JP4566725B2 - 永久磁石同期電動機の制御装置 - Google Patents

永久磁石同期電動機の制御装置 Download PDF

Info

Publication number
JP4566725B2
JP4566725B2 JP2004368036A JP2004368036A JP4566725B2 JP 4566725 B2 JP4566725 B2 JP 4566725B2 JP 2004368036 A JP2004368036 A JP 2004368036A JP 2004368036 A JP2004368036 A JP 2004368036A JP 4566725 B2 JP4566725 B2 JP 4566725B2
Authority
JP
Japan
Prior art keywords
magnetic pole
detection
current
command
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004368036A
Other languages
English (en)
Other versions
JP2006180567A (ja
Inventor
正徳 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004368036A priority Critical patent/JP4566725B2/ja
Priority to CNB2005100774215A priority patent/CN100367656C/zh
Publication of JP2006180567A publication Critical patent/JP2006180567A/ja
Application granted granted Critical
Publication of JP4566725B2 publication Critical patent/JP4566725B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、同期電動機の磁極位置を検出する永久磁石同期電動機の制御装置に関する。
永久磁石同期電動機を採用したエレベータ用巻上機では、一般に電動機のロータ磁極位置を検出するためのセンサを備えており、電動機の回転軸に直結した速度検出器にこの機能を組み込む方式をとることが多い。ロータ磁極位置の検出精度は、電動機トルクの制御性能を左右し、電気角で60度ずれればトルクが半減し、90度以上ずれれば逆方向のトルクが発生してしまう。
このため、センサそのものの検出精度だけでなく、巻上機の組立工程におけるセンサ基準位置とロータ磁極位置との位置合わせ精度が重要となる。この位置合わせ精度を向上すべく、エレベータの据付調整中に運転しながら磁極位置を補正する方法がとられている。
一方、磁極位置推定手段により、高精度に同期電動機の起動時の磁極位置を推定することができる同期電動機の磁極位置推定方法がある(例えば、特許文献1参照)。この方法は、磁極位置推定値の収斂演算を行うことにより起動時における同期電動機の磁極位置を推定しており、磁極位置検出器を不要としている。
特開2003−143894号公報(第1頁、図1)
しかしながら、従来技術には次のような課題がある。エレベータなど低回転大トルクが求められる用途では、磁石極数が数十にも及ぶ多極の設計が採用されることが多い。この場合、僅かな機械角のずれでも電気角に換算すると大きなずれとなる。したがって、電気位相角が回転子の界磁位相を正確に示すようにするには、絶対位置検出器の取り付け精度を十分に確保する必要が生ずる。
例えば、40極の電動機の場合、機械角で5度ずれるだけで電気角では100度のずれに相当する。これにより、指令とは逆方向のトルクが発生する、あるいはトルク不足になるなどの問題が生じ易くなる。この場合には、エレベータをまともに走行させることができないため、従来のような運転しながらの界磁補正手段は適用できないという問題があった。
しかしながら、電気角で数度レベルの精度を確保するように絶対位置検出器を取り付けることは、製造コストを考慮すると非現実的といえる。従って、多極の永久磁石同期電動機に絶対位置検出器を用いる場合には、電気位相角の補正が大きな課題となる。また、誘導電動機で一般に用いられるインクリメンタル形のエンコーダに比べて、絶対位置検出器は高価であるという課題もある。
さらに、特許文献1の磁極位置推定方法は、初期値の設定に軸判別と極判別が必要であるとともに収斂演算を伴うため、磁極位置の推定に時間がかかるおそれがあり、実際の起動までに時間がかかることが懸念される。
本発明は上述のような課題を解決するためになされたもので、絶対位置検出器を用いずにインクリメンタル形のエンコーダ等の位置検出器を用い、短時間でスムーズな起動を実現できる永久磁石同期電動機の制御装置を得ることを目的とする。
本発明に係る永久磁石同期電動機の制御装置は、永久磁石同期電動機の磁極位置を検出する位置検出器と、検出された磁極位置に基づいて電気位相角を算出する位相演算手段と、電圧指令に基づいて可変電圧可変周波数の交流電力を永久磁石同期電動機に供給する電力変換器と、電力変換器から出力される各相電流を検出する電流検出器と、電気位相角、電流指令、および電流検出器からの検出電流に基づいて電圧指令を算出して電力変換部に出力する制御部とを備え、永久磁石同期電動機の速度制御を行う永久磁石同期電動機の制御装置において、永久磁石同期電動機の磁極位置を検出するための磁極検出指令を出力する検出モード設定手段と、検出モード設定手段からの磁極検出指令に応じて、初期磁極位相検出用の電気位相角および電流指令として複数の異なる値を出力する磁極検出用電流指令手段と、通常の運転時は、位置検出器の位置出力から求まる電気位相角および外部からの速度指令に基づいて生成される電流指令を制御部に出力し、検出モード設定手段からの磁極検出指令の入力時は、磁極検出用電流指令手段から出力される初期磁極位相検出用の電気位相角および電流指令を制御部に出力するように信号処理を切り換える信号スイッチ部と、検出モード設定手段からの磁極検出指令に応じて、磁極検出用電流指令手段から出力された複数の異なる値に対する電流検出器からの帰還電流の検出値から電流の高周波成分を抽出して発振現象を検知し、発振の程度が最も大きくなる電気位相角を初期磁極位相と特定し、位相演算手段に対して初期磁極位相の設定を行う磁極位相判定手段とさらに備えたものである。
本発明によれば、電流制御系に対して、検出モード設定手段、磁極検出用電流指令手段、磁極位相判定手段、スイッチを付加することにより、絶対位置検出器を用いずにインクリメンタル形のエンコーダ等の位置検出器を用いて停止中に短時間で磁極位置の検出を行うことができ、迅速でスムーズな起動を実現できる永久磁石同期電動機の制御装置を得ることができる。
以下、本発明の永久磁石同期電動機の制御装置の好適な実施の形態につき図面を用いて説明する。本発明の永久磁石同期電動機の制御装置は、インクリメンタル形のエンコーダ等の位置検出器を用いて、起動前の停止中に短時間で容易に磁極位置の検出を行うことができ、永久磁石同期電動機を迅速でスムーズに起動できる安価な制御装置を提供することを特徴とする。
実施の形態1.
図1は、本発明の実施の形態1における永久磁石同期電動機の制御装置の構成図である。この永久磁石同期電動機の制御装置は、電流制御系として一般的に用いられるd−q軸非干渉制御系101(図1の点線で示した部分に相当)を含む速度制御系100(図1の一点鎖線で示した部分に相当)に対して、さらに、検出モード設定手段18、磁極検出用電流指令手段19、磁極位相判定手段20、スイッチ21a〜21cを新たに付加した構成となっている。
まず始めに、速度制御系100の構成について説明する。d−q軸非干渉制御系は、永久磁石同期電動機1の電流制御を行うための従来からあるもので、速度制御も含め一般的な制御方式である。この速度制御系100は、位置検出器2、角速度演算手段3、減算器4、速度制御手段5、位相演算手段6、電流検出器7、三相二相変換器8、二相三相変換器9、減算器10、11、d軸電流制御手段12、q軸電流制御手段13、非干渉制御手段14、加算器15、16、電力変換器17で構成される。
位置検出器2は、永久磁石同期電動機1の回転子の回転に伴う位置を検出し、エンコーダ等に相当する。角速度演算手段3は、位置検出器2の位置出力から差分などの方法により永久磁石同期電動機1の回転角速度ωrを演算する。減算器4は、永久磁石同期電動機1の回転角速度指令ωrcomと回転角速度ωrとの偏差を演算する。
速度制御手段5は、減算器4により演算された偏差に基づいて永久磁石同期電動機1が発生すべきトルクを電流指令として演算し、回転角速度ωrが回転角速度指令ωrcomに追従するように速度制御する。なお、制御性を良くするために、偏差に加えて回転角速度ωrや回転角速度指令ωrcomを速度制御手段5の入力とする構成でも、以下は同様に成り立つ。
三相交流電動機の制御では、一般に、三相の電流、電圧を2軸に変換したものを扱うことが多い。ここで、三相のU相軸にα軸を合わせた静止2軸上の座標系をα−β座標系と呼ぶ。また、回転子の界磁方向にd軸を合わせた回転2軸上の座標系をd−q軸座標系と呼ぶ。図1におけるd−q軸非干渉制御系101は、このd−q軸座標系の制御系に相当する。
位相演算手段6は、位置検出器2の位置出力から永久磁石同期電動機1の回転子の電気角位相θreを演算する。この電気角位相θreは、α−β座標系から見たd−q軸座標系の回転角度を示している。電流検出器7は、永久磁石同期電動機1の固定子巻線に流れる三相交流電流(Iu、Iv、Iw)を検出する。
三相二相変換器8は、三相の電流(Iu、Iv、Iw)をd−q軸座標系での電流(Id、Iq)に変換する。二相三相変換器9は、d−q軸座標系での電圧指令値(Vd、Vq)を三相の電圧指令値(Vu、Vv、Vw)に変換する。減算器10および減算器11は、永久磁石同期電動機1の固定子巻線電流のd軸成分の電流指令Idcomとその帰還電流値Id、およびq軸成分の電流指令Iqcomとその帰還電流値Iqの偏差をそれぞれ演算する。
d軸電流制御手段12およびq軸電流制御手段13は、減算器10および減算器11で演算された偏差に基づいてそれぞれの帰還電流値がそれぞれの電流指令に追従するように制御出力(Vd’、Vq’)を求めて電流制御を行う。非干渉制御手段14は、d軸電流とq軸電流を独立して制御できるように、それぞれの電流を非干渉化するフィードフォワード補償を行う。
加算器15および加算器16は、それぞれd軸およびq軸の制御出力(Vd’、Vq’)に非干渉制御手段14の出力を加算して、それぞれの電圧指令(Vd、Vq)を演算する。さらに、電力変換器17は、三相の電圧指令値(Vu、Vv、Vw)に従って可変電圧可変周波数の三相交流電圧を出力する。
次に、これらの構成に基づく一連の制御動作について説明する。このd−q軸非干渉制御系101の制御方式は、永久磁石同期電動機1のロータ磁極の回転に同期した回転座標上の制御であるため、基準となるロータ磁極位置の検出が重要となる。ロータ磁極位置は、永久磁石同期電動機1のロータに連結された位置検出器2からの信号に基づいて位相演算手段6で演算された位相角θreで表される。
電流検出器7で検出された永久磁石同期電動機1の三相電流(Iu、Iv、Iw)は、位相演算手段6により演算された位相角θreに基づいて、三相二相変換器8によりd−q軸の二相の電流帰還値(Id、Iq)に変換される。そして、d軸電流制御手段12およびq軸電流制御手段13は、2相に変換されたこの電流帰還値(Id、Iq)と、各軸の電流指令値(Idcom、Iqcom)とのそれぞれの偏差に基づいてフィードバック制御を行い、制御出力(Vd’、Vq’)を出力する。
この際、他軸からの干渉電圧の影響を受けないようにd軸とq軸の制御を非干渉化するために、非干渉制御手段14は、あらかじめ演算された干渉電圧に基づいて、非干渉フィードフォワード補償を行う。このように、非干渉化して各軸独立にフィードバック制御するため、d−q軸非干渉制御系101は、非干渉制御方式と呼ばれている。
制御出力(Vd’、Vq’)に非干渉制御手段14の出力を加算して算出された電圧指令(Vd、Vq)は、位相演算手段6により演算された位相角θreに基づいて、二相三相変換器9により三相の電圧指令値(Vu、Vv、Vw)に変換される。そして、電力変換器17は、三相の電圧指令値(Vu、Vv、Vw)に従って可変電圧可変周波数の三相交流電圧を出力することにより、永久磁石同期電動機1の速度制御を行うこととなる。
図1の構成において、永久磁石同期電動機1が非突極形と呼ばれるロータ形状を有する場合には、一般に、d軸電流指令Idcomをゼロとする場合が多い。しかしながら、高回転時の電圧を下げるために弱め磁界をする場合、あるいは逆突極形の永久磁石同期電動機1でリラクタンストルクを利用する場合などには、d軸電流指令Idcomを適切な値に制御することがある。
次に、速度制御系100に対して新たに付加されている検出モード設定手段18、磁極検出用電流指令手段19、磁極位相判定手段20、スイッチ21a〜21cについて説明する。これらの構成を付加することにより、絶対位置検出器でない位置検出器2を用いた場合において、電源投入後の初期磁極位置を容易に検出することができることとなる。
検出モード設定手段18は、磁極位置が検出された状態であるか否かを示す磁極位置検出完了フラグのセット/リセット状態を記憶する記憶部(図示せず)を有している。図1において、位置検出器2は、絶対位置検出器でないため、電源投入時には正しい磁極位置を検出していない状態にある。そこで、検出モード設定手段18は、電源投入時に記憶部に記憶されている磁極位置検出完了フラグをリセットする。
そして、検出モード設定手段18は、永久磁石同期電動機1の起動時に、記憶部から磁極位置検出完了フラグを取り出して磁極検出動作を行う必要があるか否かを判断する。さらに、検出モード設定手段18は、磁極位置検出完了フラグがリセットされていることから磁極検出動作を行う必要があると判断した場合には、永久磁石同期電動機1の磁極位置を検出するための磁極検出指令を出力する。
磁極検出用電流指令手段19は、検出モード設定手段18から磁極検出指令を受信すると、初期磁極位相を検出するための電気位相角および電流指令を出力する。磁極検出用電流指令手段19は、ある所定のd軸電流の電流指令に対して、電気位相角を徐々に変化させて、初期磁極位相検出用の電気位相角および電流指令を出力する。さらに、磁極検出用電流指令手段19は、異なる電流指令に対しても、電気位相角を徐々に変化させて出力信号を生成でき、複数の異なるパターンの出力値を生成できる。
なお、磁極検出用電流指令手段19は、例えば、電流指令値を次のようにして設定することができる。すなわち、磁極検出用電流指令手段19は、d軸電流による電機子反作用磁束と永久磁石による界磁磁束との和が、永久磁石同期電動機1のステータ鉄心などモータ磁気回路の一部を磁気飽和させる程度の値となるように、電流指令値を設定することにより、より発振現象が起こりやすい状況を設定できる。なお、このd軸は、あくまで制御上のもので、この段階では磁極位置が未検出であるため、d軸位相と永久磁石による界磁磁束の向きは、必ずしも一致していない。
磁極位相判定手段20は、検出モード設定手段18から磁極検出指令を受信すると、d軸の帰還電流Idから磁極位相を判定する。具体的には、磁極位相判定手段20は、帰還電流Idの検出値から電流の高周波成分を抽出し、d−q軸非干渉制御系101の電流制御系における発振現象を検知する。さらに、磁極位相判定手段20は、検知した発振現象の発振の程度が最も大きくなる電気位相角にロータ磁極が存在すると判定して、その電気位相角を初期磁極位相と特定する。
そして、磁極位相判定手段20は、位相演算手段6に対して、特定した初期磁極位相を初期位相として設定する。位相演算手段6は、設定された初期位相を用いて起動運転を行うことにより、磁極位置が不明であった永久磁石同期電動機1をスムーズに起動させることが可能となる。
さらに、磁極位相判定手段20は、初期磁極位相が特定できた後に、磁極位置検出完了フラグをセットして検出モード設定手段18の記憶部に記憶させる。このようにして、電源投入後の1回目の起動時に、初期磁極位相の特定を行うことができる。電源投入後の2回目以降の起動時には、検出モード設定手段18は、記憶部の磁極位置検出完了フラグがセットされていることから、磁極検出動作を行う必要がないと判断することができる。これにより、電源投入後の2回目以降の起動時には、磁極検出動作を行わずに、直ちにスムーズな起動運転が行えることとなる。
スイッチ21a〜21cは、検出モード設定手段18からの磁極検出指令に応じて出力信号を切り換える信号スイッチ部である。スイッチ21a〜21cは、検出モード設定手段18から磁極検出指令を受信していないとき(すなわち、通常の運転時に相当)は、位置検出器2の位置出力に基づいて位相演算手段6で算出された電気位相角θre、および電流指令(Idcom、Iqcom)をd−q軸非干渉制御系101に出力する。
一方、スイッチ21a〜21cは、検出モード設定手段18から磁極検出指令を受信したときは、d−q軸非干渉制御系101に与える電気位相角および電流指令値を、磁極検出用電流指令手段19から出力される初期磁極位相検出用の電気位相角θphおよび電流指令(Idph、Iqph)に切り換える。
次に、本構成によって初期磁極位相が検出できる理由について説明する。図2は、本発明の実施の形態1におけるd軸の電流制御系を示すプロック線図である。一次遅れブロック22は、モータ電機子に印加される電圧から電流への伝達関数を表すブロックである。電流制御ブロック12aは、d軸電流制御手段12で用いる制御演算の一例を示すブロックである。
この電流制御ブロック12aは、一般に、電流の定常偏差を抑えるために比例積分(PI)制御としている。PI補償器の設計は、モータ定数の公称値および制御系の設計応答周波数ωcによって決められる。すなわち、電機子コイルの抵抗値Raの公称値をR、インダクタンスLaの公称値をLとした場合、ボード線図上におけるPI補償器の折れ点周波数ωiと、モータ電機子コイルの時定数の公称値(L/R)の逆数とが等しくなるように制御定数を設計するのが一般的である。
この場合、電流制御系の開ループ伝達関数は、単なる積分系ωc/sで表現され、位相が常に−90度となって安定な制御を行えることが知られている。なお、図2では、d軸の場合を示したが、q軸でも同様に電流制御系を設計することができる。
一方、実際のモータ定数は、公称値から外れる場合がよくあり、ステータ鉄心などの磁気飽和もその要因の一つとなる。図3は、本発明の実施の形態1における永久磁石同期電動機1の電機子電流と磁束との関係を示すグラフである。図3に示すように、電機子電流が大きくなるとステータ鉄心などの磁気飽和の影響により、曲線の傾きが小さくなる傾向にある。永久磁石同期電動機1の電流制御に関わるインダクタンスLは、この曲線の傾きΔΦ/ΔIに等しいので、磁気飽和の影響によって、インダクタンスLaは、公称値Lより小さい値となる。
図4は、本発明の実施の形態1におけるd軸電流制御系の開ループ伝達関数のボード線図を示すものである。図4は、インダクタンスが公称値に等しい場合(La=Lに相当)、および磁気飽和によって公称値より小さくなる場合(La<Lに相当)のそれぞれについて示している。
La=Lの場合には、前述のように、ゲインは、−20dB/decの傾きを持ち、設計応答周波数ωcでゲインゼロと交わる直線で表され、位相は、−90度を保っている。一方、La<Lの場合には、開ループ伝達関数は、単なる積分ではなく、ボード線図上では進み遅れの特性を示すようになり、高周波域でのゲインが大きく持ち上がる形となる。
この場合でも、ゲインゼロにおける位相は−90度であるため、制御理論上は安定ではある。しかしながら、デジタル制御による制御遅れ、あるいはセンサ特性などの影響で、高周波域の位相は遅れがちになるため、実際には不安定となる傾向がある。したがって、電流による電機子反作用磁束の位相と永久磁石による界磁磁束の位相とが一致して大きな磁束が鉄心に流れ、磁気飽和によりインダクタンスが公称値よりも小さくなってしまうと、制御系のゲインが十分高い場合には電流制御系が発振してしまうという現象が発生する。
そこで、帰還電流から振動成分を抽出してこの発振現象を検出することによって、界磁磁束と電機子反作用磁束との位相関係を特定することができ、初期磁極位置が容易に見つかることになる。なお、発振状態が続くと、振動振巾が徐々に拡大してシステム異常に至ることも考えられるが、後述のように、位相角を変化させていることと、過大な電流にならないように指令値を与えることにより、システム異常に至る前に振巾が抑えられている。
次に、フローチャートに基づいて、一連の動作処理について説明する。図5は、本発明の実施の形態1における初期磁極位置検出のシーケンス処理を示すフローチャートである。まず始めに、ステップS501において、検出モード設定手段18は、外部から永久磁石同期電動機1の起動指令が入ると、記憶部から磁極位置検出完了フラグを取り出し、磁極位置検出完了フラグがセットされているかリセットされているかによって磁極検出が完了しているか否かを判断する。
磁極位置検出完了フラグがリセットされており磁極検出が未完了であると判断した場合には、検出モード設定手段18は磁極検出指令を出力し、その後、ステップS502の処理に移行する。また、磁極位置検出完了フラグがすでにセットされており磁極検出が完了していると判断した場合には、検出モード設定手段18は磁極検出指令を出力せず、その後、ステップS509の処理に移行する。
ステップS502において、磁極検出用電流指令手段19は、検出モード設定手段18から磁極検出指令を受信することにより、初期磁極検出動作に必要なd軸電流指令値Idphを設定するとともに、q軸電流指令値IqphをIqph=0と設定する。
ステップS503において、検出モード設定手段18は、磁極検出指令を出力することによりスイッチ21a〜21cを切換える。これにより、スイッチ21a〜21cは、磁極検出用の電流指令(Idph、Iqph)および電気位相角θphをd−q軸非干渉制御系101に対して出力する。
図1におけるスイッチ21a〜21cの状態は、磁極検出のために、磁極検出用電流指令手段19からの出力信号と接続するように切り換えられた状態を示している。すなわち、検出モード設定手段18からの磁極検出指令により、スイッチ21aは、d軸電流指令値Idphに接続され、スイッチ21bは、q軸電流指令値Iqphに接続され、スイッチ21cは、電気位相角θphに接続される。
次に、ステップS504において、磁極検出用電流指令手段19は、電気位相角θphをあらかじめ決められた量だけ増加させる。続くステップ205において、磁極位相判定手段20は、ステップS504で設定された電気位相角θphにおける帰還電流の検出値から電流の高周波成分を抽出する。
そして、ステップS506において、磁極検出用電流指令手段19は、電気位相角θphが1周期以上変化したかを判断し、1周期以上変化するまでステップS504〜S506を繰り返すこととなる。この繰り返し処理により、磁極位相判定手段20は、1周期分にわたって電気位相角θphを変化させたときのそれぞれの帰還電流の検出値から電流の高調波成分のデータを抽出できる。
ステップS506で電気位相角θphが1周期以上変化したと判断すると、ステップS507において、磁極位相判定手段20は、抽出した高調波成分のデータから、電気位相角θphを1周期にわたって変化させることにより電流制御系の発振現象が発生したか否かを判断する。そして、磁極位相判定手段20は、発振現象が発生しなかったと判断した場合には、ステップS512の処理に移行する。
一方、磁極位相判定手段20は、発振現象が発生したと判断した場合には、発振の程度が最も大きくなる電気位相角にロータ磁極が存在すると判定して電気位相角を特定し、ステップS508の処理に移行する。次に、ステップS508において、磁極位相判定手段20は、特定した電気位相角によって、位相演算手段6が保持している磁極位相を更新する。
図6は、本発明の実施の形態1における初期磁極検出動作中の各相電流Iu、Iv、Iwと、電気位相角θph、d軸電流Idの関係を示した図である。この例では、電気位相角θphが180度を超過した辺りで、各相電流およびd軸電流に高周波の振動が重畳している状態を示している。磁極位相判定手段20は、このような発振状態に対応する電気位相角にロータ磁極が存在すると判断し、電気位相角を特定することができる。
なお、図1において、磁極位相判定手段20は、d軸電流Idを取り込み、d軸電流Idに重畳する振動を検出する構成としたが、各相電流に重畳する振動によっても同様にロータ磁極を検出することができる。また、電気位相角θphの変化速度によっては、真の磁極位相より遅れて発振現象が観測されるため、電気位相角θphを反対向きに変化させた場合との平均をとった方がより精度が高い検出ができる。
先のステップS507において、発振現象が発生しなかったと判断した場合には、ステップS512において、磁極検出用電流指令手段19は、ステータの磁気飽和が起こりやすいように、d軸電流指令値Idphを増加させ、その後、ステップS504〜S507の処理を繰り返し、磁極位置の判定処理を行うこととなる。
なお、本実施の形態1による磁極検出によれば、起動時に短時間で磁極位置の検出が行え、永久磁石同期電動機1をスムーズに起動させることが可能となる。起動後に、高精度なトルク制御が要求される場合に対しては、上述したように電気位相角の初期値を特定して起動した後に、従来から提案されているような磁極補正運転(例えば、特開平10−80188)を行うことにより、より磁極の検出精度を向上させることが可能となる。図5のステップS509〜S511は、この磁極補正運転のためのフローチャートを示すものである。
実施の形態1によれば、電流制御系に対して、検出モード設定手段、磁極検出用電流指令手段、磁極位相判定手段、スイッチを付加することにより、インクリメンタル形のエンコーダ等の位置検出器を用いて、停止中に短時間で磁極位置の検出を行うことができ、永久磁石同期電動機を短時間でスムーズに起動することができる。
さらに、初期磁極位相検出用の電気位相角および電流指令の初期値を、電流制御系の発振現象が生じやすい値に設定しておけば、短時間で容易に磁極位置の検出を行うことができる。
なお、上述では、電源投入後の1回目の起動時に磁極位置検出を行う場合について説明したが、これに限定されない。この磁極位置検出は、起動するたびに毎回行ってもよく、また、外部からの磁極検出指令に応じて行うことも可能である。
実施の形態2.
実施の形態1では、発振現象を生じやすくする方法として、d軸電流指令値Idphを増加させる場合について説明した。本実施の形態2では、発振現象を生じやすくする別の方法について説明する。
図4のボード線図に示すように、高周波域で位相を遅らせることによっても発振現象を生じやすくさせることができる。従って、図5のステップS512の処理において、d軸電流指令値Idphを増加させる代わりに、電流制御ループに遅れ要素(むだ時間要素)を挿入することも可能である。
図7は、本発明の実施の形態2における遅れ要素23およびスイッチ24を含んだd軸の電流制御系を示すプロック線図である。遅れ要素23は、電流制御系の帰還電流値Idに対して時間遅れを持たせた帰還電流値Id’を出力する。また、スイッチ24は、磁極位相判定手段20からの遅れ要素挿入指令に応じて出力信号を切り換える第2の信号スイッチ部である。
磁極位相判定手段20は、通常の運転時、あるいは実施の形態1で説明した磁極位置検出時においては、遅れ要素挿入指令を生成しない。しかし、磁極位相判定手段20は、磁極位置検出時において、d軸電流指令値Idphを増加させても発振現象が発生しないと判断した場合には、遅れ要素挿入指令を出力することができる。
スイッチ24は、磁極位相判定手段20から遅れ要素挿入指令がない場合には、帰還電流Idを帰還電流値として出力する。一方、スイッチ24は、磁極位相判定手段20から遅れ要素挿入指令があった場合には、帰還電流Idに対して遅れ要素23によって時間遅れを持たせた帰還電流Id’を帰還電流値として出力する。
実施の形態2によれば、遅れ要素挿入指令に応じて電流フィードバックループに遅れ要素を挿入することにより、磁極位置検出時における帰還電流の発振現象を生じやすくすることができる。これにより、単に電流指令値を増加しただけでは帰還電流の発振現象が発生せずに磁極位置が特定できない場合にも、遅れ要素を挿入することにより発振現象を生じさせることができ、容易に磁極位置を検出することができる。
さらに、遅れ要素の挿入により、帰還電流の発振現象を生じやすくすることができるため、あえて電流指令値を増加させる必要がない。従って、電流指令値を低く抑えた状態での磁極位置検出が可能となり、磁極位置検出時における永久磁石同期電動機の発熱を抑えることができる。
本発明の実施の形態1における永久磁石同期電動機の制御装置の構成図である。 本発明の実施の形態1におけるd軸の電流制御系を示すプロック線図である。 本発明の実施の形態1におけるモータの電機子電流と磁束との関係を示すグラフである。 本発明の実施の形態1におけるd軸電流制御系の開ループ伝達関数のボード線図を示すものである。 本発明の実施の形態1における初期磁極位置検出のシーケンス処理を示すフローチャートである。 本発明の実施の形態1における初期磁極検出動作中の各相電流Iu、Iv、Iwと、電気位相角θph、d軸電流Idの関係を示した図である。 本発明の実施の形態2における遅れ要素およびスイッチを含んだd軸の電流制御系を示すプロック線図である。
符号の説明
2 位置検出器、3 角速度演算手段、4 減算器、5 速度制御手段、6 位相演算手段、7 電流検出器、8 三相二相変換器、9 二相三相変換器、10、11 減算器、12 d軸電流制御手段、13 q軸電流制御手段、14 非干渉制御手段、15、16 加算器、17 電力変換器、18 検出モード設定手段、19 磁極検出用電流指令手段、20 磁極位相判定手段、21a〜21c スイッチ(信号スイッチ部)、23 遅れ要素、24 スイッチ(第2の信号スイッチ部)、100 速度制御系、101 d−q軸非干渉制御系。

Claims (5)

  1. 永久磁石同期電動機の磁極位置を検出する位置検出器と、
    検出された前記磁極位置に基づいて電気位相角を算出する位相演算手段と、
    電圧指令に基づいて可変電圧可変周波数の交流電力を前記永久磁石同期電動機に供給する電力変換器と、
    前記電力変換器から出力される各相電流を検出する電流検出器と、
    電気位相角、電流指令、および前記電流検出器からの検出電流に基づいて電圧指令を算出して前記電力変換部に出力する制御部と
    を備え、永久磁石同期電動機の速度制御を行う永久磁石同期電動機の制御装置において、
    前記永久磁石同期電動機の磁極位置を検出するための磁極検出指令を出力する検出モード設定手段と、
    前記検出モード設定手段からの前記磁極検出指令に応じて、初期磁極位相検出用の電気位相角および電流指令として複数の異なる値を出力する磁極検出用電流指令手段と、
    通常の運転時は、前記位置検出器の位置出力から求まる電気位相角および外部からの速度指令に基づいて生成される電流指令を前記制御部に出力し、前記検出モード設定手段からの前記磁極検出指令の入力時は、前記磁極検出用電流指令手段から出力される初期磁極位相検出用の電気位相角および電流指令を前記制御部に出力するように信号処理を切り換える信号スイッチ部と、
    前記検出モード設定手段からの前記磁極検出指令に応じて、前記磁極検出用電流指令手段から出力された前記複数の異なる値に対する前記電流検出器からの帰還電流の検出値から電流の高周波成分を抽出して発振現象を検知し、発振の大きさが最も大きくなる電気位相角を初期磁極位相と特定し、前記位相演算手段に対して前記初期磁極位相の設定を行う磁極位相判定手段と
    をさらに備えたことを特徴とする永久磁石同期電動機の制御装置。
  2. 請求項1に記載の永久磁石同期電動機の制御装置において、
    前記磁極検出用電流指令手段は、前記初期磁極位相検出用の電気位相角として、電気位相角の1周期にわたって複数の値を設定することを特徴とする永久磁石同期電動機の制御装置。
  3. 請求項1または2に記載の永久磁石同期電動機の制御装置において、
    前記磁極検出用電流指令手段は、前記初期磁極位相検出用の電流指令値として、電機子反作用磁束と永久磁石による界磁磁束との和が前記永久磁石同期電動機の磁気回路の一部を磁気飽和させる値の近傍に設定することを特徴とする永久磁石同期電動機の制御装置。
  4. 請求項1ないし3のいずれか1項に記載の永久磁石同期電動機の制御装置において、
    前記検出モード設定手段は、磁極位置検出完了フラグを記憶する記憶部を有し、電源投入時は磁極位置検出完了フラグをリセットして前記記憶部に記憶し、起動時に前記記憶部から前記磁極位置検出完了フラグを取り出し、前記磁極位置検出完了フラグがリセットされている場合には前記永久磁石同期電動機の磁極位置を検出するための磁極検出指令を出力し、
    前記磁極位相判定手段は、前記初期磁極位相が特定できた後に、磁極位置検出完了フラグをセットして前記検出モード設定手段の記憶部に記憶させる
    ことを特徴とする永久磁石同期電動機の制御装置。
  5. 請求項1ないし4のいずれか1項に記載の永久磁石同期電動機の制御装置において、
    前記制御部は、
    前記電流検出器からの検出電流を入力し、時間遅れを持たせた信号を出力する遅れ要素部と、
    通常の運転時は、前記制御部で使用する帰還電流として前記電流検出器からの検出電流を出力し、遅れ要素挿入指令の入力時は、前記制御部で使用する帰還電流として前記遅れ要素部からの信号を出力するように信号処理を切り換える第2の信号スイッチ部と
    をさらに備え、
    前記磁極位相判定手段は、前記検出モード設定手段からの前記磁極検出指令に応じて初期磁極位相の特定を行う際に、必要に応じて前記第2の信号スイッチ部に対して遅れ要素挿入指令を出力することを特徴とする永久磁石同期電動機の制御装置。
JP2004368036A 2004-12-20 2004-12-20 永久磁石同期電動機の制御装置 Expired - Fee Related JP4566725B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004368036A JP4566725B2 (ja) 2004-12-20 2004-12-20 永久磁石同期電動機の制御装置
CNB2005100774215A CN100367656C (zh) 2004-12-20 2005-06-16 永磁同步电动机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368036A JP4566725B2 (ja) 2004-12-20 2004-12-20 永久磁石同期電動機の制御装置

Publications (2)

Publication Number Publication Date
JP2006180567A JP2006180567A (ja) 2006-07-06
JP4566725B2 true JP4566725B2 (ja) 2010-10-20

Family

ID=36734142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368036A Expired - Fee Related JP4566725B2 (ja) 2004-12-20 2004-12-20 永久磁石同期電動機の制御装置

Country Status (2)

Country Link
JP (1) JP4566725B2 (ja)
CN (1) CN100367656C (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592385B2 (ja) * 2004-10-27 2010-12-01 株式会社東芝 同期機の制御装置
WO2008001904A1 (fr) 2006-06-30 2008-01-03 Nikon Corporation Appareil photo numérique
JP4901695B2 (ja) * 2007-11-02 2012-03-21 本田技研工業株式会社 特性計測装置、特性可視化装置、及び電流制御装置
CN101897594B (zh) * 2009-05-26 2012-11-28 株式会社东芝 X射线ct装置及其磁极位置检测方法
CN102570945B (zh) * 2010-11-15 2016-01-13 北京航天发射技术研究所 永磁同步陀螺马达控制方法及设备
CN102075054B (zh) * 2011-02-25 2012-08-22 哈姆林电子(苏州)有限公司 多极磁极转换位置检测器
JP5523414B2 (ja) * 2011-09-05 2014-06-18 三菱電機株式会社 交流電動機の制御装置
CN102969969B (zh) * 2012-12-14 2014-10-15 北京精雕科技有限公司 一种用于永磁同步伺服电机的自动寻相方法
CN104852663B (zh) * 2015-05-11 2018-04-13 永大电梯设备(中国)有限公司 一种永磁辅助同步磁阻电机转子初始n/s极精确辨识方法
CN105572591B (zh) * 2015-12-23 2018-10-26 日立电梯(上海)有限公司 电梯电机磁极偏角偏差检测系统及检测方法
WO2018198694A1 (ja) * 2017-04-27 2018-11-01 日本電産株式会社 電圧指令値を出力する制御装置
JPWO2019216171A1 (ja) * 2018-05-07 2021-05-13 パナソニックIpマネジメント株式会社 駆動用機器、及び駆動システム
JP7164471B2 (ja) * 2019-03-15 2022-11-01 エドワーズ株式会社 制御装置、及び該制御装置を備えた真空ポンプ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956193A (ja) * 1995-08-21 1997-02-25 Aichi Electric Co Ltd センサレスブラシレスdcモータの停止時における回転子の磁極位置検出装置
JPH1080188A (ja) * 1996-09-04 1998-03-24 Mitsubishi Electric Corp 回転磁石形多相同期電動機の制御方法及びその装置
JPH1084691A (ja) * 1996-09-09 1998-03-31 Sanyo Electric Co Ltd モータドライバ
JP2000166300A (ja) * 1998-11-25 2000-06-16 Toshiba Corp 永久磁石式同期電動機の起動制御装置
JP2000312493A (ja) * 1999-04-26 2000-11-07 Meidensha Corp 永久磁石式同期電動機のセンサレス制御システム
JP2001268974A (ja) * 2000-03-15 2001-09-28 Fuji Electric Co Ltd 永久磁石同期電動機の制御装置
JP2002165483A (ja) * 2000-11-27 2002-06-07 Fuji Electric Co Ltd 永久磁石形同期電動機の制御装置
JP2003143894A (ja) * 2002-11-12 2003-05-16 Hitachi Ltd 同期電動機の磁極位置推定方法および電動機制御装置および電気車
JP2003153582A (ja) * 2001-11-14 2003-05-23 Meidensha Corp Pmモータの制御方法、および制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW441156B (en) * 1999-06-08 2001-06-16 Ind Tech Res Inst Starting method for DC brushless motor and the device thereof
JP3912190B2 (ja) * 2002-05-31 2007-05-09 松下電器産業株式会社 ブラシレスモータの駆動装置およびそれを用いたモータ
JP4001331B2 (ja) * 2002-06-27 2007-10-31 本田技研工業株式会社 エンジン始動装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956193A (ja) * 1995-08-21 1997-02-25 Aichi Electric Co Ltd センサレスブラシレスdcモータの停止時における回転子の磁極位置検出装置
JPH1080188A (ja) * 1996-09-04 1998-03-24 Mitsubishi Electric Corp 回転磁石形多相同期電動機の制御方法及びその装置
JPH1084691A (ja) * 1996-09-09 1998-03-31 Sanyo Electric Co Ltd モータドライバ
JP2000166300A (ja) * 1998-11-25 2000-06-16 Toshiba Corp 永久磁石式同期電動機の起動制御装置
JP2000312493A (ja) * 1999-04-26 2000-11-07 Meidensha Corp 永久磁石式同期電動機のセンサレス制御システム
JP2001268974A (ja) * 2000-03-15 2001-09-28 Fuji Electric Co Ltd 永久磁石同期電動機の制御装置
JP2002165483A (ja) * 2000-11-27 2002-06-07 Fuji Electric Co Ltd 永久磁石形同期電動機の制御装置
JP2003153582A (ja) * 2001-11-14 2003-05-23 Meidensha Corp Pmモータの制御方法、および制御装置
JP2003143894A (ja) * 2002-11-12 2003-05-16 Hitachi Ltd 同期電動機の磁極位置推定方法および電動機制御装置および電気車

Also Published As

Publication number Publication date
CN1794560A (zh) 2006-06-28
JP2006180567A (ja) 2006-07-06
CN100367656C (zh) 2008-02-06

Similar Documents

Publication Publication Date Title
KR100423715B1 (ko) 동기전동기 제어장치, 동기전동기의 제어방법
CN100367656C (zh) 永磁同步电动机的控制装置
JP5011771B2 (ja) 同期電動機駆動装置
JP5281339B2 (ja) 同期電動機の駆動システム、及びこれに用いる制御装置
CN107431453B (zh) 无传感器换向方法
US10469013B2 (en) Motor control device, and method for correcting torque constant in such motor control device
JP2008167566A (ja) 永久磁石モータの高応答制御装置
JP2003204694A (ja) モータ制御装置
JP5276688B2 (ja) 同期機制御装置
JP2004072906A (ja) ベクトル制御インバータ装置
US7161324B1 (en) Device for estimating pole position of synchronous motor
JP4857893B2 (ja) エレベーターの制御装置
WO2018142445A1 (ja) 同期電動機の制御装置
JP4689192B2 (ja) エレベータの制御装置
JP5426221B2 (ja) 可変電流路における電流検出装置及び可変磁束モータの制御方法
JP2015073396A (ja) 電動モータの制御装置及び制御方法
JP2009280318A (ja) エレベータの制御装置
JP7318392B2 (ja) モータ制御装置
US11196373B2 (en) Control device and control method for synchronous electric motor
CN110114969B (zh) 动力产生装置
JP2006109589A (ja) 同期電動機の制御装置
JP2007082380A (ja) 同期モータ制御装置
CN110785923A (zh) 电机控制装置和电机控制方法
JP7567532B2 (ja) 永久磁石同期電動機の高効率運転制御装置および高効率運転制御方法
JP2008099472A (ja) 交流電動機制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4566725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees