JP4603734B2 - エンジンの回転変動抑制装置 - Google Patents

エンジンの回転変動抑制装置 Download PDF

Info

Publication number
JP4603734B2
JP4603734B2 JP2001254368A JP2001254368A JP4603734B2 JP 4603734 B2 JP4603734 B2 JP 4603734B2 JP 2001254368 A JP2001254368 A JP 2001254368A JP 2001254368 A JP2001254368 A JP 2001254368A JP 4603734 B2 JP4603734 B2 JP 4603734B2
Authority
JP
Japan
Prior art keywords
flywheel
crankshaft
rotation
fluctuation
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001254368A
Other languages
English (en)
Other versions
JP2003065136A (ja
Inventor
章 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Komatsu Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2001254368A priority Critical patent/JP4603734B2/ja
Publication of JP2003065136A publication Critical patent/JP2003065136A/ja
Application granted granted Critical
Publication of JP4603734B2 publication Critical patent/JP4603734B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの回転変動抑制装置に関する。
【0002】
【従来の技術】
エンジンのクランク軸に発生する周期的な回転変動はエンジン振動及び騒音の原因となっており、従来からこの回転変動を低減させる種々の技術が提案されている。例えば実開昭62−18450号公報に記載のダンパ装置では、エンジンにトランスミッションを断続するクラッチに組み込んだ電磁式リターダのコイルに電気的負荷抵抗を介して流れる電流を制御し、その電磁式リターダをブレーキ及びモータとして使用することにより、エンジンのアイドリング付近におけるクランク軸の回転数の変動や振動を抑制している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の実開昭62−18450号公報に記載のダンパ装置では、クラッチに組み込んだ電磁式リターダにより該クラッチに配置された回転数センサ及びロータ歯位置センサからの信号に応じてクランク軸の回転数の変動や振動を抑制しているため、クランク軸のクラッチを設けた出力側即ち一般的にフライホイールを設けた側の回転変動を低減していることになる。
ところが、通常、クランク軸のフライホイール側は慣性モーメントが大きいため、もともとその回転変動はクランク軸先端側、即ちフライホイールと反対側(以後、反フライホイール側と呼ぶ)のそれと比較して小さく、エンジン本体の騒音への影響は少ない。
一方、回転変動が大きいのはむしろ反フライホイール側である。即ち、クランク軸の回転時にはクランク軸の捩り振動が発生しているが、図8に示すように、一般にクランク軸2の共振時は、共振固有振動数は捩り振動の1次モードで、クランク軸2のフライホイール取付け部位21に振動節(所謂ノード)を有し、反フライホイール側に向かって徐々に共振時振幅つまり定常回転に対する捩り角変位が大きくなる。従って、これに伴ってクランク軸2の回転変動の大きさも同じく反フライホイール側に向かって徐々に大きくなる。このため、上記実開昭62−18450号公報の記載技術のようにフライホイール側の回転数センサ等の信号に基づきフライホイール側の電磁式リターダ等のトルク発生手段で回転変動を低減しても、反フライホイール側の回転変動或いはクランク軸捩り振動による回転変動が充分に低減されているとは言えない。
【0004】
しかも、共振時の振動位相がフライホイール側と反フライホイール側とで大きく異なっていることを考慮すると、フライホイール側の回転変動を小さくするだけでは共振時の回転変動抑制は非常に困難であると言える。即ち、図9に示すように、共振時の振幅(定常状態に対する回転角変位であり、以後単に角変位と呼ぶ)の振動位相は、角変位の大きい反フライホイール側のギヤ取付位置Aと角変位の小さいフライホイール側のフライホイール3の取付位置Bとでは場合によって180度異なる場合があるため、フライホイール側に設けたダンパ装置では、反フライホイール側の角変位を小さく制御し、クランク軸2全体の回転変動を抑制することは非常に困難である。
【0005】
そして通常のエンジンでは、クランク軸の反フライホイール側に、給排気バルブの駆動、燃料噴射ポンプの駆動、及び補機類の駆動のための歯車機構などが設けてある。このため、反フライホイール側のクランク軸の回転変動は、歯車系を構成する各歯車対の噛合い部分における衝突音を高めてエンジン騒音を増大させる。ところが、このように反フライホイール側の回転変動を低減することは非常に重要なことながら、充分に低減の効果が得られる装置はこれまで提案されていない。
【0006】
本発明は上記従来の問題点に着目し、クランク軸の反フライホイール側の回転変動をも低減して、エンジン騒音及び振動を低減できるエンジンの回転変動抑制装置を提供することを目的とする。
【0007】
【課題を解決するための手段および作用効果】
上記目的を達成するために、第1発明は、エンジンのクランク軸に組み込んだ電磁式トルク発生手段により、クランク軸の回転変動を打ち消す方向のトルクをクランク軸にかけることにより、クランク軸の回転変動を抑制するエンジンの回転変動抑制装置において、第1電磁式トルク発生手段(7a)、クランク軸の反フライホイール側に設け、クランク軸(2)のフライホイール近傍に、第2電磁式トルク発生手段(7b)を設け、クランク軸(2)の反フライホイール側に設けた、クランク軸(2)の回転角、回転角速度及び回転角加速度のいずれかを検出する第1センサ(5a)と、前記第1電磁式トルク発生手段(7a)および前記第2電磁式トルク発生手段(7b)指令を出力するコントローラ(10)とを備え、前記コントローラ(10)は、予め反フライホイール側の回転角変動とフライホイール近傍の回転角変動との関係式を所定の伝達関数又は周波数応答関数として記憶しておき、前記第1センサ(5a)からの信号を受けて反フライホイール側の回転角変動の振幅を算出し、算出した反フライホイール側の振幅に応じて前記反フライホイール側の回転角変動を小さくする方向のトルクをかける指令を前記第1電磁式トルク発生手段(7a)に出力し、算出した前記反フライホイール側の回転角変動の振幅と、前記伝達関数又は周波数応答関数とにより、フライホイール近傍の回転角変動の振幅を求め、求めたフライホイール近傍の回転角変動の振幅に応じて前記フライホイール近傍の回転角変動の振幅を小さくする方向のトルクをかける指令を第2電磁式トルク発生手段(7b)に出力する構成としている
【0008】
第1発明によると、クランク軸の回転角変動の振幅を反フライホイール側のセンサ(回転角、回転角速度、回転角加速度のいずれか)からの検出信号に基づいて求め、求めた回転角変動の振幅に基づき、回転角変動の振幅を小さくするように反フライホイール側に設けた電磁式トルク発生手段によりトルクをクランク軸にかけるので、クランク軸の反フライホイール側の回転角変動を低減でき、これに伴なってフライホール側も回転角変動が低減され、クランク軸全体に亘って効率的に、かつ確実に回転変動を低減できる。従って、給排気バルブの駆動、燃料噴射ポンプの駆動、及び補機類の駆動のための歯車機構の回転変動を低減できるので、反フライホイール側に設けた歯車類の衝突音を抑えてエンジン騒音を低減できる。
また、反フライホイール側の回転角変動の振幅からフライホイール近傍の回転角変動の振幅を求め、求めた振幅に基づきフライホイール近傍に設けた電磁式トルク発生手段の発生トルクを制御してフライホイール側の回転変動を抑制する。これにより、フライホイール側のセンサが不要となり、簡易な構成で安価にできる。
【0009】
また、第2発明は、第1発明において、前記第1センサの位置と異なるクランク軸方向の少なくとも1箇所の位置に、クランク軸の回転角、回転角速度及び回転角加速度のいずれかを検出する第2センサを設け、前記コントローラは、第1センサ及び第2センサからのそれぞれの信号を受けて両センサ位置間の回転角位相差を算出し、求めた回転角位相差が所定値を超えたときに、前記第1指令および前記第2指令を出力する構成としている。
【0010】
第2発明によると、クランク軸の反フライホイール側と他のクランク軸方向の少なくとも1箇所との回転角位相差が所定値以上のとき、上記のような反フライホイール側およびフライホイール側での回転角変動を小さくするように回転変動抑制を行うので、位相差も小さくすることができ、フライホイール側と反フライホイール側との間に生じる捩り振動を低減させて最適な回転変動の抑制ができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について、図を参照して詳細に説明する。
まず、図1により第1実施形態を説明する。図1は、本実施形態の制御構成ブロック図である。
【0016】
エンジン1のクランク軸2の出力側端部にはフライホイール3の一端部が取付けてあり、フライホイール3の他端部には図示しないクラッチやトランスミッションが接続している。
クランク軸2の出力側と反対、即ち反フライホイール側にはクランクギヤ4が取付けてあり、このクランクギヤ4更にはアイドラギヤ等を介して給排気バルブ、燃料噴射ポンプ、油圧ポンプ等の補機類が接続されている。
【0017】
また、クランク軸2の反フライホイール側部位には、クランク軸2の回転角速度を検出する第1回転センサ5aを設けてあり、第1回転センサ5aの検出した回転角速度n1はコントローラ10に入力されている。第1回転センサ5aは例えば回転角速度に応じたパルス信号を出力する電磁ピックアップセンサ等で構成されるが、これに限定されない。
また、クランク軸2の反フライホイール側には電磁式トルク発生手段として第1電磁式リターダ7aが組み込まれている。第1電磁式リターダ7aは、図示しないロータ回転角センサ(前記ロータ歯位置センサに相当)及び界磁コイルを備えており、このロータ回転角センサ及び第1回転センサ5aの信号に基づいて後述のようにコントローラ10により演算された指令によって、前記界磁コイルに流れる電流を制御したり、該コイルに発生する起電力を抵抗等を介して流したりすることにより、所定トルクを発生させてモータ又はブレーキとして作用するようになっている。
【0018】
コントローラ10は例えばマイクロコンピュータ等の演算装置から構成されており、入力した回転角速度n1に基づき反フライホイール側の回転角変動、即ち回転状態に対する回転角変位α1(図9参照)を求める。この回転角変位α1を求めるには、例えば、センサからの角速度パルスの変調周波数を角変位変動復調装置等によって電圧値に変換することにより角速度波形を得た後、この角速度波形に基づいて回転角変位α1の振幅を求めるようにしてもよい。クランク軸2の共振時の振動波形が正弦波であるとすると、角速度と回転角との間には90゜の位相差のある、一定の関係を有しているので、前記求めた角速度波形に基づき、又は角速度を積分して求めた回転角波形に基づき、回転角変位α1の振幅を求めることができる。コントローラ10は、この求めた回転角変位α1の振幅に応じて、回転角変位α1を小さくするようにリターダ指令R1を演算し、第1電磁式リターダ7aに出力する。第1電磁式リターダ7aは、この指令に応じたトルクを発生し、クランク軸2を減速又は加速させる。
【0019】
コントローラ10のリターダ指令の求める方法としては、例えば、予め反フライホイール側の回転角変位α1の振幅に対する、クランク軸2の反フライホイール側部位に周期的な回転変動を打ち消す方向のトルクを発生させる最適なリターダ指令値をデータテーブルとして記憶しておき、このデータテーブルにより、前記求めた反フライホイール側の回転角変位α1の振幅に応じてリターダ指令を求めてもよいし、又は、所定のゲイン定数を前記回転角変位α1の振幅に乗じて求めるようにしてもよい。
【0020】
第1実施形態によると、反フライホイール側の回転角変位α1が小さくなるように回転角変位α1に基づいてリターダ指令を演算し、この指令を反フライホイール側に設けた第1電磁式リターダ7aに出力するので、クランク軸2の回転角変位α1の大きい反フライホイール側の回転変動を効率的に、かつ確実に低減できる。従って、フライホイール側の回転変動も低減され、クランク軸全体に亘って回転変動を低減でき、よってエンジンの振動を抑制できると共に、クランク軸2の回転変動に伴なうタイミングギヤ4とこのタイミングギヤ4に接続された各歯車との衝突を緩和して衝突に起因する騒音も低減できる。
【0021】
次に、第2実施形態について図2〜図4を参照して説明する。
図2は本実施形態の制御構成ブロック図である。尚、図2において図1と同一構成要素には同一符号を付し、ここでの説明を省いているが、以下の実施形態でも同様とする。
図2において、クランク軸2の第1回転センサ5aの装着位置と異なる軸方向の他の少なくとも1個所に、第1回転センサ5aと同様の回転角速度を検出する第2回転センサ5bが設けてあり、本実施形態ではフライホイール3の近傍部位に設けている。第2回転センサ5bの検出した回転角速度n2は、コントローラ10に入力される。
【0022】
コントローラ10は、以下のような各処理部を有している。
第1変動成分演算部11は、前記同様に第1回転センサ5aから入力した回転角速度n1に基づき反フライホイール側の回転角変動、即ち回転状態に対する回転角変位α1を表す角速度波形又は回転角波形(角速度波形の積分値)を求め、求めた回転角変位α1を第1振幅演算部16に出力する。
また第1位置演算部12及び第2位置演算部13は、それぞれ第1回転センサ5aからの回転角速度n1及び第2回転センサ5bからの回転角速度n2に基づき、積分によって反フライホイール側及び他のクランク軸方向の位置(ここではフライホイール3近傍)のクランク軸2の回転角θ1、θ2を求める。
そして、位相差演算部14は、第1位置演算部12及び第2位置演算部13のそれぞれ求めた回転角θ1、θ2の差値を演算し、両者間の位相差βを求める。
【0023】
位相差判定部15は、位相差演算部14で求められた回転角の位相差βが所定値β0以上かを判定し、以上のときにはトルクを発生させて回転角変位α1を小さくする回転変動抑制を行なうために、演算指令を第1振幅演算部16に出力する。
第1振幅演算部16は、この演算指令を受けると、第1変動成分演算部11で求めた回転角変位α1を表す波形に基づき回転角変位α1の振幅を求める。
第1指令演算部17は、第1振幅演算部16の求めた回転角変位α1の振幅に応じてリターダ指令R1を演算し、第1電磁式リターダ7aに出力する。
【0024】
次に、図3に示す制御フローチャートにより、コントローラ10の処理手順を説明する。
先ず、ステップS1で、第1位置演算部12及び第2位置演算部13はそれぞれ図4に示される反フライホイール側(位置A)及びフライホイール側(位置B)の回転角θ1、θ2を求めると共に、第1変動成分演算部11は反フライホイール側の回転角変位α1を表す角速度波形又は回転角波形を求め、所定のメモリエリアに記憶する。次にステップS2で、位相差演算部14は前記求めた回転角θ1、θ2間の位相差βを求める。尚、図4に示すグラフは、それぞれ回転角θ1、θ2を正弦波で表したものである。次にステップS3で、位相差判定部15は前記求めた位相差βが所定値β0以上かをチェックし、所定値β0よりも小さいときはステップS1に戻って以上の処理を繰り返し、所定値β0以上のときには、ステップS4で、第1振幅演算部16は第1変動成分演算部11で求めた回転角変位α1を表す波形に基づき回転角変位α1の振幅を求める。次にステップS5で、第1指令演算部17は回転角変位α1を小さくするように、前記求められた回転角変位α1の振幅に応じてリターダ指令R1を演算し、反フライホイール側の第1電磁式リターダ7aに出力する。この後、ステップS1から繰り返す。
【0025】
第2実施形態によると、反フライホイール側の部位とこの位置よりもフライホイール寄りの他の部位とのクランク軸2の回転角θ1、θ2を比較し、両者間の位相差βが所定値β0以上に大きくなったときに、クランク軸2の反フライホイール側の回転角変位α1が小さくなるようにこの回転角変位α1の振幅に基づいてリターダ指令を演算し、第1電磁式リターダ7aに出力している。従って、第1実施形態と同様の効果に加えて、クランク軸2の捩り振動も低減できる。さらに、クランク軸2の捩り振動による反フライホイール側とフライホイール寄りの部位との回転角位相差を所定値以下に小さくできるため、捩り振動による回転変動を最適に抑制できる。
【0026】
前述の通り、クランク軸2の反フライホイール側はフライホイール側に比べて共振時の回転角変位α1が大きいので、第1実施形態のようにクランク軸2の反フライホイール側の回転角変位α1を小さくする回転変動抑制を行なっても、結果的にクランク軸2の捩り振動を低減したことになる。しかし、第2実施形態での処理の方が、クランク軸2の反フライホイール側とフライホイール側との回転角位相差を検出してこれを小さくするように制御している分、第1実施形態の場合に比して捩り振動を低減する効果はより大きいといえる。
【0027】
また、本実施形態においては、通常捩り振動による回転角位相差が最も顕著に現れる反フライホイール側とフライホイール3近傍との間の位相差に基づいて位相差大小の判定を行なっているので、回転変動抑制を効果的に行なうことができる。
尚、捩り振動状態が複雑で、クランク軸方向の複数箇所間で回転角位相差の符号が変わるような、即ち反対側に捩じれるような高次の捩り振動が発生するような場合には、所定の複数箇所に回転角センサを設け、それぞれのセンサ間での位相差の内最も大きな位相差に基づき上記大小判定を行なえば、より精度良く行なうことができる。
また、本実施形態では、反フライホイール側の第1回転センサ5aは、回転角変位α1を検出するためと、回転角位相差を検出するためとで兼用されているから、センサ個数を少なくできる効果を有しているが、本発明はこれに限定されない。
【0028】
次に、第3実施形態について図5に示す制御構成ブロック図により説明する。
第3実施形態においては、第1実施形態の構成に加えて、クランク軸2のフライホイール3の近傍部位に、第1回転センサ5aと同様の回転角速度を検出する第3回転センサ5c、及び第2電磁式リターダ7bが設けてあり、コントローラ10は第3回転センサ5cの検出した回転角速度n3に基づいて以下のような演算処理を行なってリターダ指令を求め、第2電磁式リターダ7b出力する。
【0029】
コントローラ10は、反フライホイール側の回転変動抑制処理については、第1実施形態と同様に行なう。即ち、第1回転センサ5aから入力した回転角速度n1に基づき反フライホイール側の回転角変位α1の振幅を求め(第1変動成分演算部11、第1振幅演算部16)、この求めた回転角変位α1の振幅に応じて、回転角変位α1が小さくなるようにリターダ指令R1を演算し、第1電磁式リターダ7aに出力する(第1指令演算部17)。一方、フライホイール側の回転変動抑制処理についても、反フライホイール側の回転変動抑制処理と独立して行ない、第3回転センサ5cから入力した回転角速度n3に基づきフライホイール近傍の回転角変位α2の振幅を求め(第2変動成分演算部、第2振幅演算部)、この求めた回転角変位α2の振幅に応じて、フライホイール近傍の回転角変位α2が小さくなるようにリターダ指令R2を演算し、第2電磁式リターダ7bに出力する(第2指令演算部)。
【0030】
さらに、上記の回転変動抑制処理に加えて、第2実施形態で行なった回転角位相差を小さくする制御を行なってもよい。即ち、図2を参照して説明すると、前記第2回転センサ5bの代わりに第3回転センサ5cからの回転角速度n3に基づき、積分によってフライホイール3寄りのクランク軸方向部位(ここではフライホイール3近傍)のクランク軸2の回転角θ2を求める(前記第2位置演算部13)。そして、第1回転センサ5aからの回転角速度n1に基づき求めた回転角θ1と(第1位置演算部12)と上記回転角θ2との差値により両者間の位相差βを求める(位相差演算部14)。次に、位相差βが所定値β0以上かを判定し(位相差判定部15)、以上のときには、反フライホイール側の回転角変位α1を表す波形(第1変動成分演算部11)に基づき回転角変位α1の振幅を求め(第1振幅演算部16)、同時にフライホイール近傍の回転角変位α2の振幅を求める(第2変動成分演算部、第2振幅演算部)。次に、求めた反フライホイール側の回転角変位α1の振幅に応じてリターダ指令R1を演算し、第1電磁式リターダ7aに出力する(第1指令演算部17)と共に、求めたフライホイール近傍の回転角変位α2の振幅に応じてリターダ指令R2を演算し、第2電磁式リターダ7bに出力する(第2指令演算部)。
【0031】
上記の通り第3実施形態によると、第2電磁式リターダ7bによってクランク軸2のフライホイール側に周期的な回転変動を打ち消す方向のトルクを発生させるので、フライホイール側の回転変動をも低減できる。従って、反フライホイール側とフライホイール側との両方での回転変動抑制により、クランク軸2全長に亘って全体的に、より効率的に回転変動を低減できる。このため、反フライホイール側の歯車系の振動、騒音の低減と同様に、エンジン1の出力側のフライホイール3よりも後方に取付けられるトランスミッション等の歯車系の振動、騒音も低減できる。
【0032】
次に、図6により第4実施形態を説明する。同図において、図2と同一構成要素には同一符号を付し、ここでの説明を省く。
第2変動成分演算部11aは、第1変動成分演算部11から反フライホイール側の回転角変動、即ち定常回転状態に対する回転角変位α1を表す角速度波形又は回転角波形を入力し、この波形と予め記憶している所定の伝達関数とによりフライホイール3の近傍での回転角変位α2を表す波形を求め、求めた回転角変位α2の波形を第2振幅演算部16a及び位相差演算部14に出力する。
【0033】
ここで、上記伝達関数について説明する。共振時のクランク軸2の反フライホイール側部位での回転角変位α1とフライホイール3の近傍での回転角変位α2との間には、一般的に所定の関係があって、この関係は実験データ等により近似的に求めることができる。本発明者は、この関係を伝達関数或いは周波数応答関数としてとらえることにより、反フライホイール側部位での回転角変位α1の波形を上記伝達関数に通してフライホイール3の近傍での回転角変位α2の波形を求めることを提案している。さらに、実稼働中において、所定時間毎に所定の回数の回転データに基づいて回転角変位α1と回転角変位α1とを求め、この両者の関係を学習により求めて上記伝達関数を逐次補正して行くようにすれば、さらに精度良く回転変動抑制をおこなうことができる。
【0034】
位相差演算部14は、第1変動成分演算部11及び第2変動成分演算部11aのそれぞれ求めた回転角変位α1、α2の波形に基づき反フライホイール側とフライホイール3近傍との回転角の位相差βを求め、この位相差βを位相差判定部15に出力する。ここで、両回転角変位α1、α2の波形が角速度波形である場合には、両回転角変位α1、α2の波形どおしの差値を積分することによって位相差βが演算され、回転角波形である場合には両者間の差値が位相差βとなる。
位相差判定部15は、位相差演算部14で求められた回転角の位相差βが所定値β0以上かを判定し、以上のときには回転変動抑制を行なうために、演算指令を第1振幅演算部16及び第2振幅演算部16aに出力する。
【0035】
第1振幅演算部16は、この演算指令を受けると、第1変動成分演算部11で求めた反フライホイール側の回転角変位α1を表す波形に基づき回転角変位α1の振幅を求める。
同様にして、第2振幅演算部16aは、上記演算指令を受けると、第2変動成分演算部11aで求めたフライホイール3の近傍での回転角変位α2を表す波形に基づき回転角変位α2の振幅を求める。
第1指令演算部17及び第2指令演算部17aは、それぞれ、第1振幅演算部16で求められた回転角変位α1の振幅及び第2振幅演算部16aで求められた回転角変位α2の振幅に応じてリターダ指令R1及びリターダ指令R2を演算し、第1電磁式リターダ7a及び第2電磁式リターダ7bに出力する。
【0036】
本実施形態でのコントローラ10の処理手順を、図7に示すフローチャート例を参照して説明する。
先ず、ステップS11で、第1変動成分演算部11は、反フライホイール側の第1回転センサ5aの検出信号に基づき、反フライホイール側の回転角変位α1を表す角速度波形又は回転角波形を求める。次に、ステップS12で第2変動成分演算部11aは、上記求められた反フライホイール側の回転角変位α1を表す角速度波形又は回転角波形と、予め記憶している伝達関数とにより、フライホイール3の近傍の回転角変位α2を表す角速度波形又は回転角波形を求める。次に、ステップS13で位相差演算部14は、上記求められた回転角変位α1を表す波形と回転角変位α2を表す波形との差値に基づき、反フライホイール側の回転角θ1とフライホイール3近傍の回転角θ2との位相差βを求める。そしてステップS14で、位相差判定部15は上記求めた位相差βが所定値β0以上かをチェックし、所定値β0よりも小さいときはステップS11に戻って以上の処理を繰り返る。また、所定値β0以上のときには、次にステップS15で、第1振幅演算部16は前記求められた回転角変位α1を表す波形に基づき回転角変位α1の振幅A1を求め、第2振幅演算部16aは前記求められた回転角変位α2を表す波形に基づき回転角変位α2の振幅A2を求める。そして、ステップS16で、第1指令演算部17は回転角変位α1を小さくするように、前記求められた回転角変位α1の振幅A1に応じてリターダ指令R1を演算し、反フライホイール側の第1電磁式リターダ7aに出力すると共に、第2指令演算部17aは回転角変位α2を小さくするように、前記求められた回転角変位α2の振幅A2に応じてリターダ指令R2を演算し、フライホイール3の近傍の第2電磁式リターダ7bに出力する。
【0037】
本実施形態によると、第3実施形態と同じ効果が得られると共に、反フライホイール側の回転角変位α1の波形から、所定の伝達関数によってフライホイール3の近傍の回転角変位α2の波形を求め、この回転角変位α2の波形に基づきフライホイール3側の回転変動を小さくする制御を行なうので、フライホイール3近傍の回転センサが不要となり、よりシンプルに、かつ安価に構成できる。
【0038】
尚、本実施形態において、第2実施形態と同様に、クランク軸方向の少なくとも所定の2個所間の回転角位相差βをチェックして、これが所定値β0以上になったときに、本実施形態の回転変動抑制処理を行なうようにしてもよい。これにより、捩り振動による回転変動を更に小さくできることは前述同様である。
【0039】
これまで説明した実施形態においては、第1回転センサ5a,5cとして、回転角速度センサを例に示したが、本発明の主旨はこれに限定するものではなく、要は回転角速度の変動を検出できるものであればよい。例えば、回転角を検出するセンサであれば回転角信号を微分して(例えば、パルスエンコーダの場合はその最下位ビットパルスを角速度パルスとして使用可能である)、あるいは角加速度センサであれば角加速度を積分して、それぞれ角速度に変換し、この角速度に基づき上述の各実施形態での処理を行なうことにより、同様に効率的な回転変動抑制を行なうことができる。
【0040】
以上説明したように本発明によれば、共振時のクランク軸の反フライホイール側の回転変動を反フライホイール側の回転センサの検出信号に基づき反フライホイール側の電磁式リターダ(電磁式トルク発生手段)により相殺して抑制するので、従来できなかった反フライホイール側の回転変動を効率良く、確実に低減できる。また、反フライホイール側の回転角とフライホイール3寄りの部位の回転角との位相差が所定値以上になったときに上述のような回転変動抑制を行なうので、位相差も小さくでき、よって捩り振動による回転変動の最適な抑制ができる。
【0041】
さらに、反フライホイール側と同時に、フライホイール近傍での回転センサと電磁式トルク発生手段とによりフライホイール側の回転変動抑制を行なうことにより、クランク軸の全体に亘ってより効率的に回転変動を抑制できる。また、反フライホイール側の回転角変位α1から、所定の伝達関数等によってフライホイール近傍での回転角変位α2を推定し、この推定したフライホイール近傍の回転角変位α2に基づきフライホイール側の回転変動抑制を行なうようにすると、フライホイール近傍での回転センサが不要となるため、構成を簡単化でき、安価にできる。
【0042】
これらの結果、反フライホイール側に設けた給排気バルブの駆動、燃料噴射ポンプの駆動、及び補機類の駆動などを行なうための歯車機構の回転変動を低減できるので、これに伴なうエンジン振動の低減が可能となり、更に歯車類の衝突音を抑えてエンジン騒音も低減できる。
また、クランク軸の反フライホイール側の回転変動を低減させることは、反フライホイール側とフライホイール側との間の捩り振動を低減させることにもなり、捩り振動によるクランク軸の破断及び軸受の破損等を防止できる。
【図面の簡単な説明】
【図1】第1実施形態の制御構成ブロック図である。
【図2】第2実施形態の制御構成ブロック図である。
【図3】第2実施形態の制御フローチャート例である。
【図4】回転角θ1、θ2の関係の説明図である。
【図5】第3実施形態の制御構成ブロック図である。
【図6】第4実施形態の制御構成ブロック図である。
【図7】第4実施形態の制御フローチャート例である。
【図8】クランク軸の捩り1次共振時の振幅分布の説明図である。
【図9】共振時の振動位相と振幅の説明図である。
【符号の説明】
1…エンジン、2…クランク軸、3…フライホイール、4…タイミングギヤ、5a…第1回転センサ、5b…第2回転センサ、5c…第3回転センサ、7a…第1電磁式リターダ、7b…第2電磁式リターダ、10…コントローラ、11…第1変動成分演算部、11a…第2変動成分演算部、12…第1位置演算部、13…第2位置演算部、14…位相差演算部、15…位相差判定部、16…第1振幅演算部、16a…第2振幅演算部、17…第1指令演算部、17a…第2指令演算部、21…フライホイール取付け部位。

Claims (2)

  1. エンジン(1)のクランク軸(2)に組み込んだ電磁式トルク発生手段により、クランク軸(2)の回転変動を打ち消す方向のトルクをクランク軸(2)にかけることにより、クランク軸(2)の回転変動を抑制するエンジンの回転変動抑制装置において、
    第1電磁式トルク発生手段(7a)、クランク軸の反フライホイール側に設け、
    クランク軸(2)のフライホイール近傍に、第2電磁式トルク発生手段(7b)を設け、
    クランク軸(2)の反フライホイール側に設けた、クランク軸(2)の回転角、回転角速度及び回転角加速度のいずれかを検出する第1センサ(5a)と、
    前記第1電磁式トルク発生手段(7a)および前記第2電磁式トルク発生手段(7b)指令を出力するコントローラ(10)とを備え、
    前記コントローラ(10)は、
    予め反フライホイール側の回転角変動とフライホイール近傍の回転角変動との関係式を所定の伝達関数又は周波数応答関数として記憶しておき、
    前記第1センサ(5a)からの信号を受けて反フライホイール側の回転角変動の振幅を算出し、算出した反フライホイール側の振幅に応じて前記反フライホイール側の回転角変動を小さくする方向のトルクをかける第1指令を前記第1電磁式トルク発生手段(7a)に出力し、
    算出した前記反フライホイール側の回転角変動の振幅と、前記伝達関数又は周波数応答関数とにより、フライホイール近傍の回転角変動の振幅を求め、求めたフライホイール近傍の回転角変動の振幅に応じて前記フライホイール近傍の回転角変動の振幅を小さくする方向のトルクをかける第2指令を第2電磁式トルク発生手段(7b)に出力することを特徴とするエンジンの回転変動抑制装置。
  2. 請求項1記載のエンジンの回転変動抑制装置において、
    前記第1センサ(5a)の位置と異なるクランク軸(2)方向の少なくとも1箇所の位置に、クランク軸(2)の回転角、回転角速度及び回転角加速度のいずれかを検出する第2センサ(5b)を設け、
    前記コントローラ(10)は、第1センサ(5a)及び第2センサ(5b)からのそれぞれの信号を受けて両センサ位置間の回転角位相差を算出し、求めた回転角位相差が所定値(β0)を超えたときに、前記第1指令および前記第2指令を出力することを特徴とするエンジンの回転変動抑制装置。
JP2001254368A 2001-08-24 2001-08-24 エンジンの回転変動抑制装置 Expired - Fee Related JP4603734B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254368A JP4603734B2 (ja) 2001-08-24 2001-08-24 エンジンの回転変動抑制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254368A JP4603734B2 (ja) 2001-08-24 2001-08-24 エンジンの回転変動抑制装置

Publications (2)

Publication Number Publication Date
JP2003065136A JP2003065136A (ja) 2003-03-05
JP4603734B2 true JP4603734B2 (ja) 2010-12-22

Family

ID=19082541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254368A Expired - Fee Related JP4603734B2 (ja) 2001-08-24 2001-08-24 エンジンの回転変動抑制装置

Country Status (1)

Country Link
JP (1) JP4603734B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115082A1 (de) 2018-06-22 2019-12-24 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Kolbenmaschine und eine Kolbenmaschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283737A (ja) * 1985-06-10 1986-12-13 Hitachi Ltd 内燃機関
JPH06247186A (ja) * 1993-02-24 1994-09-06 Hino Motors Ltd 補助加速制動装置
JP2000248958A (ja) * 1999-02-26 2000-09-12 Nissan Motor Co Ltd エンジンの振動低減装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283737A (ja) * 1985-06-10 1986-12-13 Hitachi Ltd 内燃機関
JPH06247186A (ja) * 1993-02-24 1994-09-06 Hino Motors Ltd 補助加速制動装置
JP2000248958A (ja) * 1999-02-26 2000-09-12 Nissan Motor Co Ltd エンジンの振動低減装置

Also Published As

Publication number Publication date
JP2003065136A (ja) 2003-03-05

Similar Documents

Publication Publication Date Title
JP6842285B2 (ja) ハイブリッド車の能動型振動低減制御装置及び方法
JP3750626B2 (ja) ハイブリッド車両の制御装置
CN102027262B (zh) 减振装置以及车辆
JP2003052102A (ja) パラレルハイブリッド車両
JP3409755B2 (ja) 駆動装置の制振装置
JPH11182290A (ja) 内燃機関の燃料噴射量制御装置
US10808798B2 (en) Motor control device
JPH057727B2 (ja)
WO2020137639A1 (ja) モータ制御装置
JP3611706B2 (ja) エンジンの振動抑制装置
JP2020139854A (ja) 動力計制御装置
JP6226021B2 (ja) 試験システムのダイナモメータ制御装置
CN112297873B (zh) 电动车辆系统和控制电动车辆的控制方法
JP4603734B2 (ja) エンジンの回転変動抑制装置
JP3663332B2 (ja) 電動パワーステアリング制御装置
JP5309959B2 (ja) 駆動システム
JP2014512472A (ja) 伝導機構の振動の減衰
JP3374752B2 (ja) ハイブリッド車両における駆動系の制振装置
US20170106853A1 (en) Method for operating an electric machine
WO2020122018A1 (ja) モータ制御装置
JP2012145049A (ja) エンジントルク推定装置
JPH01267327A (ja) 内燃機関のトルク制御装置
JPS62255534A (ja) 内燃機関のトルク変動抑制装置
JPH11325185A (ja) バランサ装置
JP2007321742A (ja) 車両の振動抑制装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees