JP2000208169A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000208169A
JP2000208169A JP11008695A JP869599A JP2000208169A JP 2000208169 A JP2000208169 A JP 2000208169A JP 11008695 A JP11008695 A JP 11008695A JP 869599 A JP869599 A JP 869599A JP 2000208169 A JP2000208169 A JP 2000208169A
Authority
JP
Japan
Prior art keywords
secondary battery
carbonate
battery according
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11008695A
Other languages
Japanese (ja)
Other versions
JP4568920B2 (en
JP2000208169A5 (en
Inventor
Hitoshi Suzuki
仁 鈴木
Hirofumi Suzuki
裕文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP00869599A priority Critical patent/JP4568920B2/en
Publication of JP2000208169A publication Critical patent/JP2000208169A/en
Publication of JP2000208169A5 publication Critical patent/JP2000208169A5/ja
Application granted granted Critical
Publication of JP4568920B2 publication Critical patent/JP4568920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in a low-temperature characteristic, long-term stability, a cycle characteristic, and the like. SOLUTION: In this nonaqueous electrolyte secondary battery, a container stores an electrode assembly wherein a positive electrode and a negative electrode capable of storing and releasing lithium face to each other through a separator, and a nonaqueous electrolytic solution. The nonaqueous electrolytic solution is a solution of a lithium salt in a nonaqueous solvent partially containing vinylene carbonate containing an organic halide, while the part contacting with the nonaqueous electrolytic solution of both a positive electrode collector and a portion electrically connected to the collector is made of a valve metal or its alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関するものであり、特に低温特性、長期安定性、サイ
クル特性等に優れた非水電解液二次電池に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having excellent low-temperature characteristics, long-term stability and cycle characteristics.

【0002】[0002]

【従来の技術】近年、電気製品の軽量化、小型化に伴
い、高いエネルギー密度を有するリチウム二次電池の開
発が進められ、一部は既に実用に供されている。現在、
開発が進められているリチウム二次電池は、負極活物質
としてリチウム金属やリチウムを吸蔵・放出する黒鉛を
用い、正極活物質としてLiCoO2 、 LiNiO2
LiMn2 4 などのリチウム遷移金属複合酸化物を用
い、電解液として有機溶媒にリチウム塩を溶解した非水
電解液を用いたものである。なかでも安全性等の点から
して黒鉛を負極活物質とするリチウム二次電池が有望と
考えられている。
2. Description of the Related Art In recent years, as electric appliances have become lighter and smaller, development of lithium secondary batteries having a high energy density has been promoted, and some of them have already been put to practical use. Current,
Lithium secondary batteries, which are being developed, use lithium metal or graphite that stores and releases lithium as the negative electrode active material, and LiCoO 2, LiNiO 2 ,
A lithium transition metal composite oxide such as LiMn 2 O 4 is used, and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent is used as an electrolyte. Among them, lithium secondary batteries using graphite as a negative electrode active material are considered to be promising from the viewpoint of safety and the like.

【0003】[0003]

【発明が解決しようとする課題】非水電解液を構成する
有機溶媒としては、エチレンカーボネート、プロピレン
カーボネート等の環状カーボネート;ジメチルカーボネ
ート、ジエチルカーボネート、メチルエチルカーボネー
ト等の鎖状カーボネート;γ−ブチロラクトン等のラク
トンなど種々のものが提案されている。なかでもプロピ
レンカーボネートは誘電率が高く、リチウム塩をよく溶
解し、しかも融点が低く、低温下でも高い電気伝導度を
有する電解液を与えるので、非水電解液の溶媒として最
も好ましいものの一つと考えられている。しかしながら
プロピレンカーボネートにリチウム塩を溶解してなる非
水電解液は、負極活物質として結晶性の高い黒鉛又は黒
鉛化炭素と組合せて用いると、充電に際しプロピレンカ
ーボネートが分解するという問題がある。
The organic solvent constituting the non-aqueous electrolyte includes cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; γ-butyrolactone and the like. Various lactones have been proposed. Among them, propylene carbonate is considered to be one of the most preferred solvents for non-aqueous electrolytes because it has a high dielectric constant, dissolves lithium salts well, and has a low melting point and gives an electrolyte with high electrical conductivity even at low temperatures. Have been. However, when a non-aqueous electrolyte obtained by dissolving a lithium salt in propylene carbonate is used in combination with highly crystalline graphite or graphitized carbon as a negative electrode active material, there is a problem that propylene carbonate is decomposed during charging.

【0004】従って黒鉛と組合せて用いても安定で、か
つ高い電気伝導度を有する非水電解液を求めて検討が進
められている。その一つはプロピレンカーボネートに代
えてエチレンカーボネートを用いることである。しかし
エチレンカーボネートは凝固点が36.4℃と高いの
で、単独では用いられず、低粘度溶媒と混合して用いる
方向で検討が進められている。低粘度溶媒は一般に沸点
が低いので、大量に用いると安全性の点で問題があり、
少量しか用いないと低温での電気伝導度及び粘度の点で
問題がある。このような問題点を解決する溶媒の一つと
してエチレンカーボネートとジエチルカーボネートとの
混合溶媒を用いた非水電解液が提案されているが、この
ものも電池のサイクル特性等の点で未だ満足すべきもの
ではない。
[0004] Therefore, studies are being made on non-aqueous electrolyte solutions which are stable even when used in combination with graphite and have high electrical conductivity. One of them is to use ethylene carbonate instead of propylene carbonate. However, since ethylene carbonate has a high freezing point of 36.4 ° C., it is not used alone, and is being studied in the direction of mixing with a low-viscosity solvent. Since low-viscosity solvents generally have a low boiling point, there is a problem in terms of safety when used in large quantities,
If only a small amount is used, there is a problem in terms of electric conductivity and viscosity at low temperatures. A non-aqueous electrolyte using a mixed solvent of ethylene carbonate and diethyl carbonate has been proposed as one of the solvents for solving such problems. However, such a solvent is still not satisfactory in terms of battery cycle characteristics and the like. Not a kimono.

【0005】上記のような問題点を解決するものとし
て、特開平5−74486号及び特開平8−45545
号公報には、ビニレンカーボネートを含む有機溶媒にリ
チウム塩を溶解した非水電解液を用いることが提案され
ている。ビニレンカーボネートは負極表面に安定な保護
皮膜を形成するため、電池の保存特性が良好であるとさ
れている。
[0005] To solve the above-mentioned problems, Japanese Patent Laid-Open Nos. Hei 5-74486 and Hei 8-45545 have been proposed.
Japanese Patent Application Laid-Open Publication No. H11-163840 proposes to use a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent containing vinylene carbonate. Since vinylene carbonate forms a stable protective film on the surface of the negative electrode, it is said that the battery has excellent storage characteristics.

【0006】ビニレンカーボネートの製法としては、最
も一般的なものとしてはクロロエチレンカーボネートの
脱塩化水素による方法が知られているが、本発明者らの
検討によれば、この方法により製造したビニレンカーボ
ネートを含む有機溶媒にリチウム塩を溶解した非水電解
液を用いた二次電池は、満足すべきサイクル特性を示さ
ない。本発明者らの検討によれば、その原因はビニレン
カーボネート中に含まれている原料由来の有機ハロゲン
化物が酸化分解することによるものと推定される。従っ
て本発明は、このようなビニレンカーボネートを溶媒の
一部とする非水電解液を用いても、サイクル特性の良い
リチウム二次電池を提供しようとするものである。
As a method of producing vinylene carbonate, the most common method is the method of dechlorination of chloroethylene carbonate. According to the study of the present inventors, the vinylene carbonate produced by this method is known. A secondary battery using a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent containing is not satisfactory in cycle characteristics. According to the study of the present inventors, the cause is presumed to be due to the oxidative decomposition of the organic halide derived from the raw material contained in vinylene carbonate. Therefore, an object of the present invention is to provide a lithium secondary battery having good cycle characteristics even when such a non-aqueous electrolyte containing vinylene carbonate as a part of the solvent is used.

【0007】[0007]

【課題を解決するための手段】本発明に係る非水電解液
二次電池は、リチウムを吸蔵・放出することが可能な負
極及び正極をセパレーターを介して対向させてなる電極
組立体、並びに非水電解液を容器に収容してなる非水電
解液二次電池において、非水電解液が有機ハロゲン化物
を含むビニレンカーボネートをその一部とする非水溶媒
にリチウム塩を溶解してなるものであり、かつ正極集電
体及びこれと電気的に接続されている部分のうち非水電
解液と接触する部分が、弁金属又はその合金で構成され
ていることを特徴とするものである。
SUMMARY OF THE INVENTION A non-aqueous electrolyte secondary battery according to the present invention comprises an electrode assembly comprising a negative electrode capable of inserting and extracting lithium and a positive electrode opposed to each other with a separator interposed therebetween. In a non-aqueous electrolyte secondary battery containing a water electrolyte in a container, the non-aqueous electrolyte is obtained by dissolving a lithium salt in a non-aqueous solvent containing vinylene carbonate containing an organic halide as a part thereof. In addition, a portion of the positive electrode current collector and the portion electrically connected to the positive electrode current collector and the non-aqueous electrolyte solution are made of a valve metal or an alloy thereof.

【0008】[0008]

【発明の実施の形態】本発明に係る非水電解液二次電池
に用いられる非水電解液は、ビニレンカーボネートを含
む非水溶媒にリチウム塩を溶解して調製される。ビニレ
ンカーボネートには通常、クロロエチレンカーボネー
ト、ジクロロエチレンカーボネート、クロロメチルメチ
ルカーボネート、クロロエタノール等の有機ハロゲン化
物が含まれている。最も一般的なビニレンカーボネート
の製法は、前述の如くクロロエチレンカーボネートの脱
塩化水素によるものなので、通常のビニレンカーボネー
トはこの原料由来のクロロエチレンカーボネートを含ん
でいる。ビニレンカーボネート中のこれらの有機ハロゲ
ン化物の含有率は、通常、1ppm〜50(重量)%で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION A non-aqueous electrolyte used for a non-aqueous electrolyte secondary battery according to the present invention is prepared by dissolving a lithium salt in a non-aqueous solvent containing vinylene carbonate. Vinylene carbonate usually contains organic halides such as chloroethylene carbonate, dichloroethylene carbonate, chloromethyl methyl carbonate, and chloroethanol. Since the most common method for producing vinylene carbonate is by dehydrochlorination of chloroethylene carbonate as described above, ordinary vinylene carbonate contains chloroethylene carbonate derived from this raw material. The content of these organic halides in vinylene carbonate is usually 1 ppm to 50 (weight)%.

【0009】非水電解液を構成する非水溶媒は、この有
機ハロゲン化物を含むビニレンカーボネートと他の有機
溶媒とで構成される。非水溶媒に占めるビニレンカーボ
ネートの含有率は0.1〜30重量%であるのが好まし
い。0.1重量%未満ではその効果が小さく、逆に30
重量%を超える大量では電解液の低温特性が損なわれる
恐れがある。ビニレンカーボネートの好ましい含有率は
0.1〜20重量%である。
The non-aqueous solvent constituting the non-aqueous electrolyte is composed of vinylene carbonate containing this organic halide and another organic solvent. The content of vinylene carbonate in the non-aqueous solvent is preferably 0.1 to 30% by weight. If the content is less than 0.1% by weight, the effect is small.
If the amount exceeds the weight percentage, the low temperature characteristics of the electrolyte may be impaired. The preferred content of vinylene carbonate is 0.1 to 20% by weight.

【0010】ビニレンカーボネートと併用する他の有機
溶媒としては、非水電解液の溶媒として知られているエ
チレンカーボネート、プロピレンカーボネート、ブチレ
ンカーボネート等の環状カーボネート、ジメチルカーボ
ネート、ジエチルカーボネート、ジ−n−プロピルカー
ボネート、メチルエチルカーボネート、メチル−n−プ
ロピルカーボネート、エチル−n−プロピルカーボネー
ト等の鎖状カーボネート、γ−ブチロラクトン、γ−バ
レロラクトン等のラクトン、酢酸メチル、プロピオン酸
メチル等の鎖状カルボン酸エステル、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、テトラヒドロピラ
ン等の環状エーテル、ジメトキシエタン、ジエトキシエ
タン等の鎖状エーテル、スルフォラン、ジエチルスルホ
ン等の含硫黄化合物などが用いられる。これらのなかで
もカーボネートを用いるのが好ましい。通常は環状カー
ボネート及び鎖状カーボネートよりなる群から選ばれた
カーボネートとビニレンカーボネートとの合計量が70
重量%以上を占める非水溶媒を用いる。この合計量が8
0重量%以上、特に90重量%以上を占める非水溶媒を
用いるのが好ましい。
Other organic solvents used in combination with vinylene carbonate include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, dimethyl carbonate, diethyl carbonate, and di-n-propyl which are known as solvents for non-aqueous electrolytes. Chain carbonates such as carbonate, methyl ethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, lactones such as γ-butyrolactone and γ-valerolactone, chain carboxylic esters such as methyl acetate and methyl propionate , Tetrahydrofuran, cyclic ethers such as 2-methyltetrahydrofuran and tetrahydropyran, chain ethers such as dimethoxyethane and diethoxyethane, and sulfur-containing compounds such as sulfolane and diethylsulfone Are used. Among these, it is preferable to use carbonate. Usually, the total amount of carbonate and vinylene carbonate selected from the group consisting of cyclic carbonate and chain carbonate is 70%
A non-aqueous solvent occupying at least% by weight is used. This total amount is 8
It is preferable to use a non-aqueous solvent that accounts for 0% by weight or more, particularly 90% by weight or more.

【0011】非水溶媒に溶解させる電解質のリチウム塩
としては、LiClO4 、LiPF 6 、LiBF4 、L
iSbF6 等の無機酸リチウム塩、又はLiCF3 SO
3 、LiN(CF3 SO2 2 、LiN(C2 5 SO
2 2 、LiN(CF3 SO 2 )(C4 9 SO2 )、
LiC(CF3 SO2 3 等の有機酸リチウム塩など、
従来から非水電解液の電解質として用いられているもの
を用いればよい。これらは所望ならばいくつかを併用し
てもよい。非水電解液中のリチウム塩の濃度は通常0.
5〜2モル/リットルである。
Lithium salt of electrolyte dissolved in non-aqueous solvent
As LiClOFour, LiPF 6, LiBFFour, L
iSbF6Or lithium salt of an inorganic acid such as LiCFThreeSO
Three, LiN (CFThreeSOTwo)Two, LiN (CTwoFFiveSO
Two)Two, LiN (CFThreeSO Two) (CFourF9SOTwo),
LiC (CFThreeSOTwo)ThreeSuch as lithium salts of organic acids, etc.
Conventionally used as electrolyte for non-aqueous electrolyte
May be used. These can be used in combination if desired.
You may. The concentration of the lithium salt in the non-aqueous electrolyte is usually 0.1.
It is 5 to 2 mol / l.

【0012】本発明に係る非水電解液二次電池の正極及
び負極としては常用のものを用いることができる。正極
活物質としては、LiCoO2 、LiNiO2 、LiM
24 等のリチウムを吸蔵・放出可能なリチウム遷移
金属複合酸化物が用いられる。正極用集電体としては、
アルミニウム、チタン、タンタル等の弁金属又はその合
金が用いられる。なかでもアルミニウム又はその合金を
用いるのが好ましい。ステンレス鋼などのような弁金属
以外の金属を用いると、これと接触する非水電解液中の
有機ハロゲン化物が酸化分解するので好ましくない。
As the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery according to the present invention, conventional ones can be used. LiCoO 2 , LiNiO 2 , LiM
A lithium transition metal composite oxide capable of occluding and releasing lithium such as n 2 O 4 is used. As the current collector for the positive electrode,
Valve metals such as aluminum, titanium and tantalum or alloys thereof are used. Among them, it is preferable to use aluminum or its alloy. It is not preferable to use a metal other than the valve metal such as stainless steel, because the organic halide in the non-aqueous electrolyte that comes in contact with the metal is oxidatively decomposed.

【0013】負極活物質としては、黒鉛を用いるのが好
ましい。黒鉛としては人造黒鉛及び精製天然黒鉛のいず
れをも用いることができる。また、これらの黒鉛にピッ
チなどで表面処理したものを用いるのも好ましい。黒鉛
のなかでも好ましいのは、学振法によるX線回折で求め
た格子面(002面)のd値(層間距離)が0.335
〜0.34nm、特に0.335〜0.337nmのも
のである。なお、所望ならば、公知の他の負極活物質を
黒鉛の代りに用いたり、黒鉛と併用することもできる。
このような負極活物質としては、リチウム金属やその合
金、非黒鉛系炭素、酸化錫や酸化珪素等の金属酸化物な
どが挙げられる。負極用集電体としては、銅、ニッケ
ル、ステンレス鋼などが用いられる。なかでも銅を用い
るのが好ましい。
It is preferable to use graphite as the negative electrode active material. As the graphite, either artificial graphite or purified natural graphite can be used. It is also preferable to use those obtained by subjecting these graphites to surface treatment with a pitch or the like. Among the graphites, the d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method is 0.335.
〜0.34 nm, especially 0.335 to 0.337 nm. If desired, another known negative electrode active material can be used instead of graphite, or can be used in combination with graphite.
Examples of such a negative electrode active material include lithium metal and its alloys, non-graphite carbon, and metal oxides such as tin oxide and silicon oxide. As the current collector for the negative electrode, copper, nickel, stainless steel, or the like is used. Among them, it is preferable to use copper.

【0014】正極と負極とを隔てるセパレーターとして
は、ポリエチレン、ポリプロピレン等のポリオレフィン
の多孔性フイルム又は不織布などが用いられる。電池の
構造は、シート状の電極とセパレーターとを渦巻き状に
巻いたシリンダータイプ、薄片状の電極とセパレーター
とを積層したコインタイプなど、従来公知の任意の構造
とすることができる。
As a separator for separating the positive electrode and the negative electrode, a porous film of a polyolefin such as polyethylene or polypropylene or a non-woven fabric is used. The structure of the battery can be any conventionally known structure such as a cylinder type in which a sheet-like electrode and a separator are spirally wound, and a coin type in which a flaky electrode and a separator are laminated.

【0015】上記の正極、負極及びセパレーターから成
る電極組立体を収容する容器、すなわち電池の缶体とし
ては、常用のステンレス鋼製のものを用いることができ
る。しかし本発明においては、この缶体及び缶体内に収
容されるリード線や安全弁などのうち正極と電気的に接
続されていて、かつ非水電解液と接触する部分は、弁金
属又はその合金で構成する。従って常用のステンレス鋼
製の缶体を用いる場合には、その正極側の内面を弁金属
で被覆する。このようにすることにより、これと接触す
る非水電解液中のビニレンカーボネートに同伴している
有機ハロゲン化物の酸化分解を防止することができる。
また、アルミニウムやアルミニウム合金等の弁金属で缶
体を構成してもよい。
As a container for accommodating the above-mentioned electrode assembly comprising the positive electrode, the negative electrode and the separator, that is, a battery can, a conventional stainless steel can be used. However, in the present invention, a portion of the can body and the lead wire and the safety valve housed in the can body that are electrically connected to the positive electrode and that come into contact with the nonaqueous electrolyte are made of valve metal or an alloy thereof. Constitute. Therefore, when a normal stainless steel can is used, its inner surface on the positive electrode side is coated with a valve metal. By doing so, it is possible to prevent the oxidative decomposition of the organic halide accompanying the vinylene carbonate in the non-aqueous electrolyte that comes into contact therewith.
Moreover, you may comprise a can body with valve metals, such as aluminum and an aluminum alloy.

【0016】本発明に係る非水電解液二次電池は上記し
たような構成を有しているので、非水電解液の分解が抑
制され、長期間に亘り安定した性能を発揮することがで
きる。これは非水電解液中のビニレンカーボネートが負
極上に安定な保護皮膜を形成して、負極上での非水電解
液の分解を抑制することと、正極集電体やこれと電気的
に接続されていてかつ非水電解液と接触する部分が弁金
属で構成されていてその表面が酸化皮膜で覆われている
ので、これらと接触する非水電解液中の有機ハロゲン化
物の酸化分解が抑制されることによるものと考えられ
る。
Since the non-aqueous electrolyte secondary battery according to the present invention has the above-described structure, decomposition of the non-aqueous electrolyte is suppressed, and stable performance can be exhibited over a long period of time. . This is because vinylene carbonate in the non-aqueous electrolyte forms a stable protective film on the negative electrode to suppress the decomposition of the non-aqueous electrolyte on the negative electrode, and to connect the positive electrode current collector and And the part that comes in contact with the non-aqueous electrolyte is made of valve metal, and its surface is covered with an oxide film, which suppresses the oxidative decomposition of organic halides in the non-aqueous electrolyte that comes into contact with them. It is thought that it is due to being done.

【0017】[0017]

【実施例】以下に実施例により本発明を更に具体的に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0018】ビニレンカーボネートの調製;ジムロート
及び滴下ロートを備えた200mlのガラス製四つ口フ
ラスコに、クロロエチレンカーボネート52g(424
mmol)及びエチルエーテル52gを仕込んだ。窒素
雰囲気下でこの混合液を攪拌しながら、滴下ロートから
トリエチルアミン49g(484mmol)を約30分
間かけて滴下した。次いで液温を30℃として、反応液
をガスクロマトグラフィーで分析することにより反応の
進行を追跡しながら、35時間反応させた。得られたビ
ニレンカーボネートには、33重量%のクロロエチレン
カーボネートが含まれていた。
Preparation of vinylene carbonate: In a 200 ml glass four-necked flask equipped with a Dim funnel and a dropping funnel, 52 g (424) of chloroethylene carbonate was added.
mmol) and 52 g of ethyl ether. While stirring this mixture under a nitrogen atmosphere, 49 g (484 mmol) of triethylamine was dropped from the dropping funnel over about 30 minutes. Next, the reaction temperature was set at 30 ° C., and the reaction was performed for 35 hours while analyzing the reaction liquid by gas chromatography to monitor the progress of the reaction. The resulting vinylene carbonate contained 33% by weight of chloroethylene carbonate.

【0019】正極の調製;LiCoO2 85重量部にカ
ーボンブラック6重量部及びポリフッ化ビニリデン9重
量部を配合してよく混合した。これにN−メチル−2−
ピロリドンを加えてスラリーとし、これを厚さ20μm
のアルミニウム箔上に均一に塗布した。乾燥後、直径1
2.5mmの円板状に打抜いて正極とした。
Preparation of positive electrode: 85 parts by weight of LiCoO 2 were mixed with 6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride and mixed well. N-methyl-2-
Pyrrolidone was added to form a slurry, which was 20 μm thick.
Was uniformly applied on the aluminum foil. After drying, diameter 1
A 2.5 mm disk was punched out to obtain a positive electrode.

【0020】負極の調製;X線回折における格子面(0
02面)のd値が0.336nmである人造黒鉛粉末K
S−44(ティムカル社製品)94重量部に、ポリフッ
化ビニリデン6重量部を配合してよく混合した。これに
N−メチル−2−ピロリドンを加えてスラリーとし、こ
れを厚さ18μmの銅箔上に均一に塗布した。乾燥後、
直径12.5mmの円板状に打抜いて負極とした。
Preparation of negative electrode; lattice plane (0
02) artificial graphite powder K having a d value of 0.336 nm
94 parts by weight of S-44 (manufactured by Timcal) were mixed with 6 parts by weight of polyvinylidene fluoride and mixed well. N-methyl-2-pyrrolidone was added to this to form a slurry, which was uniformly applied on a copper foil having a thickness of 18 μm. After drying,
A negative electrode was punched out into a disk having a diameter of 12.5 mm.

【0021】非水電解液の調製;六フッ化リン酸リチウ
ム(LiPF6 )を乾燥アルゴン雰囲気中でよく乾燥し
た。プロピレンカーボネートと上記で調製したビニレン
カーボネートとの9:1(重量比)の混合溶媒中に、こ
の六フッ化リン酸リチウムを1モル/リットルの濃度と
なるように溶解して非水電解液とした。
Preparation of non-aqueous electrolyte: Lithium hexafluorophosphate (LiPF 6 ) was thoroughly dried in a dry argon atmosphere. This lithium hexafluorophosphate was dissolved in a 9: 1 (weight ratio) mixed solvent of propylene carbonate and the above-prepared vinylene carbonate so as to have a concentration of 1 mol / liter, and the solution was mixed with a non-aqueous electrolyte. did.

【0022】電池の製作;ステンレス鋼製の正極缶に正
極を収容し、その上に非水電解液を含浸させたセパレー
ター(ポリプロピレンの微孔フイルム)及び負極を順次
載置した。この正極缶とステンレス鋼製の封孔板とを、
絶縁性のガスケットを介してかしめて密封し、コイン型
電池を製作した。なお、実施例では正極を収容する前に
ステンレス鋼製の正極缶の内面をアルミニウム箔で被覆
して、非水電解液が正極缶に接触しないようにした。
Production of Battery: The positive electrode was accommodated in a stainless steel positive electrode can, on which a separator (polypropylene microporous film) impregnated with a non-aqueous electrolyte and a negative electrode were sequentially placed. This positive electrode can and a stainless steel sealing plate
It was caulked and sealed via an insulating gasket to produce a coin-type battery. In the examples, the inner surface of the stainless steel positive electrode can was covered with aluminum foil before accommodating the positive electrode so that the nonaqueous electrolyte did not come into contact with the positive electrode can.

【0023】充放電試験;上記で製作した電池を用い
て、25℃、0.5mAの定電流で充電終止電圧4.2
V、放電終止電圧2.5Vで充放電試験を行った。結果
を図−1に示す。ステンレス鋼製の正極缶の内面をアル
ミニウム箔で被覆して非水電解液が正極缶に接触しない
ようにした実施例の電池では、安定して充放電を反復す
ることができた。これに対し、ステンレス鋼製の正極缶
に非水電解液が接触する比較例の電池では、2サイクル
目までしか充放電できなかった。
Charge / discharge test: Using the battery prepared above, a charge end voltage of 4.2 at a constant current of 0.5 mA at 25 ° C.
A charge / discharge test was performed at V and a discharge end voltage of 2.5 V. The results are shown in FIG. In the battery of the example in which the inner surface of the stainless steel positive electrode can was covered with an aluminum foil so that the nonaqueous electrolyte did not come into contact with the positive electrode can, charging and discharging could be stably repeated. On the other hand, in the battery of the comparative example in which the nonaqueous electrolyte contacted the stainless steel positive electrode can, charging and discharging could only be performed up to the second cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図−1は正極集電体としてアルミニウムを用
い、かつステンレス鋼製の正極缶の内面をアルミニウム
箔で被覆した本発明に係る電池と、正極缶の内面をアル
ミニウム箔で被覆しなかった以外は、全く同様にして製
作した電池との充放電試験の結果を示すグラフである。
FIG. 1 shows a battery according to the present invention in which aluminum is used as a positive electrode current collector and the inner surface of a stainless steel positive electrode can is coated with aluminum foil, and the inner surface of the positive electrode can is not coated with aluminum foil. 7 is a graph showing the results of a charge / discharge test with a battery manufactured in exactly the same manner as above.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 BB01 BB02 BB05 BB12 BD03 BD04 5H014 AA04 AA06 EE01 EE05 EE08 EE10 HH01 HH08 5H017 AA03 AS01 AS06 AS10 EE01 EE08 HH05 5H029 AJ05 AK03 AL07 AM03 AM07 BJ03 BJ16 DJ02 DJ05 DJ07 EJ01 HJ01 HJ10 HJ12  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) HJ12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出することが可能な
負極及び正極をセパレーターを介して対向させてなる電
極組立体、並びに非水電解液を容器に収容してなる非水
電解液二次電池において、非水電解液が有機ハロゲン化
物を含むビニレンカーボネートをその一部とする非水溶
媒にリチウム塩を溶解して成るものであり、かつ正極集
電体及びこれと電気的に接続されている部分のうち非水
電解液と接触する部分が、弁金属又はその合金で構成さ
れていることを特徴とする二次電池。
1. An electrode assembly comprising a negative electrode and a positive electrode capable of inserting and extracting lithium facing each other via a separator, and a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte contained in a container. Wherein the non-aqueous electrolyte is obtained by dissolving a lithium salt in a non-aqueous solvent containing vinylene carbonate containing an organic halide as a part thereof, and is electrically connected to the positive electrode current collector A secondary battery, wherein a portion of the portion that contacts the nonaqueous electrolyte is made of a valve metal or an alloy thereof.
【請求項2】 非水溶媒中のビニレンカーボネートの含
有率が0.1〜30重量%であることを特徴とする請求
項1に記載の二次電池。
2. The secondary battery according to claim 1, wherein the content of vinylene carbonate in the non-aqueous solvent is 0.1 to 30% by weight.
【請求項3】 ビニレンカーボネートがハロゲン化アル
キレンカーボネートを含んでおり、かつその含有率が1
ppm以上で50重量%以下であることを特徴とする請
求項1又は2に記載の二次電池。
3. The vinylene carbonate contains a halogenated alkylene carbonate, and the content thereof is 1
The secondary battery according to claim 1, wherein the content of the secondary battery is not less than 50 ppm by weight in the range of not less than ppm.
【請求項4】 ビニレンカーボネートがハロゲン化アル
キレンカーボネートとして少くともクロロエチレンカー
ボネートを含むことを特徴とする請求項1ないし3のい
ずれかに記載の二次電池。
4. The secondary battery according to claim 1, wherein the vinylene carbonate contains at least chloroethylene carbonate as a halogenated alkylene carbonate.
【請求項5】 非水溶媒がアルキレンカーボネート及び
ジアルキルカーボネートよりなる群から選ばれた少くと
も1種のカーボネートを含有しており、かつこのカーボ
ネートと有機ハロゲン化物を含むビニレンカーボネート
の合計量が、非水溶媒の70重量%以上を占めることを
特徴とする請求項1ないし4のいずれかに記載の二次電
池。
5. The non-aqueous solvent contains at least one carbonate selected from the group consisting of an alkylene carbonate and a dialkyl carbonate, and the total amount of the carbonate and vinylene carbonate containing an organic halide is non-aqueous. The secondary battery according to any one of claims 1 to 4, wherein the secondary battery accounts for 70% by weight or more of the water solvent.
【請求項6】 弁金属又はその合金がアルミニウム又は
アルミニウム合金であることを特徴とする請求項1ない
し5のいずれかに記載の二次電池。
6. The secondary battery according to claim 1, wherein the valve metal or its alloy is aluminum or an aluminum alloy.
【請求項7】 負極がリチウムを吸蔵・放出することが
可能な炭素材料を活物質とするものであることを特徴と
する請求項1ないし6のいずれかに記載の二次電池。
7. The secondary battery according to claim 1, wherein the negative electrode uses a carbon material capable of occluding and releasing lithium as an active material.
【請求項8】 正極がリチウムを吸蔵・放出することが
可能なリチウム遷移金属複合酸化物を活物質とするもの
であることを特徴とする請求項1ないし7のいずれかに
記載の二次電池。
8. The secondary battery according to claim 1, wherein the positive electrode uses a lithium transition metal composite oxide capable of inserting and extracting lithium as an active material. .
【請求項9】 リチウム塩がLiClO4 、LiP
6 、LiBF4 及びLiSbF6 よりなる群から選ば
れる無機酸リチウム塩、又はLiCF3 SO3 、LiN
(CF3 SO2 2 、LiN(C2 5 SO2 2 、L
iN(CF3 SO 2 )(C4 9 SO2 )、及びLiC
(CF3 SO2 3 よりなる群から選ばれる有機酸リチ
ウム塩であることを特徴とする請求項1ないし8のいず
れかに記載の二次電池。
9. The lithium salt is LiClO.Four, LiP
F6, LiBFFourAnd LiSbF6Selected from the group consisting of
Inorganic acid lithium salt, or LiCFThreeSOThree, LiN
(CFThreeSOTwo)Two, LiN (CTwoFFiveSOTwo)Two, L
iN (CFThreeSO Two) (CFourF9SOTwo) And LiC
(CFThreeSOTwo)ThreeOrganic acid selected from the group consisting of
A salt according to any one of claims 1 to 8, wherein the salt is
The secondary battery according to any one of the claims.
JP00869599A 1999-01-18 1999-01-18 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor Expired - Fee Related JP4568920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00869599A JP4568920B2 (en) 1999-01-18 1999-01-18 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00869599A JP4568920B2 (en) 1999-01-18 1999-01-18 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Publications (3)

Publication Number Publication Date
JP2000208169A true JP2000208169A (en) 2000-07-28
JP2000208169A5 JP2000208169A5 (en) 2005-05-19
JP4568920B2 JP4568920B2 (en) 2010-10-27

Family

ID=11700068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00869599A Expired - Fee Related JP4568920B2 (en) 1999-01-18 1999-01-18 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Country Status (1)

Country Link
JP (1) JP4568920B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080345A1 (en) * 2000-04-17 2001-10-25 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
JP2009187698A (en) * 2008-02-04 2009-08-20 Gs Yuasa Corporation Nonaqueous electrolyte battery, and its manufacturing method
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2010205742A (en) * 2002-07-15 2010-09-16 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
CN113903997A (en) * 2016-07-22 2022-01-07 大金工业株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
US11322780B2 (en) 2016-07-22 2022-05-03 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086622A (en) * 1973-12-07 1975-07-12
JPS62272458A (en) * 1986-05-20 1987-11-26 Sanyo Electric Co Ltd Non-aqueous electrolytic solution cell
JPH04267075A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JPH05174873A (en) * 1991-12-24 1993-07-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery resistant to overcharging
JPH05326016A (en) * 1992-05-15 1993-12-10 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JPH06267542A (en) * 1993-03-12 1994-09-22 Yuasa Corp Nonaqueous electrolyte battery
JPH0845545A (en) * 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa Lithium storage battery with carbon anode
JPH0896852A (en) * 1994-07-29 1996-04-12 Sony Corp Nonaqueous electrolytic secondary battery
JPH09147911A (en) * 1995-11-22 1997-06-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09265974A (en) * 1996-03-29 1997-10-07 Sumitomo Electric Ind Ltd Non-aqueous electrolytic battery
JPH09306542A (en) * 1996-05-16 1997-11-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH1050272A (en) * 1997-05-09 1998-02-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH10199328A (en) * 1997-01-17 1998-07-31 Showa Denko Kk Polymer solid electrolyte and its manufacturing method and use
JPH10208710A (en) * 1997-01-24 1998-08-07 Yuasa Corp Flat cell
JPH10228895A (en) * 1997-02-14 1998-08-25 Sanyo Electric Co Ltd Lithium secondary battery
JPH11283667A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086622A (en) * 1973-12-07 1975-07-12
JPS62272458A (en) * 1986-05-20 1987-11-26 Sanyo Electric Co Ltd Non-aqueous electrolytic solution cell
JPH04267075A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JPH05174873A (en) * 1991-12-24 1993-07-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery resistant to overcharging
JPH05326016A (en) * 1992-05-15 1993-12-10 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JPH06267542A (en) * 1993-03-12 1994-09-22 Yuasa Corp Nonaqueous electrolyte battery
JPH0845545A (en) * 1994-04-22 1996-02-16 Saft (Soc Accumulateurs Fixes Traction) Sa Lithium storage battery with carbon anode
JPH0896852A (en) * 1994-07-29 1996-04-12 Sony Corp Nonaqueous electrolytic secondary battery
JPH09147911A (en) * 1995-11-22 1997-06-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09265974A (en) * 1996-03-29 1997-10-07 Sumitomo Electric Ind Ltd Non-aqueous electrolytic battery
JPH09306542A (en) * 1996-05-16 1997-11-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH10199328A (en) * 1997-01-17 1998-07-31 Showa Denko Kk Polymer solid electrolyte and its manufacturing method and use
JPH10208710A (en) * 1997-01-24 1998-08-07 Yuasa Corp Flat cell
JPH10228895A (en) * 1997-02-14 1998-08-25 Sanyo Electric Co Ltd Lithium secondary battery
JPH1050272A (en) * 1997-05-09 1998-02-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH11283667A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080345A1 (en) * 2000-04-17 2001-10-25 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
JP2010205742A (en) * 2002-07-15 2010-09-16 Ube Ind Ltd Nonaqueous electrolyte and lithium battery using the same
US9742033B2 (en) 2002-07-15 2017-08-22 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
US10050307B2 (en) 2002-07-15 2018-08-14 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium battery
JP2009187698A (en) * 2008-02-04 2009-08-20 Gs Yuasa Corporation Nonaqueous electrolyte battery, and its manufacturing method
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US8455142B2 (en) 2008-04-07 2013-06-04 Nec Energy Devices, Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
CN113903997A (en) * 2016-07-22 2022-01-07 大金工业株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
US11322780B2 (en) 2016-07-22 2022-05-03 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module

Also Published As

Publication number Publication date
JP4568920B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4233819B2 (en) Non-aqueous electrolyte secondary battery
US20110179636A1 (en) Intercalation anode protection for cells with dissolved lithium polysulfides
US8685573B2 (en) Cathode active material and lithium ion rechargeable battery using the material
JP2001176548A (en) Sulfuric ester additive of non-aqueous electrolyte rechargeable battery
JP4963780B2 (en) Non-aqueous electrolyte and lithium secondary battery
KR20040018154A (en) Nonaqueous electrolyte secondary battery
JP2000294282A (en) Sulfite additive for rechargeable battery of nonaqueous electrolyte
JP2000188128A (en) Nonaqueous electrolyte secondary battery
JP2002198092A (en) Phosphate additive for non-aqueous electrolyte cell capable of recharging
JP2008084705A (en) Nonaqueous electrolyte secondary battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP4934917B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP5109349B2 (en) Secondary battery
JP3560119B2 (en) Non-aqueous electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP4984373B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP4568920B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2003132944A (en) Nonaqueous system electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4691775B2 (en) Lithium secondary battery
JPH1173990A (en) Nonaqueous electrolyte solution secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JP2008016316A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees