JPH05325985A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH05325985A
JPH05325985A JP4148677A JP14867792A JPH05325985A JP H05325985 A JPH05325985 A JP H05325985A JP 4148677 A JP4148677 A JP 4148677A JP 14867792 A JP14867792 A JP 14867792A JP H05325985 A JPH05325985 A JP H05325985A
Authority
JP
Japan
Prior art keywords
battery
ethylene carbonate
present
positive electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4148677A
Other languages
Japanese (ja)
Inventor
Masatoshi Takahashi
昌利 高橋
Hiroshi Watanabe
浩志 渡辺
Ryuji Oshita
竜司 大下
Atsushi Suemori
敦 末森
Seiji Yoshimura
精司 吉村
Sanehiro Furukawa
修弘 古川
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4148677A priority Critical patent/JPH05325985A/en
Publication of JPH05325985A publication Critical patent/JPH05325985A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent

Abstract

PURPOSE:To improve a low temperature characteristic by using a specific ethylene carbonate derivative of low solidifying point, as compared with ethylene carbonate, as a solvent of electrolyte. CONSTITUTION:An ethylene carbonate derivative, formed by replacing at least one of four hydrogen atoms of ethylene carbonate with a halogen atom of at least one kind selected from a group composed of a chlorine atom, fluorine atom and a bromine atom, is used as a solvent of a nonaqueous electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水系電解液電池に係
わり、特に低温特性の改良を目的とした非水系電解液の
溶媒の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to improvement of a solvent for a non-aqueous electrolyte solution for the purpose of improving low temperature characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
非水系電解液電池においては、高電位側の正極上におい
て分解されにくいために保存特性に優れた電池が得られ
ること、特に二次電池においては負極の初期充放電効率
が高いため放電容量の大きな電池が得られることなどの
理由から、エチレンカーボネートが、従前のプロピレン
カーボネートなどの易分解性の電解液溶媒に代わるもの
として使用されている。
2. Description of the Related Art In recent years,
In non-aqueous electrolyte batteries, it is difficult to decompose on the positive electrode on the high potential side, so batteries with excellent storage characteristics can be obtained, and especially in secondary batteries, the initial charge and discharge efficiency of the negative electrode is high, so the discharge capacity is large. Ethylene carbonate has been used as an alternative to the readily decomposable electrolyte solvent, such as propylene carbonate, for reasons such as obtaining batteries.

【0003】しかしながら、エチレンカーボネートは凝
固点が高く(約36°C)、低温下では、粘性が大きい
ため、イオン導電性が良くない。このため、これを電解
液溶媒として使用した電池には、低温下における放電特
性(以下、「低温特性」と称する。)が良くないという
問題があった。
However, since ethylene carbonate has a high freezing point (about 36 ° C.) and has a large viscosity at low temperatures, it has poor ionic conductivity. Therefore, the battery using this as an electrolyte solvent has a problem that the discharge characteristics at low temperatures (hereinafter referred to as "low temperature characteristics") are not good.

【0004】本発明は、この問題を解消するべくなされ
たものであって、その目的とするところは、低温特性に
優れた非水系電解液電池を提供するにある。
The present invention has been made to solve this problem, and an object of the present invention is to provide a non-aqueous electrolyte battery having excellent low temperature characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解液電池(以下、「本発明電
池」と称する。)は、エチレンカーボネートの4個の水
素原子の少なくとも1個が塩素原子、フッ素原子及び臭
素原子よりなる群から選ばれた少なくとも一種のハロゲ
ン原子で置換されてなるエチレンカーボネート誘導体
が、非水系電解液の溶媒として使用されてなる。
A non-aqueous electrolyte battery according to the present invention for achieving the above object (hereinafter referred to as "the present battery") is at least one of four hydrogen atoms of ethylene carbonate. An ethylene carbonate derivative, each of which is substituted with at least one halogen atom selected from the group consisting of chlorine atom, fluorine atom and bromine atom, is used as a solvent for the non-aqueous electrolyte solution.

【0006】本発明電池においては、非水系電解液の溶
媒として、従来のエチレンカーボネートに代えて、これ
に比し凝固点の低い上記特定のエチレンカーボネート誘
導体(以下、「エチレンカーボネート誘導体」と略記す
る。)が使用される。
In the battery of the present invention, the above-mentioned specific ethylene carbonate derivative (hereinafter referred to as "ethylene carbonate derivative") having a lower freezing point than that of the conventional ethylene carbonate as the solvent of the non-aqueous electrolytic solution is abbreviated. ) Is used.

【0007】かかるエチレンカーボネート誘導体として
は、下記化1で表されるモノハロゲン化エチレンカーボ
ネート、下記化2で表されるジハロゲン化エチレンカー
ボネートが例示される。
Examples of such ethylene carbonate derivatives include monohalogenated ethylene carbonate represented by the following chemical formula 1 and dihalogenated ethylene carbonate represented by the following chemical formula 2.

【0008】[0008]

【化1】 [Chemical 1]

【0009】化1中、A1 は塩素原子、フッ素原子又は
臭素原子である。
In the chemical formula 1, A 1 is a chlorine atom, a fluorine atom or a bromine atom.

【0010】[0010]

【化2】 [Chemical 2]

【0011】化2中、A2 及びA3 は、互いに同一又は
異なって、塩素原子、フッ素原子又は臭素原子である。
In the chemical formula 2, A 2 and A 3 are the same or different from each other and are a chlorine atom, a fluorine atom or a bromine atom.

【0012】本発明におけるエチレンカーボネート誘導
体は、一種単独を使用してもよく、必要に応じて二種以
上を併用してもよく、また一種又は二種以上のエチレン
カーボネート誘導体と1,2−ジメトキシエタン、1,
2−ジエトキシエタン、エトキシメトキシエタン、ジメ
チルカーボネート、ジエチルカーボネートなどの沸点が
150°C以下の低沸点溶媒とを併用してもよい。沸点
が150°C以下の低沸点溶媒と併用することが高率放
電容量の大きな電池を得る上で好ましい。
The ethylene carbonate derivative in the present invention may be used alone or in combination of two or more if necessary, and one or more ethylene carbonate derivatives and 1,2-dimethoxy may be used. Ethane 1,
You may use together low boiling point solvents, such as 2-diethoxyethane, ethoxymethoxyethane, dimethyl carbonate, and diethyl carbonate, which have a boiling point of 150 ° C. or less. It is preferable to use together with a low boiling point solvent having a boiling point of 150 ° C. or less in order to obtain a battery having a large high rate discharge capacity.

【0013】上記低沸点溶媒と併用する場合のエチレン
カーボネート誘導体の好適な配合比率は、20〜80体
積%である。この範囲を外れると高率放電容量が小さく
なる。
The preferred blending ratio of the ethylene carbonate derivative when used in combination with the low boiling point solvent is 20 to 80% by volume. When it is out of this range, the high rate discharge capacity becomes small.

【0014】本発明電池は、上述の如く、エチレンカー
ボネートを電解液溶媒として使用していた従来の非水系
電解液電池の放電容量や保存特性を低下させることなく
その低温特性を向上させるために、電解液溶媒としてエ
チレンカーボネート誘導体が使用される点に特徴を有す
る。それゆえ、正負両極の材料、電解液溶質、セパレー
タなどの電池を構成する他の部材については、従来非水
系電解液電池用として使用され、或いは提案されている
種々の材料を制限なく使用することが可能である。
As described above, the battery of the present invention is intended to improve the low temperature characteristics of the conventional non-aqueous electrolyte battery which uses ethylene carbonate as the electrolyte solvent, without lowering the discharge capacity and storage characteristics thereof. It is characterized in that an ethylene carbonate derivative is used as the electrolytic solution solvent. Therefore, for other members constituting the battery such as positive and negative electrode materials, electrolyte solute, separator, etc., conventionally used for non-aqueous electrolyte battery, or use various proposed materials without limitation. Is possible.

【0015】正極材料(活物質)としては、金属酸化物
(MnO2 、改質MnO2 、重質化MnO2 、Mo
2 、CuO、Cr2 3 、CrO3 、V2 5
ど);金属硫化物(FeS、TiS2 、又はMoS2
ど);金属セレン化物(TiSe2 など);クロム、マ
ンガン、鉄、コバルト及びニッケルよりなる群から選ば
れた少なくとも一種の金属とLiとの複合酸化物が例示
される。
As the positive electrode material (active material), metal oxides (MnO 2 , modified MnO 2 , heavy MnO 2 , Mo) are used.
O 2 , CuO, Cr 2 O 3 , CrO 3 , V 2 O 5 etc.); metal sulfide (FeS, TiS 2 or MoS 2 etc.); metal selenide (TiSe 2 etc.); chromium, manganese, iron, An example is a composite oxide of Li and at least one metal selected from the group consisting of cobalt and nickel.

【0016】正極は、たとえば上記した正極材料をアセ
チレンブラック、カーボンブラック等の導電剤及びポリ
テトラフルオロエチレン(PTFE)、ポリフッ化ビニ
リデン(PVdF)等の結着剤と混練して正極合剤とし
た後、この正極合剤を集電体としてのアルミニウムやス
テンレス製の箔やラス板(正極集電体)に圧延し、加熱
処理することにより作製される。
For the positive electrode, for example, the above positive electrode material is kneaded with a conductive agent such as acetylene black or carbon black and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF) to prepare a positive electrode mixture. After that, this positive electrode mixture is rolled into a foil or lath plate (positive electrode current collector) made of aluminum or stainless steel as a current collector, and heat-treated.

【0017】負極材料としては、リチウム金属や、リチ
ウム合金、炭素材料などのリチウムを吸蔵放出可能な物
質が例示される。なお、炭素材料などの粉末材料は、こ
れをポリテトラフルオロエチレン等の結着剤と混練して
負極合剤として使用する。
Examples of the negative electrode material include lithium metal, lithium alloys, carbon materials, and other materials capable of inserting and extracting lithium. A powder material such as a carbon material is kneaded with a binder such as polytetrafluoroethylene and used as a negative electrode mixture.

【0018】電解液溶質としては、LiPF6 、LiC
3 SO3 、LiBF4 が例示される。
As electrolyte solutes, LiPF 6 , LiC
Examples are F 3 SO 3 and LiBF 4 .

【0019】[0019]

【作用】本発明電池においては、凝固点がエチレンカー
ボネートに比べて低いエチレンカーボネート誘導体が電
解液溶媒として使用されているので、低温になっても粘
性があまり大きくならず、電解液のイオン導電性が殆ど
低下しない。
In the battery of the present invention, since the ethylene carbonate derivative having a lower freezing point than ethylene carbonate is used as the electrolyte solvent, the viscosity does not increase so much even at low temperatures, and the ionic conductivity of the electrolyte is low. Almost no decrease.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0021】(実施例1)扁平型の非水系電解液一次電
池を作製した。
Example 1 A flat type non-aqueous electrolyte primary battery was prepared.

【0022】〔正極の作製〕活物質としての二酸化マン
ガンと、導電剤としてのアセチレンブラックと、結着剤
としてのフッ素樹脂とを、重量比90:5:5で混合し
て正極合剤を得た。この正極合剤を鋳型成形して、円板
状の正極を作製した。正極集電体としては、ステンレス
板を使用した。
[Production of Positive Electrode] Manganese dioxide as an active material, acetylene black as a conductive agent, and fluororesin as a binder were mixed at a weight ratio of 90: 5: 5 to obtain a positive electrode mixture. It was This positive electrode mixture was molded into a disc-shaped positive electrode. A stainless plate was used as the positive electrode current collector.

【0023】〔負極の作製〕圧延、打ち抜きによりリチ
ウム金属からなる円板状の負極を作製した。負極集電体
としては、ステンレス板を使用した。
[Production of Negative Electrode] A disk-shaped negative electrode made of lithium metal was produced by rolling and punching. A stainless plate was used as the negative electrode current collector.

【0024】〔非水系電解液の調製〕クロロエチレンカ
ーボネート(CEC;凝固点:23°C)と1,2−ジ
メトキシエタン(DME)との等体積混合溶媒に、トリ
フルオロメタンスルホン酸リチウム(LiCF3
3 )を1M(モル/リットル)溶かして非水系電解液
を調製した。
[Preparation of Non-Aqueous Electrolyte Solution] Lithium trifluoromethanesulfonate (LiCF 3 S) was added to an equal volume mixed solvent of chloroethylene carbonate (CEC; freezing point: 23 ° C.) and 1,2-dimethoxyethane (DME).
O 3 ) was dissolved in 1 M (mol / liter) to prepare a non-aqueous electrolyte solution.

【0025】〔電池の作製〕以上の正負両極及び非水系
電解液を用いて扁平型の本発明に係る一次電池(電池寸
法:直径24mm、厚み:3.0mm)を作製した。セ
パレータとしては、ポリプロピレン製の微孔性薄膜を用
い、これに先に述べた非水系電解液を含浸させた。
[Production of Battery] A flat type primary battery according to the present invention (battery size: diameter 24 mm, thickness: 3.0 mm) was produced using the positive and negative electrodes and the non-aqueous electrolyte solution described above. As the separator, a microporous thin film made of polypropylene was used, which was impregnated with the above-mentioned non-aqueous electrolytic solution.

【0026】図1は作製した扁平型の本発明電池の模式
的断面図であり、同図に示す本発明電池BA1は、正極
1、負極2、これら両電極を離隔するセパレータ3、正
極缶4、負極缶5、正極集電体6、負極集電体7及びポ
リプロピレン製の絶縁パッキング8などからなる。正極
1及び負極2は、非水系電解質を含浸したセパレータ3
を介して対向して正負両極缶4、5が形成する電池ケー
ス内に収容されており、正極1は正極集電体6を介して
正極缶4に、また負極2は負極集電体7を介して負極缶
5に接続され、本発明電池BA1内部で生じた化学エネ
ルギーを正極缶4及び負極缶5の両端子から電気エネル
ギーとして外部へ取り出し得るようになっている。
FIG. 1 is a schematic cross-sectional view of the produced flat type battery of the present invention. The battery BA1 of the present invention shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, a separator 3 for separating these two electrodes, and a positive electrode can 4. , A negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7 and an insulating packing 8 made of polypropylene. The positive electrode 1 and the negative electrode 2 are separators 3 impregnated with a non-aqueous electrolyte.
The positive electrode 1 is connected to the positive electrode can 4 via the positive electrode current collector 6 and the negative electrode 2 is connected to the negative electrode current collector 7 by the positive electrode current collector 6. It is connected to the negative electrode can 5 via the battery so that the chemical energy generated inside the battery BA1 of the present invention can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0027】(比較例1)非水系電解液の調製におい
て、クロロエチレンカーボネートと1,2−ジメトキシ
エタンとの等体積混合溶媒に代えて、エチレンカーボネ
ート(EC)と1,2−ジメトキシエタンとの等体積混
合溶媒を使用したこと以外は実施例1と同様にして、比
較電池BC1を作製した。
(Comparative Example 1) In the preparation of a non-aqueous electrolyte, ethylene carbonate (EC) and 1,2-dimethoxyethane were used instead of an equal volume mixed solvent of chloroethylene carbonate and 1,2-dimethoxyethane. A comparative battery BC1 was produced in the same manner as in Example 1 except that an equal volume mixed solvent was used.

【0028】(1)作製直後の25°Cでの放電特性 作製直後の本発明電池BA1及び比較電池BC1につい
て、25°Cにおいて、電流密度0.5mA/cm2
放電を行い、放電特性を調べた。
(1) Discharge characteristics immediately after preparation at 25 ° C Regarding the battery BA1 of the invention and the comparative battery BC1 immediately after preparation, discharge was carried out at 25 ° C at a current density of 0.5 mA / cm 2 , and the discharge characteristics were measured. Examined.

【0029】図2は、各電池の放電特性を、縦軸に電池
電圧(V)を、また横軸に放電時間(h)をとって表し
たグラフであり、同図より、25°Cでは、本発明電池
BA1と比較電池BC1との間で作製直後の放電特性に
差は無く、ともに優れた放電特性を有していることが分
かる。
FIG. 2 is a graph showing the discharge characteristics of each battery with the vertical axis representing the battery voltage (V) and the horizontal axis representing the discharge time (h). It can be seen that there is no difference in the discharge characteristics immediately after production between the battery BA1 of the present invention and the comparative battery BC1, and both have excellent discharge characteristics.

【0030】(2)低温特性 作製直後の本発明電池BA1及び比較電池BC1につい
て、−20°Cにおいて、電流密度0.5mA/cm2
で放電を行い、低温特性を調べた。
(2) Low-temperature characteristics With respect to the battery BA1 of the present invention and the comparative battery BC1 immediately after production, the current density was 0.5 mA / cm 2 at -20 ° C.
Discharging was performed and the low temperature characteristics were examined.

【0031】図3は、各電池の低温での放電特性を、図
2と同じ座標系のグラフに示したものであり、同図に示
すように、本発明電池BA1では放電時間が100時間
を越えるまでは電池電圧が殆ど低下しないのに対して、
比較電池BC1では放電開始後すぐに電池電圧が低下し
始め、30〜40時間後には電池電圧が2V程度にまで
低下する。このことから、低温での放電特性に関して、
本発明電池BA1は比較電池BC1に比し、格段優れて
いることが分かる。
FIG. 3 is a graph showing the discharge characteristics at low temperature of each battery in the same coordinate system as in FIG. 2. As shown in FIG. 3, the battery BA1 of the present invention has a discharge time of 100 hours. While the battery voltage hardly drops until it exceeds the
In the comparative battery BC1, the battery voltage starts to drop immediately after the start of discharging, and after 30 to 40 hours, the battery voltage drops to about 2V. From this, regarding the discharge characteristics at low temperature,
It can be seen that the battery BA1 of the present invention is far superior to the comparative battery BC1.

【0032】(3)保存特性 作製後60°Cで20日間保存した後の本発明電池BA
1及び比較電池BC1について、25°Cにおいて、電
流密度0.5mA/cm2 で放電を行い、保存特性を調
べた。
(3) Storage characteristics Battery BA of the present invention after storage at 60 ° C. for 20 days after production
Regarding 1 and the comparative battery BC1, discharge was carried out at 25 ° C. with a current density of 0.5 mA / cm 2 , and the storage characteristics were examined.

【0033】図4は、各電池の保存後の放電特性を、図
2と同じ座標系のグラフに示したものであり、同図よ
り、本発明電池BA1と比較電池BC1との間に差は無
く、ともに優れた保存特性を有することが分かる。
FIG. 4 shows the discharge characteristics of each battery after storage in the graph of the same coordinate system as in FIG. 2. From the same figure, there is no difference between the battery BA1 of the present invention and the comparative battery BC1. It can be seen that both have excellent storage characteristics.

【0034】(実施例2)円筒型の非水系電解液二次電
池を作製した。
Example 2 A cylindrical non-aqueous electrolyte secondary battery was prepared.

【0035】〔正極の作製〕活物質としてのLiCoO
2 と、導電剤としてのアセチレンブラックと、結着剤と
してのフッ素樹脂とを、重量比90:5:5で混合して
正極合剤を得た。この正極合剤を正極集電体としてのア
ルミニウム製の箔に圧延し、乾燥して正極を作製した。
[Preparation of Positive Electrode] LiCoO 2 as Active Material
2 , acetylene black as a conductive agent, and fluororesin as a binder were mixed at a weight ratio of 90: 5: 5 to obtain a positive electrode mixture. This positive electrode mixture was rolled into an aluminum foil as a positive electrode current collector and dried to prepare a positive electrode.

【0036】〔負極の作製〕黒鉛粉末と、結着剤として
のフッ素樹脂とを、重量比95:5で混合して負極合剤
を得た。この負極合剤を負極集電体としての銅製の箔に
圧延し、乾燥して負極を作製した。
[Production of Negative Electrode] Graphite powder and fluororesin as a binder were mixed at a weight ratio of 95: 5 to obtain a negative electrode mixture. This negative electrode mixture was rolled into a copper foil as a negative electrode current collector and dried to prepare a negative electrode.

【0037】〔非水系電解液の調製〕3,4−ジクロロ
エチレンカーボネート(DCEC;凝固点:18°C)
とジメチルカーボネートとの等体積混合溶媒にヘキサフ
ルオロリン酸リチウム(LiPF6 )を1モル/リット
ル溶かして非水系電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] 3,4-Dichloroethylene Carbonate (DCEC; Freezing Point: 18 ° C.)
Lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / liter in an equal volume mixed solvent of dimethyl carbonate and dimethyl carbonate to prepare a non-aqueous electrolyte solution.

【0038】〔電池の作製〕以上の正負両極及び非水系
電解液を用いて、円筒型の本発明電池BA2(単3電
池)を作製した。なお、セパレータとしては、ポリプロ
ピレン製の微孔性薄膜を用い、これに先に述べた非水系
電解液を含浸させた。
[Production of Battery] A cylindrical battery BA2 (AA battery) of the present invention was produced using the above-described positive and negative electrodes and the nonaqueous electrolytic solution. As the separator, a microporous thin film made of polypropylene was used, which was impregnated with the non-aqueous electrolyte solution described above.

【0039】(比較例2)非水系電解液の調製におい
て、3,4−ジクロロエチレンカーボネートとジメチル
カーボネートとの等体積混合溶媒に代えて、エチレンカ
ーボネートとジメチルカーボネートとの等体積混合溶媒
を使用したこと以外は実施例2と同様にして、比較電池
BC2を作製した。
(Comparative Example 2) In the preparation of the non-aqueous electrolytic solution, an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate was used in place of the equal volume mixed solvent of 3,4-dichloroethylene carbonate and dimethyl carbonate. A comparative battery BC2 was produced in the same manner as in Example 2 except for the above.

【0040】(4)本発明電池BA2及び比較電池BC
2について、上記(1)〜(3)と同じ条件で、作製直
後の放電特性、低温特性、及び保存特性を調べた。各結
果を、図2と同じ座標系のグラフである、図5、図6及
び図7に、それぞれ示す。
(4) Inventive battery BA2 and comparative battery BC
Regarding No. 2, the discharge characteristics, the low temperature characteristics, and the storage characteristics immediately after the production were examined under the same conditions as the above (1) to (3). The results are shown in FIGS. 5, 6 and 7, which are graphs in the same coordinate system as in FIG.

【0041】図5〜図7より、25°Cでの放電特性及
び保存特性については、本発明電池BA2と比較電池B
C2との間に差は無く、ともに優れた特性を発現する
が、低温特性に関しては、本発明電池BA2が比較電池
BC2に比し格段優れていることが分かる。
From FIGS. 5 to 7, regarding the discharge characteristics and storage characteristics at 25 ° C., the battery BA2 of the present invention and the comparative battery B were compared.
Although there is no difference between C2 and C2, both exhibit excellent characteristics, but it is understood that the battery BA2 of the present invention is significantly superior to the comparative battery BC2 in terms of low-temperature characteristics.

【0042】上記実施例では、エチレンカーボネート中
の4個の水素原子のうちの1個又は2個の水素原子が塩
素原子で置換されてなるエチレンカーボネート誘導体を
使用した例について述べたが、本発明における他のエチ
レンカーボネート誘導体を使用した場合においても同様
の結果が得られる。
In the above-mentioned embodiment, an example using an ethylene carbonate derivative in which one or two hydrogen atoms out of four hydrogen atoms in ethylene carbonate is replaced by a chlorine atom has been described. Similar results are obtained when using other ethylene carbonate derivatives in.

【0043】[0043]

【発明の効果】本発明電池においては、エチレンカーボ
ネートに比し凝固点の低い特定のエチレンカーボネート
誘導体が電解液の溶媒として使用されているので、低温
特性に優れるなど、本発明は優れた特有の効果を奏す
る。
INDUSTRIAL APPLICABILITY In the battery of the present invention, a specific ethylene carbonate derivative having a lower freezing point than ethylene carbonate is used as a solvent for the electrolytic solution, so that the present invention is excellent in low temperature characteristics. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】扁平型の本発明電池の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a flat battery of the present invention.

【図2】作製直後の本発明電池及び比較電池(一次電
池)の25°Cでの放電特性図である。
FIG. 2 is a discharge characteristic diagram at 25 ° C. of a battery of the present invention and a comparative battery (primary battery) immediately after production.

【図3】作製直後の本発明電池及び比較電池(一次電
池)の−20°Cでの放電特性図である。
FIG. 3 is a discharge characteristic diagram at −20 ° C. of a battery of the present invention and a comparative battery (primary battery) immediately after production.

【図4】本発明電池及び比較電池(一次電池)の保存後
の放電特性図である。
FIG. 4 is a discharge characteristic diagram of a battery of the present invention and a comparative battery (primary battery) after storage.

【図5】作製直後の本発明電池及び比較電池(二次電
池)の25°Cでの放電特性図である。
FIG. 5 is a discharge characteristic diagram at 25 ° C. of a battery of the present invention and a comparative battery (secondary battery) immediately after production.

【図6】作製直後の本発明電池及び比較電池(二次電
池)の−20°Cでの放電特性図である。
FIG. 6 is a discharge characteristic diagram at −20 ° C. of a battery of the present invention and a comparative battery (secondary battery) immediately after production.

【図7】本発明電池及び比較電池(二次電池)の保存後
の放電特性図である。
FIG. 7 is a discharge characteristic diagram of a battery of the present invention and a comparative battery (secondary battery) after storage.

【符号の説明】[Explanation of symbols]

BA1 扁平型の本発明電池 1 正極 2 負極 3 セパレータ BA1 flat type battery 1 of the present invention 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末森 敦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 吉村 精司 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 古川 修弘 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsue Suemori 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Seiji Yoshimura 2-18 Keiyo Hondori, Moriguchi City, Osaka Sanyo (72) Inventor Norihiro Furukawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】エチレンカーボネートの4個の水素原子の
少なくとも1個が塩素原子、フッ素原子及び臭素原子よ
りなる群から選ばれた少なくとも一種のハロゲン原子で
置換されてなるエチレンカーボネート誘導体が、非水系
電解液の溶媒として使用されていることを特徴とする非
水系電解液電池。
1. An ethylene carbonate derivative obtained by substituting at least one of four hydrogen atoms of ethylene carbonate with at least one halogen atom selected from the group consisting of a chlorine atom, a fluorine atom and a bromine atom. A non-aqueous electrolyte battery, which is used as a solvent for an electrolyte.
【請求項2】前記エチレンカーボネート誘導体がモノハ
ロゲン化エチレンカーボネートである請求項1記載の非
水系電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the ethylene carbonate derivative is monohalogenated ethylene carbonate.
【請求項3】前記エチレンカーボネート誘導体がジハロ
ゲン化エチレンカーボネートである請求項1記載の非水
系電解液電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the ethylene carbonate derivative is a dihalogenated ethylene carbonate.
JP4148677A 1992-05-15 1992-05-15 Nonaqueous electrolyte battery Pending JPH05325985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148677A JPH05325985A (en) 1992-05-15 1992-05-15 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148677A JPH05325985A (en) 1992-05-15 1992-05-15 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH05325985A true JPH05325985A (en) 1993-12-10

Family

ID=15458147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148677A Pending JPH05325985A (en) 1992-05-15 1992-05-15 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH05325985A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529859A (en) * 1994-04-15 1996-06-25 National Research Council Of Canada Elecrolyte for a secondary cell
WO1998020574A1 (en) * 1996-11-04 1998-05-14 Valence Technology, Inc. Propylene carbonate based electrolyte for lithium ion electrochemical cell
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2006033358A1 (en) * 2004-09-22 2006-03-30 Sony Corporation Electrolyte solution and battery
KR100816208B1 (en) * 2007-03-27 2008-03-28 삼성에스디아이 주식회사 Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor
JP2009076467A (en) * 2008-11-28 2009-04-09 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2011233535A (en) * 2011-07-11 2011-11-17 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
US8609286B2 (en) 2007-11-13 2013-12-17 Sony Corporation Nonaqueous electrolyte secondary battery
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
US9455474B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrolytic solution

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529859A (en) * 1994-04-15 1996-06-25 National Research Council Of Canada Elecrolyte for a secondary cell
WO1998020574A1 (en) * 1996-11-04 1998-05-14 Valence Technology, Inc. Propylene carbonate based electrolyte for lithium ion electrochemical cell
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2011258582A (en) * 2004-09-22 2011-12-22 Sony Corp Secondary battery
WO2006033358A1 (en) * 2004-09-22 2006-03-30 Sony Corporation Electrolyte solution and battery
US9548516B2 (en) 2004-09-22 2017-01-17 Sony Corporation Electrolytic solution and battery
JPWO2006033358A1 (en) * 2004-09-22 2008-05-15 ソニー株式会社 Electrolyte and battery
US8715864B2 (en) 2004-09-22 2014-05-06 Sony Corporation Electrolytic solution and battery
JP5103903B2 (en) * 2004-09-22 2012-12-19 ソニー株式会社 Secondary battery electrolyte and secondary battery
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor
US8236191B2 (en) 2007-01-12 2012-08-07 Daikin Industries, Ltd. Electrical double layer capacitor
JPWO2008084846A1 (en) * 2007-01-12 2010-05-06 ダイキン工業株式会社 Electric double layer capacitor
KR100816208B1 (en) * 2007-03-27 2008-03-28 삼성에스디아이 주식회사 Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same
US7842417B2 (en) 2007-03-27 2010-11-30 Samsung Sdi Co., Ltd. Electrolyte for lithium ion rechargeable battery and lithium rechargeable battery including the same
US8609286B2 (en) 2007-11-13 2013-12-17 Sony Corporation Nonaqueous electrolyte secondary battery
US10707539B2 (en) 2007-11-13 2020-07-07 Murata Manufacturing Co., Ltd. Battery
US9831532B2 (en) 2007-11-13 2017-11-28 Sony Corporation Nonaqueous electrolyte secondary battery
US9647298B2 (en) 2007-11-13 2017-05-09 Sony Corporation Nonaqueous electrolyte battery and electrical apparatus
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
JP2009076467A (en) * 2008-11-28 2009-04-09 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US9455474B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrolytic solution
JP2011233535A (en) * 2011-07-11 2011-11-17 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
US9923240B2 (en) 2012-09-28 2018-03-20 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module

Similar Documents

Publication Publication Date Title
JP3059832B2 (en) Lithium secondary battery
JP3187929B2 (en) Lithium secondary battery
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP3167513B2 (en) Non-aqueous electrolyte battery
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
JP2000067914A (en) Non-aqueous organic electrolyte for rechargeable electrochemical battery capable of discharging at low temperature
JPH0864237A (en) Nonaqueous electrolyte battery
JPH0963590A (en) Nonaqueous electrolyte secondary battery
JPH05325985A (en) Nonaqueous electrolyte battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3059820B2 (en) Lithium secondary battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP3029271B2 (en) Non-aqueous secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP3086510B2 (en) Non-aqueous electrolyte lithium battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH08171934A (en) Lithium secondary battery
JPH0541244A (en) Nonaqueous electrolyte secondary battery
JPH10312825A (en) Nonaqueous solvent secondary battery
JPH0415584B2 (en)
JP3011529B2 (en) Non-aqueous electrolyte battery
JPH0652860A (en) Lithium secondary battery
JPH0864239A (en) Nonaqueous electrolyte battery