JP4599678B2 - 多層プリント回路基板 - Google Patents

多層プリント回路基板 Download PDF

Info

Publication number
JP4599678B2
JP4599678B2 JP2000219230A JP2000219230A JP4599678B2 JP 4599678 B2 JP4599678 B2 JP 4599678B2 JP 2000219230 A JP2000219230 A JP 2000219230A JP 2000219230 A JP2000219230 A JP 2000219230A JP 4599678 B2 JP4599678 B2 JP 4599678B2
Authority
JP
Japan
Prior art keywords
power supply
layer
circuit board
printed circuit
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219230A
Other languages
English (en)
Other versions
JP2002043760A (ja
Inventor
瑞樹 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000219230A priority Critical patent/JP4599678B2/ja
Publication of JP2002043760A publication Critical patent/JP2002043760A/ja
Application granted granted Critical
Publication of JP4599678B2 publication Critical patent/JP4599678B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多層プリント回路基板に関し、特にEMI(Electromagnetic interference:電磁干渉)を抑制する多層プリント回路基板に関する。
【0002】
【従来の技術】
IC(集積回路)や、LSI(大規模集積回路)が搭載された多層プリント基板は電磁ノイズを発生するため、前記多層プリント基板が搭載された電子機器においては、電磁ノイズのために電子機器自身あるいは他の電子機器に誤動作を引き起こす可能性がある。
そのため、従来の多層プリント基板においては、ICやLSIの動作時に電源層に流れる高周波電流が、電源層とグランド層からなる電源系に大きな電流ループを形成しないようにするため、例えば特開平9−139573号公報に示されているように、電源デカップリングの強化を目的として、前記電源層をつづら折り状、交差状、あるいはスパイラル状のインピーダンス付加回路を含む配線で構成するとともに、前記電源層の上下両側の絶縁材料を、磁性体混合絶縁材料としていた。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来技術には以下のような問題点がある。
第1の問題点として、多層プリント回路基板におけるEMIを効果的に抑制するためには前記電源系を適切に設計する必要があるが、電源系を適切に設計する事自体が困難であるということがあげられる。
例えば、特開平9−139573号公報に示されている多層プリント回路基板の場合、前記インピーダンス付加回路における所望のインピーダンス値を得るための設計条件が見出しにくいという問題点がある。その理由は、電源系にはグランド層が存在するという事と、1GHzまでの広い周波数帯を考慮する必要があるからである。
【0004】
第2の問題点は、前記電源系で共振が生じ、共振周波数で強い放射電磁ノイズが発生するという事である。その理由は、ICやLSIのスイッチング時にこれらに供給される電源層からの電流が電源系の電圧変動を引き起こすため、定常状態において共振が生じ、電源系にその共振周波数に対応する波長を持つ定在波が立つ結果、電源系がアンテナになるからである。
【0005】
本発明は、上記の課題を解決するためになされたものであって、電源系の適切な設計を容易にし、かつ電源系からの放射電磁ノイズを抑制する事ができる多層プリント回路基板を提供する事を目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の多層プリント回路基板は、少なくとも信号層、電源層、グランド層を有する多層構造であり、前記電源層と前記グランド層の間に絶縁体磁性材料層を有し、配線状導体からなる電源層の電源供給線長を、伝送線路理論に基づいて前記絶縁体磁性材料層の磁性損失が、前記電源層と前記グランド層からなる電源系における共振を抑制する長さとする事を特徴とする。
【0007】
あるいは、前記信号層かつ直流電圧供給位置にビアを介して前記電源層、前記グランド層に接続されるコンデンサを有し、該コンデンサの実装位置から電子回路近傍に実装されたデカップリングコンデンサまでの電源供給線長は、前記絶縁体磁性材料層の磁性損失が前記電源系における共振を抑制する周波数域の下限周波数に相当する波長の1/2より小さい長さとする事を特徴とする。
【0008】
あるいは、前記信号層かつ直流電圧供給位置にビアを介して前記電源層および前記グランド層に接続されるコンデンサと、電子回路近傍に実装されたデカップリングコンデンサと、前記デカップリングコンデンサへの電源供給線上に実装された第2のデカップリングコンデンサとを備え、前記電子回路近傍のデカップリングコンデンサ実装位置から前記第2のデカップリングコンデンサ実装位置までの電源供給線長が、前記絶縁体磁性材料層の磁性損失が前記電源系における共振を抑制する周波数域の下限周波数に相当する波長の1/2より小さい長さである事を特徴とする。
【0009】
あるいは、本発明の多層プリント回路基板は、信号層、電源層、グランド層がそれぞれ絶縁材を介在して積層された多層プリント基板において、前記電源層は平面導体であって、前記電源層と前記グランド層の間に挟まれた絶縁体磁性材料層を有し、前記信号層には、前記絶縁体磁性材料の周波数特性に適合し、かつビアを介して前記電源層、前記グランド層に接続されるコンデンサが実装されている事を特徴とする。
【0010】
前記絶縁体磁性材料層は、フェライト粉末と樹脂の構成とする事ができ、前記フェライト粉末がNi−Zn系フェライト粉末であり、前記樹脂がエポキシ樹脂である事が好ましい。
さらに、前記絶縁体磁性材料層中の前記Ni−Zn系フェライト粉末の体積率が、45%以上であり、かつ電源層とグランド層の間の絶縁層における前記絶縁体磁性材料層の体積率が、20%以上である事がより望ましい。
前記絶縁体磁性材料層中のNi−Zn系フェライト粉末の体積率が45%未満であると、絶縁体磁性材料層の磁性損失が前記電源系における共振を抑制する周波数域の下限周波数が、極めて高い周波数になってしまうためであり、前記絶縁層中の絶縁体磁性材料層の体積率が20%未満であると、前記電源系における磁性損失による共振抑制効果が小さくなってしまうからである。
【0011】
本発明に係る多層プリント回路基板においては、電源層を配線状導体とし、電源層とグランド層の間に絶縁体磁性材料層を備え、かつ電源供給線長あるいはコンデンサの実装位置を前記のように設計する事により、前記絶縁体磁性材料層の複素比透磁率の虚部(μr*=μr’−jμr”におけるμr”)によるエネルギー損失、すなわち磁性損失が前記電源層と前記グランド層からなる電源系で生じる共振を抑制する周波数域に前記電源系の共振周波数を合わせる事ができるため、前記電源系からの電磁放射ノイズを発生させないようにする事ができる。
【0012】
また、電源層を平面導体とし、電源層とグランド層の間に層状の絶縁体磁性材料層を備え、かつ信号層に電子回路近傍のデカップリングコンデンサ以外に電源層とグランド層に接続されるコンデンサを複数個追加実装する事によっても、前記磁性損失が前記電源系で生じる共振を抑制する周波数域に前記電源系の共振周波数を移行させる事ができるため、前記電源系からの放射電磁ノイズを発生させないようにする事ができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して詳細に説明し、発明の効果を明らかにする。ただし、本発明は、以下の実施の形態に限定されるものではない。
【0014】
まず、本発明の多層プリント回路基板の第1の実施形態の構成を、図1〜図3を用いて説明する。尚、図1〜図3において、同一の構成要素には同一の符号を付してその説明を省略若しくは簡単に説明する。
【0015】
図1は、本発明の多層プリント回路基板の第1の実施形態の部分断面構造を示す図であり、最上層として設けた信号層2bから下向きに順に絶縁層5、グランド層3、絶縁層15、電源層4、信号層2aが積層された構成であって、前記電源層4と前記グランド層3に挟まれた絶縁層15は絶縁層5と絶縁体磁性材料層6の多層構造であり、図1に示す構成では3層の絶縁層5とそれらに挟まれた2層の絶縁体磁性材料層6が交互に積層されている。
【0016】
図2は本実施形態の多層プリント回路基板における電源層4の平面図を示し、電源供給位置のビア8からそれぞれ電子回路の電源端子8a、8b、および外部の端子(図示せず)に接続された配線状導体からなる電源供給線7a、7b、7が形成されている。
【0017】
図3は本実施形態の多層プリント基板における信号層2aの平面図であり、電子回路10a、10b、近傍のデカップリングコンデンサ12a、12b、および電源供給位置のコンデンサ11を実装した構成である。
図3において、前記電源供給位置13に実装されたコンデンサ11はビア8を介して電源層4、およびビア9を介してグランド層3に接続され、電子回路10a、10bはそれぞれ電源端子8a、8bを介してデカップリングコンデンサ12a、12bおよび電源層4の電源供給線7a、7bに接続され、前記デカップリングコンデンサ12a、12bのもう一方の端子は、ビア9a、9bを介してグランド層3に接続されている。
図2に示す電源供給線7a、7bは、いずれも絶縁体磁性材料層6の磁性損失が前記電源層4と前記グランド層3からなる電源系の共振を抑制する長さである。
【0018】
図2に示すような配線状導体からなる電源層を有する電源系は、図5に示す断面構造を持つストリップ線路と考える事ができ、前記ストリップ線路の単位長さあたりの抵抗Rは、図6のグラフに示すように周波数の上昇に伴い直線的に増加する特性を有する。
前記絶縁体磁性材料層6の前記複素比透磁率の虚部μr”によるエネルギー損失は、ストリップ導体の抵抗をRc、絶縁層が真空であるときの単位長さあたりのインダクタンスをL0、角周波数をωとすると、次式に示すように抵抗Rの増加をもたらす。
【0019】
【数1】
Figure 0004599678
【0020】
前記ストリップ線路の抵抗Rの増加は、電源系におけるエネルギー損失の増加と等価であるため、前記抵抗Rがある抵抗値よりも大きい領域においては、前記電源系において生じる共振を抑制する事ができる。
【0021】
図6において、前記共振を抑制する最小の抵抗をR1とすると、抵抗R1に対応する周波数f1が共振を抑制する周波数域の下限周波数である。
一方、配線状導体を有する電源系の共振周波数は前記配線状導体の長さに依存し、配線状導体を長くすると電源系の共振周波数は低周波側に移行する。
これらより、前記電源系における共振を抑制するためには、前記電源系の共振周波数が前記絶縁体磁性材料層の磁性損失が共振を抑制する周波数域に位置するように電源供給線長を調整すればよい。
すなわち、共振の起こらない最大配線長lmaxは、前記周波数f1に相当する波長の1/2の長さであり、光速をc、前記ストリップ線路における絶縁層全体の実効的な比誘電率、比透磁率をそれぞれεeff’、μeff’、前記ストリップ線路の単位長さあたりのインダクタンス、キャパシタンスをそれぞれL、Cとすると次式から求まる。
【0022】
【数2】
Figure 0004599678
【0023】
図3において、直流電圧供給位置13からIC近傍の各デカップリングコンデンサ12a、12b実装位置までの各電源供給線7a、7bは、上記の理由から、前記最大配線長lmaxより小さい長さとなるよう設計されており、前記複素比透磁率の虚部μr”によるエネルギー損失の効果により前記電源系における共振は抑制され、前記電源系からの強い放射電磁ノイズは発生しない。
【0024】
次に、図4に示す信号層102a、図4に破線で示す配線状導体からなる電源供給線107、107a、107bを有する電源層、グランド層、絶縁層を有する構成であって、図1に示す上記第1の実施形態の部分断面構造と同一の部分断面構造を有する多層プリント基板を本発明の第2の実施形態として、図面を参照して以下に説明する。
【0025】
図4は、本実施形態の多層プリント基板における信号層102aの平面図を示し、直流電源供給位置のコンデンサ111、電子回路110a、110bおよび近傍のデカップリングコンデンサ112a、112b、電源供給線上の第2のデカップリングコンデンサ114a、114bを実装した構成である。
尚、本実施形態の多層プリント回路基板における電源層は、図4に破線で示す配線状導体107、107a、107b、107c、107dが形成された構成であり、電源供給線107は電源供給位置113のビア108から外部の端子(図示せず)へ接続され、電源供給線107cは前記電源供給位置のビア108からビア108cへ、電源供給線107dは前記電源供給位置のビア108からビア108dへそれぞれ接続されている。
電源供給線107aはビア108cと信号層102aの電子回路110aの電源端子108aを接続し、電源供給線107bはビア108dと信号層102aの電子回路110bの電源端子108bを接続している。
【0026】
図4に示す信号層102aにおいて、電源供給位置のコンデンサ111はビア108を介して電源層の電源供給線107、107c、107dと接続され、ビア109を介してグランド層に接続されている。
また、電子回路110a、110bはそれぞれ電源端子108a、108bを介して近傍のデカップリングコンデンサ112a、112b、および電源層の電源供給線107a、107bとそれぞれ接続され、前記デカップリングコンデンサ112a、112bのもう一方の端子はそれぞれビア109a、109bを介してグランド層と接続されている。
デカップリングコンデンサ114aはビア108cを介して電源層の電源供給線107aおよび107cと接続され、デカップリングコンデンサ114bはビア108dを介して電源層の電源供給線107bおよび107dと接続されている。デカップリングコンデンサ114a、114bのもう一方の端子はそれぞれビア109c、109dを介してグランド層に接続されている。
【0027】
前記第2のデカップリングコンデンサ114a、114bと前記電子回路近傍のデカップリングコンデンサ112a、112bを結ぶ電源供給線107aおよび107bの長さは前記lmaxより小さい長さ、すなわち前記絶縁体磁性材料の磁性損失が前記電源系における共振を抑制する周波数域の下限周波数に相当する波長の1/2より小さい長さである。
【0028】
本実施形態のように電子回路近傍のデカップリングコンデンサ112a、112bへの電源供給線上に、第2のデカップリングコンデンサ114a、114bを実装する構成の場合、前記電源供給線上の第2のデカップリングコンデンサ114a、114bが終端に近い存在となり、電源供給線上の第2のでカップリングコンデンサ114a、114bから、電源供給位置113のコンデンサ111までの電源供給線107c、107dには電子回路からの高周波電流、電圧が、極めて流入されにくくなるため、電源供給線上の第2のデカップリングコンデンサ114a、114bから電源供給位置113のコンデンサ111までの電源供給線107c、107dは共振系と見なされない。
そのため、前記デカップリングコンデンサ間の電源供給線107a、107bの長さが前記lmaxより小さい場合には、前記複素比透磁率の虚部μr”によるエネルギー損失の効果により共振は抑制され、前記電源系からの強い放射電磁ノイズは発生しない。
【0029】
【実施例】
(実施例1)
図7に示す層構成であって、図8に示す信号層、図9に示す電源層を有する多層プリント回路基板を本発明の実施例1とし、図面を参照して以下に詳細に説明する。尚、図7〜9において、同一の構成要素にはそれぞれ同一の符号を付け、その説明を省略、若しくは簡単に説明する。
図7は実施例1の多層プリント回路基板201の部分断面構造を示し、本実施例1の多層プリント回路基板は、最上層として設けた厚さ18μmの信号層202aから下向きに厚さ0.3mmの絶縁層205、厚さ70μmのグランド層203、厚さ0.9mmの絶縁層215、厚さ70μmの電源層204、厚さ0.3mmの絶縁層205、厚さ18μmの信号層202bを順次形成した4層プリント回路基板である。
【0030】
信号層202b−グランド層203間、信号層202a−電源層204間の絶縁層205はガラスエポキシ樹脂からなり、電源層204−グランド層203間の絶縁層215は、ガラスエポキシ樹脂からなる3層の絶縁層205とそれらに挟まれた2層の絶縁体磁性材料層206が交互に積層された構造である。
前記電源層204とグランド層203に挟まれた絶縁層215は、グランド層203側から順に、厚さ0.3mmのガラスエポキシ樹脂からなる絶縁層205、厚さ0.1mmの絶縁体磁性材料層206、厚さ0.1mmのガラスエポキシ樹脂からなる絶縁層205、厚さ0.1mmの絶縁体磁性材料層206、厚さ0.3mmのガラスエポキシ樹脂からなる絶縁層205から構成される。
【0031】
前記絶縁層215中に占める前記絶縁体磁性材料層206の体積割合は約22%であり、前記絶縁体磁性材料層206は、ニッケル亜鉛系フェライト粉末とエポキシ樹脂から構成され、前記ニッケル亜鉛系フェライト粉末を体積割合にして約50%含有する。
【0032】
図8は実施例1の多層プリント回路基板201における信号層202aの平面図を示し、信号層202aは、信号配線216により接続された送信IC217と受信IC218、0.1μFの前記送信IC217、受信IC218近傍のデカップリングコンデンサ219a、219b、信号配線により受信IC218に接続された51pFの終端用コンデンサ220、電源供給位置のコンデンサ219、水晶発振器221および近傍のコンデンサ219cが実装された構成である。
【0033】
前記送信IC217、受信IC218、水晶発振器221は長さ10mmの電源配線222a、222b、222cにより電源層204に通じる電源端子208a、208b、208cに接続されている。
また、前記電源配線222a上にはデカップリングコンデンサ219aが接続され、電源配線222b上にはデカップリングコンデンサ219bが接続され、電源配線222c上にはコンデンサ219cが接続されている。
前記デカップリングコンデンサ219a、219bの一端はビア209a、209bを介してグランド層203に接続され、前記終端用コンデンサ220実装用パッドの一端もビアを介してグランド層203に接続されている。
直流電圧供給位置213のコンデンサ219は、ビア208を介して電源層204と、ビア209を介してグランド層203と接続されている。
【0034】
図9は本実施例1の多層プリント回路基板201の電源層204を示す平面図であり、信号層202aへ接続される直流電圧供給位置のビア208と電源端子208a、208b、208cを接続する配線状導体からなる電源供給線223a、223b、223cが形成されており、前記配線状導体はいずれも幅1mmである。
前記電源供給線223aは電源端子208aを介して信号層202aの電源配線222aに接続され、前記電源供給線223bは電源端子208bを介して信号層202aの電源配線222bに接続され、前記電源供給線223cは電源端子208cを介して信号層202aの電源配線222cに接続されている。
また、上記電源供給線223cの長さは49mmであり、電源供給線223aの長さは69mm、電源供給線223bの長さは177mmである。
【0035】
図8および図9より、直流電圧供給位置213から送信IC217近傍のデカップリングコンデンサ219a実装位置までの電源供給線の長さは電源層204の電源供給線223aと信号層202aの電源配線222aとの和であって、約79mmである。
同様に、直流電圧供給位置213から受信IC218近傍のデカップリングコンデンサ219b実装位置までの電源供給線の長さは電源層204の電源供給線223bと信号層202aの電源配線222bとの和であって約187mmである。
【0036】
本実施例1に示される多層プリント回路基板の電源系は、前記第1の実施形態の多層プリント回路基板と同様にストリップ線路と考える事ができる。
前記電源系をストリップ線路とみなしたとき、前記絶縁体磁性材料層の複素比透磁率の虚部μr”によるエネルギー損失がストリップ線路で生ずる共振を抑制する下限周波数f1は約320MHzであり、ストリップ線路の単位長さあたりのインダクタンスL、キャパシタンスCはそれぞれ約6×10-7H/m、約1×10-10F/mである。これらの値を[数2]に示す式に代入して前記lmaxを見積ると、約200mmとなる。
【0037】
前記より図8および図9に示す直流電圧供給位置213から送信IC217近傍のデカップリングコンデンサ219a実装位置までの電源供給線の長さは約79mm、直流電圧供給位置213から受信IC218近傍のデカップリングコンデンサ219b実装位置までの電源供給線の長さは約187mmであり、どちらも前記最大配線長lmaxより小さい。
従って、上記実施例1の多層プリント回路基板の電源系においては、前記複素比透磁率の虚部μr”によるエネルギー損失の効果により共振は抑制され、前記電源系からの強い放射電磁ノイズは発生しない。
【0038】
次に、比較例として、図13に示す断面構造を有する以外は前記実施例1の多層プリント回路基板と同一の構成である多層プリント回路基板を作製し、前記実施例1の多層プリント回路基板と本比較例の多層プリント回路基板の電源系の|S11|特性を比較した結果を図12に示す。
前記実施例1の多層プリント回路基板の部分断面構造(図7)と上記比較例の多層プリント回路基板の部分断面構造(図13)は、絶縁体磁性材料層の有無の点で異なる。図14に前記実施例1の多層プリント回路基板における電源系の簡易的な等価回路を示した。
|S11|は、ネットワークアナライザを用いて測定したS11パラメータの絶対値である。
図12によると、電源系に絶縁体磁性材料が存在しない比較例の電源系においては、400MHz付近、800MHz付近、950MHz付近にディップが存在するのに対し、電源系に絶縁体磁性材料層が存在する実施例1の電源系においてはディップは存在しない。
電源系に前記絶縁体磁性材料層が存在する場合にディップが存在しないのは、前記複素比透磁率の虚部μr”によるエネルギー損失の効果が共振を抑制したためである。
【0039】
(実施例2)
次に、上記実施例1と同一の断面構造であって、図10に示す信号層302aと図11に示す電源層304を有する多層プリント回路基板を本発明の実施例2とする。尚、図11に示す構成要素について、図10と同一の構成要素を示すものには同一の符号を付して説明を省略若しくは簡単に説明する。
【0040】
まず、図10に示す実施例2の多層プリント回路基板の信号層302aは、信号配線316により接続された送信IC317および受信IC318、0.1μFの送信IC317、受信IC318近傍のデカップリングコンデンサ319a、319b、信号配線により前記受信IC318に接続された51pFの4つの終端用コンデンサ320、水晶発振器321および近傍のコンデンサ319c、0.1μFの電源供給位置のコンデンサ319、および0.1μFのデカップリングコンデンサ325a、325bが実装された構成である。
【0041】
前記送信IC317、受信IC318は、電源端子308a、308bを介して近傍のデカップリングコンデンサ319a、319bおよび電源層304と接続され、前記終端用コンデンサ320実装用パッドの一方は、ビア309を介してグランド層に接続されている。
水晶発振器321は電源端子308cを介して近傍のコンデンサ319cおよび電源層304と接続され、直流電圧供給位置313のコンデンサ319は、ビア308を介して電源層304と、ビア309を介してグランド層とそれぞれ接続されている。
【0042】
送信IC317近傍のデカップリングコンデンサ319aの一端は、パッドとビア308aを介して電源層304と接続され、もう一端はパッドとビア309を介してグランド層にそれぞれ接続されている。
また、受信IC318近傍のデカップリングコンデンサ319bの一端は、パッドとビア308を介して電源層304と接続され、もう一端はパッドとビア309を介してグランド層にそれぞれ接続されている。
前記デカップリングコンデンサ325a、325bの一端はビア324a、324bを介して電源層304と接続され、もう一端はグランド層に接続されている。
【0043】
図11は、本実施例2の多層プリント回路基板の電源層304を示す平面図であって、前記電源層304は前記直流電圧供給位置313のビア308と送信IC317、受信IC318、水晶発振器321を接続する幅1mmの電源供給線323a、323b、323cが形成された構成であり、前記電源供給線323aの長さは220mm、電源供給線323bの長さは350mm、電源供給線323cの長さは100mmである。
【0044】
次に、前記信号層302と前記電源層304の接続関係を図10および図11を用いて以下に説明する。
前記電源層304の電源供給線323a、323b、323cの一端はそれぞれ電源端子308a、308b、308cを介して信号層302aに接続されており、前記電源供給線323aは電源端子308aを介して信号層320aの送信IC317近傍のデカップリングコンデンサ319aに、電源供給線323bは電源端子308bを介して信号層302aの受信IC318近傍のデカップリングコンデンサ319bに、電源供給線323cは電源端子308cを介して信号層302aの水晶発振器321近傍のコンデンサ319cに、それぞれ接続されている。
【0045】
前記電源供給線323a上のビア324aはパッドを介して信号層302aのデカップリングコンデンサ325aに、電源供給線323b上のビア324bはパッドを介して信号層302aのデカップリングコンデンサ325bにそれぞれ接続されている。
前記送信IC317の電源端子308aとビア324aは電源供給線の長さで100mm離れており、前記受信IC318の電源端子308bとビア324bは電源供給線の長さで150mm離れている。
【0046】
すなわち、図10に示す前記デカップリングコンデンサ325aは、送信IC317近傍のデカップリングコンデンサ319a実装位置から、電源供給線の長さにして約100mm離れた電源供給線上に実装された送信IC317に対する第2のデカップリングコンデンサであり、前記デカップリングコンデンサ325bは、受信IC318近傍のデカップリングコンデンサ319b実装位置から、電源供給線の長さにして約150mm離れた電源供給線上に実装された受信IC318に対する第2のデカップリングコンデンサである。
【0047】
前記第2の実施形態の説明より、第2のデカップリングコンデンサが実装されている場合、IC側からは、第2のデカップリングコンデンサが存在している位置以降の電源系は、共振系とみなさずにすむ。
すなわち、本実施例においては、送信IC317から第2のデカップリングコンデンサ325aの実装位置まで、あるいは受信IC318から第2のデカップリングコンデンサ325bの実装位置までの電源系において共振が生じる。
前記実施例2の構成から、送信IC317、受信IC318近傍の各デカップリングコンデンサ319a、319bの実装位置から電源供給線上の第2のデカップリングコンデンサ325a、325b実装位置までの距離は、それぞれ100mm、150mmであり、前記最大配線長lmaxよりいずれも小さい長さである。
【0048】
従って、実施例2の多層プリント回路基板の前記電源系においても、前記μr”によるエネルギー損失の効果が共振を抑制し、電源系からの強い放射電磁ノイズは発生しない。
【0049】
上記第1、第2の実施形態、実施例1、2では、4層構成の多層プリント回路基板を例に挙げたが、本発明の実施形態は層数を制限するものではなく、少なくとも信号層、電源層、グランド層を含む多層プリント回路基板であれば問題ない。
例えば、電源層の上下にグランド層が存在するような多層プリント回路基板のように、電源系が、電源層、電源層の上下のグランド層、および2層のグランド層に挟まれた絶縁層からなる系である場合においても、本発明を利用する事が可能である。
【0050】
次に、本発明の第3の実施形態について、図面を参照して説明する。
図1に示す第1実施形態の多層プリント回路基板の部分断面構造と同一の部分断面構造を有する多層プリント基板であって、電源層、およびグランド層は平面導体からなり、図15に示す信号層を有する多層プリント基板を本発明の第3の実施形態とする。
図15は、第3の実施形態の多層プリント回路基板の信号層502aを示す平面図であり、IC510および近傍のデカップリングコンデンサ512、信号層縁のコンデンサ511a〜511dなどが実装された構成である。
【0051】
前記IC510は電源端子508を介して近傍のデカップリングコンデンサ512および電源層と接続され、前記デカップリングコンデンサのもう一端はビア509を介してグランド層と接続されている。
前記信号層縁のコンデンサ511a〜511dの一端はビア508a〜508dを介して電源層に接続され、もう一端はビア509a〜509dを介してグランド層に接続されている。
【0052】
電源層が平面導体の場合、電源層およびグランド層からなる電源系は平行平板伝送線路とみなせ、電源系の特性インピーダンスが小さいため、信号層に実装されているコンデンサが電子回路の近傍のデカップリングコンデンサのみの場合、前記電源系の共振周波数は、前記絶縁体磁性材料層の複素比透磁率の虚部μr”によるエネルギー損失が共振を抑制する周波数域より低い周波数となるため、電源系の共振は抑制されず、強い放射電磁ノイズの原因となる。
【0053】
本実施形態の多層プリント基板においては、前記電源層とグランド層に接続されるコンデンサ511a〜511dを図15に示すように信号層502の縁に複数個追加実装してあるが、このように信号層502にコンデンサを追加実装する場合、その数量に応じて前記電源系の共振周波数が高周波側に移行する。
すなわち、コンデンサの追加実装数を調整する事により、前記電源系の共振周波数を前記複素比透磁率の虚部μr”によるエネルギー損失が共振を抑制する周波数域に移行させる事ができるため、前記電源系における共振を抑制し、強い放射電磁ノイズを発生させないように多層プリント基板を設計することができる。
【0054】
上記第3実施形態についての説明では、コンデンサを追加実装する位置を信号層の縁としたが、電源系における共振周波数が前記複素比透磁率の虚部μr”によるエネルギー損失が共振を抑制する周波数域に位置するように追加実装すれば、コンデンサの実装位置は信号層の縁に限らず、適宜変更する事ができる。
【0055】
また、上記第3の実施形態の説明では、4層構成の多層プリント回路基板を例に挙げたが、前記第1、第2の実施形態と同様、層数を制限するものではなく、少なくとも信号層、電源層、グランド層を含む多層プリント回路基板であれば問題ない。
例えば、電源層の上下にグランド層が存在するような多層プリント回路基板のように、電源系が電源層、電源層の上下のグランド層、および2層のグランド層に挟まれた絶縁層からなる系である場合においても、本発明を利用する事が可能である。
【0056】
【発明の効果】
以上詳細に説明したように、本発明によれば、電源層を配線状導体で構成し、電源系に絶縁体磁性材料層を存在させ、直流電圧供給位置から電子回路近傍のデカップリングコンデンサ実装位置までの電源供給線長を前記[数2]で表される長さlmaxより小さい長さにする、あるいは電子回路近傍のデカップリングコンデンサ実装位置から、電源供給線の距離にして[数2]で表される長さlmaxより小さい長さ離れた電源供給線上に第2のデカップリングコンデンサを実装する事により、電源系で生じる共振を抑制する事ができるため、電源系からの強い放射電磁ノイズが発生しない多層プリント回路基板を提供する事ができる。
【0057】
すなわち、本発明に係る多層プリント回路基板にあっては、上記のように電源配線長を決定すれば、電源系からの強い放射電磁ノイズが発生しなくなるため、設計者はある程度の自由度を持って多層プリント回路基板を設計する事ができる。
【0058】
また、本発明によれば、電源層が平面導体である場合においても、電源系に絶縁体磁性材料層を存在させ、かつ電源層とグランド層に接続されるコンデンサを信号層に複数個追加実装する事により、電源系の共振周波数を前記絶縁体磁性材料の磁性損失が電源系で生じる共振を抑制する周波数域に移行させる事ができるため、電源系の共振を抑制する事ができる。
従って、本発明によれば、電源系からの強い放射電磁ノイズが発生しない多層プリント回路基板を提供する事ができる。
【図面の簡単な説明】
【図1】 図1は本発明の第1の実施形態の多層プリント回路基板の部分断面構造を示す図である。
【図2】 図2は本発明の第1の実施形態の多層プリント回路基板の電源層を示す平面図である。
【図3】 図3は本発明の第1の実施形態の多層プリント回路基板の信号層を示す平面図である。
【図4】 図4は本発明の第2の実施形態の多層プリント回路基板の信号層を示す平面図である。
【図5】 図5は本発明の第1の実施形態の多層プリント回路基板のストリップ線路の断面図である。
【図6】 図6はストリップ線路の単位長さあたりの抵抗Rの周波数特性を示す図である。
【図7】 図7は本発明の実施例1の多層プリント回路基板の部分断面構造を示す図である。
【図8】 図8は本発明の実施例1の多層プリント回路基板における信号層の平面図である。
【図9】 図9は本発明の実施例1の多層プリント回路基板における電源層の平面図である。
【図10】 図10は本発明の実施例2の多層プリント回路基板における信号層の平面図である。
【図11】 図11は本発明の実施例2の多層プリント回路基板における電源層の平面図である。
【図12】 図12は多層プリント回路基板の電源系の|S11|特性を示す図である。
【図13】 図13は比較例の多層プリント回路基板の部分断面構造を示す図である。
【図14】 図14は本発明の実施例1の多層プリント回路基板における電源系の簡易的な等価回路を示す平面図である。
【図15】 図15は本発明の第3の実施形態の多層プリント回路基板の信号層を示す平面図である。
【符号の説明】
1、201…多層プリント回路基板
2a、2b、202a、502a…信号層
3、203…グランド層
4、204、304…電源層
5、15、205、215…絶縁層
6、206…絶縁体磁性材料層
7、7a〜7b、107a〜107b、223a〜223c、323a〜323c…電源供給線
8、108、108c〜108d、208、308、324a〜324b、508a〜508d…電源層と信号層をつなぐビア
8a〜8c、108a〜108b、208a〜208c、308a〜308c、508…電源端子
9、9a〜9b、109a〜109d、209、209a〜209c、309、309a〜309c…グランド層と信号層をつなぐビア
10a〜10b、110a〜110b、217、218、221、317、318、321、510…電子回路
11、111、511a〜511d、219、220、320…コンデンサ
12a〜12b、112a〜112b、114a〜114b、219a〜219c、319a〜319c、325a〜325b、512…デカップリングコンデンサ
13、213、313…直流電圧供給位置
216、316…信号配線
221、321…水晶発振器

Claims (6)

  1. 信号層、電源層、グランド層がそれぞれ絶縁層を介在して積層された多層プリント基板において、前記電源層と前記グランド層とその間に挟まれた絶縁体磁性材料層からなる電源系を有し、前記電源層は配線状導体からなり、その電源供給線長は、前記絶縁体磁性材料層の磁性損失が前記電源系の共振を抑制する長さである事を特徴とする多層プリント回路基板。
  2. 前記信号層かつ直流電圧供給位置にビアを介して前記電源層および前記グランド層に接続されるコンデンサを有し、該コンデンサの実装位置から電子回路近傍に実装されたデカップリングコンデンサまでの電源供給線長が、前記絶縁体磁性材料層の磁性損失が前記電源系の共振を抑制する周波数域の下限周波数に相当する波長の1/2より小さい長さである事を特徴とする前記請求項1記載の多層プリント回路基板。
  3. 前記信号層かつ直流電圧供給位置にビアを介して前記電源層および前記グランド層に接続されるコンデンサと、電子回路近傍に実装されたデカップリングコンデンサと、前記デカップリングコンデンサへの電源供給線上に実装された第2のデカップリングコンデンサとを備え、前記電子回路近傍のデカップリングコンデンサ実装位置から前記第2のデカップリングコンデンサ実装位置までの電源供給線長が、前記絶縁体磁性材料層の磁性損失が前記電源系における共振を抑制する周波数域の下限周波数に相当する波長の1/2より小さい長さである事を特徴とする前記請求項1記載の多層プリント回路基板。
  4. 信号層、電源層、グランド層がそれぞれ絶縁層を介在して積層された多層プリント基板において、前記電源層は平面導体であって、前記電源層と前記グランド層とその間に挟まれた絶縁体磁性材料層からなる電源系を有し、前記信号層には、前記絶縁体磁性材料層の周波数特性に適合し、かつビアを介して前記電源層およびグランド層に接続されるコンデンサが実装されている事を特徴とする多層プリント基板。
  5. 前記絶縁体磁性材料層がフェライト粉末と樹脂から構成されている事を特徴とする前記請求項1〜4のいずれか1項に記載の多層プリント回路基板。
  6. 前記絶縁体磁性材料層がNi−Zn系フェライト粉末とエポキシ樹脂から構成されており、該絶縁体磁性材料層中のNi−Zn系フェライト粉末の体積占有率が45%以上であり、かつ前記電源層と前記グランド層の間の絶縁層における該絶縁体磁性材料層の体積占有率が20%以上である事を特徴とする前記請求項5記載の多層プリント回路基板。
JP2000219230A 2000-07-19 2000-07-19 多層プリント回路基板 Expired - Fee Related JP4599678B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219230A JP4599678B2 (ja) 2000-07-19 2000-07-19 多層プリント回路基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219230A JP4599678B2 (ja) 2000-07-19 2000-07-19 多層プリント回路基板

Publications (2)

Publication Number Publication Date
JP2002043760A JP2002043760A (ja) 2002-02-08
JP4599678B2 true JP4599678B2 (ja) 2010-12-15

Family

ID=18714046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219230A Expired - Fee Related JP4599678B2 (ja) 2000-07-19 2000-07-19 多層プリント回路基板

Country Status (1)

Country Link
JP (1) JP4599678B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335107A (ja) 2001-05-08 2002-11-22 Nec Corp 伝送線路型コンポーネント
CN108307612B (zh) * 2017-01-13 2024-04-26 上海量子绘景电子股份有限公司 一种铁氧体基材的fccl材料及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216614A (ja) * 1993-01-14 1994-08-05 Casio Comput Co Ltd ストリップ線路の共振周波数調整方法
JPH09139573A (ja) * 1995-09-14 1997-05-27 Nec Corp 多層プリント基板
JPH09246776A (ja) * 1996-03-14 1997-09-19 Oki Electric Ind Co Ltd プリント配線板
JPH1056245A (ja) * 1996-06-04 1998-02-24 Mitsubishi Electric Corp プリント配線板
JPH10112574A (ja) * 1996-10-07 1998-04-28 Fuji Xerox Co Ltd プリント配線基板装置
JPH10242602A (ja) * 1997-03-03 1998-09-11 Nec Corp 多層プリント基板及びその製造方法
JP2000174443A (ja) * 1998-12-04 2000-06-23 Nec Corp 多層プリント回路基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216614A (ja) * 1993-01-14 1994-08-05 Casio Comput Co Ltd ストリップ線路の共振周波数調整方法
JPH09139573A (ja) * 1995-09-14 1997-05-27 Nec Corp 多層プリント基板
JPH09246776A (ja) * 1996-03-14 1997-09-19 Oki Electric Ind Co Ltd プリント配線板
JPH1056245A (ja) * 1996-06-04 1998-02-24 Mitsubishi Electric Corp プリント配線板
JPH10112574A (ja) * 1996-10-07 1998-04-28 Fuji Xerox Co Ltd プリント配線基板装置
JPH10242602A (ja) * 1997-03-03 1998-09-11 Nec Corp 多層プリント基板及びその製造方法
JP2000174443A (ja) * 1998-12-04 2000-06-23 Nec Corp 多層プリント回路基板

Also Published As

Publication number Publication date
JP2002043760A (ja) 2002-02-08

Similar Documents

Publication Publication Date Title
US7466560B2 (en) Multilayered printed circuit board
JP3232562B2 (ja) 電磁干渉抑制部品および電磁干渉抑制回路
US8994470B2 (en) Circuit substrate having noise suppression structure
US6198362B1 (en) Printed circuit board with capacitors connected between ground layer and power layer patterns
KR100382804B1 (ko) 다층 프린트 기판
KR101106434B1 (ko) 프린트 회로판
JP3255151B2 (ja) 多層プリント回路基板
US6297965B1 (en) Wiring arrangement including capacitors for suppressing electromagnetic wave radiation from a printed circuit board
KR101385167B1 (ko) 프린트 회로판
EP1387431A1 (en) Transmission line type components
US6396713B1 (en) Printed circuit board with multiple insulative magnetic layers
EP1357597A1 (en) Voltage conversion module
JPH1140915A (ja) プリント配線板
US9219299B2 (en) Resonator, multilayer board and electronic device
JP2001119110A (ja) プリント基板
US6215076B1 (en) Printed circuit board with noise suppression
JP6504960B2 (ja) プリント基板
CN115299184B (zh) 电路基板及电子设备
WO2018229978A1 (ja) プリント配線板
JP4599678B2 (ja) 多層プリント回路基板
JP2009147424A (ja) アンテナ装置
JP3935638B2 (ja) 多層配線基板
JP6238605B2 (ja) プリント回路板及び電子機器
US20230047936A1 (en) Filter circuit
US7626828B1 (en) Providing a resistive element between reference plane layers in a circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080508

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees