JP4599417B2 - Back-illuminated solid-state image sensor - Google Patents

Back-illuminated solid-state image sensor Download PDF

Info

Publication number
JP4599417B2
JP4599417B2 JP2008021202A JP2008021202A JP4599417B2 JP 4599417 B2 JP4599417 B2 JP 4599417B2 JP 2008021202 A JP2008021202 A JP 2008021202A JP 2008021202 A JP2008021202 A JP 2008021202A JP 4599417 B2 JP4599417 B2 JP 4599417B2
Authority
JP
Japan
Prior art keywords
region
state imaging
imaging device
illuminated solid
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008021202A
Other languages
Japanese (ja)
Other versions
JP2009182223A5 (en
JP2009182223A (en
Inventor
一成 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008021202A priority Critical patent/JP4599417B2/en
Publication of JP2009182223A publication Critical patent/JP2009182223A/en
Publication of JP2009182223A5 publication Critical patent/JP2009182223A5/ja
Application granted granted Critical
Publication of JP4599417B2 publication Critical patent/JP4599417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、撮像画像の解像度が高く且つ隣接画素間の混色を抑制できる構造を備える裏面照射型固体撮像素子に関する。   The present invention relates to a back-illuminated solid-state imaging device having a structure in which the resolution of a captured image is high and color mixing between adjacent pixels can be suppressed.

CMOSイメージセンサやCCDイメージセンサ等の固体撮像素子には、表面照射型と裏面照射型とがある。イメージセンサの主要電子素子である信号読出回路(CMOSイメージセンサであればトランジスタ回路及び配線層,CCDイメージセンサであれば配線を含む電荷転送路)が形成された半導体基板の一面側(この面を「表面側」ということにする。)と同一面で、被写体からの入射光を受光する構造になっているものが表面照射型である。   Solid-state imaging devices such as a CMOS image sensor and a CCD image sensor include a front side illumination type and a back side illumination type. One side of a semiconductor substrate on which a signal readout circuit (a transistor circuit and wiring layer for a CMOS image sensor, a charge transfer path including wiring for a CCD image sensor), which is a main electronic element of an image sensor, is formed (this surface is The surface irradiation type is the same plane as “front side” and has a structure for receiving incident light from a subject.

これに対し、裏面照射型とは、例えば図6に示す様に、信号読出回路が形成された半導体基板表面側と反対側の面、すなわち、裏面で被写体からの入射光を受光する構造のものをいう。   On the other hand, the back-illuminated type has a structure in which incident light from a subject is received on the surface opposite to the surface side of the semiconductor substrate on which the signal readout circuit is formed, as shown in FIG. 6, for example. Say.

図6に例示する裏面照射型固体撮像素子1は、信号読出回路として電荷転送路を備えるCCD型であり、シリコン基板2の表面側に、フォトダイオードを構成するn領域3と、電荷転送路の埋め込みチャネルを構成するn領域4とが設けられる。n領域4の側部や下側(裏面側)にはp領域5が設けられる。   A back-illuminated solid-state imaging device 1 illustrated in FIG. 6 is a CCD type provided with a charge transfer path as a signal readout circuit, and an n region 3 constituting a photodiode and a charge transfer path on the surface side of the silicon substrate 2. An n region 4 constituting a buried channel is provided. A p region 5 is provided on the side and lower side (back side) of the n region 4.

シリコン基板2の表面にはゲート絶縁膜6が形成され、n領域4上にはゲート絶縁膜6を介して転送電極(ポリシリコン電極)7が形成され、その上に、絶縁層8を介して遮光膜9が積層される。n領域3の表面には暗電流抑制用のp層10が設けられている。   A gate insulating film 6 is formed on the surface of the silicon substrate 2, a transfer electrode (polysilicon electrode) 7 is formed on the n region 4 via the gate insulating film 6, and an insulating layer 8 is formed thereon. A light shielding film 9 is laminated. A p-layer 10 for suppressing dark current is provided on the surface of the n region 3.

遮光膜9の上には平坦化膜11が積層され、その上に、支持基板12が設けられる。半導体基板2の裏面側表面にはp層13が形成され、その上に、カラーフィルタ層14が積層され、その上に、マイクロレンズ15が積層される。   A planarizing film 11 is laminated on the light shielding film 9, and a support substrate 12 is provided thereon. A p layer 13 is formed on the rear surface of the semiconductor substrate 2, a color filter layer 14 is laminated thereon, and a microlens 15 is laminated thereon.

斯かる構成の裏面照射型固体撮像素子1では、半導体基板2の裏面側から光が入射する。この入射光は、オンチップマイクロレンズ15でn領域3の電子捕獲領域3a方向に集光され、更にカラーフィルタ14を透過する波長だけがn領域3の感光部に入射する。入射光の波長とシリコン基板2の吸収係数に応じた深さで、入射光は電子に光電変換される。   In the backside illumination solid-state imaging device 1 having such a configuration, light enters from the backside of the semiconductor substrate 2. This incident light is condensed by the on-chip microlens 15 in the direction of the electron capture region 3a of the n region 3, and only the wavelength that passes through the color filter 14 is incident on the photosensitive portion of the n region 3. The incident light is photoelectrically converted into electrons at a depth corresponding to the wavelength of the incident light and the absorption coefficient of the silicon substrate 2.

光電変換された電子は、感光部内の図7に示す電位勾配(図6のVII―VII’線断面における電位勾配)によって移動し、電子捕獲領域3aに溜まる。波長の長い入射光ほど深い部位まで侵入して光電変換される。   The photoelectrically converted electrons move due to the potential gradient shown in FIG. 7 (potential gradient in the section taken along line VII-VII ′ in FIG. 6) in the photosensitive portion, and accumulate in the electron capture region 3a. Incident light with a longer wavelength penetrates into deeper sites and undergoes photoelectric conversion.

入射光線は、図示しないカメラの撮影レンズの瞳位置と明るさ(FF値)に依存した主光線角度に加え、上下光線角度の広がりを持って入射する。その結果、例えば、赤のカラーフィルタを透過した光の一部は、隣接する緑のカラーフィルタを持つ画素の所まで到達した後、光電変換されて電子となり、緑画素の電子捕獲領域3aに捕獲されて撮像画像信号となる。   Incident light is incident with a spread of the upper and lower ray angles in addition to the chief ray angle depending on the pupil position and brightness (FF value) of the photographing lens of the camera (not shown). As a result, for example, a part of the light transmitted through the red color filter reaches a pixel having an adjacent green color filter, and then is photoelectrically converted into electrons and captured in the electron capture region 3a of the green pixel. As a result, a captured image signal is obtained.

この様に、隣接画素まで入射光が入ると、これは撮像画像の解像度を劣化させる要因となる。また、赤の画素信号として発生した電子の一部が、熱拡散により基板2内を水平方向に移動して、隣接する緑画素の電子捕獲領域に捕獲されると、これは混色信号となり、色再現性と色SNを劣化させる要因となる。   In this way, when incident light enters adjacent pixels, this becomes a factor that degrades the resolution of the captured image. Further, when some of the electrons generated as the red pixel signal move in the horizontal direction in the substrate 2 by thermal diffusion and are captured by the electron capture region of the adjacent green pixel, this becomes a color mixture signal, and the color It becomes a factor which degrades reproducibility and color SN.

この様に、図6に示す構造のままでは、信号の分離が困難になるため、特許文献1,2,3,4,5に示す様に、これら従来の欠点を改善する提案がなされている。   As described above, since the signal separation becomes difficult with the structure shown in FIG. 6, as shown in Patent Documents 1, 2, 3, 4, and 5, proposals for improving these conventional defects have been made. .

特許文献1,2の裏面照射型固体撮像素子では、画素間の良好な分離を図るために、光電変換する半導体基板内に多層の異なる濃度層を設けて図7に示す電位勾配より急な勾配を形成し、画素位置に入射した光によって発生した電子(信号電荷)を、その画素の捕獲領域に誘導する構造にしている。しかし、この構成では、入射光の隣接画素への漏れ込みを防ぐことはできない。   In the back-illuminated solid-state imaging devices of Patent Documents 1 and 2, in order to achieve good separation between pixels, multiple different concentration layers are provided in a semiconductor substrate to be subjected to photoelectric conversion, so that the gradient is steeper than the potential gradient shown in FIG. In which the electrons (signal charges) generated by the light incident on the pixel position are guided to the capture region of the pixel. However, this configuration cannot prevent incident light from leaking into adjacent pixels.

特許文献3の裏面照射型固体撮像素子では、図6の構造で発生する横方向(水平方向)の電子(信号電荷)の拡散を防ぐために、画素間に、光電変換部とは異なるp型不純物領域によるポテンシャルバリアを設けている。   In the back-illuminated solid-state imaging device of Patent Document 3, a p-type impurity different from the photoelectric conversion unit is provided between the pixels in order to prevent diffusion of lateral (horizontal) electrons (signal charges) generated in the structure of FIG. A potential barrier is provided by region.

しかし、この構成では、信号電荷の横方向への拡散を特許文献1,2のものより防止できるが、入射光の隣接画素への漏れ込みを防ぐことはできない。また、ポテンシャルバリアを深く形成するためにイオン注入や熱拡散を行うため、光電変換部と異なるp型不純物が横方向に拡散してしまい、フォトダイオードの実効的な電荷捕獲領域が小さくなってしまうという課題も生じる。   However, in this configuration, signal charges can be prevented from diffusing in the horizontal direction as compared with Patent Documents 1 and 2, but leakage of incident light to adjacent pixels cannot be prevented. In addition, since ion implantation and thermal diffusion are performed to form the potential barrier deeply, p-type impurities different from the photoelectric conversion portion are diffused in the lateral direction, and the effective charge trapping region of the photodiode is reduced. The problem also arises.

特許文献4の裏面照射型固体撮像素子は、画素の隣接部分に光を反射する膜を設けることで、隣接画素への入射光の直接的な漏れ込みを抑制する構造を備えている。しかし、入射光が所定角度で入射した場合には効果的に隣接画素への漏れ込みを抑制できるが、反射膜で反射させることで光路を曲げているだけなので、多重反射した光については、その挙動を制御しにくいという課題がある。   The back-illuminated solid-state imaging device of Patent Document 4 has a structure that suppresses direct leakage of incident light to adjacent pixels by providing a film that reflects light in adjacent portions of the pixels. However, when incident light is incident at a predetermined angle, leakage into adjacent pixels can be effectively suppressed. However, since the light path is only bent by reflecting off the reflection film, There is a problem that it is difficult to control the behavior.

特許文献5の裏面照射型固体撮像素子は、光入射面に配置した透明電極に、信号電荷蓄積動作を行っている時とは異なる所定電位を印加することで透明電極側のポテンシャルを光電変換部よりも低くし、光電変換部に蓄積されている信号電荷を透明電極側に引き抜く構造としている。   The back-illuminated solid-state imaging device of Patent Document 5 applies a predetermined potential different from that during signal charge accumulation operation to a transparent electrode disposed on a light incident surface, thereby changing the potential on the transparent electrode side to a photoelectric conversion unit. The signal charge accumulated in the photoelectric conversion unit is extracted to the transparent electrode side.

この構造は、画面全体の信号電荷を同時に引き抜くことに向いているが、画素毎、行毎、列毎、所定の大きさ、形状のブロック毎などに分けて引き抜く構造にするには、製造上の困難を伴うという課題がある。   This structure is suitable for extracting the signal charges of the entire screen at the same time. However, in order to obtain a structure in which the charge is extracted separately for each pixel, for each row, for each column, for each block of a predetermined size, shape, etc. There is a problem that is accompanied by difficulties.

特開2006―66710号公報JP 2006-66710 A 特開2006―134915号公報JP 2006-134915 A 特開2005―294705号公報JP 2005-294705 A 特開2006―80457号公報JP 2006-80457 A 特開2001―257337号公報JP 2001-257337 A

本発明の目的は、隣接画素間の信号電荷の拡散及び入射光の直接的な漏れ込みを共に抑制し、解像度が高く混色の少ない被写体画像を撮像することができる裏面照射型固体撮像素子を提供することにある。   An object of the present invention is to provide a back-illuminated solid-state imaging device capable of capturing a subject image with high resolution and low color mixing while suppressing both signal charge diffusion between adjacent pixels and direct leakage of incident light. There is to do.

(1)半導体基板の第1面(以下、表面という。)側に二次元アレイ状に複数のフォトダイオードが形成され、該半導体基板の第2面(以下、裏面という。)側から入射した光によって発生した信号電荷を前記フォトダイオードの各々が検出する裏面照射型固体撮像素子において、前記フォトダイオードの各々を隣接する前記フォトダイオードから分離するトレンチ構造の溝を持つ素子分離領域が前記裏面側に形成され、前記溝の中に光を遮断する金属が充填され、前記金属に外部から所定電圧を印加する配線が接続され、前記所定電圧が電子シャッタ時に印加されたとき前記フォトダイオードの蓄積電荷が前素子分離領域の前記金属を通して廃棄されることを特徴とする裏面照射型固体撮像素子。
(2)前記所定電圧は、前記溝の内周面電位を安定化させ暗電流発生を抑制する電圧であることを特徴とする(1)に記載の裏面照射型固体撮像素子。
(1) A plurality of photodiodes are formed in a two-dimensional array on the first surface (hereinafter referred to as the front surface) side of the semiconductor substrate, and light incident from the second surface (hereinafter referred to as the back surface) side of the semiconductor substrate. In the back-illuminated solid-state imaging device in which each of the photodiodes detects the signal charge generated by the device, an element isolation region having a trench structure groove that separates each of the photodiodes from the adjacent photodiode is provided on the back surface side. Formed, the groove is filled with a metal that blocks light, a wiring for applying a predetermined voltage from the outside is connected to the metal, and when the predetermined voltage is applied at the time of an electronic shutter, the accumulated charge of the photodiode is A back-illuminated solid-state imaging device, which is discarded through the metal in the front element isolation region .
(2) The back-illuminated solid-state imaging device according to (1), wherein the predetermined voltage is a voltage that stabilizes an inner peripheral surface potential of the groove and suppresses dark current generation.

本発明によれば、トレンチ溝によって信号電荷の隣接画素方向への拡散が抑制され、また、入射光の隣接画素方向への漏れ込みも抑制されるため、高解像度で且つ混色の少ない被写体画像を撮像することが可能となる。   According to the present invention, since the diffusion of the signal charge in the direction of the adjacent pixel is suppressed by the trench groove, and the leakage of the incident light in the direction of the adjacent pixel is also suppressed, a subject image with high resolution and less color mixing can be obtained. Imaging can be performed.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施形態に係る裏面照射型固体撮像素子の要部断面模式図である。尚、以下、CCD型の裏面照射型固体撮像素子について述べるが、本発明は信号読出回路をトランジスタで構成したMOS型固体撮像素子にも同様に適用可能である。   FIG. 1 is a schematic cross-sectional view of an essential part of a backside illumination type solid-state imaging device according to the first embodiment of the present invention. The CCD back-illuminated solid-state image pickup device will be described below, but the present invention is also applicable to a MOS-type solid-state image pickup device in which a signal readout circuit is constituted by a transistor.

図1において、裏面照射型固体撮像素子30が製造されるシリコン基板2の表面側には、フォトダイオードを構成するn領域3と、電荷転送路の埋め込みチャネルを構成するn領域4とが設けられる。n領域4の側部や下側(裏面側)にはp領域5が設けられる。   In FIG. 1, an n region 3 that constitutes a photodiode and an n region 4 that constitutes a buried channel of a charge transfer path are provided on the surface side of the silicon substrate 2 on which the back-illuminated solid-state imaging device 30 is manufactured. . A p region 5 is provided on the side and lower side (back side) of the n region 4.

シリコン基板2の表面にはゲート絶縁膜6が形成され、n領域4上にはゲート絶縁膜6を介して転送電極(ポリシリコン電極)7が形成され、その上に、絶縁層8を介して遮光膜9が積層される。n領域3の表面には暗電流抑制用のp層10が設けられている。   A gate insulating film 6 is formed on the surface of the silicon substrate 2, a transfer electrode (polysilicon electrode) 7 is formed on the n region 4 via the gate insulating film 6, and an insulating layer 8 is formed thereon. A light shielding film 9 is laminated. A p-layer 10 for suppressing dark current is provided on the surface of the n region 3.

遮光膜9の上には平坦化膜11が積層され、その上に、支持基板12が設けられる。半導体基板2の裏面側表面にはp層13が形成され、その上に、カラーフィルタ層14が積層され、その上に、マイクロレンズ15が積層される。裏面側のp層13は、配線16を介してグランドに接続される。   A planarizing film 11 is laminated on the light shielding film 9, and a support substrate 12 is provided thereon. A p layer 13 is formed on the rear surface of the semiconductor substrate 2, a color filter layer 14 is laminated thereon, and a microlens 15 is laminated thereon. The p-layer 13 on the back side is connected to the ground via the wiring 16.

本実施形態の裏面照射型固体撮像素子30は、更に、隣接画素との間を区分けするトレンチ構造の素子分離領域31が、裏面側からn領域4の近傍まで達する様に設けられる。   The back-illuminated solid-state imaging device 30 of the present embodiment is further provided so that an element isolation region 31 having a trench structure that separates adjacent pixels extends from the back side to the vicinity of the n region 4.

この素子分離領域31は、側壁(内周面)部分の薄いp領域31aと、中央の空洞31bとで構成される。製造する場合には、詳細については後述するが、先ず、リソグラフィ技術よって、0.4μm幅で深さ6μm程度のトレンチ構造の溝を半導体基板2の裏面側から穿設し、この溝の側壁に、光電変換部(n領域3)と異なる導電型(この例ではp型)の不純物を拡散させて薄いp領域31aを形成し、その後に、カラーフィルタ層14,マイクロレンズ層15が積層される。   The element isolation region 31 includes a thin p region 31a having a side wall (inner peripheral surface) portion and a central cavity 31b. In the case of manufacturing, although details will be described later, first, a trench having a trench structure of about 0.4 μm width and a depth of about 6 μm is formed from the back side of the semiconductor substrate 2 by a lithography technique, and is formed on the side wall of the trench. A thin p region 31a is formed by diffusing impurities of a conductivity type (p type in this example) different from that of the photoelectric conversion portion (n region 3), and then the color filter layer 14 and the microlens layer 15 are laminated. .

半導体基板2にトレンチ溝を穿設すると、側壁の界面準位によって暗電流が発生するが、この側壁部に反対導電型の不純物を拡散することで、界面準位がp領域31aでシールドされ暗電流の発生が抑制される。   When a trench groove is formed in the semiconductor substrate 2, dark current is generated due to the interface state of the side wall. By diffusing impurities of the opposite conductivity type into this side wall portion, the interface state is shielded by the p region 31a and dark. Generation of current is suppressed.

図示する実施形態では、トレンチ溝の底面がp領域5に達しているため底面はp領域5でシールドされる。もし、トレンチ溝の底面がp領域5から離れている場合には、p領域31aの形成時(p型不純物の拡散時)に、底面にもp層が形成されるため、底面からの暗電流発生は抑制される。   In the illustrated embodiment, since the bottom surface of the trench groove reaches the p region 5, the bottom surface is shielded by the p region 5. If the bottom surface of the trench groove is separated from the p region 5, a p layer is also formed on the bottom surface when the p region 31 a is formed (diffusion of p-type impurities). Occurrence is suppressed.

斯かる構造の裏面照射型固体撮像素子30では、マイクロレンズ15,カラーフィルタ層14を通して被写体からの光が入射すると、この入射光はn領域3方向に集光されながら半導体基板2内に侵入し、光電変換されて信号電荷(電子)を発生させる。   In the back-illuminated solid-state imaging device 30 having such a structure, when light from a subject enters through the microlens 15 and the color filter layer 14, the incident light enters the semiconductor substrate 2 while being condensed in the direction of the n region 3. Then, photoelectric conversion is performed to generate signal charges (electrons).

この信号電荷は、素子分離領域31の空洞31bによって、横方向(隣接画素方向)への拡散が抑制され、信号電荷の捕獲領域3aに捕獲され、垂直電荷転送路のn領域4に読み出され、外部に撮像画像信号として出力される。一方を、光電変換により発生した正孔は、p層13に捕捉され、グランドに廃棄される。   This signal charge is suppressed in the lateral direction (adjacent pixel direction) by the cavity 31b of the element isolation region 31, is captured by the signal charge capture region 3a, and is read out to the n region 4 of the vertical charge transfer path. The image is output to the outside as a captured image signal. On the other hand, holes generated by photoelectric conversion are captured by the p layer 13 and discarded to the ground.

入射光のうちの一部は、半導体基板2内で隣接画素方向に直接漏れ込もうとするが、この光は、素子分離領域31の中央の空洞31bの内周面(裏面に対して垂直な方向の面)によって反射され、隣接画素への漏れ込みが抑制される。   Some of the incident light tends to leak directly into the adjacent pixel direction in the semiconductor substrate 2, but this light is the inner peripheral surface (perpendicular to the back surface) of the cavity 31 b in the center of the element isolation region 31. And the leakage to the adjacent pixels is suppressed.

この様に、本実施形態に係る裏面照射型固体撮像素子30では、隣接画素への信号電荷の拡散,入射光の漏れ込みが共に抑制されるため、解像度が高く色SNの高い撮像画像信号を得ることが可能となる。   As described above, in the backside illumination type solid-state imaging device 30 according to the present embodiment, the diffusion of signal charges to adjacent pixels and the leakage of incident light are both suppressed, so that a captured image signal having a high resolution and a high color SN can be obtained. Can be obtained.

図2は、本発明の第2実施形態に係る裏面照射型固体撮像素子40の要部断面模式図である。本実施形態の裏面照射型固体撮像素子40の構造は、第1実施形態と基本的に同じである。異なる点は、第1実施形態では素子分離領域31に空洞31bを残したが、本実施形態では、素子分離領域41を、側壁の薄いp領域41aと、空洞(図1の空洞31b部分)を埋めた導電材41bとで構成した点である。   FIG. 2 is a schematic cross-sectional view of an essential part of a backside illumination type solid-state imaging device 40 according to the second embodiment of the present invention. The structure of the backside illumination type solid-state imaging device 40 of this embodiment is basically the same as that of the first embodiment. The difference is that in the first embodiment, the cavity 31b is left in the element isolation region 31, but in this embodiment, the element isolation region 41 is divided into a p region 41a having a thin sidewall and a cavity (the cavity 31b portion in FIG. 1). This is a point constituted by the buried conductive material 41b.

導電材41bは、遮光性と導電性を有する金属が良く、例えば、配線や遮光膜として用いるアルミニウム,タングステン,コバルト,ニッケル,モリブデン等が好ましい。   The conductive material 41b is preferably a light-shielding and conductive metal, and for example, aluminum, tungsten, cobalt, nickel, molybdenum or the like used as a wiring or a light-shielding film is preferable.

本実施形態によれば、遮光性を有する金属で素子分離領域41の空洞が埋められるため、第1実施形態に比較して、光の直接的な隣接画素方向への侵入を更に阻止することが可能となる。また、図示を省略した配線等を通して外部から任意電界を導電材41bに印加すれば、この電界は基板2の深部まで印加され、トレンチ界面付近のポテンシャルを変調することができる。この結果、トレンチ溝の界面のp領域41aの暗電流を更に効果的に抑制することが可能となる。   According to the present embodiment, since the cavity of the element isolation region 41 is filled with a light-shielding metal, it is possible to further prevent light from directly entering the adjacent pixel direction as compared with the first embodiment. It becomes possible. Further, if an arbitrary electric field is applied to the conductive material 41b from the outside through a wiring or the like not shown, this electric field is applied to the deep part of the substrate 2 and the potential near the trench interface can be modulated. As a result, the dark current in the p region 41a at the interface of the trench groove can be more effectively suppressed.

図3(a)は、本発明の第3実施形態に係る裏面照射型固体撮像素子40の要部断面および配線図である。また、図3(b)は図3(a)のA―B―C線断面位置におけるポテンシャル図である。   FIG. 3A is a cross-sectional view of a main part and a wiring diagram of a backside illumination type solid-state imaging device 40 according to the third embodiment of the present invention. FIG. 3B is a potential diagram at the cross-sectional position along the line ABC in FIG.

本実施形態の裏面照射型固体撮像素子40の構造は、第2実施形態と同じである。異なる点は、配線44及びp層13を通して、基板2の深部まで導電材41bを通して印加する電圧を、低電圧と高電圧に切り替えるスイッチ45を設けた点である。   The structure of the backside illumination type solid-state imaging device 40 of the present embodiment is the same as that of the second embodiment. The difference is that a switch 45 is provided to switch the voltage applied through the conductive material 41b through the wiring 44 and the p layer 13 to the deep part of the substrate 2 between a low voltage and a high voltage.

配線44と各導電材41bとの接続は、基板2の裏面表面に配線を蒸着などで行っても良く、また、p層13を介して行っても良い。更に、全画素において配線44と各導電材41bとを接続しても、また、列毎,行毎,部分領域の画素毎に配線44及びスイッチ45を別々に設けても良い。   The connection between the wiring 44 and each conductive material 41 b may be performed by vapor deposition or the like on the back surface of the substrate 2, or may be performed through the p layer 13. Furthermore, the wiring 44 and each conductive material 41b may be connected in all pixels, or the wiring 44 and the switch 45 may be provided separately for each column, row, and partial region pixel.

斯かる配線接続を持つ裏面照射型固体撮像素子40では、所定のタイミングで所定の高電圧を導電材41bに印加することで、電子捕獲領域3aの電荷を配線44を介して基板外部に排出でき、電子シャッタ機能を実現することが可能となる。例えば、行毎の画素の電子捕獲領域3a電荷を排出すれば、ローリングシャッタが実現され、全画素の電荷を一度に排出すれば、静止画像の撮影に適した動作をさせることが可能となる。   In the back-illuminated solid-state imaging device 40 having such a wiring connection, by applying a predetermined high voltage to the conductive material 41b at a predetermined timing, the charge in the electron capture region 3a can be discharged to the outside of the substrate via the wiring 44. An electronic shutter function can be realized. For example, if the charge of the electron capture region 3a of the pixel for each row is discharged, a rolling shutter is realized, and if the charge of all the pixels is discharged at once, an operation suitable for still image shooting can be performed.

配線44を引き出す電極を固体撮像素子チップに設ける場合、固体撮像素子の受光面の周囲に設けられる無効画素の領域に設けることで、電子シャッタ用配線を効率的に製造することができる。   When the electrode for drawing the wiring 44 is provided in the solid-state imaging device chip, the electronic shutter wiring can be efficiently manufactured by providing it in the area of the invalid pixel provided around the light receiving surface of the solid-state imaging device.

図4は、本発明の第4実施形態に係る裏面照射型固体撮像素子50の要部断面模式図である。本実施形態の裏面照射型固体撮像素子50の構造は、第1実施形態と基本的に同じである。異なる点は、第1実施形態では、素子分離領域31の中央に空洞部31bを残したが、本実施形態では、素子分離領域51を、側壁の薄いp領域51aと、空洞(図1の空洞31b部分)を埋めた光吸収部材51bとで構成した点である。   FIG. 4 is a schematic cross-sectional view of an essential part of a backside illumination type solid-state imaging device 50 according to the fourth embodiment of the present invention. The structure of the backside illumination type solid-state imaging device 50 of this embodiment is basically the same as that of the first embodiment. The difference is that in the first embodiment, the cavity 31b is left in the center of the element isolation region 31, but in this embodiment, the element isolation region 51 is divided into a p region 51a having a thin sidewall and a cavity (the cavity of FIG. 1). 31b portion) and a light absorbing member 51b embedded therein.

光吸収部材51bは、例えばカラーフィルタ材料を用いる。即ち、赤色画素と緑色画素との間に設けられる素子分離領域51で用いる光吸収部材は、赤色カラーフィルタ材と青色カラーフィルタ材料を混合した材料を用いる。これにより、赤色画素と緑色画素の相互間の光の漏れを抑制することが可能となる。   For example, a color filter material is used for the light absorbing member 51b. That is, the light absorbing member used in the element isolation region 51 provided between the red pixel and the green pixel uses a material obtained by mixing a red color filter material and a blue color filter material. As a result, light leakage between the red pixel and the green pixel can be suppressed.

尚、上述した第2,第3,第4実施形態を別々に説明したが、これら実施形態を複数組み合わせた裏面照射型固体撮像素子とすることも可能である。   Although the second, third, and fourth embodiments described above have been described separately, a back-illuminated solid-state imaging device that combines a plurality of these embodiments can also be provided.

図5は、上述した実施形態に係る裏面照射型固体撮像素子を製造するときの主要製造工程図である。先ず、図5(a)に示す様に、半導体基板(ウエハ)2を用意し、これに、レーザ光を用いたリソグラフィ技術によってトレンチ溝55を升目状に設ける(図5(b))。このとき、特許文献1,2に記載されている様な電位勾配を基板2の厚さ方向に形成しても良い。   FIG. 5 is a main manufacturing process diagram when manufacturing the back-illuminated solid-state imaging device according to the above-described embodiment. First, as shown in FIG. 5A, a semiconductor substrate (wafer) 2 is prepared, and trench grooves 55 are formed in a grid shape by lithography using laser light (FIG. 5B). At this time, a potential gradient as described in Patent Documents 1 and 2 may be formed in the thickness direction of the substrate 2.

次の図5(c)では、p型不純物を熱拡散させてトレンチ溝55内の内周面にp領域(第1,第2,第3,第4実施形態の31a,41a,51a)を形成する。そして、その後に図5(d)に示す様に、トレンチ溝55を形成した面に、別の半導体ウエハ等の支持基板56として張り合わせる。   5C, p-type impurities are thermally diffused to form p regions (31a, 41a, and 51a in the first, second, third, and fourth embodiments) on the inner peripheral surface in the trench groove 55. In FIG. Form. Then, as shown in FIG. 5D, the support substrate 56 such as another semiconductor wafer is bonded to the surface where the trench groove 55 is formed.

次の図5(e)では、基板2の表面(支持基板56の反対側の面)を研磨して基板2の厚さを5μmから10μm程度にし、次の図5(f)では、削った表面側に、実施形態で説明したn領域3,4,電極膜7等を形成し、裏面照射型固体撮像素子の表面側構造を造る。次の図5(g)では、支持基板56を全て削り、図5(h)に示す様に、裏面照射型固体撮像素子を取り出す。   In the next FIG. 5 (e), the surface of the substrate 2 (surface opposite to the support substrate 56) is polished so that the thickness of the substrate 2 is about 5 μm to 10 μm. In FIG. On the front surface side, the n regions 3, 4, the electrode film 7, etc. described in the embodiment are formed, and the front surface structure of the backside illumination type solid-state imaging device is formed. Next, in FIG. 5G, the support substrate 56 is all removed, and the back-illuminated solid-state imaging device is taken out as shown in FIG.

尚、図5の説明では、基板厚さ方向の電位勾配を図5(b)の工程で製造したが、図5(g)後の工程で製造することも可能である。また、p型不純物の拡散も、図5(c)ではなく、図5(h)の工程で行うことも可能である。   In the description of FIG. 5, the potential gradient in the substrate thickness direction is manufactured in the process of FIG. 5B, but it can also be manufactured in the process after FIG. Also, the diffusion of the p-type impurity can be performed not by FIG. 5C but by the process of FIG. 5H.

以上述べた様に、本発明の各実施形態によれば、受光面積を表面照射型に比べて広くすることができ、また、量子効率が高く高感度であるという利点を持つ裏面照射型固体撮像素子における隣接画素間で発生する信号電荷の拡散や光の漏れ込みをトレンチ溝によって効果的に抑制できるため、高解像度で混色の少ない品質の高い被写体画像を撮像することが可能となる。   As described above, according to the embodiments of the present invention, the light receiving area can be widened compared to the front-illuminated type, and the back-illuminated solid-state imaging has the advantages of high quantum efficiency and high sensitivity. Since the diffusion of signal charges and light leakage generated between adjacent pixels in the element can be effectively suppressed by the trench groove, it is possible to capture a high-quality subject image with high resolution and little color mixing.

本発明に係る裏面照射型固体撮像素子は、混色が少なく高解像度の被写体画像を撮像できるため、デジタルカメラ等に搭載する固体撮像素子として有用である。   The backside illumination type solid-state imaging device according to the present invention is useful as a solid-state imaging device mounted on a digital camera or the like because it can capture a high-resolution subject image with little color mixing.

本発明の第1実施形態に係る裏面照射型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the backside illumination type solid-state image sensor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る裏面照射型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the backside illumination type solid-state image sensor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る裏面照射型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the backside illumination type solid-state image sensor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る裏面照射型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the backside illumination type solid-state image sensor which concerns on 4th Embodiment of this invention. 本発明の実施形態に係る裏面照射型固体撮像素子の要部製造工程図である。It is a principal part manufacturing-process figure of the back irradiation type solid-state image sensor which concerns on embodiment of this invention. 従来の裏面照射型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional view of the conventional back irradiation type solid-state image sensor. 図6のVII―VII線断面に沿うポテンシャル図である。FIG. 7 is a potential diagram along a section VII-VII in FIG. 6.

符号の説明Explanation of symbols

2 半導体基板
3 n領域(電子捕獲領域)
4 n領域(電荷転送路の埋め込みチャネル)
14 カラーフィルタ
15 マイクロレンズ
30,40,50 裏面照射型固体撮像素子
31,41,51 素子分離領域
31a,41a,51a p領域
31b 空洞(溝)部
41b 導電材
51b 光吸収材
2 Semiconductor substrate 3 n region (electron capture region)
4 n region (Built-in channel of charge transfer path)
14 Color filter 15 Microlens 30, 40, 50 Back-illuminated solid-state imaging device 31, 41, 51 Element isolation region 31a, 41a, 51ap region 31b Cavity (groove) portion 41b Conductive material 51b Light absorbing material

Claims (2)

半導体基板の第1面(以下、表面という。)側に二次元アレイ状に複数のフォトダイオードが形成され、該半導体基板の第2面(以下、裏面という。)側から入射した光によって発生した信号電荷を前記フォトダイオードの各々が検出する裏面照射型固体撮像素子において、前記フォトダイオードの各々を隣接する前記フォトダイオードから分離するトレンチ構造の溝を持つ素子分離領域が前記裏面側に形成され、前記溝の中に光を遮断する金属が充填され、前記金属に外部から所定電圧を印加する配線が接続され、前記所定電圧が電子シャッタ時に印加されたとき前記フォトダイオードの蓄積電荷が前素子分離領域の前記金属を通して廃棄されることを特徴とする裏面照射型固体撮像素子。 A plurality of photodiodes are formed in a two-dimensional array on the first surface (hereinafter referred to as the front surface) side of the semiconductor substrate, and generated by light incident from the second surface (hereinafter referred to as the back surface) side of the semiconductor substrate. In the back-illuminated solid-state imaging device in which each of the photodiodes detects a signal charge, an element isolation region having a trench structure groove that separates each of the photodiodes from the adjacent photodiode is formed on the back surface side, The groove is filled with a metal that blocks light, and a wiring for applying a predetermined voltage from the outside is connected to the metal, and when the predetermined voltage is applied at the time of an electronic shutter, the accumulated charge of the photodiode is separated from the previous element. A back-illuminated solid-state imaging device, which is disposed through the metal in a region . 前記所定電圧は、前記溝の内周面電位を安定化させ暗電流発生を抑制する電圧であることを特徴とする請求項1に記載の裏面照射型固体撮像素子。   The backside illuminated solid-state imaging device according to claim 1, wherein the predetermined voltage is a voltage that stabilizes an inner peripheral surface potential of the groove and suppresses dark current generation.
JP2008021202A 2008-01-31 2008-01-31 Back-illuminated solid-state image sensor Expired - Fee Related JP4599417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021202A JP4599417B2 (en) 2008-01-31 2008-01-31 Back-illuminated solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021202A JP4599417B2 (en) 2008-01-31 2008-01-31 Back-illuminated solid-state image sensor

Publications (3)

Publication Number Publication Date
JP2009182223A JP2009182223A (en) 2009-08-13
JP2009182223A5 JP2009182223A5 (en) 2010-08-05
JP4599417B2 true JP4599417B2 (en) 2010-12-15

Family

ID=41035938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021202A Expired - Fee Related JP4599417B2 (en) 2008-01-31 2008-01-31 Back-illuminated solid-state image sensor

Country Status (1)

Country Link
JP (1) JP4599417B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9191637B2 (en) 2013-09-10 2015-11-17 Kabushiki Kaisha Toshiba Solid-state imaging apparatus

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206356A (en) 2008-02-28 2009-09-10 Toshiba Corp Solid-state imaging device and manufacturing method thereof
JP5509846B2 (en) * 2009-12-28 2014-06-04 ソニー株式会社 SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
US9357956B2 (en) * 2010-03-05 2016-06-07 Seiko Epson Corporation Spectroscopic sensor and electronic apparatus
JP2011199037A (en) * 2010-03-19 2011-10-06 Toshiba Corp Solid-state imaging apparatus and method of manufacturing the same
JP5663925B2 (en) 2010-03-31 2015-02-04 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP5536517B2 (en) * 2010-04-14 2014-07-02 浜松ホトニクス株式会社 Solid-state imaging device
JP2012023207A (en) * 2010-07-14 2012-02-02 Toshiba Corp Backside-illuminated solid-state imaging device
JP6299058B2 (en) * 2011-03-02 2018-03-28 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
WO2013145433A1 (en) 2012-03-30 2013-10-03 富士フイルム株式会社 Imaging element and imaging device
TW201405792A (en) 2012-07-30 2014-02-01 Sony Corp Solid-state imaging device, method of manufacturing solid-state imaging device and electronic apparatus
JP5547260B2 (en) * 2012-10-22 2014-07-09 株式会社東芝 Solid-state imaging device
FR2997596B1 (en) * 2012-10-26 2015-12-04 New Imaging Technologies Sas STRUCTURE OF A CMOS ACTIVE PIXEL
JP6278608B2 (en) 2013-04-08 2018-02-14 キヤノン株式会社 Semiconductor device and manufacturing method thereof
JP2016100347A (en) * 2014-11-18 2016-05-30 ソニー株式会社 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP5862753B2 (en) * 2014-12-11 2016-02-16 セイコーエプソン株式会社 Spectroscopic sensor device and electronic device
JP6052353B2 (en) * 2015-07-31 2016-12-27 ソニー株式会社 Solid-state imaging device, manufacturing method, and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150521A (en) * 2003-11-18 2005-06-09 Canon Inc Imaging apparatus and manufacturing method thereof
JP2007096271A (en) * 2005-09-05 2007-04-12 Toshiba Corp Solid state imaging device and its manufacturing method
JP2008258316A (en) * 2007-04-03 2008-10-23 Sharp Corp Solid-state imaging device and its manufacturing method, and electronic information equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278767A (en) * 1989-04-19 1990-11-15 Sony Corp Solid-state image sensing device
JPH0778959A (en) * 1993-09-09 1995-03-20 Sony Corp Solid state image sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150521A (en) * 2003-11-18 2005-06-09 Canon Inc Imaging apparatus and manufacturing method thereof
JP2007096271A (en) * 2005-09-05 2007-04-12 Toshiba Corp Solid state imaging device and its manufacturing method
JP2008258316A (en) * 2007-04-03 2008-10-23 Sharp Corp Solid-state imaging device and its manufacturing method, and electronic information equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9191637B2 (en) 2013-09-10 2015-11-17 Kabushiki Kaisha Toshiba Solid-state imaging apparatus

Also Published As

Publication number Publication date
JP2009182223A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP4599417B2 (en) Back-illuminated solid-state image sensor
KR101893325B1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP4621719B2 (en) Back-illuminated image sensor
JP4751865B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP4826111B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
TWI387101B (en) Solid-state imaging device and manufacturing method thrreof
JP4839008B2 (en) Single-plate color solid-state image sensor
WO2013065569A1 (en) Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
JP2012169530A (en) Solid state image sensor, manufacturing method therefor, and electronic apparatus
JP2011003860A (en) Solid-state imaging device and manufacturing method thereof, and electronic apparatus
JP2011216672A (en) Solid-state image pickup device, method for manufacturing solid-state image pickup device, and electronic apparatus
JP2003338615A (en) Solid-state image pickup device
JP2015106621A (en) Solid-state imaging element and manufacturing method, and electronic equipment
JP2010098219A (en) Backside-illuminated solid-state image pickup device
JP2013229446A (en) Solid-state image sensor and method for manufacturing the same
JP5353965B2 (en) Method for manufacturing solid-state imaging device
JP5287923B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
TW202101743A (en) Imaging element and imaging device
JP2021193718A (en) Imaging device
JP5246304B2 (en) Method for manufacturing solid-state imaging device
JP4751803B2 (en) Back-illuminated image sensor
JP5282797B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
TWI525801B (en) Image sensor with doped transfer gate
JP2015164210A (en) Solid state image sensor, and electronic apparatus
JP5943025B2 (en) Solid-state imaging device and electronic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100618

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Ref document number: 4599417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees