JP4568920B2 - Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor - Google Patents
Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor Download PDFInfo
- Publication number
- JP4568920B2 JP4568920B2 JP00869599A JP869599A JP4568920B2 JP 4568920 B2 JP4568920 B2 JP 4568920B2 JP 00869599 A JP00869599 A JP 00869599A JP 869599 A JP869599 A JP 869599A JP 4568920 B2 JP4568920 B2 JP 4568920B2
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- aqueous electrolyte
- secondary battery
- positive electrode
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池及びそれに用いる非水電解液に関するものであり、特に低温特性、長期安定性、サイクル特性等に優れた非水電解液二次電池及びそれに用いる非水電解液に関するものである。
【0002】
【従来の技術】
近年、電気製品の軽量化、小型化に伴い、高いエネルギー密度を有するリチウム二次電池の開発が進められ、一部は既に実用に供されている。現在、開発が進められているリチウム二次電池は、負極活物質としてリチウム金属やリチウムを吸蔵・放出する黒鉛を用い、正極活物質としてLiCoO2 、 LiNiO2 、LiMn2 O4 などのリチウム遷移金属複合酸化物を用い、電解液として有機溶媒にリチウム塩を溶解した非水電解液を用いたものである。なかでも安全性等の点からして黒鉛を負極活物質とするリチウム二次電池が有望と考えられている。
【0003】
【発明が解決しようとする課題】
非水電解液を構成する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン等のラクトンなど種々のものが提案されている。なかでもプロピレンカーボネートは誘電率が高く、リチウム塩をよく溶解し、しかも融点が低く、低温下でも高い電気伝導度を有する電解液を与えるので、非水電解液の溶媒として最も好ましいものの一つと考えられている。しかしながらプロピレンカーボネートにリチウム塩を溶解してなる非水電解液は、負極活物質として結晶性の高い黒鉛又は黒鉛化炭素と組合せて用いると、充電に際しプロピレンカーボネートが分解するという問題がある。
【0004】
従って黒鉛と組合せて用いても安定で、かつ高い電気伝導度を有する非水電解液を求めて検討が進められている。その一つはプロピレンカーボネートに代えてエチレンカーボネートを用いることである。しかしエチレンカーボネートは凝固点が36.4℃と高いので、単独では用いられず、低粘度溶媒と混合して用いる方向で検討が進められている。低粘度溶媒は一般に沸点が低いので、大量に用いると安全性の点で問題があり、少量しか用いないと低温での電気伝導度及び粘度の点で問題がある。このような問題点を解決する溶媒の一つとしてエチレンカーボネートとジエチルカーボネートとの混合溶媒を用いた非水電解液が提案されているが、このものも電池のサイクル特性等の点で未だ満足すべきものではない。
【0005】
上記のような問題点を解決するものとして、特開平5−74486号及び特開平8−45545号公報には、ビニレンカーボネートを含む有機溶媒にリチウム塩を溶解した非水電解液を用いることが提案されている。ビニレンカーボネートは負極表面に安定な保護皮膜を形成するため、電池の保存特性が良好であるとされている。
【0006】
ビニレンカーボネートの製法としては、最も一般的なものとしてはクロロエチレンカーボネートの脱塩化水素による方法が知られているが、本発明者らの検討によれば、この方法により製造したビニレンカーボネートを含む有機溶媒にリチウム塩を溶解した非水電解液を用いた二次電池は、満足すべきサイクル性を示さない。本発明者らの検討によれば、その原因はビニレンカーボネート中に含まれている原料由来の有機ハロゲン化物が酸化分解することによるものと推定される。従って本発明は、このようなビニレンカーボネートを溶媒の一部とする非水電解液を用いても、サイクル特性の良い非水電解液二次電池及びそれに用いる非水電解液を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る非水電解液二次電池は、リチウムを吸蔵・放出することが可能な負極及び正極をセパレーターを介して対向させてなる電極組立体、並びに非水電解液を容器に収容してなる非水電解液二次電池において、非水電解液が、クロロエチレンカーボネートの脱塩化水素により製造され、該クロロエチレンカーボネート由来の有機ハロゲン化物を1ppm以上50重量%以下の割合で含むビニレンカーボネートを0.1〜30重量%含む、環状カーボネート、鎖状カーボネート、ラクトン、鎖状カルボン酸エステル、環状エーテル、鎖状エーテル及び含硫黄化合物からなる群より選ばれる非水溶媒にリチウム塩としてLiPF6を溶解してなるものであり、かつ正極集電体及びこれと電気的に接続されている部分のうち非水電解液と接触する部分が、弁金属又はその合金で構成されていることを特徴とするものである。
【0008】
【発明の実施の形態】
本発明に係る非水電解液二次電池に用いられる非水電解液は、ビニレンカーボネートを含む非水溶媒にリチウム塩を溶解して調製される。ビニレンカーボネートには通常、クロロエチレンカーボネート、ジクロロエチレンカーボネート、クロロメチルメチルカーボネート、クロロエタノール等の有機ハロゲン化物が含まれている。最も一般的なビニレンカーボネートの製法は、前述の如くクロロエチレンカーボネートの脱塩化水素によるものなので、通常のビニレンカーボネートはこの原料由来のクロロエチレンカーボネートを含んでいる。ビニレンカーボネート中のこれらの有機ハロゲン化物の含有率は、通常、1ppm〜50(重量)%である。
【0009】
非水電解液を構成する非水溶媒は、この有機ハロゲン化物を含むビニレンカーボネートと他の有機溶媒とで構成される。非水溶媒に占めるビニレンカーボネートの含有率は0.1〜30重量%であるのが好ましい。0.1重量%未満ではその効果が小さく、逆に30重量%を超える大量では電解液の低温特性が損なわれる恐れがある。ビニレンカーボネートの好ましい含有率は0.1〜20重量%である。
【0010】
ビニレンカーボネートと併用する他の有機溶媒としては、非水電解液の溶媒として知られているエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、メチルエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の鎖状カーボネート、γ−ブチロラクトン、γ−バレロラクトン等のラクトン、酢酸メチル、プロピオン酸メチル等の鎖状カルボン酸エステル、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル、ジメトキシエタン、ジエトキシエタン等の鎖状エーテル、スルフォラン、ジエチルスルホン等の含硫黄化合物などが用いられる。これらのなかでもカーボネートを用いるのが好ましい。通常は環状カーボネート及び鎖状カーボネートよりなる群から選ばれたカーボネートとビニレンカーボネートとの合計量が70重量%以上を占める非水溶媒を用いる。この合計量が80重量%以上、特に90重量%以上を占める非水溶媒を用いるのが好ましい。
【0011】
非水溶媒に溶解させる電解質のリチウム塩としては、LiClO4 、LiPF6 、LiBF4 、LiSbF6 等の無機酸リチウム塩、又はLiCF3 SO3 、LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 、LiN(CF3 SO2 )(C4 F9 SO2 )、LiC(CF3 SO2 )3 等の有機酸リチウム塩など、従来から非水電解液の電解質として用いられているものを用いればよい。これらは所望ならばいくつかを併用してもよい。非水電解液中のリチウム塩の濃度は通常0.5〜2モル/リットルである。
【0012】
本発明に係る非水電解液二次電池の正極及び負極としては常用のものを用いることができる。正極活物質としては、LiCoO2 、LiNiO2 、LiMn2 O4 等のリチウムを吸蔵・放出可能なリチウム遷移金属複合酸化物が用いられる。正極用集電体としては、アルミニウム、チタン、タンタル等の弁金属又はその合金が用いられる。なかでもアルミニウム又はその合金を用いるのが好ましい。
ステンレス鋼などのような弁金属以外の金属を用いると、これと接触する非水電解液中の有機ハロゲン化物が酸化分解するので好ましくない。
【0013】
負極活物質としては、黒鉛を用いるのが好ましい。黒鉛としては人造黒鉛及び精製天然黒鉛のいずれをも用いることができる。また、これらの黒鉛にピッチなどで表面処理したものを用いるのも好ましい。黒鉛のなかでも好ましいのは、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.34nm、特に0.335〜0.337nmのものである。なお、所望ならば、公知の他の負極活物質を黒鉛の代りに用いたり、黒鉛と併用することもできる。このような負極活物質としては、リチウム金属やその合金、非黒鉛系炭素、酸化錫や酸化珪素等の金属酸化物などが挙げられる。負極用集電体としては、銅、ニッケル、ステンレス鋼などが用いられる。なかでも銅を用いるのが好ましい。
【0014】
正極と負極とを隔てるセパレーターとしては、ポリエチレン、ポリプロピレン等のポリオレフィンの多孔性フイルム又は不織布などが用いられる。
電池の構造は、シート状の電極とセパレーターとを渦巻き状に巻いたシリンダータイプ、薄片状の電極とセパレーターとを積層したコインタイプなど、従来公知の任意の構造とすることができる。
【0015】
上記の正極、負極及びセパレーターから成る電極組立体を収容する容器、すなわち電池の缶体としては、常用のステンレス鋼製のものを用いることができる。
しかし本発明においては、この缶体及び缶体内に収容されるリード線や安全弁などのうち正極と電気的に接続されていて、かつ非水電解液と接触する部分は、弁金属又はその合金で構成する。従って常用のステンレス鋼製の缶体を用いる場合には、その正極側の内面を弁金属で被覆する。このようにすることにより、これと接触する非水電解液中のビニレンカーボネートに同伴している有機ハロゲン化物の酸化分解を防止することができる。また、アルミニウムやアルミニウム合金等の弁金属で缶体を構成してもよい。
【0016】
本発明に係る非水電解液二次電池は上記したような構成を有しているので、非水電解液の分解が抑制され、長期間に亘り安定した性能を発揮することができる。これは非水電解液中のビニレンカーボネートが負極上に安定な保護皮膜を形成して、負極上での非水電解液の分解を抑制することと、正極集電体やこれと電気的に接続されていてかつ非水電解液と接触する部分が弁金属で構成されていてその表面が酸化皮膜で覆われているので、これらと接触する非水電解液中の有機ハロゲン化物の酸化分解が抑制されることによるものと考えられる。
【0017】
【実施例】
以下に実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0018】
ビニレンカーボネートの調製;
ジムロート及び滴下ロートを備えた200mlのガラス製四つ口フラスコに、クロロエチレンカーボネート52g(424mmol)及びエチルエーテル52gを仕込んだ。窒素雰囲気下でこの混合液を攪拌しながら、滴下ロートからトリエチルアミン49g(484mmol)を約30分間かけて滴下した。次いで液温を30℃として、反応液をガスクロマトグラフィーで分析することにより反応の進行を追跡しながら、35時間反応させた。得られたビニレンカーボネートには、33重量%のクロロエチレンカーボネートが含まれていた。
【0019】
正極の調製;
LiCoO2 85重量部にカーボンブラック6重量部及びポリフッ化ビニリデン9重量部を配合してよく混合した。これにN−メチル−2−ピロリドンを加えてスラリーとし、これを厚さ20μmのアルミニウム箔上に均一に塗布した。乾燥後、直径12.5mmの円板状に打抜いて正極とした。
【0020】
負極の調製;
X線回折における格子面(002面)のd値が0.336nmである人造黒鉛粉末KS−44(ティムカル社製品)94重量部に、ポリフッ化ビニリデン6重量部を配合してよく混合した。これにN−メチル−2−ピロリドンを加えてスラリーとし、これを厚さ18μmの銅箔上に均一に塗布した。乾燥後、直径12.5mmの円板状に打抜いて負極とした。
【0021】
非水電解液の調製;
六フッ化リン酸リチウム(LiPF6 )を乾燥アルゴン雰囲気中でよく乾燥した。プロピレンカーボネートと上記で調製したビニレンカーボネートとの9:1(重量比)の混合溶媒中に、この六フッ化リン酸リチウムを1モル/リットルの濃度となるように溶解して非水電解液とした。
【0022】
電池の製作;
ステンレス鋼製の正極缶に正極を収容し、その上に非水電解液を含浸させたセパレーター(ポリプロピレンの微孔フイルム)及び負極を順次載置した。この正極缶とステンレス鋼製の封孔板とを、絶縁性のガスケットを介してかしめて密封し、コイン型電池を製作した。なお、実施例では正極を収容する前にステンレス鋼製の正極缶の内面をアルミニウム箔で被覆して、非水電解液が正極缶に接触しないようにした。
【0023】
充放電試験;
上記で製作した電池を用いて、25℃、0.5mAの定電流で充電終止電圧4.2V、放電終止電圧2.5Vで充放電試験を行った。結果を図−1に示す。ステンレス鋼製の正極缶の内面をアルミニウム箔で被覆して非水電解液が正極缶に接触しないようにした実施例の電池では、安定して充放電を反復することができた。これに対し、ステンレス鋼製の正極缶に非水電解液が接触する比較例の電池では、2サイクル目までしか充放電できなかった。
【図面の簡単な説明】
【図1】図−1は正極集電体としてアルミニウムを用い、かつステンレス鋼製の正極缶の内面をアルミニウム箔で被覆した本発明に係る電池と、正極缶の内面をアルミニウム箔で被覆しなかった以外は、全く同様にして製作した電池との充放電試験の結果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte used therein , and in particular, a non-aqueous electrolyte secondary battery excellent in low temperature characteristics, long-term stability, cycle characteristics, and the like, and a non-aqueous electrolyte used therein It is about.
[0002]
[Prior art]
In recent years, with the reduction in weight and size of electrical products, development of lithium secondary batteries having high energy density has been promoted, and some of them have already been put into practical use. Currently developed lithium secondary batteries use lithium metal or graphite that absorbs and releases lithium as the negative electrode active material, and lithium transition metals such as LiCoO 2, LiNiO 2 , and LiMn 2 O 4 as the positive electrode active material. A composite oxide is used, and a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used as an electrolytic solution. Of these, lithium secondary batteries using graphite as a negative electrode active material are considered promising from the viewpoint of safety and the like.
[0003]
[Problems to be solved by the invention]
As the organic solvent constituting the non-aqueous electrolyte, various solvents such as cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; and lactones such as γ-butyrolactone have been proposed. ing. Among these, propylene carbonate is considered to be one of the most preferable solvents for non-aqueous electrolytes because it has a high dielectric constant, dissolves lithium salts well, has a low melting point, and provides an electrolytic solution having high electrical conductivity even at low temperatures. It has been. However, when a non-aqueous electrolyte obtained by dissolving a lithium salt in propylene carbonate is used in combination with graphite or graphitized carbon having high crystallinity as a negative electrode active material, there is a problem that propylene carbonate decomposes upon charging.
[0004]
Therefore, studies are being made for a non-aqueous electrolyte solution that is stable even when used in combination with graphite and has high electric conductivity. One of them is to use ethylene carbonate instead of propylene carbonate. However, since ethylene carbonate has a high freezing point of 36.4 ° C., it is not used alone, and studies are being made in the direction of using it mixed with a low-viscosity solvent. A low-viscosity solvent generally has a low boiling point, so that when used in a large amount, there is a problem in terms of safety, and when only a small amount is used, there is a problem in terms of electrical conductivity and viscosity at a low temperature. A non-aqueous electrolyte using a mixed solvent of ethylene carbonate and diethyl carbonate has been proposed as one of the solvents for solving such problems. However, this solution is still satisfactory in terms of battery cycle characteristics. Not kimono.
[0005]
In order to solve the above problems, JP-A-5-74486 and JP-A-8-45545 propose to use a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent containing vinylene carbonate. Has been. Since vinylene carbonate forms a stable protective film on the negative electrode surface, it is said that the storage characteristics of the battery are good.
[0006]
As the most general method for producing vinylene carbonate, a method using dehydrochlorination of chloroethylene carbonate is known, but according to the study by the present inventors, an organic containing vinylene carbonate produced by this method is known. A secondary battery using a non-aqueous electrolyte in which a lithium salt is dissolved in a solvent does not exhibit satisfactory cycle performance. According to the study by the present inventors, the cause is presumed to be due to the oxidative decomposition of the organic halide derived from the raw material contained in the vinylene carbonate. Accordingly, the present invention is that such a well vinylene carbonate with a non-aqueous electrolyte solution as part of the solvent, to provide a non-aqueous electrolyte solution using good nonaqueous electrolyte secondary battery and its cycle-characteristics It is.
[0007]
[Means for Solving the Problems]
A non-aqueous electrolyte secondary battery according to the present invention includes a negative electrode capable of inserting and extracting lithium and an electrode assembly in which a positive electrode is opposed to each other through a separator, and a non-aqueous electrolyte contained in a container. In the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte is produced by dehydrochlorination of chloroethylene carbonate, and contains vinylene carbonate containing an organic halide derived from the chloroethylene carbonate at a ratio of 1 ppm to 50% by weight. LiPF 6 as a lithium salt in a non-aqueous solvent selected from the group consisting of cyclic carbonates, chain carbonates, lactones, chain carboxylic acid esters, cyclic ethers, chain ethers and sulfur-containing compounds, containing 0.1 to 30 % by weight In contact with the non-aqueous electrolyte of the positive electrode current collector and the part electrically connected to the positive electrode current collector The portion to be made is made of a valve metal or an alloy thereof.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery according to the present invention is prepared by dissolving a lithium salt in a non-aqueous solvent containing vinylene carbonate. Vinylene carbonate usually contains organic halides such as chloroethylene carbonate, dichloroethylene carbonate, chloromethyl methyl carbonate, and chloroethanol. Since the most common method for producing vinylene carbonate is by dehydrochlorination of chloroethylene carbonate as described above, ordinary vinylene carbonate contains chloroethylene carbonate derived from this raw material. The content of these organic halides in vinylene carbonate is usually 1 ppm to 50 (weight)%.
[0009]
The non-aqueous solvent constituting the non-aqueous electrolyte is composed of vinylene carbonate containing this organic halide and another organic solvent. The content of vinylene carbonate in the non-aqueous solvent is preferably 0.1 to 30% by weight. If the amount is less than 0.1% by weight, the effect is small. Conversely, if the amount exceeds 30% by weight, the low-temperature characteristics of the electrolytic solution may be impaired. A preferable content of vinylene carbonate is 0.1 to 20% by weight.
[0010]
Other organic solvents used in combination with vinylene carbonate include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, which are known as solvents for non-aqueous electrolytes, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, methyl Chain carbonates such as ethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, lactones such as γ-butyrolactone and γ-valerolactone, chain carboxylic acid esters such as methyl acetate and methyl propionate, tetrahydrofuran, Examples include cyclic ethers such as 2-methyltetrahydrofuran and tetrahydropyran, chain ethers such as dimethoxyethane and diethoxyethane, and sulfur-containing compounds such as sulfolane and diethylsulfone. It is. Among these, it is preferable to use carbonate. Usually, a non-aqueous solvent is used in which the total amount of carbonate and vinylene carbonate selected from the group consisting of cyclic carbonate and chain carbonate accounts for 70% by weight or more. It is preferable to use a non-aqueous solvent in which the total amount is 80% by weight or more, particularly 90% by weight or more.
[0011]
The lithium salt of the electrolyte dissolved in the non-aqueous solvent is an inorganic acid lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiSbF 6 , or LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) 2, LiN (
[0012]
Usable ones can be used as the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery according to the present invention. As the positive electrode active material, a lithium transition metal composite oxide capable of inserting and extracting lithium such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used. As the positive electrode current collector, a valve metal such as aluminum, titanium, or tantalum or an alloy thereof is used. Of these, aluminum or an alloy thereof is preferably used.
Use of a metal other than the valve metal such as stainless steel is not preferable because the organic halide in the non-aqueous electrolyte in contact with the metal is oxidized and decomposed.
[0013]
As the negative electrode active material, graphite is preferably used. As the graphite, both artificial graphite and purified natural graphite can be used. Further, it is also preferable to use those graphites that have been surface-treated with pitch or the like. Among the graphites, the d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method is 0.335 to 0.34 nm, particularly 0.335 to 0.337 nm. It is. If desired, other known negative electrode active materials can be used in place of graphite or in combination with graphite. Examples of such a negative electrode active material include lithium metal and alloys thereof, non-graphite carbon, metal oxides such as tin oxide and silicon oxide. As the current collector for the negative electrode, copper, nickel, stainless steel, or the like is used. Of these, copper is preferably used.
[0014]
As the separator that separates the positive electrode and the negative electrode, a porous film or non-woven fabric of polyolefin such as polyethylene or polypropylene is used.
The structure of the battery may be any conventionally known structure such as a cylinder type in which a sheet-like electrode and a separator are wound in a spiral shape, or a coin type in which a flaky electrode and a separator are laminated.
[0015]
As a container that accommodates the electrode assembly composed of the positive electrode, the negative electrode, and the separator, that is, a battery can, a conventional stainless steel can be used.
However, in the present invention, of the can body and the lead wire and safety valve accommodated in the can body, the portion that is electrically connected to the positive electrode and is in contact with the non-aqueous electrolyte is a valve metal or an alloy thereof. Constitute. Therefore, when using a normal stainless steel can body, the inner surface of the positive electrode side is covered with a valve metal. By doing in this way, the oxidative decomposition | disassembly of the organic halide accompanying the vinylene carbonate in the nonaqueous electrolyte solution which contacts this can be prevented. Moreover, you may comprise a can body with valve metals, such as aluminum and aluminum alloy.
[0016]
Since the non-aqueous electrolyte secondary battery according to the present invention has the above-described configuration, the decomposition of the non-aqueous electrolyte is suppressed and stable performance can be exhibited over a long period of time. This is because vinylene carbonate in the non-aqueous electrolyte forms a stable protective film on the negative electrode to suppress the decomposition of the non-aqueous electrolyte on the negative electrode, and the positive electrode current collector and this are electrically connected The parts that are in contact with the non-aqueous electrolyte are made of valve metal and the surface is covered with an oxide film, so that the oxidative decomposition of organic halides in the non-aqueous electrolyte in contact with these is suppressed. This is thought to be due to
[0017]
【Example】
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
[0018]
Preparation of vinylene carbonate;
A 200 ml glass four-necked flask equipped with a Dim funnel and a dropping funnel was charged with 52 g (424 mmol) of chloroethylene carbonate and 52 g of ethyl ether. While stirring this mixed solution under a nitrogen atmosphere, 49 g (484 mmol) of triethylamine was dropped from the dropping funnel over about 30 minutes. Next, the liquid temperature was set to 30 ° C., and the reaction liquid was analyzed by gas chromatography, followed by reaction for 35 hours while following the progress of the reaction. The obtained vinylene carbonate contained 33% by weight of chloroethylene carbonate.
[0019]
Preparation of the positive electrode;
6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride were mixed with 85 parts by weight of LiCoO 2 and mixed well. N-methyl-2-pyrrolidone was added thereto to form a slurry, which was uniformly coated on an aluminum foil having a thickness of 20 μm. After drying, it was punched into a disc shape having a diameter of 12.5 mm to obtain a positive electrode.
[0020]
Preparation of the negative electrode;
6 parts by weight of polyvinylidene fluoride was mixed well with 94 parts by weight of artificial graphite powder KS-44 (manufactured by Timcal) having a d-value of 0.336 nm in the lattice plane (002 plane) in X-ray diffraction. N-methyl-2-pyrrolidone was added thereto to form a slurry, which was uniformly coated on a copper foil having a thickness of 18 μm. After drying, a negative electrode was punched into a disk shape having a diameter of 12.5 mm.
[0021]
Preparation of a non-aqueous electrolyte;
Lithium hexafluorophosphate (LiPF 6 ) was well dried in a dry argon atmosphere. This lithium hexafluorophosphate was dissolved in a mixed solvent of 9: 1 (weight ratio) of propylene carbonate and vinylene carbonate prepared above so as to have a concentration of 1 mol / liter, and a non-aqueous electrolyte solution was obtained. did.
[0022]
Battery fabrication;
A positive electrode was housed in a stainless steel positive electrode can, and a separator (polypropylene microporous film) impregnated with a nonaqueous electrolyte solution and a negative electrode were sequentially placed thereon. The positive electrode can and the stainless steel sealing plate were caulked and sealed through an insulating gasket to produce a coin-type battery. In addition, in the Example, before accommodating a positive electrode, the inner surface of the positive electrode can made from stainless steel was coat | covered with the aluminum foil, and the nonaqueous electrolyte solution did not contact a positive electrode can.
[0023]
Charge / discharge test;
Using the battery produced as described above, a charge / discharge test was conducted at 25 ° C. and a constant current of 0.5 mA at a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V. The results are shown in FIG. In the battery of the example in which the inner surface of the stainless steel positive electrode can was covered with aluminum foil so that the non-aqueous electrolyte did not contact the positive electrode can, charging and discharging could be stably repeated. On the other hand, in the battery of the comparative example in which the non-aqueous electrolyte is in contact with the stainless steel positive electrode can, charging and discharging were possible only up to the second cycle.
[Brief description of the drawings]
FIG. 1 shows a battery according to the present invention in which aluminum is used as a positive electrode current collector, and the inner surface of a stainless steel positive electrode can is covered with an aluminum foil, and the inner surface of the positive electrode can is not covered with an aluminum foil. 4 is a graph showing the results of a charge / discharge test with a battery manufactured in exactly the same manner.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00869599A JP4568920B2 (en) | 1999-01-18 | 1999-01-18 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00869599A JP4568920B2 (en) | 1999-01-18 | 1999-01-18 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000208169A JP2000208169A (en) | 2000-07-28 |
JP2000208169A5 JP2000208169A5 (en) | 2005-05-19 |
JP4568920B2 true JP4568920B2 (en) | 2010-10-27 |
Family
ID=11700068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00869599A Expired - Fee Related JP4568920B2 (en) | 1999-01-18 | 1999-01-18 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4568920B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3849009A1 (en) | 2016-07-22 | 2021-07-14 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, secondary battery, and module |
US11322780B2 (en) | 2016-07-22 | 2022-05-03 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, secondary battery, and module |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1218425C (en) * | 2000-04-17 | 2005-09-07 | 宇部兴产株式会社 | Nonaqueous electrolyte solution and lithium secondary battery |
JP4618399B2 (en) | 2002-06-11 | 2011-01-26 | 日本電気株式会社 | Secondary battery electrolyte and secondary battery using the same |
CN100585935C (en) * | 2002-07-15 | 2010-01-27 | 宇部兴产株式会社 | Non-aqueous electrolyte and lithium cell |
JP5125559B2 (en) * | 2008-02-04 | 2013-01-23 | 株式会社Gsユアサ | Non-aqueous electrolyte battery and manufacturing method thereof |
JP5169400B2 (en) | 2008-04-07 | 2013-03-27 | Necエナジーデバイス株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5086622A (en) * | 1973-12-07 | 1975-07-12 | ||
JPS62272458A (en) * | 1986-05-20 | 1987-11-26 | Sanyo Electric Co Ltd | Non-aqueous electrolytic solution cell |
JPH04267075A (en) * | 1991-02-21 | 1992-09-22 | Yuasa Corp | Lithium secondary battery |
JPH05326016A (en) * | 1992-05-15 | 1993-12-10 | Sanyo Electric Co Ltd | Nonaqueous electrolytic secondary battery |
JPH06267542A (en) * | 1993-03-12 | 1994-09-22 | Yuasa Corp | Nonaqueous electrolyte battery |
JPH0845545A (en) * | 1994-04-22 | 1996-02-16 | Saft (Soc Accumulateurs Fixes Traction) Sa | Lithium storage battery with carbon anode |
JPH0896852A (en) * | 1994-07-29 | 1996-04-12 | Sony Corp | Nonaqueous electrolytic secondary battery |
JPH09147911A (en) * | 1995-11-22 | 1997-06-06 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
JPH10228895A (en) * | 1997-02-14 | 1998-08-25 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH11283667A (en) * | 1998-03-30 | 1999-10-15 | Sanyo Electric Co Ltd | Lithium ion battery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05174873A (en) * | 1991-12-24 | 1993-07-13 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery resistant to overcharging |
JP3505905B2 (en) * | 1996-03-29 | 2004-03-15 | 住友電気工業株式会社 | Non-aqueous electrolyte battery |
JPH09306542A (en) * | 1996-05-16 | 1997-11-28 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JPH10199328A (en) * | 1997-01-17 | 1998-07-31 | Showa Denko Kk | Polymer solid electrolyte and its manufacturing method and use |
JP3786146B2 (en) * | 1997-01-24 | 2006-06-14 | 株式会社ジーエス・ユアサコーポレーション | Flat battery |
JP3030263B2 (en) * | 1997-05-09 | 2000-04-10 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
-
1999
- 1999-01-18 JP JP00869599A patent/JP4568920B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5086622A (en) * | 1973-12-07 | 1975-07-12 | ||
JPS62272458A (en) * | 1986-05-20 | 1987-11-26 | Sanyo Electric Co Ltd | Non-aqueous electrolytic solution cell |
JPH04267075A (en) * | 1991-02-21 | 1992-09-22 | Yuasa Corp | Lithium secondary battery |
JPH05326016A (en) * | 1992-05-15 | 1993-12-10 | Sanyo Electric Co Ltd | Nonaqueous electrolytic secondary battery |
JPH06267542A (en) * | 1993-03-12 | 1994-09-22 | Yuasa Corp | Nonaqueous electrolyte battery |
JPH0845545A (en) * | 1994-04-22 | 1996-02-16 | Saft (Soc Accumulateurs Fixes Traction) Sa | Lithium storage battery with carbon anode |
JPH0896852A (en) * | 1994-07-29 | 1996-04-12 | Sony Corp | Nonaqueous electrolytic secondary battery |
JPH09147911A (en) * | 1995-11-22 | 1997-06-06 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
JPH10228895A (en) * | 1997-02-14 | 1998-08-25 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH11283667A (en) * | 1998-03-30 | 1999-10-15 | Sanyo Electric Co Ltd | Lithium ion battery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3849009A1 (en) | 2016-07-22 | 2021-07-14 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, secondary battery, and module |
US11322780B2 (en) | 2016-07-22 | 2022-05-03 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, secondary battery, and module |
Also Published As
Publication number | Publication date |
---|---|
JP2000208169A (en) | 2000-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3439085B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4233819B2 (en) | Non-aqueous electrolyte secondary battery | |
US20110179636A1 (en) | Intercalation anode protection for cells with dissolved lithium polysulfides | |
JP2001176548A (en) | Sulfuric ester additive of non-aqueous electrolyte rechargeable battery | |
JP2000188128A (en) | Nonaqueous electrolyte secondary battery | |
JP2011142066A (en) | Lithium secondary battery | |
JP5141582B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2003203674A (en) | Nonaqueous electrolyte secondary cell | |
JP4489207B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP4934917B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor | |
JPH10289731A (en) | Nonaqueous electrolytic battery | |
JP3560119B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4568920B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor | |
JP2003132944A (en) | Nonaqueous system electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
JP3978960B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5117649B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP2011233535A (en) | Nonaqueous electrolyte secondary battery | |
JP4900369B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2008016316A (en) | Nonaqueous electrolyte secondary battery | |
JP2002015768A (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP4288976B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP2004087282A (en) | Nonaqueous electrolytic solution and secondary battery using it | |
JP4197785B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4078864B2 (en) | Negative electrode for secondary battery and secondary battery | |
JP3870584B2 (en) | Non-aqueous electrolyte and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040720 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070914 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100726 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |