JPH10121345A - Carbon fiber sheet and repair and reinforcement of concrete structure - Google Patents

Carbon fiber sheet and repair and reinforcement of concrete structure

Info

Publication number
JPH10121345A
JPH10121345A JP8270676A JP27067696A JPH10121345A JP H10121345 A JPH10121345 A JP H10121345A JP 8270676 A JP8270676 A JP 8270676A JP 27067696 A JP27067696 A JP 27067696A JP H10121345 A JPH10121345 A JP H10121345A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
yarns
yarn
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8270676A
Other languages
Japanese (ja)
Other versions
JP2842412B2 (en
Inventor
Akira Nishimura
明 西村
Kiyoshi Honma
清 本間
Ikuo Horibe
郁夫 堀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17489402&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10121345(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8270676A priority Critical patent/JP2842412B2/en
Publication of JPH10121345A publication Critical patent/JPH10121345A/en
Application granted granted Critical
Publication of JP2842412B2 publication Critical patent/JP2842412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Moulding By Coating Moulds (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject sheet which has an excellent workability and resin impregnation and is useful for repair and reinforcement of concrete structures by arranging a plurality of carbon fiber yarns having a loop strength over a specific value in parallel. SOLUTION: A plurality of carbon fiber yarns having a loop strength of >=1,000N per 0.9mm<2> cross section according to JIS L 1013 are arranged in parallel to form carbon fiber sheets of unidirectional or bidirectional woven fabric. These sheets has reduced fluffs on their surface and reduced filament breakage on the sheet surface, gives no unpleasant irritating feeling on the construction operation and occurs less fluffs on the impregnation rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維シートお
よびコンクリート構造物の補修・補強方法に関し、とく
にコンクリート構造物の補修・補強に好適な炭素繊維シ
ートおよびそれを用いたコンクリート構造物の補修・補
強方法に関する。
The present invention relates to a method for repairing and reinforcing carbon fiber sheets and concrete structures, and more particularly to a carbon fiber sheet suitable for repairing and reinforcing concrete structures and a method for repairing and reinforcing concrete structures using the same. Related to reinforcement method.

【0002】[0002]

【従来の技術】橋、トンネル、煙突や建物などのコンク
リート構造物は、長年の使用によりコンクリートの中性
化や錆の発生による劣化、通行する車両重量の緩和によ
る負荷の増大、地震による損傷やより大きな地震を想定
した耐震基準の見直しなどによって、補修・補強が必要
となってきている。
2. Description of the Related Art Concrete structures such as bridges, tunnels, chimneys and buildings deteriorate due to neutralization of concrete and rust due to long-term use, increase in load due to reduction in the weight of passing vehicles, damage due to earthquakes and the like. Repairs and reinforcements have become necessary due to review of seismic standards for larger earthquakes.

【0003】さて、コンクリート構造物を補修・補強す
る代表的な工法として、鋼板をコンクリートに接着させ
る鋼板補強工法が知られているが、鋼板は重く、取扱い
に困難を伴う。このようなことから最近、鉄よりも特性
に優れる炭素繊維シート工法が注目されている。この工
法は、現場で炭素繊維シートに樹脂を含浸させてながら
硬化させた、いわゆる炭素繊維強化プラスチック(CF
RP)で補修または補強する工法である。
[0003] As a typical method of repairing and reinforcing concrete structures, a steel plate reinforcing method of bonding a steel plate to concrete is known, but the steel plate is heavy and is difficult to handle. For these reasons, a carbon fiber sheet construction method that is more excellent in characteristics than iron has recently attracted attention. This method uses a so-called carbon fiber reinforced plastic (CF) in which a carbon fiber sheet is cured while impregnating the resin in the field.
This is a method of repairing or reinforcing with RP).

【0004】炭素繊維シートでコンクリート構造物を補
修・補強するに当たっては、まずコンクリートの表面に
付着している油などの汚れを洗浄し、クラックをパテな
どで埋め、また表面の凸凹をモルタルやパテなどで平滑
になるように修正する。次にコンクリートとCFRPの
接着を良くするため、プライマーを塗り一昼夜程度放置
して乾燥する。その後、CFRPのマトリックスとな
る、常温では液状の常温硬化型のエポキシ樹脂を塗布
し、炭素繊維シートたとえば炭素繊維織物を積層し、含
浸ローラやゴムベラなどで樹脂の分布が均一になるよう
にすると同時に、樹脂を炭素繊維シートに含浸させる。
さらにその上に樹脂を塗布し、含浸ローラやゴムベラで
含浸作業を行い、必要に応じてこれを繰り返す。
In repairing and reinforcing a concrete structure with a carbon fiber sheet, first, dirt such as oil adhering to the concrete surface is washed, cracks are filled with a putty or the like, and irregularities on the surface are mortar or putty. Correct it to make it smoother. Next, in order to improve the adhesion between the concrete and the CFRP, a primer is applied and left for about 24 hours to dry. After that, an epoxy resin that is liquid at room temperature and is cured at room temperature is applied as a matrix of CFRP, a carbon fiber sheet such as a carbon fiber fabric is laminated, and the distribution of the resin is made uniform with an impregnating roller or a rubber spatula. Then, the resin is impregnated into the carbon fiber sheet.
Further, a resin is applied thereon, and impregnation operation is performed with an impregnation roller or a rubber spatula, and this is repeated as necessary.

【0005】このように炭素繊維シート工法は、簡便に
コンクリート構造物を補修または補強することが出来る
という特徴を有するが、炭素繊維は引張弾性率が大きく
て脆く、現存する繊維の中でも非常に毛羽立ちやすいと
いう欠陥を有する。したがって、炭素繊維シートの製造
過程で発生した毛羽がシートの表面に付着していて、施
工現場で織物を取り扱っている時この毛羽が飛散した
り、また、樹脂含浸のローラがけの際、炭素繊維シート
に毛羽が発生して作業員の肌に付着することがある。炭
素繊維の単繊維は、その直径が5〜15ミクロンと細
く、また引張弾性率が大きくて剛直であるから、人間の
肌に付着すると、痒く感じ、こすると肌に突き刺さり、
チクチクとして不快感を与える。とくに、施工現場では
樹脂が作業員の肌に付着していたり、夏場は肌を出す箇
所が多く汗が付いているので、毛羽が付着しやすく、不
快感も大きくなるとういう問題があった。
[0005] As described above, the carbon fiber sheet method has a feature that a concrete structure can be easily repaired or reinforced. However, carbon fibers have a large tensile modulus and are brittle, and are extremely fuzzy even among existing fibers. It has a defect that it is easy. Therefore, the fluff generated during the manufacturing process of the carbon fiber sheet adheres to the surface of the sheet, and when the fabric is handled at the construction site, the fluff is scattered. The sheet may be fluffed and adhere to the worker's skin. Since carbon fiber monofilaments are as thin as 5 to 15 microns in diameter, and have a large tensile modulus and are rigid, when they adhere to human skin, they feel itchy, and when rubbed, they pierce the skin,
Gives discomfort as tingling. In particular, at the construction site, there is a problem that the resin adheres to the worker's skin, and in summer, there are many places where the skin is exposed and sweat is attached, so that fluff is likely to adhere and discomfort increases.

【0006】また、コンクリート構造物への補強箇所
は、一般にコンクリート面の下面や柱状物の外表面とな
るので、コンクリート面から、未硬化の樹脂含浸炭素繊
維織物が、樹脂が硬化する前に落下したりずり落ちたり
して、所定の箇所が補強されないことになる。また、コ
ンクリート面の下面を補強する場合、樹脂が垂れ落ち
て、作業員に付着したりするので不衛生であり、毛羽が
付着しやすい。このため、樹脂の粘度が高目に設定され
ているが、樹脂の粘度が高いと炭素繊維織物への樹脂の
含浸が不十分となったり、コンクリート面と含浸炭素繊
維織物、または含浸炭素繊維織物と含浸炭素繊維織物の
間に空気を抱き込んで、ボイドとして残ってしまうこと
があった。樹脂が硬化して、コンクリート面とCFRP
間やCFRP内にボイドがあると、長年の使用によっ
て、ボイド内に水が溜まり、凍結・融解を繰り返してボ
イドの箇所からコンクリート面とCFRP間、またはC
FRP内にクラックが発生し補強効果の低下に繋がるこ
とが懸念される。
[0006] Further, since the reinforcing portion of the concrete structure is generally located on the lower surface of the concrete surface or the outer surface of the columnar material, the uncured resin-impregnated carbon fiber fabric falls from the concrete surface before the resin is cured. A predetermined portion will not be reinforced by slipping or slipping. Further, when reinforcing the lower surface of the concrete surface, the resin drips and adheres to the worker, which is unsanitary, and fluff is likely to adhere. For this reason, the viscosity of the resin is set to a high value, but if the viscosity of the resin is high, the impregnation of the resin into the carbon fiber fabric becomes insufficient, or the concrete surface and the impregnated carbon fiber fabric, or the impregnated carbon fiber fabric In some cases, air was trapped between the carbon fiber fabric and the impregnated carbon fiber fabric and remained as voids. The resin cures and the concrete surface and CFRP
If there is a void in the space or in the CFRP, water will accumulate in the void due to long-term use, and freezing and thawing will be repeated, and from the void, between the concrete surface and CFRP, or C
There is a concern that cracks may occur in the FRP, leading to a reduction in the reinforcing effect.

【0007】また、粘度の高い樹脂を無理に含浸させよ
うとして、強くローラがけをすると炭素繊維の配列が乱
れて、強度低下したり、炭素繊維糸間の間隙が塞がれて
空気の出る箇所がなくなり、抱き込んでしまったり、シ
ートを構成する炭素繊維に毛羽が発生するという問題が
あった。
[0007] Further, if the roller is strongly rolled in order to forcibly impregnate the resin with high viscosity, the arrangement of the carbon fibers is disturbed, the strength is reduced, or the space between the carbon fiber yarns is closed and air is released. There is a problem in that the sheet is not caught and is embraced or fluff is generated in the carbon fibers constituting the sheet.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
現状に着目し、施工時に作業員に不快感を与えず、また
施工性および樹脂含浸性に優れて、ボイドが残りにくい
炭素繊維シートを提供することにある。また、前記炭素
繊維シートを使用してのコンクリート構造物の補修・補
強方法を提供することにある。
SUMMARY OF THE INVENTION The present invention focuses on such a current situation, and provides a carbon fiber sheet which does not give a worker an unpleasant sensation at the time of construction, is excellent in workability and resin impregnating property, and hardly causes voids to remain. Is to provide. Another object of the present invention is to provide a method for repairing and reinforcing a concrete structure using the carbon fiber sheet.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、炭素繊維糸条が多数本並行して配列しているシート
において、前記炭素繊維糸条は、JIS L 1013
法に準拠して測定される引掛強さが、断面積0.9mm
2 当たり1,000N以上であることを特徴とする炭素
繊維シートが提供される。
Means for Solving the Problems In order to achieve the above object, in a sheet in which a large number of carbon fiber yarns are arranged in parallel, the carbon fiber yarns are JIS L 1013.
The hook strength measured according to the law is 0.9 mm in cross-sectional area.
There is provided a carbon fiber sheet characterized by being 1,000 N or more per 2 pieces.

【0010】[0010]

【発明の実施の形態】補修・補強作業している現場で、
作業員から炭素繊維シートを取り扱っているとチクチク
して不快であり改善して欲しいとの要望があり、その原
因調査を行ったところ、炭素繊維シートの表面に付着し
ている毛羽数および単繊維の切断しているフィラメント
本数とチクチク感に関係のあることがわかった。シート
に付着している毛羽数や単繊維切断本数は、その製造工
程における製造条件、たとえば、炭素繊維糸条の張力、
糸道におけるガイドの曲率やガイド表面傷や不純物の付
着状態によっても左右されるが、これら条件を同じにし
ても、シートに付着する毛羽本数に違いがあった。すな
わち、炭素繊維であっても製造条件によっては、毛羽発
生しやすい炭素繊維と毛羽発生しにくい炭素繊維とがあ
ることがわかり、これらを炭素繊維の特性と結び付ける
ため、種々検討を行ったところ、シートに用いる炭素繊
維糸条同士の引掛強さと毛羽の発生し易さと関係のある
ことを発見した。
BEST MODE FOR CARRYING OUT THE INVENTION
There was a request from workers to treat the carbon fiber sheet, which was unpleasant and unpleasant, and a request for improvement was made.When the cause was investigated, the number of fluffs and single fibers adhering to the surface of the carbon fiber sheet It was found that there was a relationship between the number of cut filaments and the tingling sensation. The number of fluff and the number of single fibers cut on the sheet are determined by the manufacturing conditions in the manufacturing process, such as the tension of the carbon fiber yarn,
It depends on the curvature of the guide in the yarn path, the surface damage of the guide, and the state of adhesion of impurities. However, even under the same conditions, there was a difference in the number of fluffs adhered to the sheet. In other words, even in the case of carbon fibers, depending on the production conditions, it is found that there are carbon fibers that are likely to generate fluff and carbon fibers that are less likely to generate fluff. It has been found that there is a relationship between the hooking strength between carbon fiber yarns used for the sheet and the tendency to generate fluff.

【0011】本発明においては、JIS L 1013
法に準拠して測定される引掛強さが、断面積0.9mm
2 当たり1,000N以上であることが必要である。
In the present invention, JIS L 1013
The hook strength measured according to the law is 0.9 mm in cross-sectional area.
It is necessary to be 1,000 N or more per 2 .

【0012】引掛強さが1,000N未満であると、従
来のように樹脂含浸作業の際、チクチク感があり、倍率
が6倍のルーペで拡大して掌の表面を観察すると、炭素
繊維の単繊維が多数観察された。また、肌に毛羽が付着
し、あるものは肌に突き刺さっていた。
When the hooking strength is less than 1,000 N, the resin impregnated as in the prior art has a tingling sensation. Many single fibers were observed. In addition, fluff adhered to the skin, and some of the flesh pierced the skin.

【0013】引掛強さが1,000N以上の炭素繊維で
あると、シート製造に使用する炭素繊維が巻かれたボビ
ンの表面に観察される毛羽数は少なく、また、シート表
面に付着している毛羽数やシート表面の単繊維の切断本
数も少なかった。このシートを実際に施工現場でコンク
リート構造物の補強に供し、溝付き含浸ロールによる樹
脂含浸・脱泡作業を行ったが、チクチク感はなかった。
また、ルーペで拡大して掌の表面を観察したが毛羽は観
察されなかった。すなわち、シートから飛散する毛羽が
少なく、また、含浸ロール掛けによる毛羽発生も大幅に
少なくなったことを物語っている。
When the carbon fiber has a hooking strength of 1,000 N or more, the number of fluffs observed on the surface of the bobbin wound with the carbon fiber used for sheet production is small, and the carbon fiber adheres to the sheet surface. The number of fluffs and the number of cut single fibers on the sheet surface were also small. This sheet was actually used to reinforce the concrete structure at the construction site, and the resin was impregnated and defoamed with a grooved impregnation roll, but there was no tingling sensation.
The surface of the palm was observed with a magnifying glass, but no fluff was observed. That is, it indicates that the fluff scattered from the sheet was small, and the generation of fluff by the impregnating roll was significantly reduced.

【0014】本発明における炭素繊維糸条の引掛強さ
は、JIS L 1013法の7.7項に準拠して測定
したものである。すなわち、図1に示すように、炭素繊
維糸条1、2のつかみ間イの中央にループをつくり、引
張速度が50mm/分で引張って、切断時の強さ(N)
を求め、測定回数が10回の平均値で示した。なお、炭
素繊維糸条の破断荷重が大きくて、糸条が切断する前に
つかみ部3で糸条が滑って測定出来ないときは、糸条の
両端部を20mm程度、常温硬化型の熱硬化性樹脂で固
めてFRPとし、この部分を、炭素繊維糸条1、2の各
々の両端部が互いに接触するようにつかんだ。上部およ
び下部のつかみ間隔A、Bは、各々125mmと同じに
なるようにし、つかみ間の中にはFRPは入らないよう
にした。また、炭素繊維糸条の太さによっても引掛強さ
が支配されるが、本発明では糸条の引掛強さを直接的に
利用するものではなく、炭素繊維の毛羽の立ち易さの評
価法とするものであるので、糸条の太さをほぼ同じにし
て、具体的には糸条の断面積を実質的に0.9mm2
して測定する。実質的に0.9mm2 の断面積とは、
0.9±0.1mm2 程度の範囲内の断面積を意味す
る。断面積が小さすぎるときは、糸条が所定の断面積と
なるように引き揃え、端数のでる場合、たとえば、2.
5本の糸条で所定の断面積は糸条を極力毛羽が出ないよ
うに1/2に分割して、2本の糸条と引き揃えて(2+
0.5)本となるようにする。なお、引き揃えたものの
中に緩んだ糸条が入らないように、0.1×10-3N/
デニールの初荷重をかけた状態で糸条を引き揃える。ま
た、数本の糸条を引き揃えて端部を熱硬化性樹脂で固め
る場合も、上記と同じ条件で初荷重をかけた状態で行
う。また、糸条の炭素繊維の断面積が大きすぎる場合
は、糸条を極力毛羽が出ないように分割して、炭素繊維
糸条の断面積が前記のものとなるようにする。
The hooking strength of the carbon fiber yarn in the present invention is measured according to 7.7 of JIS L 1013 method. That is, as shown in FIG. 1, a loop is formed at the center between the grips of the carbon fiber yarns 1 and 2, and the tensile speed is 50 mm / min.
Was determined, and the number of measurements was shown as an average value of 10 times. When the breaking load of the carbon fiber yarn is large and the yarn cannot be measured due to slipping at the gripping portion 3 before the yarn is cut, the both ends of the yarn are about 20 mm, and the room temperature thermosetting thermosetting is used. The FRP was solidified with a conductive resin, and this portion was gripped so that both ends of the carbon fiber yarns 1 and 2 were in contact with each other. The upper and lower gripping distances A and B were each set to be equal to 125 mm, and the FRP did not enter between the grippings. Further, the hooking strength is also controlled by the thickness of the carbon fiber yarn, but the present invention does not directly use the hooking strength of the yarn, but a method for evaluating the ease of fluffing of carbon fiber. Therefore, the thickness of the yarn is made substantially the same, and specifically, the cross-sectional area of the yarn is measured as substantially 0.9 mm 2 . A cross-sectional area of substantially 0.9 mm 2 is:
It means a cross-sectional area within a range of about 0.9 ± 0.1 mm 2 . When the cross-sectional area is too small, the yarns are aligned so as to have a predetermined cross-sectional area.
With a predetermined cross-sectional area of five yarns, the yarn is divided into halves so as to minimize fuzz, and aligned with two yarns (2+
0.5) Make a book. Note that 0.1 × 10 −3 N /
The yarns are aligned under the initial denier load. Also, when several yarns are aligned and the end is hardened with a thermosetting resin, the operation is performed under the same conditions as described above with an initial load applied. When the cross-sectional area of the carbon fiber of the yarn is too large, the yarn is divided so as to minimize fuzz, so that the cross-sectional area of the carbon fiber yarn is as described above.

【0015】ここで、炭素繊維糸条の断面積とは、炭素
繊維単繊維の断面積にフイラメント本数を乗じたものを
意味するが、簡便的には、糸条の繊度(デニール)と糸
条の密度(g/cm3 )から算出される値である。
Here, the cross-sectional area of the carbon fiber yarn means a value obtained by multiplying the cross-sectional area of the carbon fiber single fiber by the number of filaments. For convenience, the fineness (denier) of the yarn and the yarn Is a value calculated from the density (g / cm 3 ).

【0016】本発明に用いる炭素繊維はマルチフイラメ
ントであって、炭素繊維糸条の太さは3,000〜10
0、000フイラメント程度である。炭素繊維はポリア
クリロニトリル系(以下、PAN系)またはピッチ系で
あってよいが、僅かな繊維量で大きな補強効果を得るた
めに高強度で高弾性率の炭素繊維、具体的には、引張強
度が3GPa以上、好ましくは4GPa以上、より好ま
しくは4.5GPa以上、引張弾性率が200〜700
GPaである炭素繊維が良い。炭素繊維糸条の引張強度
が前記範囲であれば、シート一枚当たりの炭素繊維量が
少なくても、所望の補強効果が得られるので、通気量が
大きくなり、すなわち樹脂の含浸性も一層向上する。
The carbon fiber used in the present invention is a multifilament, and the thickness of the carbon fiber yarn is 3,000 to 10
It is about 000 filament. The carbon fiber may be a polyacrylonitrile-based (hereinafter referred to as PAN-based) or pitch-based carbon fiber. However, in order to obtain a large reinforcing effect with a small amount of fiber, a carbon fiber having a high strength and a high elastic modulus, specifically, a tensile strength Is 3 GPa or more, preferably 4 GPa or more, more preferably 4.5 GPa or more, and the tensile modulus is 200 to 700.
Carbon fibers that are GPa are preferred. If the tensile strength of the carbon fiber yarn is within the above range, even if the amount of carbon fiber per sheet is small, a desired reinforcing effect can be obtained, so that the air permeability increases, that is, the impregnation property of the resin is further improved. I do.

【0017】本発明の具体的な実施態様を図面を参照し
て説明する。図2は、本発明の一実施態様に係わる、炭
素繊維シートとしての一方向性炭素繊維織物を示してお
り、図において、4は炭素繊維糸条で、多数本の炭素繊
維糸条がたて方向に並行に配列し、よこ方向の補助糸5
が炭素繊維糸に交錯している、いわゆる一方向性織物で
ある。
A specific embodiment of the present invention will be described with reference to the drawings. FIG. 2 shows a unidirectional carbon fiber woven fabric as a carbon fiber sheet according to one embodiment of the present invention. In the figure, reference numeral 4 denotes a carbon fiber yarn, and a plurality of carbon fiber yarns are formed. Auxiliary yarns 5 arranged in parallel in the direction
Are so-called unidirectional woven fabrics interlaced with carbon fiber yarns.

【0018】図3は、本発明の炭素繊維シートの他の実
施態様を示しており、たて方向に、実質的に屈曲を有し
ない炭素繊維糸条4を一方向に互いに並行かつシート状
に引き揃えてなる糸条群ロのシート面の両側によこ糸補
助糸5の糸条群ニが位置し、それらよこ糸補助糸群と、
炭素繊維糸条群と並行するたて方向補助糸6の糸条群ハ
とが織組織をなして糸条群を一体に保持している、一方
向性炭素繊維織物である。このような織物はたて方向の
炭素繊維糸条に屈曲を有しないので、成形して炭素繊維
強化プラスチック(CFRP)にしても応力が集中する
ようなことはなく、高い強度となる。
FIG. 3 shows another embodiment of the carbon fiber sheet of the present invention. In the warp direction, the carbon fiber yarns 4 having substantially no bending are arranged in one direction in parallel with each other and in a sheet shape. The yarn group d of the weft auxiliary yarn 5 is located on both sides of the sheet surface of the aligned yarn group B, and the weft auxiliary yarn group
This is a unidirectional carbon fiber woven fabric in which the yarn group C of the warp direction auxiliary yarn 6 parallel to the carbon fiber yarn group forms a woven structure and integrally holds the yarn group. Such a woven fabric has no bending in the warp direction of the carbon fiber thread, so that stress is not concentrated even when molded and formed into carbon fiber reinforced plastic (CFRP), and high strength is obtained.

【0019】図4は、本発明の炭素繊維シートの他の実
施態様を示しており、図において、たて方向に多数本の
炭素繊維糸条4が並行に配列し、よこ方向にも炭素繊維
糸条7がたて方向の炭素繊維糸条4と直交するように並
行に配列した、いわゆる二方向性炭素繊維織物であっ
て、たて方向の炭素繊維糸条4とよこ方向の炭素繊維糸
条7が一本交互に交錯し、平組織している。
FIG. 4 shows another embodiment of the carbon fiber sheet of the present invention. In the figure, a large number of carbon fiber yarns 4 are arranged in parallel in the vertical direction, and the carbon fibers are also arranged in the horizontal direction. A so-called bidirectional carbon fiber woven fabric in which the yarns 7 are arranged in parallel so as to be orthogonal to the carbon fiber yarns 4 in the warp direction, wherein the carbon fiber yarns 4 in the warp direction and the carbon fiber yarns in the weft direction. 7 are alternately interlaced and have a flat organization.

【0020】図5は、本発明の炭素繊維シートの他の実
施態様を示しており、図において、たて方向に多数本の
炭素繊維糸条4が並行に配列し、これら炭素繊維糸条
は、その片側に位置しているメッシュ状の支持体8とバ
インダー9によって接着させている。バインダーとして
は、CFRPの成形に際に使用するマトリックス樹脂と
同じ種類のものを用いるのが、マトリックス樹脂との親
和性がよいので好ましく、その付着量は炭素繊維重量に
対して3〜7%程度とするのが良い。
FIG. 5 shows another embodiment of the carbon fiber sheet of the present invention. In the figure, a number of carbon fiber yarns 4 are arranged in parallel in the warp direction. And a mesh-shaped support 8 located on one side thereof and a binder 9. As the binder, it is preferable to use the same type as the matrix resin used in the molding of CFRP because the affinity with the matrix resin is good, and the amount of the binder is about 3 to 7% based on the weight of the carbon fiber. Good to be.

【0021】本発明における炭素繊維シートは、通常上
述した織物の形態をとるが、炭素繊維糸条を多数本並行
に配列し、前記糸条がバインダーで支持体に接着された
炭素繊維シートであっても良い。
The carbon fiber sheet of the present invention usually takes the form of the woven fabric described above, but is a carbon fiber sheet in which a large number of carbon fiber yarns are arranged in parallel and the yarns are adhered to a support with a binder. May be.

【0022】炭素繊維シートとしての炭素繊維織物の樹
脂含浸性を図るため、織物の形態と樹脂の含浸性を検討
していたところ、樹脂の含浸性は、織物の炭素繊維量が
同じであっても炭素繊維糸条における炭素繊維の集束状
態や炭素繊維の交絡状態、また、同じ炭素繊維織物であ
ってもたて糸やよこ糸の拘束状態によって異なり、また
一方向性織物においてはよこ方向の補助糸の状態によっ
て、含浸状態が大きく左右されるとがわかった。また、
この検討の過程で織物の通気性と樹脂の含浸性が密接に
関係していることを発見した。
In order to improve the resin impregnating property of the carbon fiber woven fabric as the carbon fiber sheet, the form of the woven fabric and the resin impregnating property were examined. Also, the state of bundle of carbon fibers in the carbon fiber yarn, the state of entanglement of carbon fibers, and the same carbon fiber woven fabric vary depending on the warp and weft restraint conditions. It was found that the impregnation state greatly depends on the state. Also,
In the course of this study, it was discovered that the permeability of the fabric and the impregnation of the resin were closely related.

【0023】これらの実験を通して、良好な樹脂含浸性
が得られるのは、炭素繊維シートの通気量が、JIS
L 1096法による測定値で20〜300cc/cm2/sec
であった。通気量が20cc/cm2/sec未満であると、炭素繊
維糸条を構成する炭素繊維の嵩密度が小さくなり、すな
わち炭素繊維同志が形成する空間が小さく、または炭素
繊維シートの炭素繊維糸条間4に形成される隙間が小さ
く、樹脂含浸性が悪く、CFRPの内部やコンクリート
とCFRP間に空気を抱き込み、大きなボイドがはいっ
た。また、通気量が300cc/cm2/secを越えるシートは
炭素繊維糸条間の間隙4が大きく、ドレープ性がありす
ぎて、織物をコンクリートに真っ直ぐ貼ることが困難
で、施工性がよくなかった。
Through these experiments, good resin impregnation can be obtained only when the air permeability of the carbon fiber sheet is in accordance with JIS.
20 to 300 cc / cm 2 / sec as measured by L 1096 method
Met. When the ventilation rate is less than 20 cc / cm 2 / sec, the bulk density of the carbon fibers constituting the carbon fiber yarn becomes small, that is, the space formed between the carbon fibers is small, or the carbon fiber yarn of the carbon fiber sheet is formed. The gap formed in the gap 4 was small, the resin impregnating property was poor, and air was trapped inside the CFRP or between the concrete and the CFRP, and large voids entered. Further, the sheet having a ventilation rate exceeding 300 cc / cm 2 / sec has a large gap 4 between carbon fiber yarns, has too much drapability, and it is difficult to apply the woven fabric straight to concrete, and the workability is poor. .

【0024】炭素繊維シートの通気量が20〜300cc
/cm2/secであると、CFRPの内部やコンクリートとC
FRP間に大きなボイドが入るようなことはなくて、炭
素繊維への樹脂の含浸性はよく、また施工性もよい。
The air permeability of the carbon fiber sheet is 20 to 300 cc
/ cm 2 / sec, CFRP and concrete and C
There are no large voids between the FRPs, the carbon fiber has good resin impregnation and good workability.

【0025】なお、本発明におけるシートの通気量とは
下記の方法によって測定されたものである。
The air permeability of the sheet in the present invention is measured by the following method.

【0026】通気量の測定は、JIS L 1096法
の6.27項の通気性A法に従った。すなわち、円筒の
一端の面積が38.3cm2の通気孔に20cm×20c
mのシート試験片を所定の方法で取り付け、加減抵抗器
によって傾斜形気圧計が水柱1.27cmの圧力を示す
ように吸込みファンを調整し、その時の垂直形気圧計の
示す圧力と、使用した空気孔の種類とから、試験機付随
の換算表によってシート試験片を通過する空気量(cc/c
m2/sec)を求め5回の測定結果の平均値を通気量とし
た。なお、温度が20℃、湿度が65%の室内に試料を
24時間放置した後、その雰囲気下で測定した。なお、
後述する実施例では、通気量測定器として、(株)大栄
科学精器製作所のフラジール形試験機AP−360を使
用した。
The measurement of the air permeability was in accordance with the air permeability A method of Section 6.27 of JIS L 1096 method. That is, the area of one end of the cylinder is 20 cm × 20 c in a ventilation hole having a size of 38.3 cm 2.
m sheet test piece was attached by a predetermined method, and the suction fan was adjusted with a rheostat so that the inclination type barometer indicated a pressure of 1.27 cm of water column, and the pressure indicated by the vertical type barometer at that time was used. The amount of air passing through the sheet test piece (cc / c
m 2 / sec) was determined and the average value of the results of the five measurements was taken as the ventilation rate. The sample was left in a room at a temperature of 20 ° C. and a humidity of 65% for 24 hours, and then measured in that atmosphere. In addition,
In the examples described later, a Frazier-type tester AP-360 manufactured by Daiei Kagaku Seiki Seisaku-Sho, Ltd. was used as a ventilation meter.

【0027】本発明に用いる炭素繊維糸条には、その重
量当たりサイジング剤が0.2〜1.5重量%付着され
てなることが好ましい。炭素繊維糸条のサイジング付着
量が少なすぎる場合には、炭素繊維の嵩密度が大きくな
り、すなわち炭素繊維同志が形成する空間が大きく樹脂
の含浸しやすいという点では好ましいが、炭素繊維は脆
いので織物などのシート製造時に毛羽が発生しシートに
は毛羽がたくさん付着した状態となる。このようなシー
トを手含浸法による成形に使用すると、施工現場でシー
トを取り扱う際、毛羽が肌に付着して付き刺さり、作業
員の不快感が大きくなる。また、サイジング付着量が大
きすぎる場合には、上記の毛羽の問題は解決するが、炭
素繊維同志がサイジング剤で付着して集束し、炭素繊維
同志が形成する空間が少なくなり、樹脂の含浸性は悪く
なることがある。
It is preferable that a sizing agent is attached to the carbon fiber thread used in the present invention in an amount of 0.2 to 1.5% by weight based on the weight thereof. When the sizing adhesion amount of the carbon fiber yarn is too small, the bulk density of the carbon fiber becomes large, that is, it is preferable in that the space formed between the carbon fibers is large and the resin is easily impregnated, but the carbon fiber is brittle. Fuzz is generated at the time of manufacturing a sheet such as a woven fabric, and a large amount of fuzz is attached to the sheet. When such a sheet is used for molding by the hand impregnation method, when handling the sheet at a construction site, the fluff adheres to and sticks to the skin, which increases the discomfort of the worker. Also, if the sizing adhesion amount is too large, the above-mentioned problem of fluff is solved, but the carbon fibers adhere with the sizing agent and converge, the space formed by the carbon fibers decreases, and the impregnation of the resin decreases. May get worse.

【0028】また、本発明においては、シートにおける
炭素繊維目付が200〜400g/m2であることが好
ましい。炭素繊維の目付が200g/m2未満であると
樹脂の含浸性という観点からは好ましいが、必要とされ
る補強を行うには積層枚数が多くなる。したがって、樹
脂の含浸作業に手間がかかって作業性が悪くなるばかり
か、ドレープ性が大きなシートとなりシートをコンクリ
ートに真っ直ぐ貼ることが困難となり、施工性が悪くな
る。炭素繊維の目付が400g/m2を越えると樹脂の
含浸性が悪くなるし、また、樹脂含浸したシート重量が
重くなるので、コンクリート面から未硬化の樹脂や樹脂
含浸炭素繊維シートが、樹脂の硬化前に落下したりずり
落ちたりして、所定の箇所が補強されないことになる。
In the present invention, the sheet preferably has a carbon fiber weight of 200 to 400 g / m 2 . If the basis weight of the carbon fiber is less than 200 g / m 2 , it is preferable from the viewpoint of the impregnation of the resin, but the number of laminations is increased to perform the necessary reinforcement. Therefore, not only the work of impregnating the resin is troublesome and workability is deteriorated, but also a sheet having a large drapability becomes difficult, and it is difficult to stick the sheet straight to concrete, and the workability is deteriorated. If the basis weight of the carbon fiber exceeds 400 g / m 2 , the impregnating property of the resin deteriorates, and the weight of the resin-impregnated sheet increases, so that the uncured resin or the resin-impregnated carbon fiber sheet from the concrete surface becomes Predetermined portions will not be reinforced by dropping or slipping before curing.

【0029】本発明における補助糸は、織物の常温保管
によっても、また熱処理によっても収縮しないのでガラ
ス繊維が好ましい。よこ糸としての補助糸が収縮する
と、たて糸の炭素繊維糸条の織り密度が大きくなり、設
定の補強効果が異なることになるし、幅が小さくなるこ
とによって、補強面積も、当初計画より小さくなるので
好ましくない。
The auxiliary yarn in the present invention is preferably a glass fiber because it does not shrink even when the woven fabric is stored at room temperature or by heat treatment. When the auxiliary yarn as the weft shrinks, the weaving density of the carbon fiber yarn of the warp yarn increases, the reinforcing effect of the setting differs, and as the width decreases, the reinforcing area becomes smaller than originally planned. Not preferred.

【0030】また、本発明の炭素繊維織物は、図4に示
すように、たて方向の炭素繊維糸条のその長さ方向に線
状または点状に延びる低融点ポリマー10を付着させ、
この低融点ポリマーが互いに直交する糸、すなわちよこ
方向の炭素繊維糸条との交点において接着している、い
わゆる目どめ織物であることが好ましい。なお、図4に
は、低融点ポリマーをよこ糸に付着させた例を示してい
るが、たて糸に付着させてもよいし、たて糸およびよこ
糸の2方向の糸に付着させておいてもよい。
Further, as shown in FIG. 4, the carbon fiber woven fabric of the present invention adheres a low-melting polymer 10 extending linearly or dotwise in the longitudinal direction of the carbon fiber yarn in the warp direction,
It is preferable that the low-melting polymer is a so-called blind woven fabric in which the low-melting polymers are bonded at the intersections with the yarns orthogonal to each other, that is, the weft carbon fiber yarns. Although FIG. 4 shows an example in which the low melting point polymer is attached to the weft yarn, it may be attached to the warp yarn or may be attached to the warp yarn and the weft yarn in two directions.

【0031】また、図2、図3に示すように、一方向性
の炭素繊維織物において、よこ方向の補助糸が低融点ポ
リマー10を付着させて、そのポリマーによりたて方向
の炭素繊維糸条がその交点において互いに接着されてい
てもよい。
As shown in FIGS. 2 and 3, in a unidirectional carbon fiber woven fabric, a weft-direction auxiliary yarn adheres a low-melting polymer 10 and a warp-oriented carbon fiber yarn is formed by the polymer. May be adhered to each other at their intersections.

【0032】このように、目どめされた織物は、現場で
織物を裁断しても織糸がほつれるようなことはなく、ま
た、強く樹脂含浸のためにローラがけしても織糸が蛇行
し、CFRPの強度や剛性の低下を招くようなことはな
い。
In this way, the stagnant woven fabric does not fray even when the woven fabric is cut at the site, and the woven yarn is not damaged even if it is rolled strongly for resin impregnation. It does not meander and cause a decrease in the strength and rigidity of the CFRP.

【0033】また、低融点ポリマーの付着量は、多いと
樹脂含浸を阻害したり、CFRPの機械的性質を低下さ
せるので、6.0g/m2以下が好ましい。だだし、
0.5g/m2未満であると目どめ効果が薄れるので、
0.5〜6.0g/m2が好ましい。
The amount of the low-melting polymer adhered is preferably 6.0 g / m 2 or less because a large amount impairs resin impregnation or lowers the mechanical properties of CFRP. However,
If it is less than 0.5 g / m 2 , the eye-catching effect is diminished.
0.5-6.0 g / m < 2 > is preferable.

【0034】一方向性炭素繊維織物の場合、これら低融
点ポリマーが細い補助糸に多量に付くと、補助糸は基本
的には補強を担わせていないが、破壊の起点が補助糸か
ら始まるので、これらを防止し、かつ目どめ効果を発揮
させるには補助糸の低融点ポリマーの付着量が補助糸の
50重量%以下が好ましい。
In the case of a unidirectional carbon fiber woven fabric, when a large amount of these low-melting polymers adhere to a thin auxiliary yarn, the auxiliary yarn basically does not support reinforcement, but the starting point of destruction starts from the auxiliary yarn. In order to prevent such an effect and to exert an eye-opening effect, the amount of the low-melting polymer adhered to the auxiliary yarn is preferably 50% by weight or less of the auxiliary yarn.

【0035】本発明に用いる低融点ポリマーは、通常、
ナイロン、共重合ナイロン、ポリエステル、塩化ビニリ
デン、塩化ビニル、ポリウレタンから選ばれたものであ
る。なかでも、低温でポリマーを溶融でき、かつ接着力
が強く、僅かな使用量で期待する目どめ効果が得られる
ことから共重合ナイロンが特に好ましく用いられる。
The low melting point polymer used in the present invention is usually
It is selected from nylon, copolymer nylon, polyester, vinylidene chloride, vinyl chloride, and polyurethane. Among them, copolymer nylon is particularly preferably used because it can melt the polymer at a low temperature, has a strong adhesive force, and can obtain an expected effect with a small amount of use.

【0036】ついで、本発明によるコンクート構造物の
補修・補強方法を説明するに、まずコンクリートの表面
に付着している油などの汚れを石鹸水やアセトンなどで
洗浄し、クラックをパテなど埋め、また表面の凸凹をモ
ルタルやパテなどで平滑になるように修正する。次にコ
ンクリートとCFRPの接着を良くするため、プライマ
ーを塗り一昼夜程度放置して乾燥する。その後、CFR
Pのマトリックスとなる、常温では液状の常温硬化型の
エポキシ樹脂を塗布し炭素繊維シート、たとえば炭素繊
維織物を積層し、含浸ローラやゴムベラなどで樹脂の分
布が均一になるようにすると同時に、樹脂を炭素繊維シ
ートに含浸させる。さらにその上に樹脂を塗布し、含浸
ローラやゴムベラで含浸作業を行い、必要に応じてこれ
を繰り返す。
Next, a method of repairing and reinforcing the concrete structure according to the present invention will be described. First, dirt such as oil adhering to the surface of concrete is washed with soapy water or acetone, and cracks are buried with putty. Also, the surface irregularities are corrected so as to be smooth with a mortar or putty. Next, in order to improve the adhesion between the concrete and the CFRP, a primer is applied and left for about 24 hours to dry. Then, CFR
A matrix of P, a room temperature curable epoxy resin that is liquid at room temperature is applied and a carbon fiber sheet, for example, a carbon fiber fabric is laminated, and the distribution of the resin is made uniform with an impregnating roller or rubber spatula. To a carbon fiber sheet. Further, a resin is applied thereon, and impregnation operation is performed with an impregnation roller or a rubber spatula, and this is repeated as necessary.

【0037】本発明において用いる樹脂は粘度が30〜
150ポイズでありチクソトロピック係数が3.0〜
8.0である。樹脂の粘度は30ポイズ未満、チクソト
ロピック係数が3.0未満であると、樹脂を塗布したと
き、未硬化の樹脂が垂れ落ち、また未硬化の樹脂が含浸
された炭素繊維シートがコンクリート下面から垂れ落ち
たり、垂直面に貼り付けた炭素繊維シートが下方に滑り
落ちる。一方、樹脂の粘度が150ポイズを越えたり、
チクソトロピック係数が8.0よりも大きくなると、炭
素繊維シートに樹脂を塗布したのち、含浸ローラがけし
ても、樹脂粘度が高く、塗布した樹脂はほとんど拡散し
ないので、本発明の炭素繊維シートを用いても、樹脂が
炭素繊維に十分含浸しなく、またコンクリートと樹脂含
浸炭素繊維シートとの間や、積層された樹脂含浸シート
間の空気を抜くことができず、大きなボイドが残ってし
まう。したがって、十分な補強効果が得られないばかり
か、長期間の使用によってボイドからクラックの発生を
招き補強効果の低下に繋がる。樹脂の粘度が30〜15
0ポイズでありチクソトロピック係数が3.0〜8.0
であると、樹脂の垂れ落ちや、樹脂含浸シートの落下や
滑り落ちがなく、また十分な補強効果が得られ、長期間
の使用によっても補強効果の低下に繋がことはない。
The resin used in the present invention has a viscosity of 30 to
150 poise and a thixotropic coefficient of 3.0 to 3.0
8.0. If the viscosity of the resin is less than 30 poise and the thixotropic coefficient is less than 3.0, when the resin is applied, the uncured resin drips, and the carbon fiber sheet impregnated with the uncured resin is removed from the concrete lower surface. It sags or the carbon fiber sheet attached to the vertical surface slides down. On the other hand, the viscosity of the resin exceeds 150 poise,
When the thixotropic coefficient is larger than 8.0, the resin is applied to the carbon fiber sheet, and even if the impregnating roller is applied, the resin viscosity is high and the applied resin hardly diffuses. Even if it is used, the resin does not sufficiently impregnate the carbon fiber, and the air cannot be released between the concrete and the resin-impregnated carbon fiber sheet or between the laminated resin-impregnated sheets, leaving large voids. Accordingly, not only a sufficient reinforcing effect cannot be obtained, but also cracks are generated from voids due to long-term use, leading to a reduction in the reinforcing effect. Resin viscosity is 30 to 15
0 poise and a thixotropic coefficient of 3.0 to 8.0
In this case, there is no dripping of the resin, no falling or slipping of the resin-impregnated sheet, and a sufficient reinforcing effect is obtained, and the reinforcing effect is not reduced even by long-term use.

【0038】ここで、樹脂の粘度測定は、JIS−K−
6833により行う。すなわち、単一円筒回転体を用い
て、試料500ミリリットルを容器にとり、試料温度が所定の
温度になったのを確認して粘度計のロータを試料中央に
セットし、1分間回転させた時の指示計の目盛りを読
む。この場合、ロータの回転数を20回転/分とする。
粘度は粘度計の示す目盛りの数値に規定の換算乗数を乗
じて算出する。
Here, the viscosity of the resin is measured according to JIS-K-
6833. That is, using a single cylindrical rotating body, take 500 ml of a sample in a container, confirm that the sample temperature has reached a predetermined temperature, set the rotor of the viscometer at the center of the sample, and rotate it for one minute. Read the scale on the indicator. In this case, the rotation speed of the rotor is set to 20 rotations / minute.
The viscosity is calculated by multiplying a numerical value on a scale indicated by a viscometer by a specified conversion multiplier.

【0039】また、チクソトロピック係数の測定方法
は、上記の粘度測定と同じである。ただし、使用するロ
ータは同じとし、ロータの回転数を変えて測定した粘度
の比をチクソトロピック係数という。すなわち、ロータ
の回転数は20回転/分と2回転/分とし、チクソトロ
ピック係数は次式で算出した値をいう。
The method of measuring the thixotropic coefficient is the same as the above-mentioned viscosity measurement. However, the rotor used is the same, and the ratio of the viscosity measured while changing the rotation speed of the rotor is called a thixotropic coefficient. That is, the number of rotations of the rotor is set to 20 rotations / minute and 2 rotations / minute, and the thixotropic coefficient is a value calculated by the following equation.

【0040】チクソトロピック係数=(2回転/分時の
粘度)/(20回転/分時の粘度) また、樹脂の塗布量は炭素繊維シート重量の1〜2.5
倍が好ましい。使用する樹脂粘度は高いので、炭素繊維
シートに塗布したときに均一に拡散しにくいので、樹脂
の塗布量が炭素繊維シートの重量の1倍未満であると、
炭素繊維シートに対して樹脂が不足する箇所が出来、樹
脂が含浸しない箇所が出来る。また、2.5倍を越える
と、たとえ、樹脂の粘度およびチクソトロピック係数、
また織物条件などのシート条件を最適化しても、樹脂量
が多いので樹脂や樹脂含浸シートが垂れ落ちたり、樹脂
を絞りきれず、織物の層間およびコンクリート面との間
に樹脂が残って、樹脂が硬化した後のCFRPの表面が
凸凹したりする場合がある。樹脂の塗布量が炭素繊維シ
ートの重量の1〜2.5倍であると含浸不良部の発生
や、樹脂や樹脂含浸シートが垂れ落ちるようなことはな
く、また表面平滑なCFRP補強面が得られる。
Thixotropic coefficient = (viscosity at 2 rotations / minute) / (viscosity at 20 rotations / minute) The amount of resin applied is 1 to 2.5 times the weight of the carbon fiber sheet.
Double is preferred. Since the viscosity of the resin used is high, it is difficult to uniformly diffuse when applied to the carbon fiber sheet, so if the amount of the resin applied is less than one time the weight of the carbon fiber sheet,
There are places where the resin is insufficient for the carbon fiber sheet, and places where the resin is not impregnated. Further, if it exceeds 2.5 times, even if the viscosity and thixotropic coefficient of the resin,
Even if the sheet conditions such as woven fabric conditions are optimized, the amount of resin is large, so the resin or resin-impregnated sheet drips down, cannot squeeze the resin, and the resin remains between the fabric layers and the concrete surface. After curing, the surface of the CFRP may be uneven. When the amount of the resin applied is 1 to 2.5 times the weight of the carbon fiber sheet, impregnation defective portions do not occur, and the resin or the resin impregnated sheet does not sag and a CFRP reinforced surface having a smooth surface is obtained. Can be

【0041】本発明に用いる樹脂はエポキシ樹脂、ビニ
ルエステル樹脂、不飽和ポリエステル樹脂やフェノール
樹脂などの熱硬化性樹脂が用いられるが、なかでもエポ
キシ樹脂は、コンクリートとの接着力が大きく耐アルカ
リ性や炭素繊維との接着性に優れるので好ましく用いら
れる。
The resin used in the present invention is a thermosetting resin such as an epoxy resin, a vinyl ester resin, an unsaturated polyester resin, or a phenol resin. Among them, the epoxy resin has a large adhesive force to concrete and has a high alkali resistance. It is preferably used because it has excellent adhesion to carbon fibers.

【0042】[0042]

【実施例】【Example】

(実施例1)JIS L 1013法に準拠して測定し
た炭素繊維糸条(断面積0.889mm2 )の引掛強さ
が1,600Nの特性を有する、PAN系の炭素繊維の
フィラメント数が12,000本のサイジング付着量が
1.0%の炭素繊維糸条をたて糸とし、よこ糸に断面積
が0.009mm2 のガラス繊維を、よこ糸の織り密度
が5本/cmで、よこ糸に線状に共重合ナイロンを2.
7g/m2となるように付着させ、たて糸の炭素繊維糸
条をよこ糸の交錯部で接着させた、炭素繊維の目付が3
03g/m2の織物を作製した。
(Example 1) The number of filaments of a PAN-based carbon fiber having a hook strength of 1600 N of a carbon fiber yarn (cross-sectional area of 0.889 mm 2 ) measured according to JIS L 1013 method is 12 2,000 carbon fiber threads with a sizing adhesion of 1.0% are used as warp yarns, weft yarns are made of glass fiber with a cross-sectional area of 0.009 mm 2 , weft yarn weave density is 5 yarns / cm, and weft yarns are linear. 1. Copolymer nylon
7 g / m 2, and the warp carbon fiber yarns were bonded at the intersection of the weft yarns.
A fabric of 03 g / m 2 was produced.

【0043】織物が巻かれたロールから織物を解舒し、
ロールの内側の織物表面の炭素繊維の付着毛羽および単
繊維切れを実態顕微鏡で観察したところ、付着毛羽が
0.05本/cm2 、単繊維切れ本数が0.10本/c
2 とほとんど観察されなかった。なお、上記において
織物の表面において、単繊維の両端が切断している毛羽
を付着毛羽、炭素繊維糸条から切断した単繊維がはみで
て見える毛羽を単繊維切れとした。また、かかる測定に
際して織物表面にマーキングをすると単繊維切れなどが
発生する可能性があるため、織物の上に2×2cmに切
り抜いた紙を置き、実体顕微鏡で25倍に拡大し、測定
面積4cm2 での付着毛羽、単繊維切れの発生本数をカ
ウントした。そして、この測定を5回繰り返し、その平
均値を求めた後、測定面積1cm2 あたりに換算した。
Unwinding the woven fabric from the roll on which the woven fabric is wound,
Observation of the attached fluff and broken single fiber of the carbon fiber on the woven fabric surface inside the roll with a stereoscopic microscope revealed that the deposited fluff was 0.05 / cm 2 and the number of cut single fibers was 0.10 / c.
m 2 was hardly observed. In the above description, on the surface of the woven fabric, the fluff at which both ends of the single fiber were cut was attached to the fluff, and the fluff that was seen from the carbon fiber thread and the single fiber was cut off was the single fiber cut. In addition, when marking is performed on the surface of the woven fabric during such measurement, a piece of single fiber may be broken, so place a piece of paper cut out to 2 × 2 cm on the woven fabric, magnify 25 times with a stereoscopic microscope, and measure 4 cm in area. The number of fluffs and broken single fibers generated in 2 was counted. Then, repeating the measurement 5 times, after the average value is obtained, in terms of per a measurement area 1 cm 2.

【0044】つぎに、この織物の通気性をJIS L
1096法のフラジール形試験機で測定したところ、通
気量は50cc/cm2/secであった。
Next, the air permeability of the woven fabric was measured according to JIS L
The air permeability was 50 cc / cm 2 / sec as measured by a Frazier tester according to the 1096 method.

【0045】上向き成形における、コンクリートと樹脂
含浸炭素繊維織物との間の空気抱き込み状態を調査する
ため、ポリエステルフイルムを仮止めしたベニヤ板をフ
イルム面が下面になるように設置し、まず、樹脂粘度が
80ポイズ、チクソトロピック係数が5.0の樹脂を3
00g/m2、均一になるようにとなるようにゴムべら
で塗布し、上記の本発明の炭素繊維織物を1枚貼り、溝
付きの含浸・脱泡ローラがけを行い、その上から200
g/m2の樹脂を塗布し溝付きのローラで樹脂含浸、お
よび脱泡を行った。さらに、この上に200g/m2
樹脂を均一になるようにとなるようにゴムべらで塗布
し、1層目と炭素繊維の方向が同じになるようにして、
2層目の炭素繊維織物を貼りローラで樹脂含浸、および
脱泡を行い、その後、この上に200g/m2の樹脂を
塗布し樹脂含浸、および脱泡を行い、これを繰り返し3
層の織物を積層した。なお、樹脂の使用量は、1,30
0g/m2で炭素繊維重量に対して1.4倍であった。
ここで炭素繊維織物は25cm幅のものを3m長さに裁
断したものを使用した。
In order to investigate the state of air entrapment between the concrete and the resin-impregnated carbon fiber fabric during upward molding, a veneer plate temporarily fixed with a polyester film was placed so that the film surface was on the lower surface, and first the resin viscosity was measured. Is 80 poise and resin with thixotropic coefficient of 5.0
00 g / m 2 , coated with a rubber spatula so as to be uniform, one carbon fiber woven fabric of the present invention described above was applied, and a grooved impregnating / defoaming roller was applied.
g / m 2 of resin was applied, and the resin was impregnated with a grooved roller and defoamed. Further, a 200 g / m 2 resin is applied thereon with a rubber spatula so as to be uniform, and the direction of the carbon fiber is the same as that of the first layer.
The second layer of carbon fiber fabric is impregnated with resin and defoamed with a sticking roller, and then 200 g / m 2 of resin is applied thereon to impregnate and defoam the resin.
The layers of fabric were laminated. The amount of resin used is 1,30
At 0 g / m 2 , it was 1.4 times the weight of the carbon fiber.
Here, a carbon fiber woven fabric cut from a 25 cm width to a 3 m length was used.

【0046】樹脂の塗布中に樹脂が垂れ落ちるようなこ
とはなく、また、樹脂含浸した織物が落下するようなこ
とはなかった。
The resin did not sag during the application of the resin, and the woven fabric impregnated with the resin did not fall.

【0047】また、ルーペで両手の掌に付着している毛
羽数は5〜8本と少なく、念のため両手の掌を擦り合せ
てたが、チクチクするようなことはなかった。ここでの
付着毛羽数は作業者3人における付着毛羽を測定した。
The number of fluffs attached to the palms of both hands with a loupe was as small as 5 to 8 and the palms of both hands were rubbed against each other just in case, but no tingling occurred. The number of fuzz attached here was determined by measuring the amount of fuzz attached to three workers.

【0048】これを、常温で3日間放置して樹脂を硬化
させ、ポリエステルフイルムとCFRPの間の空気の抱
き込み状態を観察した。空気の抱き込んだ箇所はCFR
Pと接着せず、白っぽくなるが、この面積を測定したと
ころ、全体の面積の0.5%程度であり、ほぼ完全に空
気が抜けていた。ついで、CFRP板の、炭素繊維の配
列方向と直行する断面を顕微鏡で観察したところ、炭素
繊維織物間には空気を抱き込みによるボイドはなく、炭
素繊維織物の繊維間にもほぼ完全に樹脂が含浸してい
た。
This was left at room temperature for 3 days to cure the resin, and the state of entrapped air between the polyester film and CFRP was observed. The place where the air is embraced is CFR
Although it became whitish without adhering to P, when this area was measured, it was about 0.5% of the entire area, and air was almost completely released. Then, when a cross section of the CFRP plate, which is perpendicular to the arrangement direction of the carbon fibers, was observed with a microscope, there was no void between the carbon fiber fabrics due to the inclusion of air, and the resin was almost completely filled between the fibers of the carbon fiber fabrics. Had been impregnated.

【0049】(比較例1)JIS L 1013法に準
拠して測定した炭素繊維糸条(断面積0.914m
2 )の引掛強さが450Nの特性を有する、PAN系
の炭素繊維のフィラメント数が12,000本のサイジ
ング付着量が1.0%の炭素繊維糸条をたて糸とし、そ
の他の条件は実施例と同じにして、炭素繊維の目付が3
05g/m2の織物を作製した。
(Comparative Example 1) Carbon fiber yarn (cross-sectional area 0.914 m) measured according to JIS L 1013 method
m 2 ) A PAN-based carbon fiber filament having a hooking strength of 450 N, a filament number of 12,000, and a carbon fiber yarn with a sizing adhesion of 1.0% was used as a warp yarn. As in the example, the basis weight of the carbon fiber is 3
A fabric of 05 g / m 2 was produced.

【0050】実施例と同じ方法で織物表面の毛羽を観察
したところ、付着毛羽が0.30本/cm2 、単繊維切
れ本数が2.75本/cm2 とかなり多かった。
[0050] Observation of the fluff of the textile surface in the same manner as in Example, adhesion fluff 0.30 present / cm 2, single fiber breakage number is fairly large and 2.75 present / cm 2.

【0051】つぎに、この織物の通気性をJIS L
1096法のフラジール形試験機で測定したところ、通
気量は47cc/cm2/secであった。
Next, the air permeability of this woven fabric was measured according to JIS L
The air permeability was 47 cc / cm 2 / sec as measured by a Frazier tester according to the 1096 method.

【0052】実施例と同じ樹脂を使用して樹脂含浸作業
を行い、実施例1と同様にルーペで両手の掌に付着して
いる毛羽数を測定したところ30〜42本と多く、両手
の掌を擦り合せたところ、チクチクし不快であった。
A resin impregnation operation was performed using the same resin as in the example, and the number of fluffs attached to the palms of both hands was measured with a loupe in the same manner as in Example 1. Were rubbed together and were unpleasant.

【0053】なお、ポリエステルフイルムとCFRPの
間の空気の抱き込み状態を観察したところ、白っぽく見
える面積は、全体の面積の0.7%程度で、ほぼ完全に
空気が抜けていた。ついで、CFRP板の、炭素繊維の
配列方向と直行する断面を顕微鏡で観察したところ、実
施例と同様、炭素繊維織物間には空気を抱き込みによる
ボイドはなく、炭素繊維織物の繊維間にもほぼ完全に樹
脂が含浸していた。
Observation of the state of entrapped air between the polyester film and the CFRP revealed that the area which appeared whitish was about 0.7% of the entire area, and the air had almost completely escaped. Then, when the cross section of the CFRP plate, which is perpendicular to the arrangement direction of the carbon fibers, was observed with a microscope, there were no voids between the carbon fiber fabrics by embracing air, and also between the fibers of the carbon fiber fabrics. The resin was almost completely impregnated.

【0054】[0054]

【発明の効果】本発明は、上述した構成を採用したこと
により、シートの製造過程やコンクリート構造物の樹脂
含浸の際に毛羽発生が少なく、樹脂含浸作業する際にも
チクチクするようなことはなく、施工性に優れるという
効果を奏する。
According to the present invention, by adopting the above-described structure, the generation of fluff is small during the manufacturing process of the sheet or the resin impregnation of the concrete structure, and it is possible to prevent the occurrence of tingling during the resin impregnation work. Therefore, the effect that the workability is excellent is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において用いる炭素繊維糸条の引掛強さ
を測定する様子を示す概略図である。
FIG. 1 is a schematic diagram showing how to measure the hooking strength of a carbon fiber yarn used in the present invention.

【図2】本発明の一実施態様に係る炭素繊維シートの斜
視図である。
FIG. 2 is a perspective view of a carbon fiber sheet according to one embodiment of the present invention.

【図3】本発明の一実施態様に係る炭素繊維シートの斜
視図である。
FIG. 3 is a perspective view of a carbon fiber sheet according to one embodiment of the present invention.

【図4】本発明の一実施態様に係る炭素繊維シートの斜
視図である。
FIG. 4 is a perspective view of a carbon fiber sheet according to one embodiment of the present invention.

【図5】本発明の一実施態様に係る炭素繊維シートの斜
視図である。
FIG. 5 is a perspective view of a carbon fiber sheet according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2:炭素繊維糸条 3:つかみ部 4:たて方向の炭素繊維糸条 5:よこ方向の補助糸 6:たて方向の補助糸 7:よこ方向の炭素繊維糸条 8:支持体 9:バインダー 10:低融点ポリマー イ:つかみ間 ロ:炭素繊維糸条群 ハ:たて方向の補助糸群 二:よこ方向の補助糸群 A:上部のつかみ間隔 B:下部のつかみ間隔 1, 2: carbon fiber thread 3: gripping part 4: warp direction carbon fiber thread 5: weft direction auxiliary thread 6: warp direction auxiliary thread 7: weft direction carbon fiber thread 8: support 9: Binder 10: Low melting point polymer A: Between grips B: Carbon fiber thread group C: Auxiliary yarn group in warp direction 2: Auxiliary yarn group in weft direction A: Upper grip distance B: Lower grip distance

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B29K 77:00 105:08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // B29K 77:00 105: 08

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維糸条が多数本並行して配列してい
るシートにおいて、前記炭素繊維糸条は、JIS L
1013法に準拠して測定される引掛強さが、断面積
0.9mm2 当たり1,000N以上であることを特徴
とする炭素繊維シート。
1. In a sheet in which a large number of carbon fiber yarns are arranged in parallel, the carbon fiber yarns are JIS L
A carbon fiber sheet having a hooking strength measured according to the 1013 method of 1,000 N or more per 0.9 mm 2 in cross-sectional area.
【請求項2】前記炭素繊維糸条がたて方向に配列し、か
つ、補助糸が前記炭素繊維糸条に交錯してよこ方向に配
列している請求項1に記載の炭素繊維シート。
2. The carbon fiber sheet according to claim 1, wherein the carbon fiber yarns are arranged in a warp direction, and auxiliary yarns are arranged in a weft direction so as to cross the carbon fiber yarns.
【請求項3】前記炭素繊維糸条が実質的に屈曲せずに糸
条群を構成し、該糸条群の両面側に前記炭素繊維糸条と
交差するよこ方向補助糸群が位置し、それらよこ方向補
助糸群と、前記炭素繊維糸条群に並行するたて方向補助
糸群とが織組織をなして前記炭素繊維糸条群を一体に保
持している請求項1に記載の炭素繊維シート。
3. A group of yarns, wherein said carbon fiber yarns constitute a yarn group without being bent substantially, and a weft direction auxiliary yarn group intersecting with said carbon fiber yarns is located on both sides of said yarn group. The carbon fiber sheet according to claim 1, wherein the weft direction auxiliary yarn group and the warp direction auxiliary yarn group parallel to the carbon fiber yarn group form a woven structure and integrally hold the carbon fiber yarn group.
【請求項4】シートは二方向性炭素繊維織物である請求
項1に記載の炭素繊維シート。
4. The carbon fiber sheet according to claim 1, wherein the sheet is a bidirectional carbon fiber fabric.
【請求項5】前記炭素繊維糸条がバインダーで支持体に
接着されてなる請求項1に記載の炭素繊維シート。
5. The carbon fiber sheet according to claim 1, wherein the carbon fiber thread is bonded to a support with a binder.
【請求項6】前記炭素繊維糸条がその長さ方向に線状ま
たは点状に延びる低融点ポリマーを含んでおり、該低融
点ポリマーが互いに直交する糸とその交点において接着
している請求項2ないし4のいずれかに記載の炭素繊維
シート。
6. The carbon fiber thread includes a low-melting polymer extending linearly or in a dot-like manner in a length direction thereof, and the low-melting polymer is bonded to a yarn orthogonal to each other at an intersection thereof. 5. The carbon fiber sheet according to any one of 2 to 4.
【請求項7】よこ方向補助糸が低融点ポリマーを含んで
おり、そのポリマーにより前記炭素繊維糸条がその交点
において互いに接着されている、請求項2または3に記
載の炭素繊維シート。
7. The carbon fiber sheet according to claim 2, wherein the weft direction auxiliary yarn includes a low melting point polymer, and the polymer bonds the carbon fiber yarns to each other at their intersections.
【請求項8】補助糸がガラス繊維である請求項2または
3に記載の炭素繊維シート。
8. The carbon fiber sheet according to claim 2, wherein the auxiliary yarn is glass fiber.
【請求項9】低融点ポリマーの付着量がシート面積当た
り0.5〜6.0g/m2である請求項6または7に記
載の炭素繊維シート。
9. The carbon fiber sheet according to claim 6, wherein the amount of the low-melting polymer adhered is 0.5 to 6.0 g / m 2 per sheet area.
【請求項10】補助糸における低融点ポリマーの付着量
が、補助糸重量の50重量%以下である請求項7に記載
の炭素繊維シート。
10. The carbon fiber sheet according to claim 7, wherein the amount of the low-melting polymer adhered to the auxiliary yarn is 50% by weight or less of the weight of the auxiliary yarn.
【請求項11】炭素繊維の目付が200〜400g/m
2、JIS L 1096法によるシートの通気量が2
0〜300cc/cm2/secである請求項1ないし10のいず
れかに記載の炭素繊維シート。
11. A carbon fiber having a basis weight of 200 to 400 g / m.
2. The air permeability of the sheet according to JIS L 1096 method is 2
The carbon fiber sheet according to any one of claims 1 to 10, wherein the carbon fiber sheet has a pressure of 0 to 300 cc / cm 2 / sec.
【請求項12】コンクリートの表面に、チクソトロピッ
ク係数が3.0〜8.0、かつ、粘度が30〜150ポ
イズである樹脂を塗布し、ついで請求項1ないし11の
いずれかに記載の炭素繊維シートを積層し、この炭素繊
維シートに前記樹脂を含浸し、常温硬化させることを特
徴とするコンクリート構造物の補修・補強方法。
12. The carbon according to claim 1, wherein a resin having a thixotropic coefficient of 3.0 to 8.0 and a viscosity of 30 to 150 poise is applied to the surface of the concrete. A method for repairing and reinforcing a concrete structure, comprising laminating fiber sheets, impregnating the carbon fiber sheet with the resin, and curing at room temperature.
JP8270676A 1996-10-14 1996-10-14 Repair and reinforcement methods for carbon fiber sheets and concrete structures Expired - Lifetime JP2842412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8270676A JP2842412B2 (en) 1996-10-14 1996-10-14 Repair and reinforcement methods for carbon fiber sheets and concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8270676A JP2842412B2 (en) 1996-10-14 1996-10-14 Repair and reinforcement methods for carbon fiber sheets and concrete structures

Publications (2)

Publication Number Publication Date
JPH10121345A true JPH10121345A (en) 1998-05-12
JP2842412B2 JP2842412B2 (en) 1999-01-06

Family

ID=17489402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8270676A Expired - Lifetime JP2842412B2 (en) 1996-10-14 1996-10-14 Repair and reinforcement methods for carbon fiber sheets and concrete structures

Country Status (1)

Country Link
JP (1) JP2842412B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357002A (en) * 2001-05-31 2002-12-13 Toray Ind Inc Sheet material for repairing and reinforcing concrete and concrete structure using it
KR100411614B1 (en) * 2001-06-28 2003-12-18 한국건설기술연구원 Strip-type fiber sheet and structure reinforcement method using the same
JP2007113346A (en) 2005-10-24 2007-05-10 Nippon Oil Corp Shearing reinforcement method for concrete structure using braid-like carbon fiber
WO2007054079A3 (en) * 2005-11-10 2007-09-07 Pnr Group Llc Moulded component with a sandwich structure, comprising a ceramic core and multidirectional covering layers
JP4612207B2 (en) * 2001-02-20 2011-01-12 三菱レイヨン株式会社 Carbon fiber fabric and prepreg using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612207B2 (en) * 2001-02-20 2011-01-12 三菱レイヨン株式会社 Carbon fiber fabric and prepreg using the same
JP2002357002A (en) * 2001-05-31 2002-12-13 Toray Ind Inc Sheet material for repairing and reinforcing concrete and concrete structure using it
KR100411614B1 (en) * 2001-06-28 2003-12-18 한국건설기술연구원 Strip-type fiber sheet and structure reinforcement method using the same
JP2007113346A (en) 2005-10-24 2007-05-10 Nippon Oil Corp Shearing reinforcement method for concrete structure using braid-like carbon fiber
WO2007054079A3 (en) * 2005-11-10 2007-09-07 Pnr Group Llc Moulded component with a sandwich structure, comprising a ceramic core and multidirectional covering layers

Also Published As

Publication number Publication date
JP2842412B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3286270B2 (en) Reinforcement mesh fabric and method of material reinforcement
KR0163628B1 (en) Method for reinforced concrete structure reinforcing
JP4897621B2 (en) Fiber reinforced resin sheet for repair and reinforcement of concrete structure and method for producing the same
US20140147620A1 (en) Infusible unidirectional fabric
JP3279049B2 (en) Unidirectional reinforced fabric and method for producing the same
JP4262461B2 (en) Nonwoven fabric for reinforcement and reinforcement method
JP2842412B2 (en) Repair and reinforcement methods for carbon fiber sheets and concrete structures
JP6349779B2 (en) Seismic reinforcement fiber sheet
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
JP3019004B2 (en) Carbon fiber woven and concrete structures
JP6798199B2 (en) Fiber reinforced plastic molding
JP3633221B2 (en) Unidirectional reinforced fabric and repair or reinforcement method
JPH0129263Y2 (en)
JPH11138671A (en) Reinforced fiber base
JP3528348B2 (en) Resin impregnated sheet and method for producing the same
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP2008013886A (en) Reinforcing fiber fabric
JPH08156152A (en) Reinforcing use fabric base material
JP3770936B2 (en) Concrete structural reinforcement and concrete structural reinforcement method using the same
JPH06193281A (en) Concrete repairing method with unidirectionally arranged fiber-reinforced sheet
JP3852085B2 (en) Reinforcing fiber sheet
JP2003055011A (en) Rod for reinforcing concrete and manufacturing method therefor
JPH03254928A (en) Manufacture of netlike molding
JP2002194640A (en) Reinforcing mesh fabric and method for reinforcing material
JPH06206272A (en) Reinforced fiber sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 15

EXPY Cancellation because of completion of term