by one, and one yarn width is measured for one yarn. That is, 100 yarn widths are measured for each of the warp and weft yarns, the average value x is obtained from the 100 data obtained from a 1 to a 100 , and the yarn width variation rate CV (%) of each of the warp and weft yarns is obtained. calculate.
[0010]
As described above, when at least one of the yarn width variation rates CV (%) calculated for the warp and weft exceeds 10%, the opening ratio increases, the appearance of the carbon fiber fabric is inferior, and the resin impregnation during prepreg production is performed. It is not suitable as a reinforcing material for fiber-reinforced composite materials. A more preferable range of the yarn width variation rate CV (%) is 7% or less.
[0011]
A carbon fiber bundle that is a warp and a weft of a carbon fiber fabric is a collection of a plurality of carbon fibers. The shape of the fiber cross section of this single fiber is not particularly limited, but the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber section is preferably 1.05 to 1.6, and more preferably. 1.10 to 1.4, more preferably 1.15 to 1.30. If the ratio of major axis / minor axis is within this range, the convergence property of the carbon fiber bundle is excellent, the appearance of the carbon fiber fabric is excellent, the resin impregnation property is further improved, and the strength is increased. When the major axis / minor axis ratio is less than 1.05, the voids between the single fibers may decrease, and the resin impregnation property of the carbon fiber woven fabric may deteriorate. When the ratio of the long diameter / short diameter exceeds 1.6, the fiber bundle is less converged, the carbon fiber bundle may be deteriorated, and the carbon fiber bundle may not be stably obtained. Moreover, since the fiber cross section becomes non-uniform, the strand strength and hook strength of the carbon fiber bundle may be lowered, and the strength of the carbon fiber fabric may be insufficient. Furthermore, fuzz etc. occur frequently, and as a result, the appearance of the carbon fiber fabric may be inferior.
[0012]
Here, the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is determined as follows.
After passing a carbon fiber bundle for measurement through a tube made of vinyl chloride resin having an inner diameter of 1 mm, the sample is prepared by cutting it with a knife. Next, the sample was adhered to the SEM sample stage with the fiber cross-section facing upward, and Au was sputtered to a thickness of about 10 nm, and then an acceleration voltage of 7.00 kV was measured using a PHILIPS XL20 scanning electron microscope. The fiber cross section is observed under the condition of a working distance of 31 mm, the major axis and minor axis of the fiber section of the single fiber are measured, and the major axis / minor axis ratio is determined by the major axis / minor axis.
[0013]
Moreover, it is preferable that the amount of Si of the carbon fiber bundle to be used is 500 ppm or less, More preferably, it is 300 ppm or less, More preferably, it is 200 ppm or less. If the amount of Si is within this range, the carbon fiber woven fabric is more excellent in resin impregnation and has a high appearance quality. When the amount of Si is more than 500 ppm, the obtained carbon fiber bundles are not easily scattered, and the quality of the fabric such as the drapeability of the carbon fiber fabric tends to deteriorate. In addition, a large amount of silica is scattered during firing in the carbon fiber bundle manufacturing process, resulting in poor firing stability, and the carbon fiber bundle may not be stably obtained.
[0014]
This amount of Si is derived from the silicon-based oil used when the precursor fiber bundle is manufactured. Here, the amount of Si can be measured by an ICP emission spectrometer. The measurement is performed as follows.
A sample is put into a platinum crucible known as a tare and ashed in a muffle furnace at 600 to 700 ° C., and its weight is measured to obtain an ash content. Next, a prescribed amount of sodium carbonate is added, melted with a burner, and fixed in a 50 ml volumetric flask while dissolving in DI water. This sample is quantified by Si by ICP emission analysis.
[0015]
Moreover, it is preferable that the single fiber which comprises the carbon fiber bundle used for the carbon fiber fabric of this invention has several wrinkles extended in the longitudinal direction of a single fiber on the surface. Due to the presence of such wrinkles, the convergence of the carbon fiber bundle is excellent and the resin impregnation of the carbon fiber fabric is further improved.
The depth of such wrinkles is defined by the difference in height between the highest part and the lowest part in the range of the circumferential length of the single fiber of 2 μm. The height difference can be measured by scanning the surface of a single fiber using a scanning atomic force microscope (AFM) or a scanning tunneling microscope (STM). Specifically, it is as follows.
[0016]
Place several single carbon fibers on a sample stage, fix both ends, and apply dotite around to make a measurement sample. Measurement is performed in an AFM mode using an atomic force microscope (Seiko Instruments, SPI3700 / SPA-300) using a silicon nitride cantilever. The measurement image obtained by scanning the range of 2 to 7 μm of the single fiber is subjected to inverse transformation after cutting the low frequency component by two-dimensional Fourier transformation to remove the curvature of the fiber. The depth of the wrinkles is quantified from the cross section of the planar image thus obtained.
[0017]
The wrinkle depth on the surface of the single fiber in the carbon fiber bundle of the present invention is preferably 80 nm or more, more preferably 100 nm or more, and further preferably 150 nm or more. When the depth of the wrinkles is less than 80 nm, voids between the single fibers are reduced and the resin impregnation property is deteriorated. Moreover, it becomes difficult to disperse | distribute a single fiber uniformly, and the external appearance quality of a woven fabric deteriorates. On the other hand, when the depth of the wrinkles becomes too deep, the fiber bundles are less converged, the carbon fiber bundles are not easily passed through during the firing process, and the carbon fiber bundles cannot be obtained stably. Moreover, the surface defect of a carbon fiber bundle increases and strand strength falls. Furthermore, the friction between single fibers increases and the hook strength tends to decrease.
[0018]
The hook strength of the carbon fiber bundle of the present invention is preferably 450 N or more in terms of the cross-sectional area of 1 mm 2 . More preferably, it is 500N or more, More preferably, it is 550N or more. If the catching strength is less than 450 N, yarn breakage is likely to occur, so that the carbon fiber bundle cannot be stably obtained because the carbon fiber bundle passing property is deteriorated.
[0019]
Here, the hook strength is measured in accordance with a test method described in JIS-L 1013. The following measurement method will be described in detail.
As shown in FIG. 1, a carbon fiber bundle 2 is hooked on a U-shaped carbon fiber bundle 1 to form a U-shape, and a length of 25 mm is formed at a position 100 mm from the intersection of the carbon fiber bundles 1 and 2. Grip parts 3 and 4 are attached to form a test specimen. When producing the test specimen, the carbon fiber bundle is aligned by applying a load of 0.1 × 10 −3 N / denier. The crosshead speed during tension is 100 mm / min.
[0020]
The carbon fiber bundle used in the carbon fiber fabric of the present invention preferably has 1000 to 12000 filaments. If the number of filaments is less than 1000, the number of carbon fibers necessary for making a woven fabric increases, resulting in an increase in cost. In addition, when the number of filaments is 12,000 or more, the opening process is essential to obtain a carbon fiber woven fabric having an opening ratio of 10% or less, and the woven fabric may be extremely poor in handleability. Preferably, it is 1000-9000.
[0021]
The strand strength of the carbon fiber bundle used in the present invention is preferably 380 kgf / mm 2 or more, more preferably 400 kgf / mm 2 or more, and further preferably 420 kgf / mm 2 or more. If the strand strength is less than 380 kgf / mm 2 , yarn breakage is likely to occur, so that the carbon fiber bundle may not be stably obtained due to deterioration in the passability of the firing process when producing the carbon fiber bundle. Further, the composite characteristics of the fiber reinforced composite material using the carbon fiber fabric made of the carbon fiber bundle, for example, the bending strength (FS 0 °) in the direction perpendicular to the fiber may be lowered.
Here, the strand strength strength is measured in accordance with a test method described in JIS R7601.
[0022]
The opening ratio of the carbon fiber fabric is preferably 10% or less. When the open area ratio exceeds 10%, the appearance of the fabric is inferior, the resin impregnation property is lowered, and the mechanical properties such as the strength of the carbon fiber may not be sufficiently exhibited when used as a reinforcing material.
Here, the opening ratio is a ratio of the total area of openings in which no warp or weft is present in a unit area of 100 mm × 100 mm in a woven fabric. The area measurement of the opening can be obtained by the following calculation formula using a commercially available image processing sensor such as CV-100 manufactured by Keyence Corporation.
Opening ratio (%) = sum of area of opening (mm 2 ) × 100/10000 (mm 2 )
In addition, the carbon fiber fabric of the present invention preferably has a fabric density (number of carbon fiber bundles per inch) of 5 to 40 / 吋. If the number is less than 5 / cm, the fabric density is too coarse and the opening ratio increases, and the function as a fiber reinforced composite material is thinned. The strength development may be reduced.
[0023]
Next, the manufacturing method of the carbon fiber fabric of this invention is demonstrated.
The carbon fiber bundle of the present invention can be produced as follows, for example, when an acrylonitrile polymer fiber bundle is used as the precursor fiber bundle.
First, a precursor fiber bundle composed of single fibers of acrylonitrile-based polymer is spun by wet spinning or the like.
Next, the precursor fiber bundle is introduced into a flameproofing furnace in a state where a plurality of precursor fiber bundles are aligned in parallel, and an oxidizing gas such as air heated to 200 to 300 ° C. is blown onto the precursor fiber bundle. To obtain a flame-resistant fiber bundle.
Next, this flame resistant fiber bundle is introduced into a carbonization furnace and carbonized at a temperature of 1200 to 2000 ° C. in an inert atmosphere to obtain a carbon fiber bundle. Furthermore, graphitization is performed at a temperature of 2000 to 2800 ° C. to obtain a highly elastic carbon fiber bundle.
[0024]
The obtained carbon fiber bundle is subjected to a surface oxidation treatment for the purpose of improving the affinity with the matrix resin. The surface oxidation treatment method is not particularly limited, and is performed by gas phase oxidation treatment, solvent oxidation treatment, electrolytic oxidation treatment, or the like.
Subsequently, sizing is performed for the purpose of protecting the fibers and improving the affinity with the matrix resin. The sizing treatment is performed by a generally used method such as a roller dipping method or a roller contact method.
The carbon fiber to which the sizing agent is attached is subsequently dried, and water or an organic solvent contained in the sizing agent solution attached at the time of attaching the sizing agent is removed. The drying process here is performed by a method using hot air, a hot plate, a roller, various infrared heaters or the like as a heat medium.
[0025]
Then, using the obtained carbon fiber bundle as warp and weft, weaving carbon fiber fabrics such as plain weaving, satin weaving, twill weaving using looms such as rapier looms, shuttle looms, gripper looms and jet looms.
[0026]
The carbon fiber fabric thus produced is made into a prepreg by a known method such as a lacquer method (solvent method) in which a resin solution is dissolved or a hot melt method in which a resin film is thermocompression bonded. Used as a reinforcement for fiber reinforced composite materials. In this case, you may perform the fiber-opening process of a carbon fiber fabric as needed.
Examples of the resin used for the prepreg include thermoplastic resins such as nylon resins, polyester resins, and polybutylene terephthalate resins, in addition to thermosetting resins such as epoxy resins, unsaturated polyester resins, and phenol resins.
In the prepreg, when the weight of the carbon fiber fabric is 100% by weight, it is preferable that 30 to 60% by weight of the resin is impregnated with respect to the carbon fiber fabric. If the impregnation amount is less than 30% by weight, voids are likely to be generated and the strength may be reduced. If it exceeds 60% by weight, a resin flow may occur and a predetermined thickness may not be obtained.
[0027]
Such a carbon fiber woven fabric is a carbon fiber woven fabric in which warp and weft are woven from a bundle of carbon fibers in which a plurality of carbon fibers are bundled, and the yarn width is measured at any n locations of the warp and weft. Then, the obtained yarn width measured values a 1 ,..., An and the average value x of these measured values are used to calculate the yarn width variation rate (%) of the warp and weft yarns calculated using the above formula (1). Since both are 10% or less, the warp and weft yarn widths are uniform and uniform, the opening ratio is low, the resin impregnation property is excellent, and the appearance quality of the fabric is also good. Such a carbon fiber fabric is most suitable as a prepreg for a fiber-reinforced composite material.
[0028]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
The carbon fiber precursor fiber bundle was produced by dissolving an acrylonitrile-based polymer in dimethylacetamide to prepare a spinning stock solution and wet spinning. The spinning dope was discharged into a first coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 50 to 70% by weight and a temperature of 30 to 50 ° C. to obtain a coagulated yarn. Next, the coagulated yarn is subjected to a predetermined amount of stretching in a second coagulation bath made of a dimethylacetamide aqueous solution having a concentration of 50 to 70% by weight and a temperature of 30 to 50 ° C., and further subjected to wet heat stretching of 4 times or more to obtain a carbon fiber precursor. A body fiber bundle was obtained. The ratio of the major axis to the minor axis in the cross section of the carbon fiber precursor fiber bundle and the depth of the wrinkles were adjusted by changing the coagulation bath concentration and temperature, and the stretching conditions.
[0029]
[Example 1]
Carbon fibers having a filament number of 3000 (fineness: 1980 dtex) were used as warp and weft yarns and plain woven with a rapier loom to produce a carbon fiber fabric having a fabric weight of 200 g / m 2 .
The carbon fiber bundle used has a ratio of major axis to minor axis (major axis / minor axis) of the fiber cross section of the single fiber of 1.20, the wrinkle depth is 210 nm, the Si amount is 160 ppm, and the strand strength is It was 4680 MPa, and the catching strength was 760N.
Table 1 shows the results of measuring the yarn width variation rate (%) and opening rate (%) of the obtained warp and weft yarns, and evaluating the fabric appearance quality by the following method.
Moreover, when the obtained carbon fiber fabric was impregnated with an epoxy resin by a hot melt method, the resin impregnation property was excellent.
[0030]
(1) Yarn width variation rate CV (%)
100 warp yarns and weft yarns in the center of the obtained woven fabric were selected one by one, and the width of one yarn was measured for one yarn. Then an average value x from the obtained measured values a 1 ~a 100, was calculated yarn width variation rate CV (%) using the above equation (1).
(2) Opening ratio (%)
It is the ratio of the total area of the openings where neither warp nor weft is present in a unit area of 100 mm × 100 mm. The area of the opening was measured using a commercially available image processing sensor such as CV-100 manufactured by Keyence Corporation, using the following calculation formula.
Opening ratio (%) = sum of area of opening (mm 2 ) × 100/10000 (mm 2 )
(3) The appearance of the fabric was evaluated visually.
[0031]
[Comparative Example 1]
Carbon fibers having a filament number of 3000 (fineness: 1980 dtex) were used as warp and weft yarns and plain woven with a rapier loom to produce a carbon fiber fabric having a fabric weight of 200 g / m 2 .
In addition, the carbon fiber bundle used has a ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of a single fiber of 1.0, the wrinkle depth is 50 nm, the Si amount is 250 ppm, and the strand strength is It was 4800 MPa and the hook strength was 950N.
Table 1 shows the results of measuring the yarn width variation rate (%) and the opening rate (%) of the obtained woven fabric in the same manner as in Example 1 and evaluating the woven fabric appearance quality.
Further, when the obtained carbon fiber fabric was impregnated with an epoxy resin by a hot melt method, pinholes were frequently generated and the resin impregnation property was inferior.
[Table 1]
Figure 0004612207
[0033]
【The invention's effect】
As described above, the carbon fiber woven fabric of the present invention is uniform in warp and weft yarn widths, has a low opening ratio, excellent resin impregnation properties, and good appearance quality of the fabric. Such a carbon fiber woven fabric is most suitable for producing a fiber reinforced composite material as a prepreg, and a fiber reinforced composite material exhibiting mechanical properties such as strength of the carbon fiber can be produced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining a method of measuring hook strength.

Claims (6)

複数の炭素繊維の単繊維が集束した炭素繊維束からなる縦糸と横糸が製織された炭素繊維織物であり、
縦糸および横糸それぞれの任意のn箇所で糸幅を測定し、得られた糸幅の測定値a1、…、anと、これら測定値の平均値xとから下記式(1)を用いて算出した縦糸および横糸の糸幅変動率CV(%)が、いずれも10%以下であり、
単繊維の繊維断面の長径と短径との比(長径/短径)が1.05〜1.6であり、
炭素繊維束は、単繊維の表面に単繊維の長手方向に延びる複数の皺を有し、単繊維の円周長さ2μmの範囲で最高部と最低部の高低差が80nm以上であることを特徴とする炭素繊維織物。
Figure 0004612207
A carbon fiber woven fabric in which warps and wefts composed of a bundle of carbon fibers in which single fibers of a plurality of carbon fibers are bundled are woven,
Using the following formula (1), the yarn width is measured at arbitrary n locations of the warp and weft yarns, and the obtained yarn width measured values a 1 ,..., An and the average value x of these measured values are used. calculated warp and weft yarn width variation rate CV (%) are both Ri der 10% or less,
The ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber is 1.05 to 1.6,
The carbon fiber bundle has a plurality of wrinkles extending in the longitudinal direction of the single fiber on the surface of the single fiber, and the height difference between the highest part and the lowest part is 80 nm or more in the range of the circumferential length of the single fiber of 2 μm. Characteristic carbon fiber fabric.
Figure 0004612207
ICP発光分析法によって測定される炭素繊維束のSi量が500ppm以下であることを特徴とする請求項1に記載の炭素繊維織物。The carbon fiber fabric according to claim 1, wherein the Si amount of the carbon fiber bundle measured by ICP emission analysis is 500 ppm or less. JIS L 1013に準拠して測定される炭素繊維束の引掛強さにおいて、断面積1mmとして換算した強さが450N以上であることを特徴とする請求項1または2に記載の炭素繊維織物。In hooking strength of the carbon fiber bundle to be measured in accordance with JIS L 1013, the carbon fiber fabric according to claim 1 or 2 intensity was calculated as the cross-sectional area 1 mm 2 is equal to or not less than 450 N. 炭素繊維束のフィラメント数が1000〜12000本であることを特徴とする請求項1ないし3のいずれかに記載の炭素繊維織物。The carbon fiber fabric according to any one of claims 1 to 3 , wherein the number of filaments of the carbon fiber bundle is 1000 to 12000. 開口率が10%以下であることを特徴とする請求項1ないし4のいずれかに記載の炭素繊維織物。The carbon fiber woven fabric according to any one of claims 1 to 4, wherein an opening ratio is 10% or less. 請求項1ないし5のいずれかに記載の炭素繊維織物に対して、30〜60重量%の樹脂が含浸されていることを特徴とするプリプレグ。A prepreg characterized in that the carbon fiber fabric according to any one of claims 1 to 5 is impregnated with 30 to 60% by weight of a resin.
JP2001044035A 2001-02-20 2001-02-20 Carbon fiber fabric and prepreg using the same Expired - Fee Related JP4612207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044035A JP4612207B2 (en) 2001-02-20 2001-02-20 Carbon fiber fabric and prepreg using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044035A JP4612207B2 (en) 2001-02-20 2001-02-20 Carbon fiber fabric and prepreg using the same

Publications (2)

Publication Number Publication Date
JP2002249956A JP2002249956A (en) 2002-09-06
JP4612207B2 true JP4612207B2 (en) 2011-01-12

Family

ID=18906097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044035A Expired - Fee Related JP4612207B2 (en) 2001-02-20 2001-02-20 Carbon fiber fabric and prepreg using the same

Country Status (1)

Country Link
JP (1) JP4612207B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587445B2 (en) * 2004-06-15 2010-11-24 三菱レイヨン株式会社 Thermoplastic resin molded article and thermoplastic resin composition
JP4710264B2 (en) * 2004-07-02 2011-06-29 日東紡績株式会社 Method for producing fiber-reinforced resin structure, fiber-reinforced resin structure, and composite substrate
CN110992350B (en) * 2019-12-11 2023-06-20 东华大学 Weft skew detection method based on computer vision
WO2021157442A1 (en) * 2020-02-03 2021-08-12 東レ株式会社 Molding material and fiber reinforced composite material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224130B2 (en) * 1974-08-05 1977-06-29
JPH0625446A (en) * 1992-03-02 1994-02-01 Toray Ind Inc Cloth prepreg and its production
JPH10121345A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Carbon fiber sheet and repair and reinforcement of concrete structure
JPH1112856A (en) * 1997-06-23 1999-01-19 Toray Ind Inc Acrylic precursor fiber for carbon fiber and its production
JPH11130882A (en) * 1997-10-28 1999-05-18 Toray Ind Inc Yarn prepreg and its preparation
JPH11217734A (en) * 1997-11-21 1999-08-10 Toray Ind Inc Carbon fiber and its production
JP2000096354A (en) * 1998-09-29 2000-04-04 Toray Ind Inc Carbon fiber bundle, and its production
JP2000144521A (en) * 1998-11-09 2000-05-26 Mitsubishi Rayon Co Ltd Acrylonitrile-based fiber bundle and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224130B2 (en) * 1974-08-05 1977-06-29
JPH0625446A (en) * 1992-03-02 1994-02-01 Toray Ind Inc Cloth prepreg and its production
JPH10121345A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Carbon fiber sheet and repair and reinforcement of concrete structure
JPH1112856A (en) * 1997-06-23 1999-01-19 Toray Ind Inc Acrylic precursor fiber for carbon fiber and its production
JPH11130882A (en) * 1997-10-28 1999-05-18 Toray Ind Inc Yarn prepreg and its preparation
JPH11217734A (en) * 1997-11-21 1999-08-10 Toray Ind Inc Carbon fiber and its production
JP2000096354A (en) * 1998-09-29 2000-04-04 Toray Ind Inc Carbon fiber bundle, and its production
JP2000144521A (en) * 1998-11-09 2000-05-26 Mitsubishi Rayon Co Ltd Acrylonitrile-based fiber bundle and its production

Also Published As

Publication number Publication date
JP2002249956A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP4543922B2 (en) Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame-resistant fiber, carbon fiber and production method thereof
JP5161604B2 (en) Carbon fiber manufacturing method
US6503624B2 (en) Carbon fiber precursor fiber bundle and manufacturing method of the same
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP4612207B2 (en) Carbon fiber fabric and prepreg using the same
JP2011012363A (en) Fiber bundle of carbon fiber precursor and method for producing the same
JP3892212B2 (en) Carbon fiber precursor fiber bundle
WO2019172247A1 (en) Carbon fiber bundle and production method therefor
JP4261075B2 (en) Carbon fiber bundle
JP2013100616A (en) Long fiber reinforced thermoplastic monofilament, method for producing the same, fiber product and method for producing the same
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP5313797B2 (en) Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle
JP4547754B2 (en) Pitch-based carbon fiber fabric
JP3890770B2 (en) Carbon fiber bundle and manufacturing method thereof
JP2019151956A (en) Carbon fiber bundle, carbon fiber and manufacturing method of carbon fiber bundle
JPH10195718A (en) Carbon yarn and its production
JPH07310240A (en) Carbon fiber for filament winding molding and its production
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP2005248343A (en) Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber
JP4715386B2 (en) Carbon fiber bundle manufacturing method
WO2023090310A1 (en) Carbon fiber bundle and production method therefor
KR20240097812A (en) Carbon fiber bundle and its manufacturing method
JP2023133739A (en) carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4612207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees