JP4557314B2 - Sealing composition and sealing low melting point glass - Google Patents
Sealing composition and sealing low melting point glass Download PDFInfo
- Publication number
- JP4557314B2 JP4557314B2 JP02940697A JP2940697A JP4557314B2 JP 4557314 B2 JP4557314 B2 JP 4557314B2 JP 02940697 A JP02940697 A JP 02940697A JP 2940697 A JP2940697 A JP 2940697A JP 4557314 B2 JP4557314 B2 JP 4557314B2
- Authority
- JP
- Japan
- Prior art keywords
- sealing
- low
- glass
- composition
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Glass Compositions (AREA)
- Gas-Filled Discharge Tubes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、低温度の熱処理により封着できるブラウン管(CRT)のパネルとファンネルとを封着するための封着用組成物、およびプラズマディスプレイパネル(PDP)または蛍光表示管(VFD)を封着するための封着用組成物に関する。
【0002】
【従来の技術】
従来、カラーCRTのパネルとファンネルとの封着には、特公昭36−17821に開示されるタイプのPbO−B2 O3 −ZnO−SiO2 系結晶性低融点ガラスを用い、440〜450℃の温度に30〜40分程度保持して封着していた。かくして封着されたパネルとファンネルはその内部を10-6Torr以下の高真空を得るため300〜380℃に加熱されつつ排気される。
【0003】
また、従来、PDPまたはVFDにおけるガラス基板の封着には、低融点ガラスを用い、440〜500℃の温度で保持することにより封着していた。かくして、封着されたパネルはPDPの場合は250〜380℃に加熱されつつ排気され、100〜500TorrになるようにNe、He−Xe等の放電ガスが封入されて、またVFDの場合は真空を得るため250〜380℃に加熱されつつ排気されて封止される。
【0004】
【発明が解決しようとする課題】
従来の封着用ガラス粉末は、鉛成分を含有するガラスが用いられていたが、鉛成分を含有しないガラスを用いるとリサイクルなどの点で有利である。
また、従来の非鉛の封着用ガラス粉末は、封着対象物であるガラスと熱膨張率がマッチングせず、パネルが割れたり、排気のときの加熱によりガラス基板にハンダが流動したり、発泡したり、封着部分が割れたりしていた。
【0005】
本発明は、鉛成分を含有しないガラス粉末を用い、CRT、PDPおよびVFDを封着するのに適したガラスセラミックス組成物の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明は、ビスマス系の低融点ガラスの粉末60〜99重量%と低膨張セラミックスフ
ィラーの粉末1〜40重量%とからなる組成物であり、該低融点ガラスの組成が重量表示
で、Bi2O3:78〜95%、MgO+ZnO:1〜20%、B2O32〜10%、S
iO2:0〜1%、CeO 2 :0.01〜10%、からなることを特徴とする封着用組成
物を提供する。
また、組成が重量表示で、Bi2O3 78〜95%、MgO+ZnO 1〜20%、
B2O3 2〜10%、SiO2 0〜1%、CeO 2 0.01〜10%、からなる、
鉛成分を含有しない封着用低融点ガラスを提供する。
【0007】
【発明の実施の形態】
本発明におけるビスマス系の低融点ガラスの組成範囲について、以下に説明する。本発明においては、比較的低温の400〜550℃、かつ短時間(6分〜1時間)で充分に流動して、封着できるように、軟化点が500℃以下の低融点ガラスを用いる。本発明の低融点ガラスはCRTを封着する場合のように、短時間で封着することが必要な場合には、結晶性であることが好ましい。一方、複数回の加熱を経て封着する用途の場合には、非結晶性であることが好ましい場合もある。
【0008】
ここでいう結晶性のガラスとは、10℃/分で昇温し、封着温度(400〜500℃)で2時間保持したとき、示差熱分析(DTA)で発熱ピークが生じるものをいう。
【0009】
低融点ガラスは重量%表示で以下のような組成範囲を持つ。
Bi2 O3 77〜95%、
MgO+ZnO 1〜20%、
B2 O3 2〜10%、
SiO2 0〜 1%、
CeO2 0〜10%。
【0010】
Bi2 O3 の含有量が77重量%(以下、ガラス組成の説明において、単に%という。)未満では、軟化点が高くなりすぎ、流動性が悪く、封着部の強度、気密性が損なわれ、400〜550℃では封着できないおそれがある。その含有量が95%超では、ガラス化が困難になる。好ましくは79%以上であり、また93%以下である。
【0011】
ZnOとMgOとは少なくとも一方が含有されればよく、この合計の含有量が1%未満では、該低融点ガラスの加熱時の結晶化が激しくなりすぎ、流動性が悪くなる。また合計の含有量が20%超では、軟化点が高くなりすぎ、流動性が悪くなる。どちらの場合も、封着部の強度、気密性が損なわれ、400〜550℃では封着できないおそれがある。好ましくは2%以上であり、また15%以下である。
【0012】
具体的にはMgOは0〜8%とされるのが好ましい。8%超では、ガラス化しにくくなり、安定したガラスができなくなるおそれがある。また、ZnOは0〜20%とされるのが好ましい。20%超では、軟化点が高くなる。
【0013】
また、Bi2 O3 とZnOとの合量は85〜98%とすることが好ましい。85%未満では封着温度が高くなりすぎる場合があるためである。特に好ましくは87%以上である。
【0014】
B2 O3 の含有量が2%未満では、ガラスの流動性が悪くなり、封着部の強度、気密性が損なわれるおそれがある。その含有量が10%超では、ガラスの軟化点が高くなり、400〜550℃では封着できなくなるおそれがある。好ましくは3%以上であり、また8%以下である。
【0015】
SiO2 は必須成分ではないが、含有させることによって、該低融点ガラスの結晶化を抑制し、流動性を高めうる。ただし、含有量が1%超では、軟化点が高くなりすぎるおそれがある。特に低い温度で封着する必要のある場合は、実質的に含有しないことが好ましい。
【0016】
CeO2 も必須成分ではないが、ガラス組成中のBi2 O3 がガラス融解中に金属ビスマスとして析出することを抑制し、該封着用組成物の電気絶縁性の低下を抑止できる。ただし、含有量が10%超では、軟化点が高くなりすぎ、400〜550℃では封着できないおそれがある。好ましくは0.01%以上であり、また5%以下である。
【0017】
この他にも、CaO、SrO、BaOも、該封着用組成物の熱膨張係数を、大幅に増大させない範囲で添加できる。また、In2 O3 、TiO2 、SnO2 、ZrO2 も、軟化点を大幅に増大させない範囲で添加してもよく、Li2 O、Na2 O、K2 O、Cl、Fも、CRT、PDP、VFDの特性に悪影響を与えない範囲で添加してもよい。これらの成分は添加された場合でも、合量で10%以下とすることが好ましく、特に好ましくは5%以下である。
【0018】
なお、CuOは、電子部品用途では、蛍光体を劣化させることがあるため、添加を避ける場合がある。かかる場合はCuOは実質的に含有されないことが好ましい。
【0019】
かくして得られるガラスのガラス転移点は適当な封着温度を得るために280〜360℃であることが好ましい。特にCRTなどのより低い封着温度が要求される分野に用いる封着用組成物として用いるためには、ガラス転移点は280〜350℃、特に280〜340℃であることが好ましい。
【0020】
本発明でいう低膨張セラミックスフィラーとは、室温〜300℃における熱膨張係数が70×10-7/℃以下であるセラミックスフィラーをいう。かかる低膨張セラミックスフィラーとしては、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ、β−ユークリプタイト、β−スポジュメンおよびβ−石英固溶体から選ばれる1種以上が好ましく、特に、コージェライト、ジルコンは封着強度に優れるため、望ましい。
【0021】
本発明において、低融点ガラス粉末の含有量は、低融点ガラス粉末と低膨張セラミックスフィラー粉末との総量に対して60〜99重量%の範囲であり、低膨張セラミックスフィラー粉末の含有量は低融点ガラス粉末と低膨張セラミックスフィラーとの総量に対して1〜40重量%の範囲である。
【0022】
低融点ガラス粉末が99重量%超では、低膨張セラミックスフィラー粉末の量が少ないため、封着用組成物の焼成後の熱膨張係数が大きくなりすぎ、封着される対象物のガラスと熱膨張係数が合わず、割れやすい。その含有量が60重量%未満では、ガラス分が少なく流動性が悪くなり、封着部の気密性が損なわれるおそれがある。
【0023】
かくして得られる封着用組成物の焼成後の室温〜250℃の平均熱膨張係数は65×10-7〜100×10-7/℃となることが好ましい。平均熱膨張係数が、この範囲をはずれると、封着対象物のガラスと熱膨張係数のマッチングが困難になる。
【0024】
本発明の封着用組成物をCRTのパネルとファンネルとを封着するために適用する場合には、ビスマス系の低融点ガラス粉末70〜99重量%と低膨張セラミックスフィラー粉末1〜30重量%とからなり、焼成後の室温〜300℃の平均熱膨張係数が80×10-7〜100×10-7/℃であることが好ましい。
【0025】
かかる封着用組成物は、400〜500℃の温度に5分〜1時間保持することにより、CRTのパネルとファンネルとを封着でき、封着後の300〜380℃の排気時の加熱により、流動したり、発泡したり、機械的強度が損なわれたりすることがない。
【0026】
本発明の封着用組成物をCRTのパネルとファンネルとを封着するために適用する場合において、低融点ガラス粉末の含有量が99重量%超では、低膨張セラミックスフィラー粉末の量が少ないため、熱膨張係数が大きくなりすぎ、パネルおよびファンネルと熱膨張係数が合わず、割れやすい。その含有量が70重量%未満では、ガラス分が少なく流動性が悪くなり、CRTとして充分な真空が得られにくい。
【0027】
また、室温〜300℃における焼成後の封着用組成物の平均熱膨張係数が80×10-7〜100×10-7/℃の範囲外になると、封着後のパネルガラスまたはファンネルガラスまたは封着部に引張応力が働き、バルブの耐圧強度が低下する。
【0028】
本発明の封着用組成物をPDP封着用またはVFD封着用に適用する場合は、ビスマス系の低融点ガラス粉末60〜98重量%と低膨張セラミックスフィラー粉末2〜40重量%とからなり、焼成後の室温〜250℃の平均熱膨張係数が65×10-7〜90×10-7/℃であることが好ましい。
【0029】
かかる封着用組成物は、400〜500℃の温度で5分〜1時間保持することにより、PDPまたはVFDを封着でき、封着後に280〜380℃で排気する際に、加熱により流動したり、発泡したり、機械的強度が損なわれたりすることがない。
【0030】
本発明の封着用組成物をPDP封着用またはVFD封着用に適用する場合において、低融点ガラス粉末の含有量が98重量%超では、低膨張セラミックスフィラー粉末量が少ないため、焼成後の熱膨張係数が大きくなりすぎて基板ガラスと熱膨張係数が合わず、封着後のシールフリット部に引張応力が残り割れやすい。60重量%未満では、ガラス分が少なく流動性が悪くなり、PDPやVFDとして充分な封着部の気密性が得られない。
【0031】
また、室温〜250℃における焼成後の封着用組成物の平均熱膨張係数が65×10-7〜90×10-7/℃の範囲外になると、封着後に基板ガラスまたは封着部に引張応力が働き、耐圧強度が低下する。
【0032】
この組成物に、着色のために顔料などの着色剤を添加し使用することもできる。
【0033】
【実施例】
表1、表2に示すガラス組成(単位:重量%)となるように原料を調合・混合し、1000〜1400℃の温度にて溶融しガラス化しガラスを得た。次いでこのガラスをボールミルで粉砕し、低融点ガラス粉末を得た。
【0034】
これらの低融点ガラス粉末と低膨張セラミックスフィラー粉末とを表1、表2の構成欄
に示す重量割合で混合し、封着用組成物を調製した。例1〜12は実施例、例13〜20
は比較例である。また、例1〜3、例18はCRT用途、例4〜16、19はPDP用途
、例17、20はVFD用途に調製した例である。
【0035】
この封着用組成物について、フローボタン径、接着残留歪み、熱膨張係数を測定した結果を表1、表2に示す。それぞれの測定法は以下のとおりである。
【0036】
フローボタン径:封着時の組成物の流動性を示すもので、封着用組成物の試料粉末(CRT用は8.0g、PDP、VFD用は4.5g)を、直径12.7mmの円柱状に加圧成形後、表1、表2に記載した焼成温度に30分間保持したとき、封着用組成物が流動した直径(単位:mm)である。このフローボタンはCRT用は26.5mm以上、PDP、VFD用は20mm以上が望ましい。
【0037】
接着残留歪み:封着用組成物とビヒクル(酢酸イソアミルにニトロセルロース1.2%を溶解した溶液)とを重量比9.0:1.0の割合で混合してペーストとした。このペーストを、CRT用はファンネルガラス片の上、PDP、VFD用は基板ガラス片の上、に塗布し、フローボタン径の場合と同条件で焼成後、ガラス片と焼成後の封着用組成物との間に発生した残留歪み(単位:nm/cm)をポーラリメーターを用いて測定した。「+」は焼成後の封着用組成物が圧縮歪みを受けていること、また、「−」は焼成後の封着用組成物が引張歪みを受けていることを示す。この残留歪みは−100〜+500nm/cmの範囲が望ましい。
【0038】
熱膨張係数:封着用組成物をフローボタン径の場合と同条件で焼成後、所定寸法に研磨して、熱膨張測定装置により昇温速度10℃/分の条件で伸びの量を測定し、室温〜300℃(CRT用途)または室温〜250℃(PDPまたはVFD用途)までの平均熱膨張係数(単位:×10-7/℃)を算出した。
【0039】
また、これらの封着用組成物を用いて封着を行ったCRT、PDP、VFDの強度を測定した。
【0040】
CRTについては、25型のファンネルとパネルの間に封着用組成物を介在させ、400〜500℃に30分間保持してファンネルとパネルを封着してバルブを製造した。
PDPについては、この封着用組成物をあらかじめPDPの基板の端部に介在させ、400〜500℃で30分間保持し封着して、パネルを製造した。
VFDについては、電極等を形成したガラス基板の端部の間にグリッドを設置して介在させ、400〜500℃で30分間保持してガラス基板どうしを封着して、パネルを製造した。
【0041】
これらのバルブおよびパネルについて、耐水圧強度を測定した結果を表1、表2に示す。耐水圧強度の測定法は次のとおりである。
【0042】
耐水圧強度:バルブまたはパネルの内外に水による圧力差を与えて破壊するときの圧力差を測定した(単位:kg/cm2 、5個の平均値)。バルブまたはパネルとしての強度を保証するために、通常この耐水圧強度は3kg/cm2 以上が望ましい。
【0043】
また、それぞれの封着用組成物に用いたガラスのガラス転移点(単位:℃)を記載した。ガラス転移点はDTAを用いて昇温速度10℃/分で測定した。
【0044】
表1、表2から、本発明の封着用組成物は、実用的に充分な特性を有することがわかる。また例18〜20においては、フローボタン径が小さく、耐水圧強度が低い。
【0045】
【表1】
【0046】
【表2】
【0047】
【発明の効果】
本発明によれば、鉛を含まない、CRT、PDP、VFDなどの封着に好適な封着用組成物が得られる。本発明の封着用組成物を用いて封着したCRT、PDP、VFDは特に耐水圧強度に優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention seals a cathode ray tube (CRT) panel and a funnel that can be sealed by a low-temperature heat treatment, and a plasma display panel (PDP) or a fluorescent display tube (VFD). The present invention relates to a sealing composition.
[0002]
[Prior art]
Conventionally, PbO—B 2 O 3 —ZnO—SiO 2 crystalline low melting point glass of the type disclosed in Japanese Patent Publication No. 36-17821 has been used for sealing color CRT panels and funnels at 440 to 450 ° C. The temperature was kept for about 30 to 40 minutes for sealing. The panel and funnel thus sealed are exhausted while being heated to 300 to 380 ° C. in order to obtain a high vacuum of 10 −6 Torr or less.
[0003]
Conventionally, for sealing a glass substrate in a PDP or VFD, a low-melting glass was used and the glass substrate was sealed by holding at a temperature of 440 to 500 ° C. Thus, the sealed panel is evacuated while being heated to 250 to 380 ° C. in the case of PDP, filled with a discharge gas such as Ne or He—Xe so as to be 100 to 500 Torr, or in the case of VFD. In order to obtain, it is exhausted and sealed while being heated to 250 to 380 ° C.
[0004]
[Problems to be solved by the invention]
Conventional glass powder for sealing uses glass containing a lead component, but using glass containing no lead component is advantageous in terms of recycling.
In addition, the conventional lead-free glass powder for sealing does not match the thermal expansion coefficient with the glass to be sealed, the panel is cracked, solder flows to the glass substrate by heating during exhaust, Or the sealing part was cracked.
[0005]
An object of the present invention is to provide a glass ceramic composition suitable for sealing CRT, PDP and VFD using glass powder containing no lead component.
[0006]
[Means for Solving the Problems]
The present invention is a composition comprising a powder 60-99 wt% of low-melting glass powder 1 to 40 wt% of a low expansion ceramic filler bismuth-based, weight display composition of the low melting point glass
In, Bi 2 O 3: 78 ~95 %, MgO + ZnO: 1~20%, B 2 O 3 2~10%, S
A sealing composition comprising iO 2 : 0 to 1% and CeO 2 : 0.01 to 10% is provided.
The composition is in weight display, Bi 2 O 3 78 ~95% , MgO + ZnO 1~20%,
B 2 O 3 2~10%, SiO 2 0~1%, CeO 2 0.01~10%, consisting of,
Provided is a low melting glass for sealing which does not contain a lead component.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The composition range of the bismuth-based low-melting glass in the present invention will be described below. In the present invention, a low-melting glass having a softening point of 500 ° C. or lower is used so that it can be sufficiently fluidized and sealed in a relatively low temperature of 400 to 550 ° C. in a short time (6 minutes to 1 hour). The low melting point glass of the present invention is preferably crystalline when it needs to be sealed in a short time, such as when sealing a CRT. On the other hand, in the case of an application in which sealing is performed after multiple heating, it may be preferable that the material is non-crystalline.
[0008]
The term “crystalline glass” as used herein refers to a glass in which an exothermic peak is generated by differential thermal analysis (DTA) when the temperature is raised at 10 ° C./min and kept at a sealing temperature (400 to 500 ° C.) for 2 hours.
[0009]
The low melting point glass has the following composition range in terms of weight%.
Bi 2 O 3 77-95%,
MgO + ZnO 1-20%,
B 2 O 3 2-10%,
SiO 2 0 to 1%,
CeO 2 0~10%.
[0010]
When the content of Bi 2 O 3 is less than 77% by weight (hereinafter, simply referred to as “%” in the description of the glass composition), the softening point becomes too high, the fluidity is poor, and the strength and hermeticity of the sealed portion are impaired. Therefore, there is a possibility that sealing cannot be performed at 400 to 550 ° C. If the content exceeds 95%, vitrification becomes difficult. Preferably, it is 79% or more and 93% or less.
[0011]
It is sufficient that at least one of ZnO and MgO is contained. When the total content is less than 1%, crystallization of the low-melting glass during heating becomes excessive and fluidity is deteriorated. On the other hand, if the total content exceeds 20%, the softening point becomes too high and the fluidity becomes poor. In either case, the strength and airtightness of the sealing portion are impaired, and there is a possibility that sealing cannot be performed at 400 to 550 ° C. Preferably, it is 2% or more and 15% or less.
[0012]
Specifically, MgO is preferably 0 to 8%. If it exceeds 8%, vitrification tends to be difficult, and stable glass may not be formed. ZnO is preferably 0 to 20%. If it exceeds 20%, the softening point becomes high.
[0013]
The total amount of Bi 2 O 3 and ZnO is preferably 85 to 98%. If it is less than 85%, the sealing temperature may be too high. Particularly preferably, it is 87% or more.
[0014]
If the content of B 2 O 3 is less than 2%, the fluidity of the glass is deteriorated, and the strength and hermeticity of the sealed portion may be impaired. If the content exceeds 10%, the softening point of the glass becomes high, and sealing may not be possible at 400 to 550 ° C. Preferably, it is 3% or more and 8% or less.
[0015]
Although SiO 2 is not an essential component, the inclusion thereof can suppress crystallization of the low-melting-point glass and improve fluidity. However, if the content exceeds 1%, the softening point may be too high. In particular, when it is necessary to seal at a low temperature, it is preferable not to contain substantially.
[0016]
CeO 2 is not an essential component, but Bi 2 O 3 in the glass composition can be prevented from precipitating as metal bismuth during glass melting, and a decrease in electrical insulation of the sealing composition can be suppressed. However, if the content exceeds 10%, the softening point becomes too high, and sealing may not be possible at 400 to 550 ° C. Preferably it is 0.01% or more and 5% or less.
[0017]
In addition, CaO, SrO, and BaO can also be added within a range that does not significantly increase the thermal expansion coefficient of the sealing composition. In 2 O 3 , TiO 2 , SnO 2 , and ZrO 2 may also be added within a range that does not significantly increase the softening point. Li 2 O, Na 2 O, K 2 O, Cl, and F may also be added to the CRT. , PDP and VFD may be added within a range that does not adversely affect the characteristics. Even when these components are added, the total amount is preferably 10% or less, and particularly preferably 5% or less.
[0018]
Note that CuO may be prevented from being added because it may deteriorate the phosphor in electronic component applications. In such a case, it is preferable that CuO is not substantially contained.
[0019]
The glass transition point of the glass thus obtained is preferably 280 to 360 ° C. in order to obtain an appropriate sealing temperature. In particular, the glass transition point is preferably 280 to 350 ° C., particularly 280 to 340 ° C., for use as a sealing composition used in a field requiring a lower sealing temperature such as CRT.
[0020]
The term “low expansion ceramic filler” as used in the present invention refers to a ceramic filler having a thermal expansion coefficient of 70 × 10 −7 / ° C. or less at room temperature to 300 ° C. The low expansion ceramic filler is preferably at least one selected from zircon, cordierite, aluminum titanate, alumina, mullite, silica, β-eucryptite, β-spodumene and β-quartz solid solution, and particularly cordierite. Zircon is desirable because it has excellent sealing strength.
[0021]
In the present invention, the content of the low-melting glass powder is in the range of 60 to 99% by weight with respect to the total amount of the low-melting glass powder and the low-expansion ceramic filler powder. It is in the range of 1 to 40% by weight with respect to the total amount of the glass powder and the low expansion ceramic filler.
[0022]
If the low melting point glass powder exceeds 99% by weight, the amount of the low expansion ceramic filler powder is small, so that the thermal expansion coefficient after firing of the sealing composition becomes too large, and the glass and thermal expansion coefficient of the object to be sealed Does not fit and is easy to break. If the content is less than 60% by weight, the glass content is small and the fluidity is poor, and the hermeticity of the sealed portion may be impaired.
[0023]
The average thermal expansion coefficient from room temperature to 250 ° C. after firing of the sealing composition thus obtained is preferably 65 × 10 −7 to 100 × 10 −7 / ° C. If the average thermal expansion coefficient is out of this range, it becomes difficult to match the glass of the sealing object with the thermal expansion coefficient.
[0024]
When the sealing composition of the present invention is applied to seal a CRT panel and a funnel, bismuth-based low melting glass powder 70 to 99% by weight, low expansion ceramic filler powder 1 to 30% by weight, The average coefficient of thermal expansion from room temperature to 300 ° C. after firing is preferably 80 × 10 −7 to 100 × 10 −7 / ° C.
[0025]
Such a sealing composition can seal a CRT panel and a funnel by holding at a temperature of 400 to 500 ° C. for 5 minutes to 1 hour, and by heating at 300 to 380 ° C. after exhaustion, It does not flow, foam, or lose mechanical strength.
[0026]
When the sealing composition of the present invention is applied to seal a CRT panel and a funnel, when the content of the low-melting glass powder exceeds 99% by weight, the amount of the low expansion ceramic filler powder is small. The coefficient of thermal expansion becomes too large, the panel and funnel do not match the coefficient of thermal expansion, and it is easy to crack. If the content is less than 70% by weight, the glass content is small and the fluidity is poor, and it is difficult to obtain a sufficient vacuum as a CRT.
[0027]
Moreover, when the average thermal expansion coefficient of the sealing composition after firing at room temperature to 300 ° C. is outside the range of 80 × 10 −7 to 100 × 10 −7 / ° C., the panel glass or funnel glass after sealing or sealing Tensile stress acts on the contact portion, and the pressure resistance of the valve decreases.
[0028]
When the sealing composition of the present invention is applied to PDP sealing or VFD sealing, it comprises 60 to 98% by weight of a bismuth-based low melting glass powder and 2 to 40% by weight of a low expansion ceramic filler powder, and after firing. It is preferable that the average thermal expansion coefficient of room temperature to 250 ° C. is 65 × 10 −7 to 90 × 10 −7 / ° C.
[0029]
This sealing composition can seal PDP or VFD by holding at a temperature of 400 to 500 ° C. for 5 minutes to 1 hour, and can flow by heating when exhausted at 280 to 380 ° C. after sealing. No foaming or mechanical strength is lost.
[0030]
When the sealing composition of the present invention is applied to PDP sealing or VFD sealing, if the content of the low-melting glass powder exceeds 98% by weight, the amount of low-expansion ceramic filler powder is small, so the thermal expansion after firing. The coefficient becomes too large and the coefficient of thermal expansion does not match that of the substrate glass, so that tensile stress remains in the sealed frit part after sealing, and cracking easily occurs. If it is less than 60% by weight, the glass content is small and the fluidity is poor, and sufficient airtightness of the sealing part as PDP or VFD cannot be obtained.
[0031]
Further, when the average thermal expansion coefficient of the sealing composition after firing at room temperature to 250 ° C. is outside the range of 65 × 10 −7 to 90 × 10 −7 / ° C., the substrate glass or the sealing part is pulled after sealing. Stress acts and the pressure strength decreases.
[0032]
A colorant such as a pigment may be added to the composition for coloring.
[0033]
【Example】
The raw materials were prepared and mixed so as to have the glass compositions (unit: wt%) shown in Tables 1 and 2, and melted at a temperature of 1000 to 1400 ° C. to obtain vitrified glass. The glass was then pulverized with a ball mill to obtain a low melting glass powder.
[0034]
These low melting point glass powder and low expansion ceramic filler powder were mixed in the weight ratio shown in the composition column of Tables 1 and 2 to prepare a sealing composition. Example 1 to 12 Example, Example 13-20
Is a comparative example. Examples 1 to 3 and 18 are examples prepared for CRT applications, Examples 4 to 16 and 19 are PDP applications, and Examples 17 and 20 are VFD applications.
[0035]
Tables 1 and 2 show the results of measuring the flow button diameter, adhesion residual strain, and thermal expansion coefficient of this sealing composition. Each measurement method is as follows.
[0036]
Flow button diameter: This indicates the fluidity of the composition at the time of sealing. Sample powder of the sealing composition (8.0 g for CRT, 4.5 g for PDP and VFD) is a circle having a diameter of 12.7 mm. This is the diameter (unit: mm) at which the sealing composition flowed when it was held at the firing temperature described in Tables 1 and 2 for 30 minutes after being pressure-formed into a columnar shape. This flow button is preferably 26.5 mm or more for CRT, and 20 mm or more for PDP and VFD.
[0037]
Bonding residual strain: A sealing composition and a vehicle (solution of 1.2% nitrocellulose dissolved in isoamyl acetate) were mixed at a weight ratio of 9.0: 1.0 to obtain a paste. This paste is applied on a funnel glass piece for CRT, and on a substrate glass piece for PDP and VFD, fired under the same conditions as in the case of the flow button diameter, and the sealing composition after firing the glass piece. The residual strain (unit: nm / cm) generated between the two was measured using a polarimeter. “+” Indicates that the sealing composition after firing is subjected to compressive strain, and “−” indicates that the sealing composition after firing is subjected to tensile strain. The residual strain is desirably in the range of −100 to +500 nm / cm.
[0038]
Thermal expansion coefficient: After firing the sealing composition under the same conditions as the flow button diameter, polishing to a predetermined dimension, and measuring the amount of elongation at a temperature increase rate of 10 ° C./min with a thermal expansion measuring device, The average coefficient of thermal expansion (unit: x10 -7 / ° C) from room temperature to 300 ° C (for CRT use) or from room temperature to 250 ° C (for PDP or VFD use) was calculated.
[0039]
Moreover, the intensity | strength of CRT, PDP, and VFD which sealed using these sealing compositions was measured.
[0040]
For CRT, a sealing composition was interposed between a 25-inch funnel and a panel, and the funnel and the panel were sealed by holding at 400 to 500 ° C. for 30 minutes to produce a valve.
About PDP, this sealing composition was previously interposed in the edge part of the board | substrate of PDP, and it hold | maintained and sealed for 30 minutes at 400-500 degreeC, and manufactured the panel.
About VFD, the grid was installed and interposed between the edge parts of the glass substrate in which the electrode etc. were formed, and it hold | maintained for 30 minutes at 400-500 degreeC, and sealed the glass substrates, and manufactured the panel.
[0041]
Tables 1 and 2 show the results of measuring the water pressure resistance of these valves and panels. The measuring method of the water pressure resistance is as follows.
[0042]
Water pressure resistance: A pressure difference was measured when a pressure difference due to water was applied to the inside or outside of the valve or panel to break (unit: kg / cm 2 , average value of 5 pieces). In order to guarantee the strength as a valve or a panel, it is usually desirable that the water pressure strength is 3 kg / cm 2 or more.
[0043]
Moreover, the glass transition point (unit: degreeC) of the glass used for each sealing composition was described. The glass transition point was measured using DTA at a heating rate of 10 ° C./min.
[0044]
From Table 1 and Table 2, it can be seen that the sealing composition of the present invention has practically sufficient characteristics. In Examples 18 to 20, the flow button diameter is small and the water pressure resistance is low.
[0045]
[Table 1]
[0046]
[Table 2]
[0047]
【The invention's effect】
According to this invention, the sealing composition suitable for sealing, such as CRT, PDP, VFD, which does not contain lead, is obtained. CRT, PDP, and VFD sealed using the sealing composition of the present invention are particularly excellent in water pressure resistance.
Claims (8)
Bi2O3 78〜95%、
MgO+ZnO 1〜20%、
B2O3 2〜10%、
SiO2 0〜 1%、
CeO 2 0.01〜10%、
からなることを特徴とする封着用組成物。A composition comprising a powder 60-99 wt% of low-melting glass containing no lead component bismuth powder 1 to 40 wt% of a low expansion ceramic filler, the composition of the low melting glass weight display,
Bi 2 O 3 78 ~95%,
MgO + ZnO 1-20%,
B 2 O 3 2-10%,
SiO 2 0 to 1%,
CeO 2 0.01 to 10% ,
A sealing composition comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02940697A JP4557314B2 (en) | 1996-02-15 | 1997-02-13 | Sealing composition and sealing low melting point glass |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2787296 | 1996-02-15 | ||
JP24081796 | 1996-09-11 | ||
JP8-240817 | 1996-09-11 | ||
JP8-27872 | 1996-09-11 | ||
JP02940697A JP4557314B2 (en) | 1996-02-15 | 1997-02-13 | Sealing composition and sealing low melting point glass |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007093223A Division JP4650444B2 (en) | 1996-02-15 | 2007-03-30 | Low melting glass for sealing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10139478A JPH10139478A (en) | 1998-05-26 |
JP4557314B2 true JP4557314B2 (en) | 2010-10-06 |
Family
ID=27285983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02940697A Expired - Fee Related JP4557314B2 (en) | 1996-02-15 | 1997-02-13 | Sealing composition and sealing low melting point glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4557314B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4650444B2 (en) * | 1996-02-15 | 2011-03-16 | 旭硝子株式会社 | Low melting glass for sealing |
JP4839539B2 (en) * | 2001-07-24 | 2011-12-21 | 旭硝子株式会社 | Lead-free glass, glass frit, glass paste, electronic circuit components and electronic circuits |
TW200624402A (en) | 2004-11-12 | 2006-07-16 | Asahi Techno Glass Corp | Low melting glass, sealing composition and sealing paste |
JP4774721B2 (en) * | 2004-11-12 | 2011-09-14 | 旭硝子株式会社 | Low melting glass, sealing composition and sealing paste |
JP4930897B2 (en) * | 2005-03-09 | 2012-05-16 | 日本電気硝子株式会社 | Bi2O3-B2O3 sealing material |
US7384577B2 (en) * | 2005-03-09 | 2008-06-10 | E.I. Du Pont De Nemours And Company | Black conductive thick film compositions, black electrodes, and methods of forming thereof |
JP4508282B2 (en) * | 2006-02-28 | 2010-07-21 | パナソニック株式会社 | Plasma display panel |
JP2007257982A (en) * | 2006-03-23 | 2007-10-04 | Matsushita Electric Ind Co Ltd | Plasma display panel |
JP5403476B2 (en) * | 2006-10-24 | 2014-01-29 | 日本電気硝子株式会社 | Bismuth material, tablet and tablet integrated exhaust pipe |
JP2008166197A (en) * | 2006-12-28 | 2008-07-17 | Univ Of Tokyo | Manufacturing method of panel body |
JP5321934B2 (en) * | 2007-03-23 | 2013-10-23 | 日本電気硝子株式会社 | Crystalline bismuth-based material |
JP5476691B2 (en) * | 2007-08-31 | 2014-04-23 | 日本電気硝子株式会社 | Sealing material |
JP5525714B2 (en) | 2008-02-08 | 2014-06-18 | 日立粉末冶金株式会社 | Glass composition |
JP5397583B2 (en) * | 2008-07-07 | 2014-01-22 | 日本電気硝子株式会社 | Bismuth glass composition and sealing material |
JP5414409B2 (en) | 2009-01-16 | 2014-02-12 | 日立粉末冶金株式会社 | Low melting glass composition, low-temperature sealing material and electronic component using the same |
US9048056B2 (en) | 2009-03-27 | 2015-06-02 | Hitachi Powdered Metals Co., Ltd. | Glass composition and covering and sealing members using same |
KR20120085267A (en) * | 2009-09-22 | 2012-07-31 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | Glass package for sealing a device, and system comprising glass package |
JP2011093731A (en) * | 2009-10-28 | 2011-05-12 | Ohara Inc | Optical glass, preform, and optical element |
WO2012101694A1 (en) * | 2011-01-27 | 2012-08-02 | パナソニック株式会社 | Sealing material, plasma display panel and production method for plasma display panel |
KR101596548B1 (en) * | 2013-03-27 | 2016-02-22 | 제일모직주식회사 | Composition for forming solar cell electrode and electrode prepared using the same |
JP5983536B2 (en) * | 2013-05-28 | 2016-08-31 | 日本電気硝子株式会社 | Crystalline bismuth-based material |
JP2019214481A (en) * | 2018-06-11 | 2019-12-19 | 日本電気硝子株式会社 | Bismuth glass powder and composite powder including the same |
JP2024041258A (en) * | 2022-09-14 | 2024-03-27 | 日本電気硝子株式会社 | Bismuth-based glass powder and composite powder including the same |
-
1997
- 1997-02-13 JP JP02940697A patent/JP4557314B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10139478A (en) | 1998-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4557314B2 (en) | Sealing composition and sealing low melting point glass | |
US5733828A (en) | Hermetic sealing composition | |
KR970000898B1 (en) | Non-lead sealing glasses | |
JPH09235136A (en) | Low-melting point class composition and glass ceramics composition for sealing | |
JP4154790B2 (en) | Applications of low melting glass | |
JPH09175833A (en) | Glass ceramic composition for sealing | |
JP4650444B2 (en) | Low melting glass for sealing | |
JPH11349347A (en) | Crystalline low melting point glass composition | |
JPH09188544A (en) | Glass composition | |
JPWO2001090012A1 (en) | Glass composition and glass-forming material containing the composition | |
JP3165355B2 (en) | Sealing composition | |
US5916832A (en) | Hermetic sealing composition | |
JPWO2002042232A1 (en) | Color cathode ray tube and glass frit for color cathode ray tube | |
JPH09227154A (en) | Sealing composition | |
JP3903566B2 (en) | Low melting glass composition and glass ceramic composition for sealing | |
KR100573550B1 (en) | Sealing composition | |
GB2328939A (en) | Lead oxide glass as sealant for cathode ray tubes | |
JP2000007375A (en) | Low-melting glass composition and glass-ceramic composition for sealing | |
JPH0826770A (en) | Seal bonding composition for plasma display panel | |
KR20080037889A (en) | Hermetically sealed and low melted glass and glass composite in oled | |
JP3948165B2 (en) | Sealing material | |
JP2002167229A (en) | Glass and sealing composition | |
JPH07330374A (en) | Sealing composition | |
JP3906526B2 (en) | Color cathode ray tube | |
JP2001122640A (en) | Sealing composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070320 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070330 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070516 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100409 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100409 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |