JPH05326016A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH05326016A
JPH05326016A JP4148676A JP14867692A JPH05326016A JP H05326016 A JPH05326016 A JP H05326016A JP 4148676 A JP4148676 A JP 4148676A JP 14867692 A JP14867692 A JP 14867692A JP H05326016 A JPH05326016 A JP H05326016A
Authority
JP
Japan
Prior art keywords
battery
aluminum
solute
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4148676A
Other languages
Japanese (ja)
Other versions
JP3177299B2 (en
Inventor
Ryuji Oshita
竜司 大下
Sanehiro Furukawa
修弘 古川
Seiji Yoshimura
精司 吉村
Masatoshi Takahashi
昌利 高橋
Hiroshi Watanabe
浩志 渡辺
Atsushi Suemori
敦 末森
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14867692A priority Critical patent/JP3177299B2/en
Publication of JPH05326016A publication Critical patent/JPH05326016A/en
Application granted granted Critical
Publication of JP3177299B2 publication Critical patent/JP3177299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve reliability and lessen the capacity decrease of a nonaqueous electrolytic secondary battery by using a mixed solute consisting of LiXFm and LiZ(CF3SO2)n in a prescribed range of the mixing ratio as an electrolytic solution. CONSTITUTION:Regarding a nonaqueous electrolytic secondary battery having a positive electrode corrector made of aluminum or an aluminum alloy, as a solution for the nonaqueous electrolytic solution, a mixed solution consisting of LiXm and LiZ(CF3SO2)n in a mole ratio (1:9)-(9:1) is used wherein X stands for As, Sb, B, Bi, A, Ga or In: in the case X is P, As, or Sb, m is 6: in the case X is B, Bi, A, Ga, or In, m is 4: Z stands for o, N, or C: in the case Z is O, n is 1: in the case Z is N, n is 2: and in the case Z is C, n is 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水系電解液二次電池
に係わり、特に信頼性(安全性)の向上を目的とした非
水系電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a non-aqueous electrolyte solution for the purpose of improving reliability (safety).

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
正極集電体としてアルミニウム又はアルミニウム合金
を、また電解液として非水系溶媒に電解液溶質としての
LiPF6 (ヘキサフルオロリン酸リチウム)を溶かし
た溶液を使用した非水系電解液二次電池が提案されてい
る。
2. Description of the Related Art In recent years,
A non-aqueous electrolyte secondary battery using aluminum or an aluminum alloy as a positive electrode current collector and a solution in which LiPF 6 (lithium hexafluorophosphate) as an electrolyte solute is dissolved in a non-aqueous solvent as an electrolyte is proposed. ing.

【0003】しかしながら、この系の電池には、過充電
時に電解液溶媒が正極上で激しく反応して分解し、その
際に水素などの分解ガスが発生して電池内圧が上昇する
ため、信頼性に欠けるという問題があった。このため、
LiPF6 に代わる電解液溶質として、上記の如き問題
が生じないLiCF3 SO3 (トリフルオロメタンスル
ホン酸リチウム)が一時検討されたことがある。
However, in this type of battery, the electrolytic solution solvent violently reacts and decomposes on the positive electrode during overcharging, and decomposed gas such as hydrogen is generated at that time, and the internal pressure of the battery rises. There was a problem of lacking. For this reason,
As an electrolyte solute that replaces LiPF 6 , LiCF 3 SO 3 (lithium trifluoromethanesulfonate), which does not cause the above-mentioned problems, has been temporarily studied.

【0004】しかしながら、LiCF3 SO3 には、ア
ルミニウムのLiCF3 SO3 を溶質とする電解液に対
する溶解電位が低いため、正極が高電位となる充電時に
正極集電体中のアルミニウムが電解液中に溶出してしま
い充電が不十分となり、実用可能な程度の容量を有する
電池が得られないという問題があった。なお、アルミニ
ウムはLiPF6 を溶質とする電解液に溶けないため、
LiPF6 についてはかかる問題は起こらない。
However, since LiCF 3 SO 3 has a low dissolution potential with respect to an electrolytic solution containing aluminum as a solute of LiCF 3 SO 3 , aluminum in the positive electrode current collector is charged in the electrolytic solution during charging when the positive electrode has a high potential. There was a problem in that the battery was not sufficiently charged due to the elution to the battery, and a battery having a practically usable capacity could not be obtained. Since aluminum does not dissolve in the electrolyte solution containing LiPF 6 ,
This problem does not occur with LiPF 6 .

【0005】このように、LiPF6 及びLiCF3
3 には、信頼性及び電池特性の点で一長一短があった
ため、電解液の改良が嘱望されていた。
Thus, LiPF 6 and LiCF 3 S
Since O 3 has merits and demerits in terms of reliability and battery characteristics, improvement of the electrolytic solution has been desired.

【0006】そこで、鋭意研究した結果、本発明者ら
は、LiPF6 とLiCF3 SO3 とを併用した場合に
おいて、アルミニウムの溶解電位が両者の混合割合によ
り変化することを見出した。
Then, as a result of intensive studies, the present inventors have found that when LiPF 6 and LiCF 3 SO 3 are used in combination, the dissolution potential of aluminum changes depending on the mixing ratio of both.

【0007】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、信頼性が高く、
しかもアルミニウムの溶解に起因した容量低下の少ない
非水系電解液二次電池を提供するにある。
The present invention has been made on the basis of such findings, and the purpose thereof is to have high reliability,
Moreover, it is another object of the present invention to provide a non-aqueous electrolyte secondary battery in which the reduction in capacity due to the dissolution of aluminum is small.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解液二次電池(以下、「本発明
電池」と称する。)は、正極集電体がアルミニウム又は
アルミニウム合金からなる非水系電解液二次電池におい
て、非水系電解液の溶質として、LiXFm (XはP
(リン)、As(ヒ素)、Sb(アンチモン)、B(ホ
ウ素)、Bi(ビスマス)、Al(アルミニウム)、G
a(ガリウム)又はIn(インジウム)であり、Xが
P、As又はSbのときmは6、XがB、Bi、Al、
Ga又はInのときmは4である。)とLiZ(CF3
SO2 n (ZはO、N又はCであり、ZがOのときn
は1、ZがNのときnは2、ZがCのときnは3であ
る。)とのモル比1:9〜9:1の混合溶質が使用され
てなる。
In the non-aqueous electrolyte secondary battery according to the present invention (hereinafter, referred to as "the battery of the present invention") for achieving the above object, the positive electrode current collector is aluminum or aluminum alloy. In a non-aqueous electrolyte secondary battery comprising LiXF m (X is P
(Phosphorus), As (arsenic), Sb (antimony), B (boron), Bi (bismuth), Al (aluminum), G
a (gallium) or In (indium), when X is P, As or Sb, m is 6, X is B, Bi, Al,
When Ga or In, m is 4. ) And LiZ (CF 3
SO 2 ) n (Z is O, N or C, and when Z is O, n
Is 1, n is 2 when Z is N, and n is 3 when Z is C. Mixed solute with a molar ratio of 1: 9 to 9: 1).

【0009】本発明電池においては、非水系電解液の溶
質として、LiXFm とLiZ(CF3 SO2 n との
モル比が1:9〜9:1の範囲内の混合溶質が使用され
る。上記範囲内に溶質のモル比が規制される理由は、ア
ルミニウムの溶解電位が、電解液の分解電位よりも低
く、且つ、正常充電時の正極電位よりも高くなるように
するためである。
In the battery of the present invention, a mixed solute having a molar ratio of LiXF m and LiZ (CF 3 SO 2 ) n within the range of 1: 9 to 9: 1 is used as the solute of the non-aqueous electrolyte solution. .. The reason that the solute molar ratio is regulated within the above range is that the dissolution potential of aluminum is lower than the decomposition potential of the electrolytic solution and higher than the positive electrode potential during normal charging.

【0010】すなわち、後述する実施例にも示すよう
に、LiXFm とLiZ(CF3 SO2 n とのモル比
の値が1/9未満の場合は、LiZ(CF3 SO2 n
が多すぎるため充電が不十分となり実用可能な程度の放
電容量を有する電池が得られなくなる。また、同モル比
が9/1を越えた場合は、LiXFm が多すぎるため過
充電時(異常充電時)にガスが発生して電池内圧が上昇
し、電池の破損、破裂を招く虞れがある。
That is, as shown in Examples described later, when the molar ratio value of LiXF m and LiZ (CF 3 SO 2 ) n is less than 1/9, LiZ (CF 3 SO 2 ) n
Since it is too large, charging becomes insufficient and a battery having a practically usable discharge capacity cannot be obtained. Further, when the molar ratio exceeds 9/1, LiXF m is too much and gas is generated during overcharge (during abnormal charge) to increase the internal pressure of the battery, which may cause damage or rupture of the battery. There is.

【0011】本発明電池は、上述の如く、電解液溶質と
してLiPF6 を単独使用していた従来の非水系電解液
二次電池の電池容量を低下させることなくその信頼性を
向上させるために、電解液溶質としてLiPF6 又はそ
れと同系の溶質(LiXFm)に、LiCF3 SO3
はそれと同系の溶質(LiZ(CF3 SO2 n )を特
定の比率で混合してなる混合溶質を使用した点に特徴を
有する。それゆえ、正極活物質、電解液溶媒、セパレー
タなどの電池を構成する他の部材については、種々の材
料を制限なく使用することが可能である。
In order to improve the reliability of the battery of the present invention without lowering the battery capacity of the conventional non-aqueous electrolyte secondary battery, which used LiPF 6 alone as the electrolyte solute, as described above, As the electrolyte solute, a mixed solute in which LiPF 6 or a solute of the same type (LiXF m ) and LiCF 3 SO 3 or a solute of the same type (LiZ (CF 3 SO 2 ) n ) were mixed at a specific ratio was used. It is characterized by points. Therefore, it is possible to use various materials without limitation for other members constituting the battery such as the positive electrode active material, the electrolytic solution solvent, and the separator.

【0012】たとえば、正極活物質としては、リチウム
を吸蔵放出可能な物質であれば特に制限なく使用するこ
とができる。かかるリチウムを吸蔵放出可能な物質とし
ては、Li2 FeO3 、TiO2 、V2 5 などのトン
ネル状の空孔を有する酸化物や、TiS2 、MoS2
の層状構造を有する金属カルコゲン化物が例示される
が、組成式Lix MO2 又はLiy 2 4 (ただし、
Mは遷移元素、0≦x≦1、0≦y≦2)で表される複
合酸化物が好ましい。これらの組成式で表される複合酸
化物としては、LiCoO2 、LiMnO2 、LiNi
2 、LiCrO2 、LiMn2 4 が例示される。以
上の正極活物質は、常法により、アセチレンブラック、
カーボンブラック等の導電剤及びポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVd
F)等の結着剤と混練して正極合剤として使用される。
For example, as the positive electrode active material, any material can be used without particular limitation as long as it is a material capable of inserting and extracting lithium. Examples of the substance capable of inserting and extracting lithium include oxides having tunnel-shaped holes such as Li 2 FeO 3 , TiO 2 and V 2 O 5 , and metal chalcogenides having a layered structure such as TiS 2 and MoS 2. The composition formula Li x MO 2 or Li y M 2 O 4 (however,
M is preferably a transition element, and a complex oxide represented by 0 ≦ x ≦ 1 and 0 ≦ y ≦ 2). The complex oxides represented by these composition formulas include LiCoO 2 , LiMnO 2 , and LiNi.
O 2 , LiCrO 2 , and LiMn 2 O 4 are exemplified. The above positive electrode active materials are acetylene black,
Conductive agents such as carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVd)
It is used as a positive electrode mixture by kneading with a binder such as F).

【0013】また、負極材料としては、リチウム金属
や、リチウム合金、炭素材料等のリチウムを吸蔵放出可
能な物質が使用される。炭素材料などの粉末状物質は、
結着剤及び必要に応じて導電剤と混練して負極合剤とし
て使用される。
Further, as the negative electrode material, a substance capable of inserting and extracting lithium such as lithium metal, lithium alloy, and carbon material is used. Powdered substances such as carbon materials,
It is used as a negative electrode mixture by kneading with a binder and, if necessary, a conductive agent.

【0014】さらに、電解液を調製する際の溶媒につい
ては、エチレンカーボネート、ジメチルカーボネート又
はこれらの混合溶媒などの他、従来非水系電解液二次電
池用として使用され、或いは提案されている種々の非水
系溶媒を使用することができる。
Further, as the solvent for preparing the electrolytic solution, ethylene carbonate, dimethyl carbonate, a mixed solvent thereof or the like, as well as various solvents conventionally used or proposed for non-aqueous electrolytic solution secondary batteries are proposed. A non-aqueous solvent can be used.

【0015】[0015]

【作用】本発明電池においては、電解液溶質として、ア
ルミニウムの溶解電位が、電解液の分解電位より低く、
且つ、正常充電時の正極電位よりも高くなるような所定
範囲内の比率で混合されたLiXFm とLiZ(CF3
SO2 n とからなる混合溶質が使用されているので、
過充電時には、アルミニウムが溶出して正極電位が分解
電位より低く維持され、これによりガスの発生が抑制さ
れる一方、正常な充電時には、アルミニウムの電解液中
への溶出が殆ど起こらないため、良好な充電がなされ
る。
In the battery of the present invention, as the electrolyte solute, the dissolution potential of aluminum is lower than the decomposition potential of the electrolyte,
In addition, LiXF m and LiZ (CF 3 mixed with each other in a ratio within a predetermined range so as to be higher than the positive electrode potential during normal charging.
Since a mixed solute consisting of SO 2 ) n is used,
At the time of overcharge, aluminum elutes and the positive electrode potential is kept lower than the decomposition potential, which suppresses the generation of gas, while at the time of normal charging, aluminum hardly elutes into the electrolytic solution, which is good. Charging is done.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0017】(1)溶質のモル比とアルミニウムの溶解
電位との関係 エチレンカーボネート(EC)とジメチルカーボネート
(DMC)との等体積混合溶媒に、LiPF6 (ヘキサ
フルオロリン酸リチウム)及び/又はLiCF3 SO3
(トリフルオロメタンスルホン酸リチウム)を所定の割
合で溶かして、表1に示す12種の電解液A〜Lを調製
した。
(1) Relation between molar ratio of solute and dissolution potential of aluminum In an equal volume mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC), LiPF 6 (lithium hexafluorophosphate) and / or LiCF. 3 SO 3
(Lithium trifluoromethanesulfonate) was dissolved at a predetermined ratio to prepare 12 kinds of electrolytic solutions A to L shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】次いで、上記各電解液中に、アルミニウム
電極(+極)とリチウム電極(−極:参照極)とを浸漬
し(浸漬電位は2.5V程度)、100mV/分の割合
で連続的にリチウム電極に対するアルミニウム電極の電
位を上げていき、アルミニウム電極の電位と溶解電流
(アルミニウムの溶解に起因して流れる電流)との関係
を調べた。
Then, an aluminum electrode (+ electrode) and a lithium electrode (-electrode: reference electrode) are immersed in each of the above-mentioned electrolytic solutions (immersion potential is about 2.5 V), and continuously at a rate of 100 mV / min. Then, the potential of the aluminum electrode with respect to the lithium electrode was increased, and the relationship between the potential of the aluminum electrode and the dissolution current (current flowing due to the dissolution of aluminum) was investigated.

【0020】図1は、A、H及びLの3種の電解液につ
いての溶解電流とアルミニウム電極の電位との関係を、
縦軸に溶解電流密度(μA/cm2 )を、横軸にアルミ
ニウム電極の電位(Vvs.Li/Li+ )をとって示
したグラフである。
FIG. 1 shows the relationship between the dissolution current and the potential of the aluminum electrode for the three types of electrolytes A, H and L.
6 is a graph in which the vertical axis represents the dissolution current density (μA / cm 2 ) and the horizontal axis represents the potential of the aluminum electrode (V vs. Li / Li + ).

【0021】また、図2は、上記12種の電解液A〜L
全てについてのグラフであり、溶解電流密度が10μA
/cm2 になったときのアルミニウム電極の電位と溶質
のモル比との関係を、縦軸にアルミニウム電極の電位
(Vvs.Li/Li+ )を、横軸に溶質のモル比をと
って示したものである。
Further, FIG. 2 shows the above twelve kinds of electrolytic solutions A to L.
It is a graph for all, melting current density is 10μA
/ Cm 2 shows the relationship between the potential of the aluminum electrode and the molar ratio of the solute, the vertical axis shows the potential of the aluminum electrode (V vs. Li / Li + ) and the horizontal axis shows the molar ratio of the solute. It is a thing.

【0022】図1より、LiCF3 SO3 一種単独を使
用した電解液の場合は、4V付近を越えると大きな溶解
電流が流れるのに対して、LiPF6 とLiCF3 SO
3 との混合溶質を使用した電解液の場合は、5V付近ま
では微量の溶解電流しか流れないことが分かる。このこ
とから、LiCF3 SO3 一種単独を使用した電解液で
は、正極の正常時の充電電位(通常、4.2〜4.3V
程度である。)においてもアルミニウムの溶出が激しく
起こるのに対して、上記混合溶質を使用した電解液で
は、正常時の充電電位においてはアルミニウムの溶出は
殆ど起こらず、良好な充電がなされ得ることが理解され
る。さらに同図より、LiPF6 一種単独を使用した場
合は、正常時はもとより過充電時においても、微電流し
か流れず、アルミニウムの溶出が起こらないことが理解
される。なお、上記微電流は、アルミニウムの表面に不
働態膜が生成する際に流れる電流である。
From FIG. 1, in the case of the electrolytic solution using only one kind of LiCF 3 SO 3 , a large melting current flows when the voltage exceeds about 4 V, whereas LiPF 6 and LiCF 3 SO 3 flow.
It can be seen that in the case of the electrolytic solution using the mixed solute with 3 , only a small amount of dissolution current flows up to around 5V. From this, in the electrolytic solution using only one kind of LiCF 3 SO 3 , the charge potential of the positive electrode in a normal state (usually 4.2 to 4.3 V
It is a degree. ), The elution of aluminum occurs violently, whereas it is understood that the electrolytic solution using the mixed solute hardly elutes aluminum at the charging potential under normal conditions, and good charging can be performed. .. Further, from the figure, it is understood that when only one kind of LiPF 6 is used, only a small current flows and the elution of aluminum does not occur during overcharge as well as during normal operation. The minute current is a current that flows when a passive film is formed on the surface of aluminum.

【0023】また、図2より、LiPF6 とLiCF3
SO3 とのモル比の値が1/9以上の場合に、正常充電
時のアルミニウムの溶出が顕著に抑制されることが理解
される。
Further, from FIG. 2, LiPF 6 and LiCF 3
It is understood that when the value of the molar ratio with SO 3 is 1/9 or more, the elution of aluminum during normal charging is significantly suppressed.

【0024】(2)溶質のモル比と電池の放電容量との
関係 (2−1)LiPF6 とLiCF3 SO3 とのモル比が
異なる電解液を使用して13種の非水系電解液電池を作
製し、各電池の放電容量を調べた。
(2) Relationship between solute molar ratio and discharge capacity of battery (2-1) 13 kinds of non-aqueous electrolyte batteries using electrolytic solutions having different molar ratios of LiPF 6 and LiCF 3 SO 3 Was prepared and the discharge capacity of each battery was examined.

【0025】〔正極の作製〕正極活物質としてのLiC
oO2 に、導電剤としてのアセチレンブラックと、結着
剤としてのフッ素樹脂ディスパージョンとを、重量比9
0:5:5の比率で混練して正極合剤とした後、これを
正極集電体としてのアルミニウム箔の両面に塗布し、乾
燥して正極を作製した。
[Production of Positive Electrode] LiC as Positive Electrode Active Material
In oo 2 , acetylene black as a conductive agent and a fluororesin dispersion as a binder were added in a weight ratio of 9
After kneading at a ratio of 0: 5: 5 to form a positive electrode mixture, this was applied to both surfaces of an aluminum foil as a positive electrode current collector and dried to prepare a positive electrode.

【0026】〔負極の作製〕黒鉛に結着剤としてのPV
dFを、重量比95:5の比率で混合し、これを溶剤
(N−メチルピロリドン)に分散させてスラリーとした
後、負極集電体としての銅箔の両面にドクターブレード
法により塗布し、乾燥して、負極を作製した。
[Preparation of Negative Electrode] PV as a binder on graphite
dF was mixed in a weight ratio of 95: 5, dispersed in a solvent (N-methylpyrrolidone) to form a slurry, and then applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, It was dried to prepare a negative electrode.

【0027】〔電解液の調製〕エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、電解液溶
質としてのLiPF6 及び/又はLiCF3 SO3 を表
2に示す所定の割合で溶かして、13種の電解液を調製
した。
[Preparation of Electrolytic Solution] LiPF 6 and / or LiCF 3 SO 3 as an electrolytic solution solute was dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate at a predetermined ratio shown in Table 2 to obtain 13 kinds. The electrolytic solution of was prepared.

【0028】[0028]

【表2】 [Table 2]

【0029】〔非水系電解液二次電池の作製〕以上の正
負両極及び電解液を用いて13種の円筒型の非水系電解
液二次電池BA1〜BA9(本発明電池)及びBC1〜
BC4(比較電池)を作製した(電池寸法:直径14.
2mm;長さ50.0mm)。なお、セパレータとして
イオン透過性のポリプロピレン製の微孔性薄膜を用い
た。
[Production of Non-Aqueous Electrolyte Secondary Battery] Thirteen types of cylindrical non-aqueous electrolyte secondary batteries BA1 to BA9 (invention batteries) and BC1 using the positive and negative electrodes and the electrolyte described above.
BC4 (comparative battery) was produced (battery size: diameter 14.
2 mm; length 50.0 mm). As the separator, an ion-permeable polypropylene microporous thin film was used.

【0030】図3は作製した電池の模式的断面図であ
り、同図に示す電池BAは、正極1及び負極2、これら
両電極を離隔するセパレータ3、正極リード4、負極リ
ード5、正極外部端子6、負極缶7などからなる。正極
1及び負極2は非水電解液が注入されたセパレータ3を
介して渦巻き状に巻き取られた状態で負極缶7内に収容
されており、正極1は正極リード4を介して正極外部端
子6に、また負極2は負極リード5を介して負極缶7に
接続され、電池BA内部で生じた化学エネルギーを電気
エネルギーとして外部へ取り出し得るようになってい
る。
FIG. 3 is a schematic cross-sectional view of the produced battery. The battery BA shown in FIG. 3 includes a positive electrode 1 and a negative electrode 2, a separator 3 separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, and a positive electrode outside. The terminal 6, the negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are housed in the negative electrode can 7 in a state of being spirally wound via the separator 3 into which the nonaqueous electrolytic solution is injected, and the positive electrode 1 is connected to the positive electrode external terminal via the positive electrode lead 4. 6, and the negative electrode 2 is connected to the negative electrode can 7 via the negative electrode lead 5 so that the chemical energy generated inside the battery BA can be taken out as electric energy to the outside.

【0031】上記各電池について、200mAで4.1
Vになるまで充電した後、200mAで2.75Vにな
るまで放電した場合の放電容量を測定した。結果を図4
に●でプロットして示す。
For each of the above batteries, 4.1 at 200 mA
The discharge capacity was measured when the battery was charged to V and then discharged to 200 V at 2.75 V. The result is shown in Figure 4.
Is plotted with ●.

【0032】図4は、右側の縦軸に放電容量(mAh)
を、横軸に各電池における溶質のモル比をとって示した
グラフであり、同グラフより、LiPF6 :LiCF3
SO3 のモル比の値が1/9より小さい比較電池BC1
及びBC2は、同モル比の値が1/9以上である本発明
電池BA1〜BA9に比し、放電容量が極めて小さいこ
とが分かる。なお、この結果は、上記(1)で述べた結
果と、完全に符合する。
In FIG. 4, the vertical axis on the right side shows the discharge capacity (mAh).
Is a graph in which the abscissa represents the molar ratio of the solute in each battery, and from the graph, LiPF 6 : LiCF 3
Comparative battery BC1 having a molar ratio of SO 3 smaller than 1/9
It can be seen that the discharge capacities of BC and BC2 are extremely smaller than those of the batteries BA1 to BA9 of the present invention having the same molar ratio of 1/9 or more. It should be noted that this result perfectly matches the result described in (1) above.

【0033】(2−2)正極活物質としてLiCoO2
に代えてLiNiO2 を、電解液溶媒としてエチレンカ
ーボネートとジメチルカーボネートとの等体積混合溶媒
に代えてエチレンカーボネートとジエチルカーボネート
(DEC)との等体積混合溶媒を、また電解液溶質とし
てLiPF6 及び/又はLiCF3 SO3 に代えてLi
BF4 及び/又はLiN(CF3 SO2 2 を表3に示
す所定の割合で使用したこと以外は、上記(2−1)と
同様にして10種の円筒型電池を作製し、各電池の放電
容量を測定した。結果を表3に示す。
(2-2) LiCoO 2 as a positive electrode active material
In place of LiNiO 2 , an electrolytic solution solvent in which an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate is replaced with an equal volume mixed solvent of ethylene carbonate and diethyl carbonate (DEC), and an electrolytic solution solute of LiPF 6 and / or Or, instead of LiCF 3 SO 3 , Li
Ten kinds of cylindrical batteries were produced in the same manner as in the above (2-1) except that BF 4 and / or LiN (CF 3 SO 2 ) 2 was used at the predetermined ratios shown in Table 3, and each battery was prepared. Discharge capacity was measured. The results are shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】(2−3)正極活物質としてLiCoO2
に代えてLiMnO2 を、電解液溶媒としてエチレンカ
ーボネートとジメチルカーボネートとの等体積混合溶媒
に代えてビニレンカーボネート(VC)とジメチルカー
ボネートとの等体積混合溶媒を、また電解液溶質として
LiPF6 及び/又はLiCF3 SO3 に代えてLiA
sF6 及び/又はLiC(CF3 SO2 3 を表4に示
す所定の割合で使用したこと以外は、上記(2−1)と
同様にして10種の円筒型電池を作製し、各電池の放電
容量を測定した。結果を表4に示す。
(2-3) LiCoO 2 as a positive electrode active material
In place of LiMnO 2 , an electrolyte solution solvent in which an equal volume solvent mixture of ethylene carbonate and dimethyl carbonate is replaced by a vinylene carbonate (VC) and an equivalent volume solvent mixture in dimethyl carbonate, and an electrolyte solution solute of LiPF 6 and / or Or LiA instead of LiCF 3 SO 3
Ten kinds of cylindrical batteries were produced in the same manner as in the above (2-1) except that sF 6 and / or LiC (CF 3 SO 2 ) 3 was used at a predetermined ratio shown in Table 4. Discharge capacity was measured. The results are shown in Table 4.

【0036】[0036]

【表4】 [Table 4]

【0037】(2−4)負極材料として黒鉛に代えてリ
チウム金属を、また電解液溶質としてLiPF6 及び/
又はLiCF3 SO3 に代えてLiSbF6 及び/又は
LiCF3 SO3 を表5に示す所定の割合で使用したこ
と以外は、上記(2−1)と同様にして10種の円筒型
電池を作製し、各電池の放電容量を測定した。結果を表
5に示す。
(2-4) Lithium metal is used as the negative electrode material in place of graphite, and LiPF 6 and / or electrolyte solute is used.
Or LiCF 3 the place of the SO 3 LiSbF 6 and / or LiCF 3 SO 3 except for using a predetermined ratio shown in Table 5, prepared 10 kinds of cylindrical batteries in the same manner as in the above (2-1) Then, the discharge capacity of each battery was measured. The results are shown in Table 5.

【0038】[0038]

【表5】 [Table 5]

【0039】表3〜表5より、LiXFm :LiZ(C
3 SO2 n のモル比の値が1/9より小さい比較電
池BC5、BC6、BC9、BC10、BC13及びB
C14は、同モル比の値が1/9以上である本発明電池
BA10〜BA27に比し、放電容量が極めて小さいこ
とが分かる。
From Table 3 to Table 5, LiXF m : LiZ (C
Comparative batteries BC5, BC6, BC9, BC10, BC13 and B having a molar ratio of F 3 SO 2 ) n smaller than 1/9
It can be seen that C14 has an extremely small discharge capacity as compared with the batteries BA10 to BA27 of the present invention in which the value of the same molar ratio is 1/9 or more.

【0040】(3)溶質のモル比と過充電時のガス発生
量との関係 上記(2−1)〜(2−4)と同様にして作製した各電
池について、5Vで1時間充電(過充電)した場合のガ
ス発生量(cc)を測定した。上記(2−1)と同様に
して作製した電池についての結果は先の図4に○でプロ
ットして示し、上記(2−2)〜(2−4)と同様にし
て作製した各電池についての結果は先の表3〜表5に示
した。なお、図4において、ガス発生量は左側の縦軸を
座標軸として示してある。
(3) Relationship between molar ratio of solute and amount of gas generated during overcharge For each battery produced in the same manner as in (2-1) to (2-4) above, the battery was charged at 5V for 1 hour (overcharge). The amount of gas generated (cc) when charged) was measured. The results for the battery manufactured in the same manner as in the above (2-1) are shown by plotting with a circle in FIG. 4 above, and for each battery manufactured in the same manner as in the above (2-2) to (2-4). The results are shown in Tables 3 to 5 above. In addition, in FIG. 4, the vertical axis on the left side of the gas generation amount is shown as a coordinate axis.

【0041】図4及び表3〜表5より、LiXFm :L
iZ(CF3 SO2 n のモル比の値が9/1より大き
い比較電池BC3、BC4、BC7、BC8、BC1
1、BC12、BC15及びBC16は、同モル比の値
が9/1以下である本発明電池BA1〜BA27に比
し、ガス発生量が極めて多いことが分かる。
From FIG. 4 and Tables 3 to 5, LiXF m : L
Comparative batteries BC3, BC4, BC7, BC8, BC1 in which the molar ratio of iZ (CF 3 SO 2 ) n is greater than 9/1
It can be seen that 1, BC12, BC15, and BC16 have an extremely large amount of gas generation as compared with the batteries BA1 to BA27 of the present invention in which the value of the same molar ratio is 9/1 or less.

【0042】叙上の実施例では本発明を円筒型電池に適
用した場合の具体例について説明したが、電池の形状に
特に制限はなく、本発明は扁平型、角型等、種々の形状
のリチウム二次電池に適用し得るものである。
In the above embodiment, a specific example in which the present invention is applied to a cylindrical battery is explained, but the shape of the battery is not particularly limited, and the present invention has various shapes such as a flat shape and a square shape. It is applicable to a lithium secondary battery.

【0043】[0043]

【発明の効果】本発明電池においては、充電時にアルミ
ニウムが電解液中に多量に溶出するという問題がないの
で、これに起因する電池容量の低下がなく、また過充電
時のガス発生量が少ないので信頼性が高いなど、本発明
は優れた特有の効果を奏する。
In the battery of the present invention, there is no problem that a large amount of aluminum is eluted in the electrolytic solution during charging, so there is no decrease in battery capacity due to this, and the amount of gas generated during overcharging is small. Therefore, the present invention has excellent unique effects such as high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウムの溶解電流とアルミニウム電極の
電位との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a melting current of aluminum and a potential of an aluminum electrode.

【図2】溶解電流密度が10μA/cm2 になるときの
アルミニウム電極の電位と溶質のモル比との関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the aluminum electrode potential and the solute molar ratio when the dissolution current density is 10 μA / cm 2 .

【図3】実施例で作製した円筒型電池の断面図である。FIG. 3 is a cross-sectional view of a cylindrical battery manufactured in an example.

【図4】溶質のモル比と、放電容量及び過充電時のガス
発生量との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the molar ratio of solute and the discharge capacity and the amount of gas generated during overcharge.

【符号の説明】[Explanation of symbols]

BA 円筒型電池 1 正極 2 負極 3 セパレータ BA cylindrical battery 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 昌利 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 渡辺 浩志 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 末森 敦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Takahashi 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hiroshi Watanabe 2-18-2 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Incorporated (72) Inventor Atsue Suemori 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極集電体がアルミニウム又はアルミニウ
ム合金からなる非水系電解液二次電池において、非水系
電解液の溶質として、LiXFm (XはP、As、S
b、B、Bi、Al、Ga又はInであり、XがP、A
s又はSbのときmは6、XがB、Bi、Al、Ga又
はInのときmは4である。)とLiZ(CF3
2n (ZはO、N又はCであり、ZがOのときnは
1、ZがNのときnは2、ZがCのときnは3であ
る。)とのモル比1:9〜9:1の混合溶質が使用され
ていることを特徴とする非水系電解液二次電池。
1. In a non-aqueous electrolyte secondary battery in which the positive electrode current collector is made of aluminum or an aluminum alloy, LiXF m (X is P, As, S) as a solute of the non-aqueous electrolyte solution.
b, B, Bi, Al, Ga or In, and X is P, A
When s or Sb, m is 6, and when X is B, Bi, Al, Ga or In, m is 4. ) And LiZ (CF 3 S
O 2 ) n (Z is O, N or C, n is 1 when Z is O, n is 2 when Z is N, and n is 3 when Z is C). : A non-aqueous electrolyte secondary battery, wherein a mixed solute of 9 to 9: 1 is used.
JP14867692A 1992-05-15 1992-05-15 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3177299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14867692A JP3177299B2 (en) 1992-05-15 1992-05-15 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14867692A JP3177299B2 (en) 1992-05-15 1992-05-15 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05326016A true JPH05326016A (en) 1993-12-10
JP3177299B2 JP3177299B2 (en) 2001-06-18

Family

ID=15458125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14867692A Expired - Fee Related JP3177299B2 (en) 1992-05-15 1992-05-15 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3177299B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717620A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient Additive limiting the corrosion of the collector in an electrochemical cell.
FR2717612A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient New ionically conductive material
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
US5652072A (en) * 1995-09-21 1997-07-29 Minnesota Mining And Manufacturing Company Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts
US5691081A (en) * 1995-09-21 1997-11-25 Minnesota Mining And Manufacturing Company Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts
EP0886334A1 (en) * 1997-06-19 1998-12-23 Sanyo Electric Co., Ltd. Lithium secondary battery
JPH11283668A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery
JP2000208169A (en) * 1999-01-18 2000-07-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US6280883B1 (en) 1997-12-10 2001-08-28 3M Innovative Properties Company Bis (perfluoralkanesulfonyl)imide surfactant salts in electrochemical systems
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2002007248A1 (en) * 2000-07-17 2002-01-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2002073731A1 (en) * 2001-03-14 2002-09-19 Sony Corporation Battery
JP2008537632A (en) * 2005-04-08 2008-09-18 ザ ジレット カンパニー Non-aqueous electrochemical cell
WO2018029907A1 (en) * 2016-08-08 2018-02-15 株式会社豊田自動織機 Lithium ion secondary cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839390B2 (en) 2009-04-17 2011-12-21 株式会社神戸製鋼所 Swing stop control device and method for swivel work machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717620A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient Additive limiting the corrosion of the collector in an electrochemical cell.
FR2717612A1 (en) * 1994-03-21 1995-09-22 Centre Nat Rech Scient New ionically conductive material
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
US5652072A (en) * 1995-09-21 1997-07-29 Minnesota Mining And Manufacturing Company Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts
US5691081A (en) * 1995-09-21 1997-11-25 Minnesota Mining And Manufacturing Company Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts
US6114070A (en) * 1997-06-19 2000-09-05 Sanyo Electric Co., Ltd. Lithium secondary battery
EP0886334A1 (en) * 1997-06-19 1998-12-23 Sanyo Electric Co., Ltd. Lithium secondary battery
US6280883B1 (en) 1997-12-10 2001-08-28 3M Innovative Properties Company Bis (perfluoralkanesulfonyl)imide surfactant salts in electrochemical systems
JPH11283668A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery
JP2000208169A (en) * 1999-01-18 2000-07-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP4568920B2 (en) * 1999-01-18 2010-10-27 三菱化学株式会社 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2002007248A1 (en) * 2000-07-17 2002-01-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
US6864016B2 (en) 2000-07-17 2005-03-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2002073731A1 (en) * 2001-03-14 2002-09-19 Sony Corporation Battery
JP2008537632A (en) * 2005-04-08 2008-09-18 ザ ジレット カンパニー Non-aqueous electrochemical cell
WO2018029907A1 (en) * 2016-08-08 2018-02-15 株式会社豊田自動織機 Lithium ion secondary cell

Also Published As

Publication number Publication date
JP3177299B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JP3059832B2 (en) Lithium secondary battery
US6153338A (en) Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
US20050069768A1 (en) Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates
JP3249305B2 (en) Non-aqueous electrolyte battery
EP1936731A1 (en) Rechargeable lithium battery
JP2000331710A (en) Phosphate additive of nonaqueous electrolyte for rechargeable electrochemical battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP2002198092A (en) Phosphate additive for non-aqueous electrolyte cell capable of recharging
JPH07320779A (en) Nonaqueous electrolytic battery
EP0806804A1 (en) Fluorinated carbonate electrolytes for use in a lithium secondary battery
JP3244389B2 (en) Lithium secondary battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH05325985A (en) Nonaqueous electrolyte battery
US20030013018A1 (en) Negative electrode material and battery using the same
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3229769B2 (en) Lithium secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JPH07142056A (en) Nonaqueous type battery
Hayashi et al. Electrolyte for high voltage Li/LiMn1. 9Co0. 1O4 cells
JPH07320778A (en) Nonaqueous electrolytic battery
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
JP2002117898A (en) Non-aqueous organic electrolysis liquid for electric discharge in low temperature of re-chargeable electrochemistry battery
JP2003077478A (en) Lithium ion secondary battery
JPH11317242A (en) Manufacture of nonaqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees