JPH1050272A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1050272A
JPH1050272A JP9119422A JP11942297A JPH1050272A JP H1050272 A JPH1050272 A JP H1050272A JP 9119422 A JP9119422 A JP 9119422A JP 11942297 A JP11942297 A JP 11942297A JP H1050272 A JPH1050272 A JP H1050272A
Authority
JP
Japan
Prior art keywords
battery
electrode body
positive electrode
present
spiral electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9119422A
Other languages
Japanese (ja)
Other versions
JP3030263B2 (en
Inventor
Toyoji Machida
豊治 町田
Mitsunori Hara
満紀 原
Kazuo Moriwaki
和郎 森脇
Keiichi Tsujioku
啓一 辻奥
Toru Amezutsumi
徹 雨堤
Akiyoshi Tamaoki
日義 玉置
Yasuhiro Yamauchi
康弘 山内
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9119422A priority Critical patent/JP3030263B2/en
Publication of JPH1050272A publication Critical patent/JPH1050272A/en
Application granted granted Critical
Publication of JP3030263B2 publication Critical patent/JP3030263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To realize high corrosion resistance, light weight, and excellent heat resistance, by making specific metal adopt as sheating can material, in this secondary battery having specific constitution. SOLUTION: In a battery wherein an electrode body 4 is formed of positive and negative electrodes 1 and 3 and a separator 2, a battery is constituted of the electrode body 4, a nonaqueous electrolyte, and a sheathing can 5, and having a battery voltage of 3.5-5.0V, Al is adopted as sheathing material. The positive electrode 1 can be obtained by using preferably an Li-containing compound (e.g. lithium cobaltate) as active material, and kneading a conductive agent and a binding agent to make a positive electrode mixture 1-2, and rolling it to a core body 1-1 and giving a heat-treating. The negative electrode 3 can be obtained by mixing preferably carbonaceous material (e.g. graphite), for storing and emitting Li, and the binding agent to make a negative electrode mixture 3-2 to roll it to a core body 3-1. These two electrodes are wound via the separator 2 to obtain the electrode body 4. A battery can be obtained by housing the electrode 4 in an Al sheathing can 5, injecting a nonaqueous electrolyte, and closing the sheathing can 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、渦巻電極体を備えた高
出力型の非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-output nonaqueous electrolyte secondary battery having a spiral electrode body.

【0002】[0002]

【従来の技術】従来、非水電解液電池は、高電圧で優れ
た特性を有し、この特性が生かされて多用途に使用され
ている。
2. Description of the Related Art Conventionally, non-aqueous electrolyte batteries have excellent characteristics at high voltages, and these characteristics have been utilized for various purposes.

【0003】ところで、この種電池の正極缶材料として
は、ステンレスが一般的に用いられているが、特に3.
5V以上の高電圧電池は、長期間保存すると、正極缶の
ー部に腐食孔があいて液漏れする問題点等がある。この
正極缶が腐食するのは、正極缶材料に用いられているス
テンレス中の鉄成分が鉄イオンとなって、溶解するから
であり、この溶解反応が続くと、最終的には正極缶に腐
食孔があいて電解液が漏出することになる。
As a material for the positive electrode can of this type of battery, stainless steel is generally used.
A high voltage battery of 5 V or more has a problem that, when stored for a long period of time, a corrosive hole is formed in a portion of a positive electrode can and a liquid leaks. The reason why the positive electrode can corrodes is that iron components in the stainless steel used for the positive electrode can material become iron ions and dissolve, and if this dissolution reaction continues, the positive electrode can eventually corrodes. There will be holes and electrolyte will leak out.

【0004】そこで、正極缶の腐食を防止するために、
正極缶にアルミニウムを使用したリチウム一次電池が開
発されている。この場合、アルミニウムはステンレスに
比較して溶解電圧が高いので、正極缶の腐食を防止する
ことができる。
Therefore, in order to prevent corrosion of the positive electrode can,
Lithium primary batteries using aluminum for the positive electrode can have been developed. In this case, since the melting voltage of aluminum is higher than that of stainless steel, corrosion of the positive electrode can can be prevented.

【0005】しかしながら、二次電池の高出力を得るた
めに電極面積を大きくした渦巻電極体を用いた非水電解
液電池において、アルミニウム正極缶と渦巻電極体との
接触により電流を取り出す場合、正極缶と渦巻電極体最
外周の正極活物質との接触であるために、電気的接続が
悪く、内部抵抗が増加して、電池特性に悪影響を生じる
という問題点がある。そのため、正極より、別途タブリ
ードを取り出し、これを正極缶と接続するといった複雑
な構造が必要であった。
However, in a non-aqueous electrolyte battery using a spiral electrode body having a large electrode area in order to obtain a high output of a secondary battery, when a current is taken out by contact between the aluminum positive electrode can and the spiral electrode body, a positive electrode is required. Since the can is in contact with the positive electrode active material on the outermost periphery of the spiral electrode body, there is a problem in that the electrical connection is poor, the internal resistance increases, and the battery characteristics are adversely affected. Therefore, a complicated structure was required in which a tab lead was separately taken out from the positive electrode and connected to the positive electrode can.

【0006】[0006]

【発明が解決しようとする課題】本願発明の目的は、上
記のような問題点を解決し、高耐食性、軽量、簡単な電
気接続構造であって、放電容量やサイクル特性の優れた
非水電解液電池を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a non-aqueous electrolyte having a high corrosion resistance, a light weight, a simple electric connection structure, and excellent discharge capacity and cycle characteristics. A liquid battery is provided.

【0007】[0007]

【課題を解決するための手段】本願発明の非水電解液二
次電池は、電池電圧を3.5V以上5.0V以下とし、
正極と、負極と、セパレータとからなる電極体と、非水
電解液と、外装缶とを備える。さらに、本発明の非水電
解液二次電池は、外装缶材料をアルミニウムとする。
The nonaqueous electrolyte secondary battery of the present invention has a battery voltage of 3.5 V or more and 5.0 V or less,
An electrode body including a positive electrode, a negative electrode, and a separator, a nonaqueous electrolyte, and an outer can are provided. Further, in the nonaqueous electrolyte secondary battery of the present invention, the outer can material is aluminum.

【0008】本発明の請求項2の非水電解液二次電池
は、正極の活物質をリチウム含有化合物とし、負極をリ
チウムイオンを吸蔵、放出できる炭素質材料とするリチ
ウムイオン二次電池である。
A nonaqueous electrolyte secondary battery according to a second aspect of the present invention is a lithium ion secondary battery in which the active material of the positive electrode is a lithium-containing compound and the negative electrode is a carbonaceous material capable of inserting and extracting lithium ions. .

【0009】[0009]

【作用】外装缶に使用される材料としては、白金、チタ
ン、アルミニウム等が考えられるが、耐食性の面や工業
的スケール(資源及び材料コスト等)等を考慮すると、
使用される材料が規制され、安価で導電性も良好なアル
ミニウムが最適であることが判る。
[Function] Platinum, titanium, aluminum, etc. can be considered as the material used for the outer can. However, considering corrosion resistance and industrial scale (resources and material costs, etc.),
It is understood that the material to be used is restricted, and aluminum that is inexpensive and has good conductivity is optimal.

【0010】そこで、本願発明は、充電状態の電圧が
3.5V以上5.0V以下の非水電解液二次電池におい
て、正極缶などの腐食を防止するために、正極缶材料を
アルミニウムとするものであり、高耐食性が得られる。
In view of the above, according to the present invention, in a non-aqueous electrolyte secondary battery having a charged state voltage of 3.5 V or more and 5.0 V or less, the positive electrode can is made of aluminum in order to prevent corrosion of the positive electrode can and the like. And high corrosion resistance is obtained.

【0011】また、比重の小さいアルミニウムを外装缶
として用いることにより、軽量化において、優れた効果
を得ることができる。例えば、正極缶として、ステンレ
スとアルミニウムを用いた場合の重量エネルギー密度の
一比較例を表1に示す。
Further, by using aluminum having a small specific gravity as the outer can, an excellent effect in weight reduction can be obtained. For example, Table 1 shows a comparative example of the weight energy density when stainless steel and aluminum are used as the positive electrode can.

【0012】[0012]

【表1】 [Table 1]

【0013】表1より、ステンレスと比較してアルミニ
ウムでは、重量エネルギー密度は約50%増となる。
As shown in Table 1, the weight energy density of aluminum is increased by about 50% as compared with stainless steel.

【0014】さらにまた、非水電解液電池等を使用機器
等に組み込む時は限られた空間しかなく、その空間をよ
り有効に使用するためには、電池の外観は円筒形ではな
く角形で、特に矩形または長円形にする方が非常に有効
である。
Furthermore, when a non-aqueous electrolyte battery or the like is incorporated into a device to be used, there is only a limited space. In order to use that space more effectively, the appearance of the battery is not a cylinder but a prismatic shape. In particular, it is very effective to make a rectangle or an oval.

【0015】しかしながら、ここで矩形の外装缶に渦巻
電極体を挿入するには、渦巻電極体は真円ではなく長円
形状でなくてはならない。このとき、長円形状の渦巻電
極体は、外装缶に挿入した後に真円に近い方へ戻ろうと
するために(図6)、外装缶の短径及び長径に復元力が
作用する。この復元力を利用して、外装缶と渦巻電極体
との接触圧を高め、良好な電気的接続を維持することが
できる。
However, in order to insert the spiral electrode body into the rectangular outer can, the spiral electrode body must be not a perfect circle but an oval shape. At this time, a restoring force acts on the short diameter and the long diameter of the outer can because the elliptical spiral electrode body attempts to return to a direction closer to a perfect circle after being inserted into the outer can (FIG. 6). By utilizing this restoring force, the contact pressure between the outer can and the spiral electrode body can be increased, and good electrical connection can be maintained.

【0016】ここで、長円形状の渦巻電極の短径a及び
長径bと外装缶開口部内周の短径A及び長径Bとが、
(a/A)≧(b/B)且つ、(A−a)≦(B−b)
のような関係にあれば、主として短径方向で渦巻電極間
での緊迫度及び外装缶と最外周芯体との接触集電効果の
両方が最適に確保することができる。
Here, the minor axis a and major axis b of the elliptical spiral electrode and the minor axis A and major axis B of the inner circumference of the outer can opening are defined by:
(A / A) ≧ (b / B) and (A−a) ≦ (B−b)
With such a relationship, both the degree of tightness between the spiral electrodes and the contact current collection effect between the outer can and the outermost core can be optimally secured mainly in the minor diameter direction.

【0017】この理由は、長円形状渦巻電極体には真円
に近い方向への復元力が働き、長円形状渦巻電極体の長
径方向は縮む方向へ、短径方向は伸びる方向へ復元力が
作用するために良好な緊迫及び接触が得られることと、
短径方向のほうが渦巻電極体と外装缶とがフラットに近
い部分で接触する面積が大きいことによるものである
The reason for this is that a restoring force acts on the elliptical spiral electrode body in a direction close to a perfect circle, and the restoring force acts on the elliptical spiral electrode body in a direction of contraction in the major axis direction and in a direction of extension in the minor axis direction. That good tension and contact are obtained for the action of
This is due to the fact that the area in which the spiral electrode body and the outer can come into contact with each other in the near-flat part is larger in the minor axis direction.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1−aは本発明の非水電解液二次電池に
内蔵される渦巻電極体の部分断面図、図1−bは渦巻電
極体の斜視図である。
FIG. 1A is a partial sectional view of a spiral electrode body incorporated in the nonaqueous electrolyte secondary battery of the present invention, and FIG. 1B is a perspective view of the spiral electrode body.

【0020】[正極の作製]活物質としてのコバルト酸
リチウムと、導電剤としてのアセチレンブラック及び結
着剤としてのフッ素樹脂ディスパージョンをそれぞれ重
量比で90:6:4の比率で混練して正極合剤1−2を
得た。次いで、この正極合剤を芯体1−1としてのアル
ミニウム製のラス板に圧延して、これを250℃で2時
間真空熱処理して正極1を作製した。尚、正極の最外周
端部は正極合剤1−2を脱落させて、少なくとも芯体1
−1を一部分露出させている。
[Preparation of Positive Electrode] Lithium cobaltate as an active material, acetylene black as a conductive agent and a fluororesin dispersion as a binder were kneaded at a weight ratio of 90: 6: 4, respectively, and the positive electrode was kneaded. The mixture 1-2 was obtained. Next, this positive electrode mixture was rolled into an aluminum lath plate as a core body 1-1, and this was subjected to vacuum heat treatment at 250 ° C. for 2 hours to produce a positive electrode 1. In addition, the outermost end of the positive electrode drops the positive electrode mixture 1-2, and at least the core 1
-1 is partially exposed.

【0021】[負極の作製]400メッシュパスのグラ
ファイト粉末と、結着剤としてのフッ素樹脂ディスパー
ジョンとをそれぞれ重量比で95:5の比率で混合し
て、負極合剤3−2を得た。次いで、この負極合剤を銅
製の芯体3−1に圧延して、これを250℃で2時間真
空下で熱処理して負極3を作製した。
[Preparation of Negative Electrode] A graphite powder of 400 mesh pass and a fluororesin dispersion as a binder were mixed at a weight ratio of 95: 5, respectively, to obtain a negative electrode mixture 3-2. . Next, the negative electrode mixture was rolled into a copper core 3-1 and heat-treated at 250 ° C. for 2 hours under vacuum to prepare a negative electrode 3.

【0022】[渦巻電極体の作製]上記正極1と、負極
3とをポリエチレン製微孔性薄膜のセパレータ2を介し
て巻回し、渦巻電極体4を作製した。
[Preparation of Spiral Electrode Body] The positive electrode 1 and the negative electrode 3 were wound through a polyethylene microporous thin film separator 2 to prepare a spiral electrode body 4.

【0023】図2は、非水電解液電池の分解構成斜視図
である。
FIG. 2 is an exploded perspective view of the nonaqueous electrolyte battery.

【0024】上記渦巻電極体4をアルミニウム製有底矩
形外装缶5中に収納する。次いで、溶媒として、エチレ
ンカーボネートと、ジメチルカーボネートとを体積比で
1:1の比率で混合して、溶質として、LiPF6を1
モル/リットルを混合溶媒に溶かした非水電解液を注液
し、外装缶開口部に安全弁装置を設けた封口体(図示し
ない)を溶接し、密閉して容積約10ccの非水電解液
電池を作製した。
The spiral electrode body 4 is housed in a bottomed rectangular outer can 5 made of aluminum. Next, ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 as solvents, and LiPF 6 was added as a solute at 1: 1.
A non-aqueous electrolyte solution in which mol / liter is dissolved in a mixed solvent is injected, and a sealing member (not shown) provided with a safety valve device at the opening of the outer can is welded and sealed, and a non-aqueous electrolyte battery having a capacity of about 10 cc is sealed. Was prepared.

【0025】次に、外装缶内周の短径をA、長径をB、
渦巻電極体の短径をa、長径をbとして、(a/A)>
(b/B)且つ、(A−a)<(B−b)の関係がある
ときの電池を本発明電池A1として図3に示す。図3−
aは渦巻電極体の断面図、図3−bは外装缶の断面図、
図3−cは本発明電池A1の断面図である。
Next, the minor axis of the inner circumference of the outer can is A, the major axis is B,
Assuming that the minor axis of the spiral electrode body is a and the major axis is b, (a / A)>
The battery when (b / B) and (A-a) <(B-b) are shown in FIG. 3 as the battery A1 of the present invention. Figure 3-
a is a sectional view of a spiral electrode body, FIG. 3-b is a sectional view of an outer can,
FIG. 3C is a cross-sectional view of the battery A1 of the present invention.

【0026】このような上記の関係にあるときは、渦巻
電極体は図6に示すような復元力が渦巻電極体の短径方
向にかかるために、外装缶短径方向において、外装缶短
径方向と渦巻電極体短径方向との良好な緊迫度が得られ
る。
In such a relationship, the spiral electrode body exerts a restoring force as shown in FIG. 6 in the minor axis direction of the spiral electrode body. A good degree of tightness between the direction and the short diameter direction of the spiral electrode body is obtained.

【0027】また、(a/A)=(b/B)且つ、(A
−a)=(B−b)のような関係のときの電池を、本発
明の実施例の電池A2とし、図4に示す。図4−aは渦
巻電極体の断面図、図4−bは外装缶の断面図、図4−
cは本発明の実施例の電池A2の断面図である。
(A / A) = (b / B) and (A / A) = (b / B)
FIG. 4 shows a battery in the case of -a) = (Bb) as the battery A2 of the embodiment of the present invention. 4A is a cross-sectional view of a spiral electrode body, FIG. 4-B is a cross-sectional view of an outer can, FIG.
c is a cross-sectional view of the battery A2 according to the example of the present invention.

【0028】本発明の実施例の電池A2は、外装缶内周
の短径と渦巻電極体の短径、外装缶内周の長径と渦巻電
極体の長径とがそれぞれ等しいときである。この場合
は、外装缶内周の短径及び長径に渦巻電極体の短径及び
長径がそれぞれに接している状態になる。
In the battery A2 according to the embodiment of the present invention, the short diameter of the inner circumference of the outer can and the short diameter of the spiral electrode body are the same, and the long diameter of the inner circumference of the outer can and the long diameter of the spiral electrode body are respectively equal. In this case, the short diameter and the long diameter of the spiral electrode body are in contact with the short diameter and the long diameter of the inner circumference of the outer can.

【0029】次に、(a/A)<(b/B)且つ、(A
−a)>(B−b)のような関係のときの状態の電池を
比較電池Xとして図5に示す。図5−aは渦巻電極体の
断面図、図5−bは外装缶の断面図、図5−cは比較電
池Xの断面図である。
Next, (a / A) <(b / B) and (A / A) <(b / B)
FIG. 5 shows a battery in a state where the relationship of −a)> (Bb) is established as a comparative battery X. 5A is a sectional view of the spiral electrode body, FIG. 5B is a sectional view of the outer can, and FIG. 5C is a sectional view of the comparative battery X.

【0030】この場合、渦巻電極体の短径方向の寸法が
外装缶内周の短径方向の寸法よりも小さいために、短径
方向では接触しない状態になる。これでは、長径方向で
しか緊迫度が得られないために電池特性に悪影響を及ぼ
す。
In this case, since the dimension in the minor axis direction of the spiral electrode body is smaller than the dimension in the minor axis direction of the inner circumference of the outer can, no contact occurs in the minor axis direction. In this case, the degree of tension can be obtained only in the long diameter direction, which adversely affects the battery characteristics.

【0031】[実験1]次に、本発明の実施例の電池A
1及びA2と、比較電池Xのそれぞれ10個の初期内部
抵抗とショート電流とを測定し、それらの平均値を表2
に示した。
[Experiment 1] Next, the battery A of the embodiment of the present invention was used.
1 and A2 and 10 initial internal resistances and short-circuit currents of the comparative battery X were measured.
It was shown to.

【0032】[0032]

【表2】 [Table 2]

【0033】このように本発明の実施例の電池A1及び
A2では、渦巻電極体の緊迫度が高くなることで、外装
缶と渦巻電極体との接触強度も増加し、さらに、電極間
距離も小さくなり、初期内部抵抗も小さくなり電池特性
が向上する。
As described above, in the batteries A1 and A2 of the embodiment of the present invention, the contact strength between the outer can and the spiral electrode body is increased by increasing the tension of the spiral electrode body, and the distance between the electrodes is also reduced. As a result, the initial internal resistance decreases, and the battery characteristics are improved.

【0034】[実験2]図7及び図8に、本発明の実施
例の電池A1及びA2と比較電池Xとの電池特性の比較
を示す。
[Experiment 2] FIGS. 7 and 8 show a comparison of battery characteristics between the batteries A1 and A2 of the embodiment of the present invention and the comparative battery X.

【0035】図7は、本発明の実施例の電池A1、A2
及び比較電池Xの放電特性を示した図であり、測定条件
は、200mAの電流で電池電圧が4.2Vに達するま
で充電した後、200mAの電流で電池電圧が2.7V
に達するまで放電した曲線を示したものである。
FIG. 7 shows the batteries A1 and A2 according to the embodiment of the present invention.
FIG. 5 is a diagram showing the discharge characteristics of a comparative battery X. The measurement conditions were as follows: the battery was charged at a current of 200 mA until the battery voltage reached 4.2 V, and the battery voltage was 2.7 V at a current of 200 mA.
FIG. 4 shows a curve discharged until the temperature reaches the threshold value.

【0036】図7より、本発明の実施例の電池A1及び
A2の方が、比較電池Xよりも放電容量が大きいことが
判る。
FIG. 7 shows that the batteries A1 and A2 of the embodiment of the present invention have a larger discharge capacity than the comparative battery X.

【0037】また、図8は、サイクル特性を示した図で
あり、測定条件は200mAの電流で電池電圧が4.2
Vに達するまで充電した後、200mAの電流で電池電
圧が2.7Vに達するまで放電するというサイクルを繰
り返すものである。
FIG. 8 is a graph showing the cycle characteristics. The measurement conditions were as follows: a current of 200 mA and a battery voltage of 4.2.
After the battery is charged until the battery voltage reaches 2.7 V, the battery is discharged at a current of 200 mA until the battery voltage reaches 2.7 V.

【0038】図8より、本発明の実施例の電池A1及び
A2は、比較電池Xと比べて、サイクル特性が向上して
いることが判る。
FIG. 8 shows that the batteries A1 and A2 of the example of the present invention have improved cycle characteristics as compared with the comparative battery X.

【0039】[0039]

【発明の効果】本発明の非水電解液二次電池は、正極
と、負極とセパレータとからなる電極体と、非水電解液
と、外装缶とから構成される電池電圧が3.5V以上
5.0V以下の非水電解液電池において、外装缶材料を
アルミニウムとするので、充電状態における高電圧に対
する耐食性が向上し、かつ、電池自身の軽量化を計るこ
とができる。
The non-aqueous electrolyte secondary battery of the present invention has a battery voltage of 3.5 V or more composed of a positive electrode, an electrode body including a negative electrode and a separator, a non-aqueous electrolyte, and an outer can. In a non-aqueous electrolyte battery of 5.0 V or less, since the outer can material is made of aluminum, the corrosion resistance against a high voltage in a charged state is improved, and the weight of the battery itself can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明電池の渦巻電極体の構成図である。FIG. 1 is a configuration diagram of a spiral electrode body of a battery of the present invention.

【図2】 本発明電池の分解構成図である。FIG. 2 is an exploded view of the battery of the present invention.

【図3】 a 本発明の実施例の電池A1の渦巻電極体
断面図である。 b 外装缶の断面図である。 c 本発明電池A1の断面図である。
FIG. 3A is a cross-sectional view of a spiral electrode body of a battery A1 according to an example of the present invention. b It is sectional drawing of an exterior can. c is a cross-sectional view of the battery A1 of the present invention.

【図4】 a 本発明電池A2の渦巻電極体断面図であ
る。 b 外装缶の断面図である。 c 本発明電池A2の断面図である。
FIG. 4a is a cross-sectional view of a spiral electrode body of the battery A2 of the present invention. b It is sectional drawing of an exterior can. c It is sectional drawing of this invention battery A2.

【図5】 a 比較電池Xの渦巻電極体断面図である。 b 外装缶の断面図である。 c 比較電池Xの断面図である。5A is a cross-sectional view of a spiral electrode body of a comparative battery X. FIG. b It is sectional drawing of an exterior can. c is a sectional view of a comparative battery X.

【図6】 渦巻電極体の復元力の説明図である。FIG. 6 is an explanatory diagram of a restoring force of a spiral electrode body.

【図7】 放電特性を示す図である。FIG. 7 is a diagram showing discharge characteristics.

【図8】 サイクル特性を示す図である。FIG. 8 is a diagram showing cycle characteristics.

【符号の説明】[Explanation of symbols]

1・・・・・・正極 1−1・・・・正極芯体 1−2・・・・正極活物質 2・・・・・・セパレータ 3・・・・・・負極 3−1・・・・負極芯体 3−2・・・・負極活物質 4・・・・・・渦巻電極体 5・・・・・・アルミニウム外装缶 A1・・・・・本発明電池 A2・・・・・本発明電池 X・・・・・・比較電池 DESCRIPTION OF SYMBOLS 1 ... Positive electrode 1-1 ... Positive electrode core 1-2 ... Positive electrode active material 2 ... Separator 3 ... Negative electrode 3-1 ...・ Negative electrode core 3-2 ・ ・ ・ ・ Negative electrode active material 4 ・ ・ ・ ・ ・ ・ Swirl electrode body 5 ・ ・ ・ ・ ・ ・ Aluminum outer can A1 ・ ・ ・ ・ ・ ・ Battery of the present invention A2 ・ ・ ・ ・ ・ ・ Book Inventive battery X: Comparative battery

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年5月9日[Submission date] May 9, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 非水電解液二次電池[Title of the Invention] Non-aqueous electrolyte secondary battery

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、渦巻電極体を備えた高
出力型の非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-output nonaqueous electrolyte secondary battery having a spiral electrode body.

【0002】[0002]

【従来の技術】従来、非水電解液電池は、高電圧で優れ
た特性を有し、この特性が生かされて多用途に使用され
ている。
2. Description of the Related Art Conventionally, non-aqueous electrolyte batteries have excellent characteristics at high voltages, and these characteristics have been utilized for various purposes.

【0003】ところで、この種電池の外装缶材料とし
て、ステンレスが一般的に用いられる。ただ、ステンレ
ス製の外装缶を正極とする非水電解液二次電池は、電池
電圧が3.5V以上の高電圧になると、長期間保存した
ときに、外装缶に腐食孔があいて液漏れする問題点等が
ある。外装缶が腐食するのは、正極外装缶に用いられて
いるステンレス中の鉄成分が鉄イオンとなって、溶解す
るからである。外装缶の溶解反応が続くと、最終的には
正極として使用される外装缶に腐食孔があいて電解液が
漏出することになる。
By the way, as an outer can material for this type of battery,
Te, Ru stainless steel generally used. Just stainless
Non-aqueous electrolyte secondary batteries with a stainless steel outer can as the positive electrode
When the voltage became higher than 3.5 V , it was stored for a long time .
Occasionally, there is a problem of corrosion leaks due to corrosion holes in the outer can.
is there. The outer can corrodes because the iron component in the stainless steel used for the positive electrode outer can becomes iron ions and dissolves . When the dissolution reaction of the outer can continues, the outer can used as a positive electrode eventually has a corrosive hole and the electrolyte leaks.

【0004】そこで、正極に使用される外装缶の腐食を
防止するために、外装缶をアルミニウム製とするリチウ
ム一次電池が開発されている。溶解電圧の高いアルミニ
ウムによって、外装缶の腐食を防止するためである。た
だ、リチウム一次電池は、正極材料によって、電池電圧
が多少は変動するが、充電して繰り返し使用される二次
電池よりも電池電圧が低い。たとえば、時計や電卓に使
用される電池であって正極材料に(CFxnやMnO2
を使用するリチウム一次電池の動作電圧は、2.6〜
2.8V、種々の電子機器に使用される電池で正極材料
にCuO、Bi2Pb25、FeS2を使用するリチウム
一次電池の動作電圧は、1.5〜1.6V、動作電圧の
高い軍事用に使用される正極材料にV25、Ag2Cr
4、SO 2、CuSを使用するリチウム一次電池の動作
電圧は1.8〜3.5Vである。
[0004]Outer can used for positive electrodeThe corrosion of
To preventOuter canaluminumLichu to be made
Primary batteries have been developed. Aluminum with high melting voltage
This is for preventing corrosion of the outer can by the um. Was
However, the lithium primary battery depends on the positive electrode material,
Although it fluctuates somewhat, secondary charging and repeated use
Battery voltage is lower than battery. For example, use it for watches and calculators.
Battery used for the positive electrode material (CF x ) n or MnO 2
The operating voltage of a lithium primary battery using
2.8V, positive electrode material for batteries used in various electronic devices
Using CuO, Bi 2 Pb 2 O 5 , FeS 2 for lithium
The operating voltage of the primary battery is 1.5 to 1.6 V,
V 2 O 5 , Ag 2 Cr are used as cathode materials used for high military applications.
OFour, SO TwoOf Lithium Primary Battery Using Cu and CuS
The voltage is between 1.8 and 3.5V.

【0005】リチウム一次電池は、リチウムイオン二次
電池に比較して電池電圧が低いので、外装缶をステンレ
スからアルミニウムに変更して、正極外装缶の溶解によ
る腐食を防止できると考えられている。ただ、リチウム
イオン二次電池は、リチウム一次電池よりもさらに電池
電圧が高く、とくに、二次電池は充電するときに、電池
電圧が4.1〜4.2Vと相当に高くなるので、外装缶
を正極として使用した場合腐食を防止することができな
いと考えられていた。
[0005] A lithium primary battery is a lithium ion secondary battery.
Since the battery voltage is lower than the battery,
From aluminum to aluminum
It is believed that corrosion can be prevented. Just lithium
Ion secondary batteries are more batteries than lithium primary batteries
High voltage, especially when rechargeable batteries are charged
Since the voltage is considerably high at 4.1 to 4.2 V, the outer can
Cannot be used to prevent corrosion.
Was considered to be.

【0006】正極として使用された外装缶の腐食による[0006] Corrosion of the outer can used as the positive electrode
液漏れは、外装缶を負極とすることで解決できる。外装Liquid leakage can be solved by using an outer can as a negative electrode. Exterior
缶を負極とする非水電解液二次電池は、外装缶をステンNon-aqueous electrolyte secondary batteries with a can as the negative electrode
レス製として腐食を防止できる。ただ、この構造の非水Corrosion can be prevented as a product made of less. However, this structure of non-water
電解液二次電池は、正極に接続して電流を外部に取り出The electrolyte secondary battery is connected to the positive electrode to extract current to the outside
す端子材料に、アルミニウムやアルミニウム合金を使用Uses aluminum and aluminum alloy for terminal materials
する必要がある。端子材料にステンレスを使用すると、There is a need to. When stainless steel is used for the terminal material,
鉄が溶解されるからである。アルミニウム製の端子材料This is because iron is dissolved. Aluminum terminal material
は、正極の芯材にアルミニウムを使用しているので、アBecause aluminum is used for the core material of the positive electrode,
ルミニウムどうしの溶接となり確実に接続するのが困難Luminium is welded together, making it difficult to connect securely
で、製品の歩留が悪くなる。とくに、角形小形の非水電As a result, the yield of products deteriorates. In particular, rectangular small non-hydroelectric
解液二次電池は、端子部品が小さいので、アルミニウムDissolved rechargeable batteries use aluminum
製端子材料を確実に接続するのが難しく、電池の歩留をIt is difficult to securely connect the terminal materials made of
低下させる。Lower.

【0007】さらに、非水電解液二次電池は、優れた耐Further, the non-aqueous electrolyte secondary battery has excellent resistance to
熱性を有することも大切である。耐熱性は、非水電解液It is also important to have heat. Heat resistance is non-aqueous electrolyte
二次電池を充電するときと、放電する両使用状態に大切Important for both rechargeable battery charging and discharging
な特性である。充電するときに電池温度が設定値よりもCharacteristic. When charging, the battery temperature may
高くなると、保護回路が働いて、充電を停止させる。こWhen it goes high, the protection circuit works and stops charging. This
のため、充電時間が長くなる。また、充電中に電池温度Therefore, the charging time becomes longer. Also, the battery temperature during charging
が異常に高くなることは、電池性能を低下させる原因とAbnormally high battery performance
なる。放電中は電池のみでなく、電池を装着している機Become. During discharging, not only the battery but also the
器も温度が上昇する。たとえば、非水電解液二次電池がThe vessel also rises in temperature. For example, non-aqueous electrolyte secondary batteries
好んで電源に使用されるラップトップコンピュータは、Laptop computers that are preferred for power supply are
CPUが高速化されて、発生熱量が急激に大きくなってThe CPU speed has increased and the amount of heat generated has rapidly increased.
いる。このため、電池からの放熱が難しくなる。このたI have. For this reason, heat dissipation from the battery becomes difficult. others
め、非水電解液電池、とくに充電して使用する非水電解Non-aqueous electrolyte batteries, especially non-aqueous electrolytes that are charged and used
液二次電池は、電池内部で発生する熱をいかにして有効Liquid rechargeable batteries use heat generated inside the battery effectively
に放熱するかが、極めて大切である。It is very important to radiate the heat.

【0008】[0008]

【発明が解決しようとする課題】本願発明の目的は、上
記のような問題点を解決し、高耐食性と、軽量化と、優
れた耐熱性とを実現する非水電解液二次電池を提供する
ものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide high corrosion resistance, light weight, and excellent performance.
An object of the present invention is to provide a non-aqueous electrolyte secondary battery realizing improved heat resistance .

【0009】[0009]

【課題を解決するための手段】本願発明の非水電解液二
次電池は、電池電圧を3.5V以上5.0V以下とし、
正極と、負極と、セパレータとからなる電極体と、非水
電解液と、外装缶とを備える。さらに、本発明の非水電
解液二次電池は、外装缶材料をアルミニウムとする。
The nonaqueous electrolyte secondary battery of the present invention has a battery voltage of 3.5 V or more and 5.0 V or less,
An electrode body including a positive electrode, a negative electrode, and a separator, a nonaqueous electrolyte, and an outer can are provided. Further, in the nonaqueous electrolyte secondary battery of the present invention, the outer can material is aluminum.

【0010】本発明の請求項2の非水電解液二次電池
は、正極の活物質をリチウム含有化合物とし、負極をリ
チウムイオンを吸蔵、放出できる炭素質材料とするリチ
ウムイオン二次電池である。
The nonaqueous electrolyte secondary battery according to claim 2 of the present invention is a lithium ion secondary battery in which the active material of the positive electrode is a lithium-containing compound and the negative electrode is a carbonaceous material capable of absorbing and releasing lithium ions. .

【0011】[0011]

【作用】外装缶に使用される材料としては、白金、チタ
ン、アルミニウム等が考えられるが、耐食性の面や工業
的スケール(資源及び材料コスト等)等を考慮すると、
使用される材料が規制され、安価で導電性も良好なアル
ミニウムが最適であることが判る。
[Function] Platinum, titanium, aluminum, etc. can be considered as the material used for the outer can. However, considering corrosion resistance and industrial scale (resources and material costs, etc.),
It is understood that the material to be used is restricted, and aluminum that is inexpensive and has good conductivity is optimal.

【0012】そこで、本願発明は、充電状態の電圧が
3.5V以上5.0V以下の非水電解液二次電池におい
て、正極缶などの腐食を防止するために、正極缶材料を
アルミニウムとするものであり、高耐食性が得られる。
In view of the above, according to the present invention, in a non-aqueous electrolyte secondary battery having a charged state voltage of 3.5 V or more and 5.0 V or less, the positive electrode can is made of aluminum in order to prevent corrosion of the positive electrode can and the like. And high corrosion resistance is obtained.

【0013】また、比重の小さいアルミニウムを外装缶
として用いることにより、軽量化において、優れた効果
を得ることができる。例えば、正極缶として、ステンレ
スとアルミニウムを用いた場合の重量エネルギー密度の
一比較例を表1に示す。
Further, by using aluminum having a small specific gravity as the outer can, an excellent effect in weight reduction can be obtained. For example, Table 1 shows a comparative example of the weight energy density when stainless steel and aluminum are used as the positive electrode can.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より、ステンレスと比較してアルミニ
ウムでは、重量エネルギー密度は約50%増となる。
As shown in Table 1, the weight energy density of aluminum is increased by about 50% as compared with stainless steel.

【0016】さらにまた、非水電解液電池等を使用機器
等に組み込む時は限られた空間しかなく、その空間をよ
り有効に使用するためには、電池の外観は円筒形ではな
く角形で、特に矩形または長円形にする方が非常に有効
である。
Furthermore, when a non-aqueous electrolyte battery or the like is incorporated into equipment to be used, there is only a limited space. In order to use that space more effectively, the appearance of the battery is not a cylinder but a prismatic shape. In particular, it is very effective to make a rectangle or an oval.

【0017】しかしながら、ここで矩形の外装缶に渦巻
電極体を挿入するには、渦巻電極体は真円ではなく長円
形状でなくてはならない。このとき、長円形状の渦巻電
極体は、外装缶に挿入した後に真円に近い方へ戻ろうと
するために(図6)、外装缶の短径及び長径に復元力が
作用する。この復元力を利用して、外装缶と渦巻電極体
との接触圧を高め、良好な電気的接続を維持することが
できる。
However, in order to insert the spiral electrode body into the rectangular outer can, the spiral electrode body must be not a perfect circle but an oval shape. At this time, a restoring force acts on the short diameter and the long diameter of the outer can because the elliptical spiral electrode body attempts to return to a direction closer to a perfect circle after being inserted into the outer can (FIG. 6). By utilizing this restoring force, the contact pressure between the outer can and the spiral electrode body can be increased, and good electrical connection can be maintained.

【0018】ここで、長円形状の渦巻電極の短径a及び
長径bと外装缶開口部内周の短径A及び長径Bとが、
(a/A)≧(b/B)且つ、(A−a)≦(B−b)
のような関係にあれば、主として短径方向で渦巻電極間
での緊迫度及び外装缶と最外周芯体との接触集電効果の
両方が最適に確保することができる。
Here, the minor axis a and major axis b of the elliptical spiral electrode and the minor axis A and major axis B of the inner circumference of the outer can opening are defined by:
(A / A) ≧ (b / B) and (A−a) ≦ (B−b)
With such a relationship, both the degree of tightness between the spiral electrodes and the contact current collection effect between the outer can and the outermost core can be optimally secured mainly in the minor diameter direction.

【0019】この理由は、長円形状渦巻電極体には真円
に近い方向への復元力が働き、長円形状渦巻電極体の長
径方向は縮む方向へ、短径方向は伸びる方向へ復元力が
作用するために良好な緊迫及び接触が得られることと、
短径方向のほうが渦巻電極体と外装缶とがフラットに近
い部分で接触する面積が大きいことによるものである
The reason for this is that the restoring force acts on the elliptical spiral electrode body in a direction close to a perfect circle, and the restoring force acts in the direction of contraction in the major axis direction of the elliptical spiral electrode body and in the direction of extension in the minor axis direction. That good tension and contact are obtained for the action of
This is due to the fact that the area in which the spiral electrode body and the outer can come into contact with each other in the near-flat part is larger in the minor axis direction.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1−aは本発明の非水電解液二次電池に
内蔵される渦巻電極体の部分断面図、図1−bは渦巻電
極体の斜視図である。
FIG. 1A is a partial sectional view of a spiral electrode body incorporated in the nonaqueous electrolyte secondary battery of the present invention, and FIG. 1B is a perspective view of the spiral electrode body.

【0022】[正極の作製]活物質としてのコバルト酸
リチウムと、導電剤としてのアセチレンブラック及び結
着剤としてのフッ素樹脂ディスパージョンをそれぞれ重
量比で90:6:4の比率で混練して正極合剤1−2を
得た。次いで、この正極合剤を芯体1−1としてのアル
ミニウム製のラス板に圧延して、これを250℃で2時
間真空熱処理して正極1を作製した。尚、正極の最外周
端部は正極合剤1−2を脱落させて、少なくとも芯体1
−1を一部分露出させている。
[Preparation of Positive Electrode] Lithium cobaltate as an active material, acetylene black as a conductive agent, and a fluororesin dispersion as a binder were kneaded at a weight ratio of 90: 6: 4, respectively, to form a positive electrode. The mixture 1-2 was obtained. Next, this positive electrode mixture was rolled into an aluminum lath plate as a core body 1-1, and this was subjected to vacuum heat treatment at 250 ° C. for 2 hours to produce a positive electrode 1. In addition, the outermost end of the positive electrode drops the positive electrode mixture 1-2, and at least the core 1
-1 is partially exposed.

【0023】[負極の作製]400メッシュパスのグラ
ファイト粉末と、結着剤としてのフッ素樹脂ディスパー
ジョンとをそれぞれ重量比で95:5の比率で混合し
て、負極合剤3−2を得た。次いで、この負極合剤を銅
製の芯体3−1に圧延して、これを250℃で2時間真
空下で熱処理して負極3を作製した。
[Preparation of Negative Electrode] A graphite powder of 400 mesh pass and a fluororesin dispersion as a binder were mixed at a weight ratio of 95: 5, respectively, to obtain a negative electrode mixture 3-2. . Next, the negative electrode mixture was rolled into a copper core 3-1 and heat-treated at 250 ° C. for 2 hours under vacuum to prepare a negative electrode 3.

【0024】[渦巻電極体の作製]上記正極1と、負極
3とをポリエチレン製微孔性薄膜のセパレータ2を介し
て巻回し、渦巻電極体4を作製した。
[Preparation of Spiral Electrode Body] The positive electrode 1 and the negative electrode 3 were wound through a polyethylene microporous thin film separator 2 to prepare a spiral electrode body 4.

【0025】図2は、非水電解液電池の分解構成斜視図
である。
FIG. 2 is an exploded perspective view of the nonaqueous electrolyte battery.

【0026】上記渦巻電極体4をアルミニウム製有底矩
形外装缶5中に収納する。次いで、溶媒として、エチレ
ンカーボネートと、ジメチルカーボネートとを体積比で
1:1の比率で混合して、溶質として、LiPF6を1
モル/リットルを混合溶媒に溶かした非水電解液を注液
し、外装缶開口部に安全弁装置を設けた封口体(図示し
ない)を溶接し、密閉して容積約10ccの非水電解液
電池を作製した。
The spiral electrode body 4 is housed in an aluminum bottomed rectangular outer can 5. Next, ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 as solvents, and LiPF 6 was added as a solute at 1: 1.
A non-aqueous electrolyte solution in which mol / liter is dissolved in a mixed solvent is injected, and a sealing member (not shown) provided with a safety valve device at the opening of the outer can is welded and sealed, and a non-aqueous electrolyte battery having a capacity of about 10 cc is sealed. Was prepared.

【0027】次に、外装缶内周の短径をA、長径をB、
渦巻電極体の短径をa、長径をbとして、(a/A)>
(b/B)且つ、(A−a)<(B−b)の関係がある
ときの電池を本発明電池A1として図3に示す。図3−
aは渦巻電極体の断面図、図3−bは外装缶の断面図、
図3−cは本発明電池A1の断面図である。
Next, the minor axis of the inner circumference of the outer can is A, the major axis is B,
Assuming that the minor axis of the spiral electrode body is a and the major axis is b, (a / A)>
The battery when (b / B) and (A-a) <(B-b) are shown in FIG. 3 as the battery A1 of the present invention. Figure 3-
a is a sectional view of a spiral electrode body, FIG. 3-b is a sectional view of an outer can,
FIG. 3C is a cross-sectional view of the battery A1 of the present invention.

【0028】このような上記の関係にあるときは、渦巻
電極体は図6に示すような復元力が渦巻電極体の短径方
向にかかるために、外装缶短径方向において、外装缶短
径方向と渦巻電極体短径方向との良好な緊迫度が得られ
る。
In such a relationship, the spiral electrode body applies a restoring force as shown in FIG. 6 in the minor axis direction of the spiral electrode body. A good degree of tightness between the direction and the short diameter direction of the spiral electrode body is obtained.

【0029】また、(a/A)=(b/B)且つ、(A
−a)=(B−b)のような関係のときの電池を、本発
明の実施例の電池A2とし、図4に示す。図4−aは渦
巻電極体の断面図、図4−bは外装缶の断面図、図4−
cは本発明の実施例の電池A2の断面図である。
Also, (a / A) = (b / B) and (A
FIG. 4 shows a battery in the case of -a) = (Bb) as the battery A2 of the embodiment of the present invention. 4A is a cross-sectional view of a spiral electrode body, FIG. 4-B is a cross-sectional view of an outer can, FIG.
c is a cross-sectional view of the battery A2 according to the example of the present invention.

【0030】本発明の実施例の電池A2は、外装缶内周
の短径と渦巻電極体の短径、外装缶内周の長径と渦巻電
極体の長径とがそれぞれ等しいときである。この場合
は、外装缶内周の短径及び長径に渦巻電極体の短径及び
長径がそれぞれに接している状態になる。
In the battery A2 according to the embodiment of the present invention, the minor axis of the inner periphery of the outer can and the minor axis of the spiral electrode body, and the major axis of the inner periphery of the outer can and the major axis of the spiral electrode body are respectively equal. In this case, the short diameter and the long diameter of the spiral electrode body are in contact with the short diameter and the long diameter of the inner circumference of the outer can.

【0031】次に、(a/A)<(b/B)且つ、(A
−a)>(B−b)のような関係のときの状態の電池を
比較電池Xとして図5に示す。図5−aは渦巻電極体の
断面図、図5−bは外装缶の断面図、図5−cは比較電
池Xの断面図である。
Next, (a / A) <(b / B) and (A
FIG. 5 shows a battery in a state where the relationship of −a)> (Bb) is established as a comparative battery X. 5A is a sectional view of the spiral electrode body, FIG. 5B is a sectional view of the outer can, and FIG. 5C is a sectional view of the comparative battery X.

【0032】この場合、渦巻電極体の短径方向の寸法が
外装缶内周の短径方向の寸法よりも小さいために、短径
方向では接触しない状態になる。これでは、長径方向で
しか緊迫度が得られないために電池特性に悪影響を及ぼ
す。
In this case, since the dimension in the minor axis direction of the spiral electrode body is smaller than the dimension in the minor axis direction of the inner circumference of the outer can, no contact occurs in the minor axis direction. In this case, the degree of tension can be obtained only in the long diameter direction, which adversely affects the battery characteristics.

【0033】[実験1]次に、本発明の実施例の電池A
1及びA2と、比較電池Xのそれぞれ10個の初期内部
抵抗とショート電流とを測定し、それらの平均値を表2
に示した。
[Experiment 1] Next, the battery A of the embodiment of the present invention was used.
1 and A2 and 10 initial internal resistances and short-circuit currents of the comparative battery X were measured.
It was shown to.

【0034】[0034]

【表2】 [Table 2]

【0035】このように本発明の実施例の電池A1及び
A2では、渦巻電極体の緊迫度が高くなることで、外装
缶と渦巻電極体との接触強度も増加し、さらに、電極間
距離も小さくなり、初期内部抵抗も小さくなり電池特性
が向上する。
As described above, in the batteries A1 and A2 according to the embodiment of the present invention, the contact strength between the outer can and the spiral electrode body is increased by increasing the tension of the spiral electrode body, and the distance between the electrodes is also reduced. As a result, the initial internal resistance decreases, and the battery characteristics are improved.

【0036】[実験2]図7及び図8に、本発明の実施
例の電池A1及びA2と比較電池Xとの電池特性の比較
を示す。
[Experiment 2] FIGS. 7 and 8 show a comparison of battery characteristics between the batteries A1 and A2 of the embodiment of the present invention and the comparative battery X.

【0037】図7は、本発明の実施例の電池A1、A2
及び比較電池Xの放電特性を示した図であり、測定条件
は、200mAの電流で電池電圧が4.2Vに達するま
で充電した後、200mAの電流で電池電圧が2.7V
に達するまで放電した曲線を示したものである。
FIG. 7 shows the batteries A1 and A2 according to the embodiment of the present invention.
FIG. 5 is a diagram showing the discharge characteristics of a comparative battery X. The measurement conditions were as follows: the battery was charged at a current of 200 mA until the battery voltage reached 4.2 V, and the battery voltage was 2.7 V at a current of 200 mA.
FIG. 4 shows a curve discharged until the temperature reaches the threshold value.

【0038】図7より、本発明の実施例の電池A1及び
A2の方が、比較電池Xよりも放電容量が大きいことが
判る。
FIG. 7 shows that the batteries A1 and A2 of the embodiment of the present invention have a larger discharge capacity than the comparative battery X.

【0039】また、図8は、サイクル特性を示した図で
あり、測定条件は200mAの電流で電池電圧が4.2
Vに達するまで充電した後、200mAの電流で電池電
圧が2.7Vに達するまで放電するというサイクルを繰
り返すものである。
FIG. 8 is a graph showing the cycle characteristics. The measurement conditions were as follows: a current of 200 mA and a battery voltage of 4.2.
After the battery is charged until the battery voltage reaches 2.7 V, the battery is discharged at a current of 200 mA until the battery voltage reaches 2.7 V.

【0040】図8より、本発明の実施例の電池A1及び
A2は、比較電池Xと比べて、サイクル特性が向上して
いることが判る。
FIG. 8 shows that the batteries A1 and A2 of the example of the present invention have improved cycle characteristics as compared with the comparative battery X.

【0041】[0041]

【発明の効果】本発明の非水電解液二次電池は、正極
と、負極とセパレータとからなる電極体と、非水電解液
と、外装缶とから構成される電池電圧が3.5V以上
5.0V以下の非水電解液電池であって、外装缶材料を
アルミニウムとするので、充電するときの高電圧に対す
腐食性が向上し、かつ、電池自身の軽量化を計ること
ができる。
The non-aqueous electrolyte secondary battery of the present invention has a battery voltage of 3.5 V or more composed of a positive electrode, an electrode body including a negative electrode and a separator, a non-aqueous electrolyte, and an outer can. Since it is a non-aqueous electrolyte battery of 5.0 V or less and the outer can material is aluminum, the corrosiveness to a high voltage at the time of charging is improved , and the weight of the battery itself can be reduced.

【0042】さらに、本発明の非水電解液二次電池は、
外装缶をアルミニウムとするので、充電するときに内部
で発生する熱を外装缶から効率よく放熱する。アルミニ
ウムの熱伝導率が、ステンレス等に比較して極めて大き
いからである。このため、本発明の非水電解液二次電池
は、急速充電されるときに、保護回路が動作するのを防
止して、短時間で急速充電できる特長がある。また、周
囲に発熱量の多い部品が内蔵される好ましくない温度環
境で使用されても、電池の内部で発生する熱をアルミニ
ウム製の外装缶から有効に放熱する。このため、厳しい
使用環境においても、安心して使用できる特長がある。
Furthermore, the non-aqueous electrolyte secondary battery of the present invention
Since the outer can is made of aluminum, the inner
Heat generated from the outer can is efficiently radiated. Armini
The thermal conductivity of aluminum is extremely large compared to stainless steel etc.
Because it is. Therefore, the non-aqueous electrolyte secondary battery of the present invention
Prevents the protection circuit from operating when the battery is rapidly charged.
It has the feature that it can be stopped and fast charged in a short time. Also,
Undesirable temperature ring with components that generate a lot of heat
Heat generated inside the battery even when used in
Effectively dissipates heat from the aluminum outer can. Because of this, severe
It has the feature that it can be used safely in the use environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明電池の渦巻電極体の構成図である。FIG. 1 is a configuration diagram of a spiral electrode body of a battery of the present invention.

【図2】 本発明電池の分解構成図である。FIG. 2 is an exploded view of the battery of the present invention.

【図3】 a 本発明の実施例の電池A1の渦巻電極体
断面図である。 b 外装缶の断面図である。 c 本発明電池A1の断面図である。
FIG. 3A is a cross-sectional view of a spiral electrode body of a battery A1 according to an example of the present invention. b It is sectional drawing of an exterior can. c is a cross-sectional view of the battery A1 of the present invention.

【図4】 a 本発明電池A2の渦巻電極体断面図であ
る。 b 外装缶の断面図である。 c 本発明電池A2の断面図である。
FIG. 4a is a cross-sectional view of a spiral electrode body of the battery A2 of the present invention. b It is sectional drawing of an exterior can. c It is sectional drawing of this invention battery A2.

【図5】 a 比較電池Xの渦巻電極体断面図である。 b 外装缶の断面図である。 c 比較電池Xの断面図である。5A is a cross-sectional view of a spiral electrode body of a comparative battery X. FIG. b It is sectional drawing of an exterior can. c is a sectional view of a comparative battery X.

【図6】 渦巻電極体の復元力の説明図である。FIG. 6 is an explanatory diagram of a restoring force of a spiral electrode body.

【図7】 放電特性を示す図である。FIG. 7 is a diagram showing discharge characteristics.

【図8】 サイクル特性を示す図である。FIG. 8 is a diagram showing cycle characteristics.

【符号の説明】 1・・・・・・正極 1−1・・・・正極芯体 1−2・・・・正極活物質 2・・・・・・セパレータ 3・・・・・・負極 3−1・・・・負極芯体 3−2・・・・負極活物質 4・・・・・・渦巻電極体 5・・・・・・アルミニウム外装缶 A1・・・・・本発明電池 A2・・・・・本発明電池 X・・・・・・比較電池[Description of Signs] 1 ... Positive electrode 1-1 ... Positive electrode core 1-2 ... Positive electrode active material 2 ... Separator 3 ... Negative electrode 3 -1 ... Negative electrode core 3-2 ... Negative electrode active material 4 ... Spiral electrode body 5 ... Aluminum outer can A1 ... Battery of the present invention A2 .... Battery of the present invention X ... Comparative battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻奥 啓一 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 雨堤 徹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 玉置 日義 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山内 康弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Keiichi Tsujioku 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Tohru Atsutsumi 2 Keihanhondori, Moriguchi-shi, Osaka 5-5-5 Sanyo Electric Co., Ltd. (72) Inventor Tamaki Hiyoshi 2-5-5 Sanyo Electric Co., Ltd. Sanyo Electric Co., Ltd. (72) Inventor Yasuhiro Yamauchi Keihan Moriguchi, Osaka 2-5-5 Hondori Sanyo Electric Co., Ltd. (72) Inventor Naru Ikukawa 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、セパレータとからなる
電極体と、非水電解液と、外装缶とから構成される電池
電圧が3.5V以上5.0V以下の非水電解液二次電池
において、外装缶材料をアルミニウムとすることを特徴
とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery having a battery voltage of 3.5 V or more and 5.0 V or less, comprising an electrode body including a positive electrode, a negative electrode, and a separator, a non-aqueous electrolyte, and an outer can. A non-aqueous electrolyte secondary battery, wherein the outer can material is aluminum.
【請求項2】 前記正極の活物質はリチウム含有化合物
であり、前記負極はリチウムイオンを吸蔵、放出できる
炭素質材料であることを特徴とする請求項1記載の非水
電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the active material of the positive electrode is a lithium-containing compound, and the negative electrode is a carbonaceous material capable of inserting and extracting lithium ions.
JP9119422A 1997-05-09 1997-05-09 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3030263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9119422A JP3030263B2 (en) 1997-05-09 1997-05-09 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9119422A JP3030263B2 (en) 1997-05-09 1997-05-09 Non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4305298A Division JP3059842B2 (en) 1992-11-16 1992-11-16 Non-aqueous electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10344385A Division JPH11233074A (en) 1992-11-16 1998-12-03 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1050272A true JPH1050272A (en) 1998-02-20
JP3030263B2 JP3030263B2 (en) 2000-04-10

Family

ID=14761073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9119422A Expired - Lifetime JP3030263B2 (en) 1997-05-09 1997-05-09 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3030263B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910129A1 (en) * 1997-10-14 1999-04-21 Ngk Insulators, Ltd. Lithium secondary battery
JPH11283668A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery
JP2000208169A (en) * 1999-01-18 2000-07-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2007065322A1 (en) * 2005-12-09 2007-06-14 Citic Guoan Mengguli New Energy Technology Co., Ltd. Lithium-ion storage battery with flexible external material of cylindric aluminum-plastic laminated film
US7927739B2 (en) 2001-12-14 2011-04-19 The Gillette Company Non-aqueous electrochemical cells

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910129A1 (en) * 1997-10-14 1999-04-21 Ngk Insulators, Ltd. Lithium secondary battery
US6352793B2 (en) 1997-10-14 2002-03-05 Ngk Insulators, Ltd. Lithium secondary battery
US6841297B2 (en) 1997-10-14 2005-01-11 Ngk Insulators, Ltd. Lithium secondary battery
JPH11283668A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery
JP2000208169A (en) * 1999-01-18 2000-07-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US7927739B2 (en) 2001-12-14 2011-04-19 The Gillette Company Non-aqueous electrochemical cells
WO2007065322A1 (en) * 2005-12-09 2007-06-14 Citic Guoan Mengguli New Energy Technology Co., Ltd. Lithium-ion storage battery with flexible external material of cylindric aluminum-plastic laminated film

Also Published As

Publication number Publication date
JP3030263B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
JP3059842B2 (en) Non-aqueous electrolyte battery
JP3061756B2 (en) Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable batteries
US6033797A (en) Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge
JP5372495B2 (en) Secondary battery protection circuit and secondary battery having the same
US8808902B2 (en) Electrode assembly including ceramic layer disposed along the length of the positive electrode and secondary battery using the same
JPH0992334A (en) Sealed nonaqueous secondary battery
WO2006049027A1 (en) Secondary battery with terminal for surface mounting
KR20110018415A (en) Assembled sealing body and battery using same
JPH0973918A (en) Nonaqueous electrolyte for battery
US6716552B2 (en) Secondary lithium battery construction for improved heat transfer
KR20010011900A (en) Lithium secondary battery
EP0457741A1 (en) Safety electrolyte solvent and eletrochemical cells containing a safety electrolyte solvent
JP4329326B2 (en) Secondary battery and secondary battery pack with temperature protection element unit
JP2000260474A (en) Lithium secondary battery
JPH05174873A (en) Nonaqueous electrolyte secondary battery resistant to overcharging
JP2006079942A (en) Battery
JPH1050272A (en) Nonaqueous electrolyte secondary battery
KR100440935B1 (en) Prismatic type sealed battery
JPH11144766A (en) Secondary battery
JPH11233074A (en) Nonaqueous electrolyte secondary battery
JP2007066616A (en) Non-aqueous electrolytic liquid battery
JP2000277063A (en) Sealed battery
JP2003282143A (en) Nonaqueous electrolyte secondary battery
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
KR100646554B1 (en) Anode plate and secondary battery with the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 13