JP2005248343A - Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber - Google Patents

Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber Download PDF

Info

Publication number
JP2005248343A
JP2005248343A JP2004057243A JP2004057243A JP2005248343A JP 2005248343 A JP2005248343 A JP 2005248343A JP 2004057243 A JP2004057243 A JP 2004057243A JP 2004057243 A JP2004057243 A JP 2004057243A JP 2005248343 A JP2005248343 A JP 2005248343A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
flame
dtex
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004057243A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kotani
知之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004057243A priority Critical patent/JP2005248343A/en
Publication of JP2005248343A publication Critical patent/JP2005248343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber from which a woven fabric of the carbon fiber having good quality of appearance can be obtained; and to provide the woven fabric of the carbon fiber having the good quality of the appearance. <P>SOLUTION: The method for producing the carbon fiber involves regulating the tension added to the fiber under a carbonization treatment so as to be ≤0.2 g-weight/dTex when carrying out the carbonization treatment of a flame-resistant fiber obtained by subjecting an acrylic fiber to a flame-resisting treatment in an oxidative atmosphere, in an inert atmosphere of 1,200-1,800°C maximum temperature. In another aspect, the method for producing the carbon fiber involves regulating the tension added to the fiber under the carbonization treatment so as to be ≤0.2 g-weight/dTex when carrying out the carbonization treatment of a carbon fiber fiber obtained by subjecting the acrylic fiber to the flame-resisting treatment in an oxidative atmosphere, and subjecting the flame-resistant fiber to a carbonization treatment in an inert atmosphere of 550-800°C maximum temperature, in the inert atmosphere of 1,200-1,800°C maximum temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、外観品位の良好で炭素繊維織物に好適な炭素繊維の製造方法と、外観品位の良好な炭素繊維織物に関する。   The present invention relates to a method for producing a carbon fiber having a good appearance quality and suitable for a carbon fiber fabric, and a carbon fiber fabric having a good appearance quality.

炭素繊維は、特に比強度、比弾性が高いことから、宇宙航空関係、レジャー用品および工業材料などの強化材として広く用いられている。炭素繊維織物の外観品位は、それを用いた成形品の外観にそのまま現れることが多いので非常に重要である。炭素繊維織物の外観品位は、単に製織方法で解決できるものではなく、炭素繊維の収束性を制御することが必要で、たとえば、特許文献1には、炭素繊維を構成する単繊維断面の形状とSi量を制御することにより炭素繊維の収束性と樹脂含浸性を高める技術が開示されている。   Carbon fiber is widely used as a reinforcing material for aerospace, leisure goods, industrial materials and the like because of its high specific strength and specific elasticity. The appearance quality of a carbon fiber fabric is very important because it often appears as it is in the appearance of a molded product using the carbon fiber fabric. The appearance quality of the carbon fiber woven fabric cannot be solved simply by the weaving method, and it is necessary to control the convergence of the carbon fiber. For example, Patent Document 1 discloses the shape of the cross section of the single fiber constituting the carbon fiber. A technique for improving the convergence of carbon fiber and resin impregnation by controlling the amount of Si is disclosed.

しかしながら、その炭素繊維を用いた炭素繊維織物の外観品位は未だ十分ではなく、さらに外観品位の良好な炭素繊維織物を得ることが可能な炭素繊維の開発が望まれている。   However, the appearance quality of the carbon fiber woven fabric using the carbon fiber is not yet satisfactory, and the development of a carbon fiber capable of obtaining a carbon fiber woven fabric having a better appearance quality is desired.

特開2002−242027JP2002-242027

本発明の目的は、外観品位が良好な炭素繊維織物を得ることができる炭素繊維の製造方法を提供することにある。また、外観品位が良好な炭素繊維織物を提供することにある。   The objective of this invention is providing the manufacturing method of the carbon fiber which can obtain the carbon fiber fabric with a favorable external appearance quality. Another object of the present invention is to provide a carbon fiber woven fabric having good appearance quality.

本発明の第1の要旨は、アクリル繊維を酸化性雰囲気中で耐炎化処理した耐炎化繊維を最高温度が1200〜1800℃の不活性雰囲気中で炭素化処理する際に、炭素化処理中の繊維にかかる張力が0.2g重/dTex以下とする炭素繊維の製造方法にある。   The first gist of the present invention is that when a flameproof fiber obtained by flameproofing an acrylic fiber in an oxidizing atmosphere is carbonized in an inert atmosphere having a maximum temperature of 1200 to 1800 ° C., There exists in the manufacturing method of the carbon fiber which makes the tension concerning a fiber 0.2 g weight / dTex or less.

また、本発明の第2の要旨は、アクリル繊維を酸化性雰囲気中で耐炎化処理した耐炎化繊維を最高温度が550〜800℃の不活性雰囲気で炭素化処理した後、最高温度が1200〜1800℃の不活性雰囲気中で炭素化処理する際に、炭素化処理中の繊維にかかる張力が0.2g重/dTex以下とする炭素繊維の製造方法にある。   In addition, the second gist of the present invention is that after the flame-resistant fiber obtained by flame-treating acrylic fiber in an oxidizing atmosphere is carbonized in an inert atmosphere having a maximum temperature of 550 to 800 ° C., the maximum temperature is 1200 to In the carbon fiber production method, the tension applied to the fiber during the carbonization treatment is 0.2 g weight / dTex or less when the carbonization treatment is performed in an inert atmosphere at 1800 ° C.

そして、本発明の第3の要旨は、上記の炭素繊維の製造方法で得られた炭素繊維を経糸および/または緯糸とする炭素繊維織物であって、経糸および/または緯糸のトウ幅のむらが4.5%以下である炭素繊維織物にある。   The third gist of the present invention is a carbon fiber fabric using the carbon fiber obtained by the above-described carbon fiber production method as a warp and / or a weft, and the tow width unevenness of the warp and / or the weft is 4 It is in the carbon fiber fabric which is 5% or less.

本発明の炭素繊維の製造方法によれば、外観品位が良好な炭素繊維織物を得ることができる炭素繊維を得ることができる。   According to the carbon fiber manufacturing method of the present invention, it is possible to obtain a carbon fiber capable of obtaining a carbon fiber fabric having good appearance quality.

以下、本発明の構成を順次説明する。
<アクリル繊維>
本発明に用いるアクリルを構成するアクリロニトリル系重合体は、アクリロニトリルと、アクリロニトリルと共重合可能なビニル系モノマー、例えばアクリル酸、メタクリル酸、イタコン酸およびそれらのアルカリ金属塩、アンモニウム塩および低級アルキルエステル類、アクリルアミドおよびその誘導体、アリルスルホン酸、メタリルスルホン酸およびそれらの塩類またはアルキルエステル類などの共重合体である。共重合成分が10モル%を越すと後述する耐炎化工程で単糸間接着が生じ易くなり好ましくない。
Hereinafter, the configuration of the present invention will be sequentially described.
<Acrylic fiber>
The acrylonitrile polymer constituting the acryl used in the present invention includes acrylonitrile and vinyl monomers copolymerizable with acrylonitrile, such as acrylic acid, methacrylic acid, itaconic acid and alkali metal salts, ammonium salts and lower alkyl esters thereof. , Acrylamide and its derivatives, allyl sulfonic acid, methallyl sulfonic acid and their salts or alkyl esters. If the copolymerization component exceeds 10 mol%, adhesion between single yarns is likely to occur in the flameproofing step described later, which is not preferable.

アクリロニトリル系重合体の重合法としては、従来公知の溶液重合、懸濁重合、乳化重合などを適用することができる。アクリル系重合体溶液に使用される溶媒は、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、塩化亜鉛水溶液、硝酸などを使用することができる。   As a polymerization method for the acrylonitrile-based polymer, conventionally known solution polymerization, suspension polymerization, emulsion polymerization and the like can be applied. As the solvent used in the acrylic polymer solution, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, an aqueous zinc chloride solution, nitric acid, or the like can be used.

紡糸方法としては、湿式紡糸法、乾湿式紡糸法、乾式紡糸法などを採用できる。得られた凝固糸は従来公知の水洗、浴延伸、工程油剤付与、乾燥緻密化、スチーム延伸などを行うことにより所定の繊度を有する前駆体アクリル繊維とする。   As the spinning method, a wet spinning method, a dry wet spinning method, a dry spinning method, or the like can be employed. The obtained coagulated yarn is made into a precursor acrylic fiber having a predetermined fineness by performing conventionally known water washing, bath drawing, application of process oil, drying densification, steam drawing and the like.

<耐炎化>
本発明では、アクリル繊維の耐炎化条件は、公知の方法・条件で行えばよく特に限定しないが、200〜300℃の酸化性雰囲気中、緊張あるいは延伸条件下で、密度が好ましくは1.25g/cm以上、より好ましくは1.32g/cm以上になるまで加熱するのが良い。
<Flame resistance>
In the present invention, the flameproofing condition of the acrylic fiber is not particularly limited as long as it is a known method and condition, but the density is preferably 1.25 g in an oxidizing atmosphere at 200 to 300 ° C. under tension or stretching conditions. / Cm 3 or higher, more preferably 1.32 g / cm 3 or higher.

耐炎化が不十分であると、前炭素化する際に単糸間接着などを起こしやすくなる。雰囲気については、空気、酸素、二酸化窒素など公知の酸化性雰囲気を採用できるが、経済性の面から空気が好ましい。   If the flame resistance is insufficient, adhesion between single yarns is likely to occur during pre-carbonization. As the atmosphere, a known oxidizing atmosphere such as air, oxygen, and nitrogen dioxide can be adopted, but air is preferable from the viewpoint of economy.

<最高温度が550〜800℃の不活性雰囲気での処理>
本発明では、耐炎化繊維を最高温度が550〜800℃の不活性雰囲気中、緊張化で、300〜500℃の温度領域において500℃/分以下、好ましくは300℃/分以下の昇温速度で熱処理をする(この繊維を以下、前炭素化繊維という。)ことが最終の炭素繊維の機械的特性を向上させるために有効である。
<Treatment in an inert atmosphere with a maximum temperature of 550 to 800 ° C.>
In the present invention, the flame-resistant fiber is tensioned in an inert atmosphere having a maximum temperature of 550 to 800 ° C., and the temperature rising rate is 500 ° C./min or less, preferably 300 ° C./min or less in a temperature range of 300 to 500 ° C. It is effective to improve the mechanical properties of the final carbon fiber (hereinafter referred to as pre-carbonized fiber).

不活性雰囲気は、窒素、アルゴン、ヘリウム、など公知の不活性雰囲気を採用できるが、経済性の面から窒素が望ましい。   As the inert atmosphere, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is desirable from the viewpoint of economy.

<炭素化>
本発明では、耐炎化繊維または前炭素化繊維を最高温度1200〜1800℃の不活性雰囲気中で熱処理する。このとき、1000〜1200℃の温度領域において500℃/分以下、好ましくは300℃/分以下の昇温速度で炭素化処理をすることが炭素繊維の機械的特性を向上させるために有効である。
<Carbonization>
In the present invention, the flame-resistant fiber or the pre-carbonized fiber is heat-treated in an inert atmosphere having a maximum temperature of 1200 to 1800 ° C. At this time, in the temperature range of 1000 to 1200 ° C., it is effective in order to improve the mechanical properties of the carbon fiber to perform carbonization treatment at a heating rate of 500 ° C./min or less, preferably 300 ° C./min or less. .

不活性雰囲気は、窒素、アルゴン、ヘリウム、など公知の不活性雰囲気を採用できるが、経済性の面から窒素が望ましい。   As the inert atmosphere, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is desirable from the viewpoint of economy.

炭素化で処理される繊維に付与される張力は0.2g重/dTex以下であることが必要であり、0.1g重/dTex以下がさらに好ましい。炭素化では、処理繊維の重量減少があるが、この場合は、張力を(処理繊維の張力/処理繊維のトータル繊度)で見積もる。   The tension applied to the fiber treated by carbonization needs to be 0.2 g weight / dTex or less, and more preferably 0.1 g weight / dTex or less. In carbonization, the weight of the treated fiber is reduced. In this case, the tension is estimated by (tension of the treated fiber / total fineness of the treated fiber).

炭素化時の張力が0.2g重/dTexを超えると繊維束が引き揃えられ、製織した際の織物の外観品位が低下する。   When the tension at the time of carbonization exceeds 0.2 g weight / dTex, the fiber bundles are aligned, and the appearance quality of the woven fabric when woven is lowered.

<炭素化後の処理>
得られた炭素繊維は、従来公知の電解液中で電解酸化処理を施したり、気相または液相での酸化処理を施すことによって、複合材料における炭素繊維とマトリックス樹脂との親和性や接着性を向上させることが好ましい。
<Treatment after carbonization>
The obtained carbon fiber is subjected to electrolytic oxidation treatment in a conventionally known electrolytic solution, or is subjected to oxidation treatment in a gas phase or liquid phase, so that the affinity and adhesion between the carbon fiber and the matrix resin in the composite material It is preferable to improve.

さらに、必要に応じて従来公知の方法によりサイジング剤を付与することができる。   Furthermore, a sizing agent can be provided by a conventionally known method as necessary.

<炭素繊維織物>
本発明の炭素繊維織物は、従来公知のレピア織機、プロジェクタイル織機、エアージェット織機、ウォータージェット織機、シャトル織機などを使用し製織することができる。
<Carbon fiber fabric>
The carbon fiber fabric of the present invention can be woven using a conventionally known rapier loom, projectile loom, air jet loom, water jet loom, shuttle loom or the like.

炭素繊維織物の織組織としては、平織、綾織または繻子織であることが、炭素繊維織物をハンドレイアップ法などにより構造材を成形する際の作業性および炭素繊維織物成形物の機械的特性を向上させるためには好ましい。   The woven structure of the carbon fiber fabric is plain weave, twill weave or satin weave, which improves the workability when forming the structural material of the carbon fiber fabric by the hand lay-up method and the mechanical properties of the carbon fiber fabric molding. It is preferable for improvement.

炭素繊維織物の目付は、400g/m以下、好ましくは350g/m以下、より好ましくは300g/m以下であることが良い。炭素繊維織物の目付が400g/m以上であると炭素繊維束の屈曲が大きくなり、炭素繊維織物を用いた成形物の機械的特性が劣ることになる。 The basis weight of the carbon fiber woven fabric is 400 g / m 2 or less, preferably 350 g / m 2 or less, more preferably 300 g / m 2 or less. When the basis weight of the carbon fiber woven fabric is 400 g / m 2 or more, the bending of the carbon fiber bundle becomes large, and the mechanical properties of the molded product using the carbon fiber woven fabric are inferior.

また、炭素繊維織物を構成する炭素繊維のフィラメント数は、8000本以下であることが良い。炭素繊維織物の目付が400g/m以下で、炭素繊維織物を構成する炭素繊維のフィラメント数が8000本以上になると、炭素繊維織物を構成する炭素繊維同士の隙間が大きくなり外観品位は悪くなる。 Further, the number of carbon fiber filaments constituting the carbon fiber fabric is preferably 8000 or less. When the basis weight of the carbon fiber woven fabric is 400 g / m 2 or less and the number of filaments of the carbon fibers constituting the carbon fiber woven fabric is 8000 or more, the gap between the carbon fibers constituting the carbon fiber woven fabric is increased and the appearance quality is deteriorated. .

(実施例)
以下、本発明を実施例のより具体的に説明する。なお、実施例中、評価は次の方法に拠った。
(Example)
Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, the evaluation was based on the following method.

(樹脂含浸ストランド特性)
炭素繊維のストランド強度およびストランド弾性率は、JIS R 7601に記載された試験法に準拠して測定した。
(Resin impregnated strand characteristics)
The strand strength and strand elastic modulus of the carbon fiber were measured in accordance with a test method described in JIS R7601.

(炭素繊維織物のトウ幅むら)
炭素繊維織物を構成している経糸および緯糸のトウ幅を100点測定し、
変動率(%)=標準偏差÷平均×100
を炭素繊維織物の経糸および緯糸のトウ幅むらとした。
(Uneven toe width of carbon fiber fabric)
Measure 100 tow widths of the warp and weft constituting the carbon fiber fabric,
Fluctuation rate (%) = standard deviation ÷ average x 100
The tow width unevenness of the carbon fiber woven warp and weft.

(炭素繊維織物の外観品位)
炭素繊維織物を目視で観察し、織物が均一であるものから順に◎、○、×と判定した。
(Appearance grade of carbon fiber fabric)
The carbon fiber fabric was visually observed and judged as ◎, ○, and × in order from the fabric having a uniform fabric.

アクリロニトリル単位96モル%/アクリルアミド単位3モル%/イタコン酸単位1モル%からなる共重合体を用いて、濃度が20質量%のジメチルアセトアミド(DMAc)溶液を作成した。   A dimethylacetamide (DMAc) solution having a concentration of 20% by mass was prepared using a copolymer consisting of 96 mol% of acrylonitrile units / 3 mol% of acrylamide units / 1 mol% of itaconic acid units.

この溶液を孔径60μm、ホール数3000の紡糸口金を通して温度35℃、濃度67質量%のDMAc水溶液中で凝固させた。凝固糸条を水洗後、浴延伸し、シリコーン系油剤を付与した後、さらに加圧スチーム中で延伸して単繊維繊度1.2dTex、トータル繊度3600dTexのアクリル繊維を得た。   This solution was coagulated in a DMAc aqueous solution having a temperature of 35 ° C. and a concentration of 67% by mass through a spinneret having a pore diameter of 60 μm and a hole number of 3000. The coagulated yarn was washed with water and then stretched in a bath to give a silicone-based oil, and then stretched in pressurized steam to obtain an acrylic fiber having a single fiber fineness of 1.2 dTex and a total fineness of 3600 dTex.

このアクリル繊維を230〜260℃の空気中、緊張化に加熱し密度1.36g/cmの耐炎化繊維に転換し、さらに、700℃の窒素中、緊張化で前炭素化処理を施し前炭素化繊維とした。この前炭素化処理での300〜500℃での昇温速度は200℃/分であった。 This acrylic fiber is heated to tension in air at 230 to 260 ° C. to be converted to a flame-resistant fiber having a density of 1.36 g / cm 3 , and further subjected to pre-carbonization treatment by tension in nitrogen at 700 ° C. Carbonized fiber was used. The heating rate at 300 to 500 ° C. in the pre-carbonization treatment was 200 ° C./min.

この前炭素化繊維を1500℃、張力0.15g重/dTexで炭素化処理を施しトータル繊度2000dTexの炭素繊維とし、表面処理後、サイジング剤を付与した。1000〜1200℃での昇温速度は400℃/分であった。
評価結果を表1に示した。
The pre-carbonized fiber was carbonized at 1500 ° C. and a tension of 0.15 g weight / dTex to obtain a carbon fiber having a total fineness of 2000 dTex, and a sizing agent was applied after the surface treatment. The heating rate at 1000 to 1200 ° C. was 400 ° C./min.
The evaluation results are shown in Table 1.

実施例1で得られた前炭素化繊維を1550℃、張力0.09g重/dTexで炭素化処理を施しトータル繊度2030dTexの炭素繊維とし、表面処理後、サイジング剤を付与した。1000〜1200℃での昇温速度は400℃/分であった。
評価結果を表1に示した。
The precarbonized fiber obtained in Example 1 was carbonized at 1550 ° C. and a tension of 0.09 g weight / dTex to obtain a carbon fiber having a total fineness of 2030 dTex, and a sizing agent was applied after the surface treatment. The heating rate at 1000 to 1200 ° C. was 400 ° C./min.
The evaluation results are shown in Table 1.

実施例1で得られた前炭素化繊維を1450℃、張力0.15g重/dTexで炭素化処理を施しトータル繊度1980dTexの炭素繊維とし、表面処理後、サイジング剤を付与した。1000〜1200℃での昇温速度は400℃/分であった。
評価結果を表1に示した。
(比較例1)
The pre-carbonized fiber obtained in Example 1 was carbonized at 1450 ° C. and a tension of 0.15 g weight / dTex to obtain a carbon fiber having a total fineness of 1980 dTex, and a sizing agent was applied after the surface treatment. The heating rate at 1000 to 1200 ° C. was 400 ° C./min.
The evaluation results are shown in Table 1.
(Comparative Example 1)

実施例1で得られた前炭素化繊維を1450℃、張力0.25g重/dTexで炭素化処理を施しトータル繊度1960dTexの炭素繊維とし、表面処理後、サイジング剤を付与した。1000〜1200℃での昇温速度は400℃/分であった。
評価結果を表1に示した。
The precarbonized fiber obtained in Example 1 was carbonized at 1450 ° C. and a tension of 0.25 g weight / dTex to obtain a carbon fiber having a total fineness of 1960 dTex, and a sizing agent was applied after the surface treatment. The heating rate at 1000 to 1200 ° C. was 400 ° C./min.
The evaluation results are shown in Table 1.

実施例1で得られたアクリル共重合体のDMAc溶液を孔径60μm、ホール数6000の紡糸口金を通して温度35℃、濃度67%のDMAc溶液中で凝固させた。凝固糸条を水洗後、浴延伸し、シリコーン系油剤を付与した後、さらに加圧スチーム中で延伸して単繊維繊度1.2dTex、トータル繊度7200dTexのアクリル繊維を得た。   The DMAc solution of the acrylic copolymer obtained in Example 1 was coagulated in a DMAc solution at a temperature of 35 ° C. and a concentration of 67% through a spinneret having a pore diameter of 60 μm and a hole number of 6000. The coagulated yarn was washed with water, bath-drawn, and a silicone-based oil agent was applied. Then, the coagulated yarn was drawn in pressurized steam to obtain acrylic fibers having a single fiber fineness of 1.2 dTex and a total fineness of 7200 dTex.

このアクリル繊維を230〜260℃の空気中、緊張化に加熱し密度1.36g/cmの耐炎化繊維に転換し、700℃の窒素雰囲気で緊張化に前炭素化処理を行い前炭素化繊維とした。300〜500℃での昇温速度は200℃/分であった。 This acrylic fiber is heated to tension in the air at 230 to 260 ° C. to convert to a flame resistant fiber having a density of 1.36 g / cm 3 , and pre-carbonization is performed by pre-carbonization treatment for tension in a nitrogen atmosphere at 700 ° C. Made of fiber. The temperature rising rate at 300 to 500 ° C. was 200 ° C./min.

この前炭素化繊維を1500℃、張力0.15g重/dTexで炭素化処理を施しトータル繊度3980dTexの炭素繊維とし、表面処理後、サイジング剤を付与した。1000〜1200℃での昇温速度は400℃/分であった。
評価結果を表1に示した。
(比較例2)
This pre-carbonized fiber was carbonized at 1500 ° C. at a tension of 0.15 g weight / dTex to obtain a carbon fiber having a total fineness of 3980 dTex, and a sizing agent was applied after the surface treatment. The heating rate at 1000 to 1200 ° C. was 400 ° C./min.
The evaluation results are shown in Table 1.
(Comparative Example 2)

実施例4で得られた前炭素化繊維を1450℃、張力0.25g重/dTexで炭素化処理を施しトータル繊度3940dTexの炭素繊維とし、表面処理後、サイジング剤を付与した。1000〜1200℃での昇温速度は400℃/分であった。
評価結果を表1に示した。
The pre-carbonized fiber obtained in Example 4 was carbonized at 1450 ° C. and a tension of 0.25 g weight / dTex to obtain a carbon fiber having a total fineness of 3940 dTex, and a sizing agent was applied after the surface treatment. The heating rate at 1000 to 1200 ° C. was 400 ° C./min.
The evaluation results are shown in Table 1.

Figure 2005248343
Figure 2005248343

Claims (6)

アクリル繊維を酸化性雰囲気中で耐炎化処理した耐炎化繊維を最高温度が1200〜1800℃の不活性雰囲気中で炭素化処理する際に、炭素化処理中の繊維にかかる張力が0.2g重/dTex以下とする炭素繊維の製造方法。   When the flame-resistant fiber obtained by flame-treating acrylic fiber in an oxidizing atmosphere is carbonized in an inert atmosphere having a maximum temperature of 1200 to 1800 ° C., the tension applied to the fiber being carbonized is 0.2 g weight. / DTex or less carbon fiber production method. アクリル繊維を酸化性雰囲気中で耐炎化処理した耐炎化繊維を最高温度が550〜800℃の不活性雰囲気で炭素化処理した後、最高温度が1200〜1800℃の不活性雰囲気中で炭素化処理する際に、炭素化処理中の繊維にかかる張力が0.2g重/dTex以下とする炭素繊維の製造方法。   After the flame-resistant fiber obtained by flame-treating acrylic fiber in an oxidizing atmosphere is carbonized in an inert atmosphere having a maximum temperature of 550 to 800 ° C., the carbonization treatment is performed in an inert atmosphere having a maximum temperature of 1200 to 1800 ° C. A carbon fiber manufacturing method in which the tension applied to the fiber during carbonization is 0.2 g weight / dTex or less. 耐炎化繊維のフィラメント数が8000本以下である請求項1または2記載の炭素繊維の製造方法。   The method for producing a carbon fiber according to claim 1 or 2, wherein the number of filaments of the flame resistant fiber is 8000 or less. 請求項1〜3のいずれか1項記載の炭素繊維の製造方法で得られた炭素繊維を経糸および/または緯糸とする炭素繊維織物であって、経糸および/または緯糸のトウ幅のむらが4.5%以下である炭素繊維織物。   4. A carbon fiber woven fabric using carbon fibers obtained by the carbon fiber manufacturing method according to claim 1 as warps and / or wefts, wherein the tow width unevenness of the warps and / or wefts is 4. Carbon fiber fabric that is 5% or less. 織物目付が400g/m以下である請求項4記載の炭素繊維織物。 The carbon fiber fabric according to claim 4, wherein the fabric basis weight is 400 g / m 2 or less. 織物組織が、平織、綾織または繻子織である請求項4または5記載の炭素繊維織物。   The carbon fiber woven fabric according to claim 4 or 5, wherein the woven fabric is a plain weave, twill weave or satin weave.
JP2004057243A 2004-03-02 2004-03-02 Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber Pending JP2005248343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057243A JP2005248343A (en) 2004-03-02 2004-03-02 Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057243A JP2005248343A (en) 2004-03-02 2004-03-02 Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber

Publications (1)

Publication Number Publication Date
JP2005248343A true JP2005248343A (en) 2005-09-15

Family

ID=35029096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057243A Pending JP2005248343A (en) 2004-03-02 2004-03-02 Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber

Country Status (1)

Country Link
JP (1) JP2005248343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026586A (en) * 2013-07-29 2015-02-05 株式会社不二越 Fabric for gas diffusion layer sheet for fuel cell, and method for manufacturing gas diffusion layer sheet for fuel cell and gas diffusion layer sheet for fuel cell using the same, and fuel cell having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026586A (en) * 2013-07-29 2015-02-05 株式会社不二越 Fabric for gas diffusion layer sheet for fuel cell, and method for manufacturing gas diffusion layer sheet for fuel cell and gas diffusion layer sheet for fuel cell using the same, and fuel cell having the same

Similar Documents

Publication Publication Date Title
JP5264150B2 (en) Carbon fiber strand and method for producing the same
US6503624B2 (en) Carbon fiber precursor fiber bundle and manufacturing method of the same
KR20110110048A (en) Manufacturing method of carbon fiber and precursor
JP2015067910A (en) Carbon fiber and manufacturing method thereof
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP2013023778A (en) Method for manufacturing carbon fiber bundle
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP2005248343A (en) Method for producing carbon fiber, and woven fabric of carbon fiber, using the obtained carbon fiber
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP4612207B2 (en) Carbon fiber fabric and prepreg using the same
JP4547754B2 (en) Pitch-based carbon fiber fabric
JP2014125701A (en) Method of manufacturing carbon fiber bundle
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP4261075B2 (en) Carbon fiber bundle
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP2008308777A (en) Carbon fiber and method for producing polyacrylonitrile-based precursor fiber for producing carbon fiber
JPH10195718A (en) Carbon yarn and its production
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP4887164B2 (en) Carbon fiber manufacturing method
JP2007332498A (en) Method for producing carbon fiber bundle
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP4715386B2 (en) Carbon fiber bundle manufacturing method
JP2020007656A (en) Manufacturing method of carbon fiber bundle