JP4774721B2 - Low melting glass, sealing composition and sealing paste - Google Patents

Low melting glass, sealing composition and sealing paste Download PDF

Info

Publication number
JP4774721B2
JP4774721B2 JP2004328729A JP2004328729A JP4774721B2 JP 4774721 B2 JP4774721 B2 JP 4774721B2 JP 2004328729 A JP2004328729 A JP 2004328729A JP 2004328729 A JP2004328729 A JP 2004328729A JP 4774721 B2 JP4774721 B2 JP 4774721B2
Authority
JP
Japan
Prior art keywords
glass
sealing
low
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004328729A
Other languages
Japanese (ja)
Other versions
JP2006137637A (en
Inventor
旭 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004328729A priority Critical patent/JP4774721B2/en
Priority to TW094138289A priority patent/TW200624402A/en
Priority to US11/262,746 priority patent/US7291573B2/en
Priority to CN 200510120355 priority patent/CN1772676B/en
Priority to KR1020050107774A priority patent/KR20060052610A/en
Publication of JP2006137637A publication Critical patent/JP2006137637A/en
Application granted granted Critical
Publication of JP4774721B2 publication Critical patent/JP4774721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Description

本発明は封着用組成物に関し、特に実質的に鉛成分を含まないものであって、プラズマディスプレイパネル(以下、PDPとする。)のような平面ディスプレイに使用されるものである。なお、本明細書で使用する単なる「%」表示は、「質量%」を意味するものとする。   The present invention relates to a sealing composition, and particularly contains substantially no lead component, and is used for a flat display such as a plasma display panel (hereinafter referred to as PDP). The simple “%” notation used in this specification means “% by mass”.

従来、PDPの外周部シールなどに代表される封着用組成物はPbO−SiO2−B23系等の鉛系ガラス粉末と耐火性セラミック粉末などのフィラーからなる鉛系材料が一般的であったが、近年環境上の観点から鉛成分を含まずに低温で封着できる組成物の開発が求められている。 Conventionally, a sealing composition typified by an outer peripheral seal of a PDP is generally a lead-based material composed of a lead-based glass powder such as PbO—SiO 2 —B 2 O 3 and a filler such as a refractory ceramic powder. However, in recent years, development of a composition that can be sealed at a low temperature without containing a lead component has been demanded from an environmental viewpoint.

鉛を含まない低融点ガラスとしては、リン酸系ガラス、ホウリン酸系ガラス、バナジウムホウ酸系ガラス、アルカリ珪酸系ガラスおよびビスマス系ガラスなどが知られている。その中で低温での焼成が可能で、化学的耐久性が優れている点からビスマス系ガラスが着目されている。   Known low-melting glasses not containing lead include phosphate glass, borophosphate glass, vanadium borate glass, alkali silicate glass, and bismuth glass. Among them, bismuth-based glass has attracted attention because it can be fired at a low temperature and has excellent chemical durability.

これまでに開発されてきたビスマス系ガラスは、熱膨張係数が90〜110×10-7/℃であり、ディスプレイに使用されるガラスの熱膨張係数(70〜80×10-7/℃)に合わせるために低膨張の耐火性セラミックフィラーを配合したものであった。 The bismuth-based glass that has been developed so far has a thermal expansion coefficient of 90 to 110 × 10 −7 / ° C., and the thermal expansion coefficient of the glass used for the display (70 to 80 × 10 −7 / ° C.). In order to match, a low expansion refractory ceramic filler was blended.

しかし、ビスマス系ガラスで低融点ガラス成分中に含まれるZnO量が少ないと熱膨張係数が110×10-7/℃以上と大きく、これを下げるためにさらに大量の耐火性セラミックフィラーを配合するため材料の粘度が上昇し500℃未満で封着ができなくなるという問題があった(特許文献1)。 However, if the amount of ZnO contained in the low melting point glass component in the bismuth glass is small, the thermal expansion coefficient is as large as 110 × 10 −7 / ° C. or more, and in order to lower this, a larger amount of refractory ceramic filler is blended. There was a problem that the viscosity of the material increased and sealing could not be performed at less than 500 ° C. (Patent Document 1).

逆に、ZnOが多く含まれる低融点ガラスも開発されているが、Bi23の含有量が多くAl23が含有されていないため、低融点ガラスの化学的耐久性が低下するという問題もあった(特許文献2)。 Conversely, a low melting point glass containing a large amount of ZnO has also been developed, but the chemical durability of the low melting point glass is lowered because the content of Bi 2 O 3 is large and Al 2 O 3 is not contained. There was also a problem (Patent Document 2).

一方、PDPの製造において封着用組成物をペースト化したシール部材は、封着部分が流れ過ぎたり、泡の発生を抑えたりするため、さらには、リブ、蛍光体および電極など他の部材への熱的なダメージを抑えるために、封着温度は500℃以下(好ましくは480℃以下)で焼成していた。しかし、これら他の部材もシール部材の封着と同様に焼成処理によって製造が行われており、個別に焼成すると工程が長くなって製造コストが高くなるという問題があった。この対策として、近年複数の部材を同時に焼成して工程を短縮化する方向にあり、シール部材についてもこれら部材と組み合わせて脱脂および仮焼き付け(以下仮焼成とする)が同時に行われるようになった。   On the other hand, the sealing member formed by pasting the sealing composition in the production of the PDP suppresses the generation of bubbles due to excessive flow of the sealing portion. Further, the sealing member is applied to other members such as ribs, phosphors and electrodes. In order to suppress thermal damage, the sealing temperature was baked at 500 ° C. or lower (preferably 480 ° C. or lower). However, these other members are also manufactured by a baking process in the same manner as the sealing of the sealing member, and there has been a problem that if the baking is performed individually, the process becomes longer and the manufacturing cost increases. In recent years, as a countermeasure, a plurality of members are simultaneously fired to shorten the process, and the seal member is also degreased and pre-baked (hereinafter referred to as pre-baking) in combination with these members. .

したがって、シール部材の封着温度は上記の理由から、リブ、蛍光体および電極など他の部材の焼成温度より下げる必要があった。この他の部材の焼成温度(=シール部材の仮焼成温度)はそれぞれの部材で幅があるが、近年の低温化の要求を考慮すると450〜550℃の範囲となる。その結果シール部材の封着温度は、仮焼成温度よりも低温となり、このような使用方法でも流動性が損なわれることなく封着が可能である低融点ガラスが求められ始めてきた。従来の鉛系ガラスでは、封着可能温度域(低融点ガラスを非晶質ガラスで使用するときには、低融点ガラスが結晶化することなく封着することのできる温度範囲をいう。)が広かったため、上記の要求特性を満足していた。
しかし、このビスマス系ガラスは低温で封着が可能であっても封着可能な温度域が狭く、仮焼成温度がこの封着可能温度域を超えると、Bi23とそのガラス成分に含まれるB23やZnO等によって、結晶を生じ易く本焼成時に封着温度で封着できない問題点があった。
Therefore, the sealing temperature of the sealing member needs to be lower than the firing temperature of other members such as ribs, phosphors and electrodes for the above reasons. The firing temperature of these other members (= temporary firing temperature of the seal member) varies depending on each member, but is in the range of 450 to 550 ° C. in consideration of the recent demand for lowering the temperature. As a result, the sealing temperature of the sealing member is lower than the pre-baking temperature, and low melting point glass that can be sealed without impairing fluidity even by such a method of use has begun to be demanded. The conventional lead-based glass has a wide sealing temperature range (when the low-melting glass is used as an amorphous glass, it means a temperature range in which the low-melting glass can be sealed without crystallization). The above required characteristics were satisfied.
However, this bismuth-based glass has a narrow sealing temperature range even if it can be sealed at a low temperature. If the pre-baking temperature exceeds this sealing possible temperature range, it is included in Bi 2 O 3 and its glass component. B 2 O 3 , ZnO, etc. are prone to crystal formation and cannot be sealed at the sealing temperature during the main firing.

さらに、大量生産のためには、原料の投入から成形までを連続して行う連続熔融炉で熔解することが好ましい。通常ビスマス系ガラスは、鉛系ガラスと同様に均質なガラスを得るためには、1000℃以上に加熱して熔解する必要があるが、炉材に耐火煉瓦を使用した場合、このビスマス系ガラスは侵食性が強いために、煉瓦表面からの熔出分(例えばアルカリ金属やジルコニアなど)が増加し、これがガラスの結晶核になって仮焼成時にガラスの結晶化を引起こすという問題があった。また、このガラスは熔解中粘度が極めて低く、かつ表面張力が小さいため、操業中に侵食によって広がった煉瓦の継ぎ目部分からガラスが漏出し、長期間安定してガラスが熔解できないという問題もあった。
特開平9−278483号公報 特開平10−139478号公報
Furthermore, for mass production, it is preferable to melt in a continuous melting furnace that continuously performs the process from charging of raw materials to molding. In general, bismuth-based glass, like lead-based glass, needs to be melted by heating to 1000 ° C or higher in order to obtain homogeneous glass. Due to its strong erodibility, there was a problem that the amount of melted material (for example, alkali metal, zirconia, etc.) from the brick surface increased, which became the crystal nucleus of the glass and caused crystallization of the glass during temporary firing. In addition, since this glass has a very low viscosity during melting and a low surface tension, there was a problem that the glass leaked from the joint part of the brick that spread due to erosion during operation, and the glass could not be melted stably for a long time. .
Japanese Patent Laid-Open No. 9-278483 Japanese Patent Laid-Open No. 10-139478

上記したように、製造工程の短縮に伴って、シール部材も仮焼成の段階で本来封着を行うための温度を超える温度に加熱されるようになってしまった。従来の鉛系材料では仮焼成後、その次の焼成で仮焼成温度よりも低温で封着が可能であった。しかし、これまでに開発されていたビスマス系ガラスは、特に、PDP等の平面ディスプレイでは仮焼成の温度よりも低温で封着できるガラスが見出されていなかった。   As described above, along with the shortening of the manufacturing process, the sealing member has been heated to a temperature exceeding the temperature for originally performing sealing at the stage of temporary firing. Conventional lead-based materials can be sealed at a temperature lower than the pre-baking temperature in the next baking after pre-baking. However, as for the bismuth glass developed so far, a glass that can be sealed at a temperature lower than the pre-baking temperature has not been found particularly in a flat display such as PDP.

また、白金や白金−ロジウム等の合金を表面に被覆した熔融炉で、ビスマス系ガラスを熔融した場合でも、白金等の劣化(侵食や亀裂)が激しく長期間安定して量産できる連続熔融炉として十分ではなかった。   In addition, it is a melting furnace with a platinum or platinum-rhodium alloy coated on the surface, and even when bismuth glass is melted, it is a continuous melting furnace that can be mass-produced stably for a long period of time due to its deterioration (erosion and cracking). It was not enough.

そこで本発明は、上記従来の封着用組成物における問題点を解消し、封着温度以上で仮焼成しても結晶化することなく仮焼成以下の温度で封着が可能であり、かつ白金や白金−ロジウム等の材質で長期間安定してガラスが熔解できるビスマス系ガラスの低融点ガラスおよびこのガラスを用いた封着用組成物ならびに封着用ペーストを提供することを目的とする。   Therefore, the present invention eliminates the problems in the above conventional sealing composition, can be sealed at a temperature below the pre-baking without crystallization even if pre-baked above the sealing temperature, and platinum or An object of the present invention is to provide a low melting point glass of bismuth-based glass which can be melted stably with a material such as platinum-rhodium for a long period of time, a sealing composition using this glass, and a sealing paste.

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、以下に示すガラス組成を含有する低融点ガラスの粉末と耐火性セラミックスフィラーを含有する組成物が上記課題を解決することを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a composition containing a low-melting-point glass powder containing a glass composition shown below and a refractory ceramic filler solves the above-mentioned problems. Based on this finding, the present invention has been completed.

すなわち、本発明の請求項1に対応する発明は、実質的に鉛を含有せず、質量%表示で、Bi 70〜90%、ZnO 1〜20%、B 2〜12%、Al 0.1〜5%、CeO 0.1〜5%、CuO 0〜5%、Fe 0.01〜0.2%、CuO+Fe 0.05〜5%、を含有し、かつLiO、NaO、KO等のアルカリ金属酸化物の合計量が0.1%未満として、モル比で(CuO+Fe )/Bi =0.01〜0.036とした。 That is, the invention corresponding to claim 1 of the present invention contains substantially no lead and is expressed in mass%, Bi 2 O 3 70 to 90%, ZnO 1 to 20%, B 2 O 3 2 to 12 %, Al 2 O 3 0.1~5% , CeO 2 0.1~5%, 0~5% CuO, Fe 2 O 3 0.01 ~0.2%, CuO + Fe 2 O 3 0.05~5 %, containing, and Li 2 O, Na 2 O, K 2 the total amount of the alkali metal oxides such as O, and less than 0.1%, a molar ratio (CuO + Fe 2 O 3) / Bi 2 O 3 = 0.01 to 0.036.

請求項2に対応する発明は、請求項1に対応する発明の低融点ガラスにおいて、モル比でAl/Bi=0.01〜0.1の関係を満たすものである。 The invention corresponding to claim 2 is the low melting point glass of the invention corresponding to claim 1, wherein Al 2 O 3 / Bi 2 O 3 = 0.01-0. 1 is satisfied.

請求項3に対応する発明は、仮焼成しても結晶化することなくこの仮焼成以下の温度で封着を可能とした。   The invention corresponding to claim 3 enables sealing at a temperature equal to or lower than this pre-baking without crystallizing even if pre-baking.

請求項4に対応する発明は、請求項1ないし3のいずれかに対応する発明の低融点ガラスの粉末60〜99体積%と、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ、酸化錫系セラミック、β−ユークリプタイト、β−スポジュメン、リン酸ジルコニウム系セラミックおよびβ−石英固溶体からなる群より選ばれる1種以上の耐火性セラミックスフィラーの粉末1〜40体積%とを配合した封着用組成物である。   The invention corresponding to claim 4 is a low melting point glass powder of 60 to 99% by volume of the invention corresponding to any one of claims 1 to 3, zircon, cordierite, aluminum titanate, alumina, mullite, silica, oxidation Seal containing 1 to 40% by volume of one or more refractory ceramic filler powders selected from the group consisting of tin-based ceramics, β-eucryptite, β-spodumene, zirconium phosphate-based ceramics and β-quartz solid solution It is a wearing composition.

請求項5に対応する発明は、請求項4に記載の組成物に、ビヒクルを混合して得られる封着用ペーストである。   The invention corresponding to claim 5 is a sealing paste obtained by mixing a vehicle with the composition of claim 4.

本発明の封着用組成物を構成する低融点ガラスの各成分の限定理由を以下に説明する。   The reason for limitation of each component of the low melting glass which comprises the sealing composition of this invention is demonstrated below.

Bi23は本発明のガラスの網目を形成する酸化物であり、70〜90%の範囲で含有することが好ましい。Bi23が70%未満の場合、低融点ガラスの軟化点が高くなり低温封着が可能な封着用組成物として使用できなくなる。また90%を超えると、ガラス化しなくなる上に熱膨張係数が高くなりすぎる。Bi23の含有量は、荷重軟化点、熱膨張係数等を考慮すると、より好ましくは75〜85重量%である。ここで、荷重軟化点とは、当該ガラスを粉末状にした試料を示差熱分析装置(DTA)を用いて10℃/分の速度で昇温して得られる熱収支曲線の第二番目の変曲点が示す温度である。 Bi 2 O 3 is an oxide that forms the network of the glass of the present invention, and is preferably contained in the range of 70 to 90%. When Bi 2 O 3 is less than 70%, the softening point of the low-melting glass becomes high and it cannot be used as a sealing composition capable of low-temperature sealing. On the other hand, if it exceeds 90%, it will not vitrify and the thermal expansion coefficient will be too high. The content of Bi 2 O 3 is more preferably 75 to 85% by weight in consideration of the load softening point, the thermal expansion coefficient, and the like. Here, the load softening point is the second variation of the heat balance curve obtained by raising the temperature of the glass-coated sample at a rate of 10 ° C./min using a differential thermal analyzer (DTA). The temperature indicated by the inflection point.

ZnOは熱膨張係数を下げ、かつ荷重軟化点を下げる成分であり、1〜20%の範囲で含有させることが好ましい。ZnOが1%未満ではガラス化が困難であり、また20%を超えると低融点ガラス成形時の安定性が悪く失透が発生しやすくなり、ガラスが得られなくなるおそれがある。ZnOの含有量はガラスの安定性等を考慮すると、より好ましくは7〜12%である。   ZnO is a component that lowers the thermal expansion coefficient and lowers the load softening point, and is preferably contained in the range of 1 to 20%. If ZnO is less than 1%, vitrification is difficult, and if it exceeds 20%, the stability during low-melting glass molding is poor and devitrification tends to occur, and glass may not be obtained. The ZnO content is more preferably 7 to 12% in consideration of the stability of the glass and the like.

Al23は熱膨張係数を下げ、かつ仮焼成時の低融点ガラスの安定性を向上させる成分であり、0.1〜5%の範囲で含有させることが好ましい。Al23が0.1%未満の場合、500℃以上の仮焼成時に低融点ガラス中に結晶核または結晶が析出してしまい、仮焼成よりも低温で封着することができなくなる。また、5%を超えるとガラスの粘性が上がり、低融点ガラス中にAl23が未熔融物として残るおそれがある。熱膨張係数、ガラスの安定性、熔融性等を考慮すると、より好ましくは0.5〜2%である。 Al 2 O 3 is a component that lowers the coefficient of thermal expansion and improves the stability of the low-melting glass during temporary firing, and is preferably contained in the range of 0.1 to 5%. When Al 2 O 3 is less than 0.1%, crystal nuclei or crystals are precipitated in the low-melting glass at the time of calcining at 500 ° C. or higher, and cannot be sealed at a temperature lower than that at the calcining. On the other hand, if it exceeds 5%, the viscosity of the glass increases, and Al 2 O 3 may remain as an unmelted material in the low-melting glass. Considering the thermal expansion coefficient, the stability of the glass, the meltability, etc., it is more preferably 0.5 to 2%.

また、低融点ガラスの封着可能温度域を広げ、封着予定温度以上で仮焼成しても結晶を発生させないためには、モル比でAl23/Bi23=0.01〜0.1であることが好ましい。0.01未満では450〜550℃の仮焼成時に低融点ガラス中に結晶核または結晶が析出してしまい、仮焼成よりも低温で封着することができなくなる。また、0.1を超えるとガラスの粘度が上昇する上にAl23が完全に熔融しないという問題点がある。Al23/Bi23が上記の範囲であれば封着予定温度以上で仮焼成してもガラスが結晶化することなく安定したガラスネットワークを形成することが可能である。 Further, in order to expand the temperature range where low-melting glass can be sealed and to generate crystals even if pre-baked at a temperature higher than the expected sealing temperature, Al 2 O 3 / Bi 2 O 3 = 0.01- 0.1 is preferable. If it is less than 0.01, crystal nuclei or crystals are precipitated in the low-melting glass at the time of preliminary baking at 450 to 550 ° C., and it becomes impossible to seal at a lower temperature than in the preliminary baking. On the other hand, if it exceeds 0.1, the viscosity of the glass increases, and Al 2 O 3 does not melt completely. If Al 2 O 3 / Bi 2 O 3 is in the above range, a stable glass network can be formed without crystallizing the glass even if pre-baking at a temperature higher than the expected sealing temperature.

23はガラスの骨格を形成してガラス化が可能となる範囲を広げる成分であり、2〜12%含有させることが好ましい。B23が2%未満の場合ガラス化が困難となり、12%を超えると軟化点が高くなりすぎ、封着時に荷重をかけたとしても低温で封着することが困難となる。B23の含有量は、熱膨張係数、ガラスの安定性、荷重軟化点等を考慮すると、5〜10%であることがより好ましい。 B 2 O 3 is a component that forms a glass skeleton and expands the range in which vitrification is possible, and is preferably contained in an amount of 2 to 12%. If B 2 O 3 is less than 2%, vitrification becomes difficult, and if it exceeds 12%, the softening point becomes too high, and even if a load is applied during sealing, sealing at low temperatures becomes difficult. The content of B 2 O 3 is more preferably 5 to 10% in consideration of a thermal expansion coefficient, glass stability, a load softening point, and the like.

Feは、粘性を殆ど増大させることなく、封着時での結晶化を抑制して封着可能温度域を広げる効果を有する成分であるが、過剰に添加するとガラス化範囲が狭くなるためその含有量は0.01〜0.2%である。 Fe 2 O 3 is a component that has the effect of suppressing the crystallization at the time of sealing and expanding the temperature range capable of being sealed without increasing the viscosity, but when added excessively, the vitrification range becomes narrower. Therefore, its content is 0 . 01-0.2%.

CuOはガラスの粘度を下げ特に低温側での封着可能温度域を広げる成分であり、その含有量は0〜5%、好ましくは0.1〜3%である。CuOが5%を超えると結晶の析出速度が大きくなって高温側での封着可能温度域を狭くするうえ電子部品用途では蛍光体を劣化させることがあるため過剰な添加を避けることが好ましい。   CuO is a component that lowers the viscosity of the glass and widens the temperature range that can be sealed, particularly on the low temperature side, and its content is 0 to 5%, preferably 0.1 to 3%. If CuO exceeds 5%, it is preferable to avoid excessive addition because the crystal deposition rate increases and the temperature range at which sealing can be performed on the high temperature side is narrowed, and phosphors may be deteriorated in electronic component applications.

また、CuOおよびFe23は480℃以下でガラスの流動性を高め、かつ仮焼成時でのガラスを安定化させるための必須成分であり、その合量が0.05〜5%であることが好ましい。0.05%未満では上記の効果が得られず、また5%より高いとガラスが不安定となり高温側での封着可能温度域が狭くなり結晶化しやすくなる。より好ましい範囲は0.1〜2%である。 Further, CuO and Fe 2 O 3 are essential components for improving the fluidity of the glass at 480 ° C. or less and stabilizing the glass at the time of temporary firing, and the total amount thereof is 0.05 to 5%. It is preferable. If it is less than 0.05%, the above effect cannot be obtained, and if it is more than 5%, the glass becomes unstable and the temperature range at which sealing can be performed on the high temperature side becomes narrow and crystallization tends to occur. A more preferable range is 0.1 to 2%.

さらに、封着可能温度域を広げ、450〜550℃での仮焼成時の結晶化抑制と仮焼成温度以下の温度での封着可能な粘度を両立させるためには、Biに対するFeおよびCuOの関係が、モル比で(CuO+Fe)/Bi=0.01〜0.036の関係を満たす。0.01未満では、荷重をかけても低温での封着に十分なガラスの流動性が得られず、また0.036を超えると封着可能温度域が狭くなり封着予定温度以上でガラスが結晶化してしまい、本発明の目的とする低融点ガラスが得られない。CuおよびFeは価数変化を起こし易い元素であり、上記範囲内で添加することによってガラスの粘度が下がり、かつ加熱中に自らの価数変化によりBiの価数変化を抑えガラスが結晶化しないという効果がある。 Furthermore, in order to widen the sealable temperature range and achieve both the suppression of crystallization at the time of pre-baking at 450 to 550 ° C. and the sealable viscosity at a temperature equal to or lower than the pre-baking temperature, Fe to Bi 2 O 3 2 O 3 and CuO relationship, satisfying the relation of the molar ratio (CuO + Fe 2 O 3) / Bi 2 O 3 = 0.01~ 0.036. If it is less than 0.01, sufficient fluidity of the glass for sealing at a low temperature cannot be obtained even when a load is applied, and if it exceeds 0.036 , the temperature range that can be sealed becomes narrow, and the glass becomes higher than the expected sealing temperature. Is crystallized, and the low melting point glass of the present invention cannot be obtained. Cu and Fe are elements that easily undergo valence change, and when added within the above range, the viscosity of the glass decreases, and the valence change during heating suppresses the valence change of Bi and the glass does not crystallize. There is an effect.

CeO2はガラス組成中のBi23がガラス融解中に金属ビスマスとして析出することを抑制し、ガラスの流動性を安定化させる効果があるので、その含有量は0.1〜5%である。0.1%未満では上記の効果が得られず、5%以上ではガラスの粘度が上がり目的とする480℃以下での封着が困難となる。より好ましくは0.1〜3%である。 CeO 2 has the effect of suppressing Bi 2 O 3 in the glass composition from precipitating as metal bismuth during glass melting and stabilizing the fluidity of the glass, so its content is 0.1 to 5%. is there. If the content is less than 0.1%, the above effect cannot be obtained. If the content is 5% or more, the viscosity of the glass is increased and it becomes difficult to seal at 480 ° C. or less. More preferably, it is 0.1 to 3%.

また、白金や白金を主成分とする合金で製作したルツボでビスマス系ガラスを熔解したとき、ガラス組成中にLi、Na、K等のアルカリ金属が含まれると白金が加速的に劣化(侵食や亀裂)しやすくなることを見出した。これを抑制するためにはガラス原料中のアルカリ金属を合計で0.1%未満にすることが好ましく、更に0.01%以下にすることが望ましい。   In addition, when bismuth glass is melted with a crucible made of platinum or an alloy containing platinum as a main component, if an alkali metal such as Li, Na, K, etc. is contained in the glass composition, the platinum deteriorates rapidly (erosion and It has been found that it becomes easy to crack. In order to suppress this, the total amount of alkali metals in the glass raw material is preferably less than 0.1%, more preferably 0.01% or less.

また、上記以外の組成として5%以内の範囲で、SiO2、V25、Ag2O、Co23、MoO3、Nb23、Ta25、Ga23、Sb23、CaO、SrO、BaO、WO3、P25、SnOx(x=1又は2)、Cs2Oなどを含有させることができる。 Further, within a range of 5% as a composition other than the above, SiO 2, V 2 O 5 , Ag 2 O, Co 2 O 3, MoO 3, Nb 2 O 3, Ta 2 O 5, Ga 2 O 3, Sb 2 O 3 , CaO, SrO, BaO, WO 3 , P 2 O 5 , SnOx (x = 1 or 2), Cs 2 O and the like can be contained.

ただし、SiO2はB23と分相してB23とBi23を主成分とする結晶が起こり易く、またガラス粘度を上げる作用があるため1%以下とすることが好ましい。また、CaO、BaOおよびSrO等のアルカリ土類金属酸化物についてもアルカリ金属酸化物ほどではないが白金や白金を主成分とする合金を劣化させる作用があるため、合計で1%以下とすることが望ましい。またTl2O、CdO、等の毒性の強い成分の添加は避けるべきである。 However, it is preferred that SiO 2 is B 2 O 3 and phase separation to the main component B 2 O 3 and Bi 2 O 3 crystals occurs easily, also be 1% or less because an effect to increase the glass viscosity . Also, alkaline earth metal oxides such as CaO, BaO and SrO are not as much as alkali metal oxides, but have the effect of degrading platinum and platinum-based alloys, so the total should be 1% or less. Is desirable. Addition of highly toxic components such as Tl 2 O and CdO should be avoided.

以上の組成を有するガラスは、ガラス転移点が400℃以下と低く、良好な流動性を示す非晶質のガラスである。また30〜300℃における熱膨張係数が90×10-7/℃以上110×10-7/℃以下であり、これと適合する高膨張材料については、耐火性セラミックスフィラーを配合することなく封着することが可能である。 The glass having the above composition is an amorphous glass having a low glass transition point of 400 ° C. or less and showing good fluidity. In addition, the thermal expansion coefficient at 30 to 300 ° C. is 90 × 10 −7 / ° C. or more and 110 × 10 −7 / ° C. or less, and high expansion material suitable for this is sealed without blending a refractory ceramic filler. Is possible.

一方、熱膨張係数の適合しない材料からなる各種パッケージや表示デバイスの封着を行う場合、被封着物との熱膨張係数差を是正するために、耐火性セラミックスフィラーを混合して使用することが可能である。また機械的強度が不足する場合も耐火性セラミックスフィラーを使用することができる。   On the other hand, when sealing various packages and display devices made of materials that do not conform to the thermal expansion coefficient, it is necessary to use a mixture of refractory ceramic fillers to correct the difference in thermal expansion coefficient from the material to be sealed. Is possible. A fire-resistant ceramic filler can also be used when mechanical strength is insufficient.

耐火性セラミックスフィラーを混合する場合、その混合割合は低融点ガラス粉末60〜99体積%と耐火性セラミックスフィラー1〜40体積%であることが好ましい。両者の割合をこのように限定した理由は、耐火性セラミックスフィラーが5体積%より少ないとその効果がなく、55体積%より多くなると流動性が悪くなるためである。   When mixing the refractory ceramic filler, the mixing ratio is preferably 60 to 99% by volume of the low-melting glass powder and 1 to 40% by volume of the refractory ceramic filler. The reason for limiting the ratio of the two in this way is that when the refractory ceramic filler is less than 5% by volume, the effect is not achieved, and when it exceeds 55% by volume, the fluidity is deteriorated.

耐火性セラミックスフィラーとしては、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ、酸化錫系セラミック、β−ユークリプタイト、β−スポジュメン、リン酸ジルコニウム系セラミックおよびβ−石英固溶体を単独、或は組み合わせて使用することが好ましい。また、耐熱顔料としてFe−Co−Cr複合酸化物系等の黒色顔料を用いることも可能である。   As refractory ceramic filler, zircon, cordierite, aluminum titanate, alumina, mullite, silica, tin oxide ceramic, β-eucryptite, β-spodumene, zirconium phosphate ceramic and β-quartz solid solution alone, Or they are preferably used in combination. Moreover, it is also possible to use black pigments, such as a Fe-Co-Cr complex oxide type, as a heat-resistant pigment.

本発明で使用するビヒクルとは、例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース、ニトロセルロース等を例えば、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものや、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリテート、2−ヒドロオキシエチルメタアクリレート等のアクリル系樹脂を例えば、メチルエチルケトン、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものが挙げられる。   The vehicle used in the present invention is, for example, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, propyl cellulose, nitrocellulose, etc. dissolved in a solvent such as terpineol, butyl carbitol acetate, ethyl carbitol acetate, etc. And acrylic resins such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl methacrylate, for example, methyl ethyl ketone, terpineol, butyl carbitol acetate, ethyl carbitol acetate, etc. And those dissolved in these solvents.

封着用ガラスペーストの粘度は、基板に塗布する装置に適応した粘度にあわせればよく、樹脂と溶剤の割合、およびビヒクルと封着組成物の割合により調整できる。   The viscosity of the glass paste for sealing may be adjusted to the viscosity suitable for the apparatus applied to the substrate, and can be adjusted by the ratio of the resin and the solvent and the ratio of the vehicle and the sealing composition.

封着用ガラスペーストには、消泡剤、分散剤などのように、ガラスペーストで公知の添加物を加えることができる。   Known additives can be added to the glass paste for sealing, such as an antifoaming agent and a dispersing agent.

封着用ガラスペーストの製造には、攪拌翼を備えた回転式の混合機や、ロールミル、ボールミルなどの公知の方法を用いることができる。   For the production of the sealing glass paste, a known method such as a rotary mixer equipped with a stirring blade, a roll mill, a ball mill or the like can be used.

本発明のビスマス系ガラス組成物は、鉛成分を含有しないため、環境問題を引起こす心配がない。また封着可能温度域が広く450〜550℃で仮焼成しても結晶化することなく封着を行うことが可能となり、PDPの量産工程で実施されている複数の部材と同時焼成が可能となる。   Since the bismuth-based glass composition of the present invention does not contain a lead component, there is no fear of causing environmental problems. Moreover, it is possible to perform sealing without crystallizing even if pre-baked at 450 to 550 ° C. with a wide sealing temperature range, and simultaneous baking with a plurality of members carried out in the mass production process of PDP is possible. Become.

また、本発明の低融点ガラスはアルカリ金属成分を含まないので、白金や白金−ロジウム等の部材で熔解しても劣化が殆ど認められず、量産において安定した操業を行うことができる。   Further, since the low melting point glass of the present invention does not contain an alkali metal component, even when melted with a member such as platinum or platinum-rhodium, almost no deterioration is observed, and stable operation can be performed in mass production.

本発明の低融点ガラスは、実質的に鉛成分を含まず、Bi 70〜90%、ZnO 1〜20%、B 2〜12%、Al 0.1〜5%、CeO 0.1〜5%、CuO 0〜5%、Fe 0.01〜0.2%、を含有し、モル比でAl/Bi=0.01〜0.1であり、かつ(CuO+Fe)/Bi=0.01〜0.036の関係を満たすものである。さらには、LiO、NaO、KO等のアルカリ金属酸化物の合計量が0.1%未満としたものである。
The low melting point glass of the present invention does not substantially contain a lead component, Bi 2 O 3 70 to 90%, ZnO 1 to 20%, B 2 O 3 2 to 12%, Al 2 O 3 0.1 to 5 %, CeO 2 0.1 to 5%, CuO 0 to 5%, Fe 2 O 3 0.01 to 0.2%, and Al 2 O 3 / Bi 2 O 3 = 0.01 in molar ratio And satisfying the relationship of (CuO + Fe 2 O 3 ) / Bi 2 O 3 = 0.01 to 0.036 . Furthermore, the total amount of alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O is less than 0.1%.

そして、上記した組成範囲となるように原料を混合してバッチ原料とし、このバッチ原料を白金ルツボに入れ1000〜1200℃に調整した炉内に投入し、30〜90分間熔融した。そして、熔融されたガラスは、水冷ローラでシート状に成形しボールミルで粉砕後、目開き150メッシュの篩を通過したものを低融点ガラスとした。   Then, the raw materials were mixed so as to be in the composition range described above to obtain a batch raw material, and this batch raw material was put in a platinum crucible and put in a furnace adjusted to 1000 to 1200 ° C. and melted for 30 to 90 minutes. The melted glass was formed into a sheet shape with a water-cooled roller, pulverized with a ball mill, and then passed through a 150-mesh sieve to obtain a low-melting glass.

この低融点ガラス60〜99体積%と、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ、酸化錫系セラミック、β−ユークリプタイト、β−スポジュメン、リン酸ジルコニウム系セラミックおよびβ−石英固溶体から選ばれる1種以上の耐火性セラミックフィラーの粉末1〜40体積%とを混合して封着用組成物を調製した。そして、この封着用組成物を封着温度以下で分解する有機系ビヒクル等でペースト化して被封着物に塗布しやすいようにする。また、予め封着用組成物を被接着部の形状に成形して用いても良い。   60 to 99% by volume of this low-melting glass, zircon, cordierite, aluminum titanate, alumina, mullite, silica, tin oxide ceramic, β-eucryptite, β-spodumene, zirconium phosphate ceramic and β-quartz A sealing composition was prepared by mixing 1 to 40% by volume of a powder of one or more refractory ceramic fillers selected from solid solutions. Then, the sealing composition is made into a paste with an organic vehicle or the like that decomposes below the sealing temperature so that it can be easily applied to an object to be sealed. Moreover, you may use the composition for sealing previously shape | molded in the shape of a to-be-adhered part.

以下、本発明の実施例および比較例を表1を参照して詳細に説明する。   Examples of the present invention and comparative examples will be described in detail below with reference to Table 1.

Figure 0004774721
Figure 0004774721

(実施例1)表1に示すように、Bi23 80.6%、B23 7.2%、ZnO 11.2%、CeO2 0.4%、Al23 0.2%、Fe23 0.1%、CuO 0.3%となるように、原料を調合してバッチ原料とする。このバッチ原料を白金ルツボに入れ1100℃に調整された熔融炉内に投入して、50分間熔融した。そして、熔融ガラスは水冷ローラによりシート状に成形し、目開き150メッシュの篩を通過したものを低融点ガラスとした。 (Example 1) As shown in Table 1, Bi 2 O 3 80.6%, B 2 O 3 7.2%, ZnO 11.2%, CeO 2 0.4%, Al 2 O 3 0.2 %, Fe 2 O 3 0.1%, CuO 0.3% are prepared as batch raw materials. This batch raw material was put into a platinum crucible, put into a melting furnace adjusted to 1100 ° C., and melted for 50 minutes. The molten glass was formed into a sheet shape with a water-cooled roller, and the glass having passed through a 150-mesh sieve was used as the low melting glass.

この低融点ガラスのAl23/Bi23のモル比は、0.46/40.92から0.011となり、(Fe23+CuO)/Bi23のモル比は、(0.15+0.89)/40.92から0.025とした。 The molar ratio of Al 2 O 3 / Bi 2 O 3 in this low-melting glass is from 0.46 / 40.92 to 0.011, and the molar ratio of (Fe 2 O 3 + CuO) / Bi 2 O 3 is ( 0.15 + 0.89) /40.92 to 0.025.

この低融点ガラス 72体積%に、耐火性セラミックスフィラーとしてコージェライト 26体積%、リン酸ジルコニウム 2体積%を加え封着用組成物とした。この封着用組成物のガラス転移点、荷重軟化点および軟化点は、示差熱分析装置(DTA)により求め、ガラス転移点が356℃、荷重軟化点が380℃、軟化点が416℃であった。   A cordingite 26 volume% and zirconium phosphate 2 volume% were added to 72 volume% of this low melting glass as a refractory ceramic filler, and it was set as the sealing composition. The glass transition point, load softening point, and softening point of this sealing composition were determined by a differential thermal analyzer (DTA). The glass transition point was 356 ° C, the load softening point was 380 ° C, and the softening point was 416 ° C. .

また、この封着用組成物のフローボタン径は19mm、仮焼成温度550℃後の封着温度は460℃、熱膨張係数は72×10-7/℃であった。これらの測定方法を以下に示す。 Moreover, the flow button diameter of this sealing composition was 19 mm, the sealing temperature after calcination temperature 550 ° C. was 460 ° C., and the thermal expansion coefficient was 72 × 10 −7 / ° C. These measuring methods are shown below.

フローボタン径:封着時の組成物の流動性を示すもので、封着用組成物の試料粉末(6.0g)を、直径12.7mmの円柱状に荷重50〜100kg/cm2で加圧成形後、480℃で10分間保持したとき、封着用組成物が流動した直径である。このフローボタン径は17mm以上28mm以下が望ましい。17mm未満であるとガラスの組成物が十分軟化せず被封着物と接着しない。28mmより大きいとガラスが流動し過ぎて封着面に泡が発生したり、接着面が変形したりする。 Flow button diameter: This indicates the fluidity of the composition at the time of sealing, and a sample powder (6.0 g) of the sealing composition is pressed into a cylindrical shape having a diameter of 12.7 mm with a load of 50 to 100 kg / cm 2. It is the diameter which the composition for sealing flowed when it hold | maintained for 10 minutes at 480 degreeC after shaping | molding. The flow button diameter is desirably 17 mm or more and 28 mm or less. If the thickness is less than 17 mm, the glass composition is not sufficiently softened and does not adhere to the object to be sealed. If it is larger than 28 mm, the glass will flow too much and bubbles will be generated on the sealing surface, or the bonding surface will be deformed.

熱膨張係数:封着用組成物をアルミナ製の容器に充填して500℃で10分間焼成後除冷し、これを長さ15mm、直径5mmの円柱状に研磨して、圧縮荷重法(株式会社リガク熱機械分析装置8310)により昇温速度10℃/分の条件で伸びの量を測定し、30〜300℃の平均熱膨張係数を算出した。   Coefficient of thermal expansion: A sealing composition is filled in an alumina container, baked at 500 ° C. for 10 minutes, cooled, and then polished into a cylindrical shape having a length of 15 mm and a diameter of 5 mm. The amount of elongation was measured with a temperature increase rate of 10 ° C./min using a Rigaku thermomechanical analyzer 8310), and an average coefficient of thermal expansion of 30 to 300 ° C. was calculated.

ガラスペーストの作成は、以下に示すようにビヒクルと封着用組成物とを混合して行った。   The glass paste was prepared by mixing the vehicle and the sealing composition as shown below.

ビヒクル:樹脂にエチルセルロース(平均分子量75000)2%および、エチルセルロース(平均分子量55000)2%、溶剤にテルピノール30%、ブチルカルビトールアセテート66%を60℃に加熱しながら2時間攪拌して調製した。   Vehicle: Ethyl cellulose (average molecular weight 75000) 2% and ethyl cellulose (average molecular weight 55000) 2% as a resin, terpinol 30% and butyl carbitol acetate 66% as a solvent were heated to 60 ° C. and stirred for 2 hours.

ペースト:封着組成物に、ビヒクルを質量比82対18で加え、ロールミルで混合して封着用ペーストを得た。得られた。ペーストの粘度をB型粘度計(Brookfield社製HDBVII+)で測定したところ65Pa・Sであった。   Paste: A vehicle was added to the sealing composition at a mass ratio of 82:18 and mixed with a roll mill to obtain a sealing paste. Obtained. When the viscosity of the paste was measured with a B-type viscometer (HDBVII + manufactured by Brookfield), it was 65 Pa · S.

封着温度は次のようにして測定した。先ず上記で得られたペーストを、ガラス基板(旭硝子株式会社製:PD−200)上に厚さ400〜500μm、幅3mmで塗布した試料基板を準備する。この試料基板を仮焼成温度に設定された電気炉中で仮焼成後、この試料基板の上に他のガラス基板を合わせて封着組成物の塗布面積に対し500g/cm2の荷重を掛けて焼成してガラス基板同士の接着が可能な温度を示した。 The sealing temperature was measured as follows. First, a sample substrate is prepared by applying the paste obtained above on a glass substrate (Asahi Glass Co., Ltd .: PD-200) with a thickness of 400 to 500 μm and a width of 3 mm. After pre-baking this sample substrate in an electric furnace set to a pre-baking temperature, another glass substrate is put on this sample substrate and a load of 500 g / cm 2 is applied to the coating area of the sealing composition. The temperature at which the glass substrates can be bonded to each other after baking is shown.

白金の侵食性は白金ルツボに原料を投入して10回熔解した後、白金ルツボのガラスが接触していた部分を顕微鏡で確認した。   The platinum erosion property was confirmed by observing with a microscope the portion of the platinum crucible that was in contact with the platinum crucible after the raw material was charged into the platinum crucible and melted 10 times.

以上の結果から、この実施例1の封着用組成物は、550℃で仮焼成してもガラス中に結晶が析出せず、仮焼成後、460℃でガラス基板を封着することができた。また、ガラス中にアルカリ金属成分(Li2O、Na2OおよびK2O)を含有させていないので、白金の侵食も見られなかった。 From the above results, the sealing composition of Example 1 was able to seal the glass substrate at 460 ° C. after the pre-baking without crystals being deposited in the glass even when pre-baking at 550 ° C. . Further, since no alkali metal components (Li 2 O, Na 2 O, and K 2 O) were contained in the glass, platinum erosion was not observed.

(実施例2〜6)
実施例2〜6は、実施例1と同様な方法によって封着用組成物を調製した実施例である。
(Examples 2 to 6)
Examples 2 to 6 are examples in which sealing compositions were prepared by the same method as in Example 1.

表1に示すように、原料を調合してバッチ原料とした以外は、実施例1と同じ方法でガラスを熔解し、水冷ローラによりシート状に成形し、目開き150メッシュの篩を通過したものを低融点ガラスとした。   As shown in Table 1, glass was melted in the same manner as in Example 1 except that the raw materials were mixed into batch raw materials, formed into a sheet with a water-cooled roller, and passed through a sieve with 150 mesh openings Was a low melting glass.

この低融点ガラスのAl23/Bi23のモル比は0.022〜0.076となっており、(CuO+Fe23)/Bi23のモル比は0.011〜0.036となっている。この低融点ガラスと耐火性セラミックスフィラーを混合した封着用組成物を、480〜540℃の仮焼成温度で焼成しても全てのガラス中に結晶の析出は見られなかった。また、低融点ガラスの荷重軟化点は356〜379℃であるので、耐火性セラミックスフィラーを混合して封着用組成物としても、十分に480℃以下で流動させることが可能である。実際には、表1に示すように、この封着用組成物のフローボタン径を測定したところ20〜26mmであった。 The low melting point glass has an Al 2 O 3 / Bi 2 O 3 molar ratio of 0.022 to 0.076, and a (CuO + Fe 2 O 3 ) / Bi 2 O 3 molar ratio of 0.011 to 0. 0.036. Even when the sealing composition in which the low-melting glass and the refractory ceramic filler were mixed was fired at a pre-baking temperature of 480 to 540 ° C., no precipitation of crystals was observed in all the glasses. Moreover, since the load softening point of low melting glass is 356-379 degreeC, it can be made to flow fully at 480 degrees C or less also as a sealing composition which mixes a refractory ceramic filler. Actually, as shown in Table 1, when the flow button diameter of the sealing composition was measured, it was 20 to 26 mm.

この封着組成物を実施例2、3は実施例1と同じ方法で、実施例4〜6は封着用組成物と、樹脂にニトロセルロース2.5%、溶剤にテルピネオール4%、ブチルカルビトールアセテート90.5%、酢酸イソアミル3%を80℃に加熱しながら2時間攪拌して調製したビヒクルを質量比80対20で加え、ロールミルで混合して封着用ペーストを得た。得られた。ペーストの粘度をB型粘度計で測定したところ64〜69Pa・Sであった。   In this sealing composition, Examples 2 and 3 were the same as Example 1, Examples 4 to 6 were sealing compositions, 2.5% nitrocellulose as resin, 4% terpineol as solvent, butyl carbitol. A vehicle prepared by stirring 2 hours while heating 90.5% of acetate and 3% of isoamyl acetate at 80 ° C. was added at a mass ratio of 80:20 and mixed with a roll mill to obtain a sealing paste. Obtained. When the viscosity of the paste was measured with a B-type viscometer, it was 64 to 69 Pa · S.

またこのペーストを用いて封着温度を評価したところ、いずれも450〜480℃の範囲で基板の接着が可能であった。   Moreover, when the sealing temperature was evaluated using this paste, it was possible to bond the substrates in the range of 450 to 480 ° C.

TMAを用いてこの封着用組成物の熱膨張係数を測定したところ、70〜76×10-7/℃となり、PDPに用いられているガラスの熱膨張係数に非常に近く封着後に歪が生じることがない。 When the thermal expansion coefficient of this sealing composition was measured using TMA, it was 70 to 76 × 10 −7 / ° C., which was very close to the thermal expansion coefficient of the glass used for PDP and was distorted after sealing. There is nothing.

また、本実施例では組成中のアルカリ金属酸化物(Li2O、Na2OおよびK2O)を含有しないまたは0.05%としたときでは、白金ルツボに劣化は観察されなかった。しかし、実施例5については、10回目の熔解後に白金ルツボを観察したところ、底部に僅かな侵食が見られた。 In this example, when the alkali metal oxides (Li 2 O, Na 2 O and K 2 O) in the composition were not contained or 0.05%, no deterioration was observed in the platinum crucible. However, in Example 5, when a platinum crucible was observed after the tenth melting, slight erosion was observed at the bottom.

(比較例1)
比較例1は本発明で具備すべき要件であるAl23およびFe23+CuOのうちいずれかを含有していない例である。得られた封着組成物は500℃で結晶化してしまい、封着することができなかった。
(Comparative Example 1)
Comparative Example 1 is an example that does not contain any of Al 2 O 3 and Fe 2 O 3 + CuO, which are requirements to be provided in the present invention. The obtained sealing composition crystallized at 500 ° C. and could not be sealed.

(比較例2)
比較例2は本発明で具備すべき要件であるAl23が0.1%以下である例である。得られた封着組成物は500℃で結晶化してしまい、封着することができなかった。
(Comparative Example 2)
Comparative Example 2 is an example in which Al 2 O 3 which is a requirement to be provided in the present invention is 0.1% or less. The obtained sealing composition crystallized at 500 ° C. and could not be sealed.

(比較例3)
比較例3は本発明で具備すべき要件であるAl23が0.1%以上であるが、Fe23+CuOを含有していない例である。得られた封着組成物は500℃で結晶化してしまい、封着することができなかった。
(Comparative Example 3)
Comparative Example 3 is an example in which Al 2 O 3 which is a requirement to be provided in the present invention is 0.1% or more but does not contain Fe 2 O 3 + CuO. The obtained sealing composition crystallized at 500 ° C. and could not be sealed.

(比較例4)
比較例4は本発明で具備すべき要件であるAl23のモル比がAl23/Bi23>0.1となっている例である。得られた封着組成物は550℃でも結晶化しないが、低融点ガラスの粘度が上昇し480℃のフローボタンが17mm未満と流動性が悪く封着することができなかった。
(Comparative Example 4)
Comparative Example 4 is an example in which the Al 2 O 3 molar ratio, which is a requirement to be provided in the present invention, is Al 2 O 3 / Bi 2 O 3 > 0.1. The resulting sealing composition did not crystallize even at 550 ° C., but the viscosity of the low-melting glass was increased and the flow button at 480 ° C. was less than 17 mm, so that the fluidity was poor and could not be sealed.

(比較例5,6)
比較例5ではLi2O、比較例6ではNa2O、とアルカリ金属をそれぞれ0.1%含む例である。得られた封着組成物はいずれも520℃の仮焼成で結晶化せず460℃での封着が可能であったが、比較例5ではガラス熔解6回目、比較例6では8回目にルツボ底部に亀裂が発生し、ガラスの熔解が継続できなかった。
(Comparative Examples 5 and 6)
In Comparative Example 5, Li 2 O, and in Comparative Example 6, Na 2 O and an alkali metal are each 0.1%. All of the obtained sealing compositions were not crystallized by calcination at 520 ° C. and could be sealed at 460 ° C., but in Comparative Example 5 the sixth glass melting and in Comparative Example 6 the eighth crucible. Cracks occurred at the bottom, and melting of the glass could not be continued.

本発明の封着用組成物は封着温度以下で仮焼成しても結晶化することなく封着が可能であることはいうまでもない。また、550℃を超える温度では結晶化するものもあるので、550℃を超える高温で封着可能な部材の無鉛結晶化ガラスとして使用することができる。   It goes without saying that the sealing composition of the present invention can be sealed without crystallization even if pre-baked at a sealing temperature or lower. Moreover, since there exists what crystallizes at the temperature exceeding 550 degreeC, it can be used as a lead-free crystallized glass of the member which can be sealed at high temperature exceeding 550 degreeC.

Claims (5)

実質的に鉛を含有せず、
質量%表示で、
Bi 70〜90%、
ZnO 1〜20%、
2〜12%、
Al 0.1〜5%、
CeO 0.1〜5%、
CuO 0〜5%、
Fe 0.01〜0.2%、
CuO+Fe 0.05〜5%、を含有し、
かつLiO、NaO、KO等のアルカリ金属酸化物の合計量が0.1%未満であって、
モル比で(CuO+Fe )/Bi =0.01〜0.036
であることを特徴とする低融点ガラス。
Substantially free of lead,
In mass% display,
Bi 2 O 3 70-90%,
ZnO 1-20%,
B 2 O 3 2~12%,
Al 2 O 3 0.1-5%,
CeO 2 0.1-5%,
CuO 0-5%,
Fe 2 O 3 0.01 to 0.2%,
CuO + Fe 2 O 3 0.05-5%,
And the total amount of alkali metal oxides such as Li 2 O, Na 2 O, K 2 O is less than 0.1% ,
(CuO + Fe 2 O 3 ) / Bi 2 O 3 = 0.01 to 0.036 in molar ratio
A low-melting glass characterized in that
モル比でAl/Bi=0.01〜0.1の関係を満たすことを特徴とする請求項1記載の低融点ガラス。 Al 2 O 3 / Bi 2 O 3 = 0.01-0. 2. The low-melting glass according to claim 1, wherein the relationship 1 is satisfied. 仮焼成しても結晶化することなく、この仮焼成以下の温度で封着が可能な請求項1または2記載の低融点ガラス。   The low-melting glass according to claim 1 or 2, which can be sealed at a temperature equal to or lower than the pre-baking without crystallizing even if pre-baking. 請求項1ないし3のいずれかに記載の低融点ガラスの粉末60〜99体積%と、ジルコン、コージェライト、チタン酸アルミニウム、アルミナ、ムライト、シリカ、酸化錫系セラミック、β−ユークリプタイト、β−スポジュメン、リン酸ジルコニウム系セラミックおよびβ−石英固溶体からなる群より選ばれる1種以上の耐火性セラミックスフィラーの粉末1〜40体積%とからなる封着用組成物。   60 to 99% by volume of the low-melting glass powder according to any one of claims 1 to 3, zircon, cordierite, aluminum titanate, alumina, mullite, silica, tin oxide ceramic, β-eucryptite, β A sealing composition comprising 1 to 40% by volume of powder of at least one refractory ceramic filler selected from the group consisting of spodomen, zirconium phosphate ceramics and β-quartz solid solution. 請求項4に記載の封着用組成物に、ビヒクルを混合して得られる封着用ペースト。   A sealing paste obtained by mixing a vehicle with the sealing composition according to claim 4.
JP2004328729A 2004-11-12 2004-11-12 Low melting glass, sealing composition and sealing paste Active JP4774721B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004328729A JP4774721B2 (en) 2004-11-12 2004-11-12 Low melting glass, sealing composition and sealing paste
TW094138289A TW200624402A (en) 2004-11-12 2005-11-01 Low melting glass, sealing composition and sealing paste
US11/262,746 US7291573B2 (en) 2004-11-12 2005-11-01 Low melting glass, sealing composition and sealing paste
CN 200510120355 CN1772676B (en) 2004-11-12 2005-11-08 Low melting glass, sealing composition and sealing paste
KR1020050107774A KR20060052610A (en) 2004-11-12 2005-11-11 Low melting glass, sealing composition and sealing paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328729A JP4774721B2 (en) 2004-11-12 2004-11-12 Low melting glass, sealing composition and sealing paste

Publications (2)

Publication Number Publication Date
JP2006137637A JP2006137637A (en) 2006-06-01
JP4774721B2 true JP4774721B2 (en) 2011-09-14

Family

ID=36618689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328729A Active JP4774721B2 (en) 2004-11-12 2004-11-12 Low melting glass, sealing composition and sealing paste

Country Status (2)

Country Link
JP (1) JP4774721B2 (en)
CN (1) CN1772676B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169047A (en) * 2004-12-16 2006-06-29 Central Glass Co Ltd Lead-free low melting point glass
JP4972954B2 (en) * 2005-03-09 2012-07-11 日本電気硝子株式会社 Bismuth-based glass composition and bismuth-based sealing material
JP5083704B2 (en) * 2006-10-24 2012-11-28 日本電気硝子株式会社 Bismuth sealing material
JP2008166197A (en) * 2006-12-28 2008-07-17 Univ Of Tokyo Manufacturing method of panel body
CN101058477B (en) * 2007-03-30 2011-02-09 东华大学 Electricity vacuum glass products lead-free seal glass and preparing method thereof
DE102007025465B3 (en) * 2007-05-30 2008-09-25 Schott Ag Solder glass contains specified percentage ranges of silica, boron oxide, zinc oxide, bismuth oxide and aluminum oxide, ratio of silica to aluminum oxide being below specified value
JP5476691B2 (en) * 2007-08-31 2014-04-23 日本電気硝子株式会社 Sealing material
JP5257829B2 (en) * 2007-08-31 2013-08-07 日本電気硝子株式会社 Sealing material
JP5413562B2 (en) * 2007-12-06 2014-02-12 日本電気硝子株式会社 Sealing material
JP5458579B2 (en) * 2008-02-28 2014-04-02 日本電気硝子株式会社 Sealing material for organic EL display
JP5552743B2 (en) 2008-03-28 2014-07-16 旭硝子株式会社 Frit
JP5397583B2 (en) * 2008-07-07 2014-01-22 日本電気硝子株式会社 Bismuth glass composition and sealing material
JP5422952B2 (en) * 2008-09-19 2014-02-19 セントラル硝子株式会社 Lead-free glass
CN101723589B (en) * 2008-10-29 2013-04-17 珠海彩珠实业有限公司 Lead-free glass powder with low melting point for sealing PDP and preparation method thereof
SG171754A1 (en) * 2008-12-12 2011-07-28 Asahi Glass Co Ltd Sealing glass, glass member provided with sealing material layer, electronic device and process for producing it
JP5703539B2 (en) * 2009-01-30 2015-04-22 旭硝子株式会社 Glass composition
JP5418594B2 (en) * 2009-06-30 2014-02-19 旭硝子株式会社 Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
CN101857371A (en) * 2010-05-25 2010-10-13 中国科学院过程工程研究所 Lead-free low-melting electronic display sealing glass and preparation method thereof
WO2012035565A1 (en) * 2010-09-16 2012-03-22 Daunia Solar Cell S.R.L. Sealing agent with low softening temperature useful in the preparation of electronic devices
CN102503151B (en) * 2011-10-12 2014-01-22 珠海彩珠实业有限公司 Lead-free low-melting-point glass powder for ZnO valve plate and preparation method thereof
JP5772662B2 (en) * 2012-02-29 2015-09-02 旭硝子株式会社 SEALING MATERIAL PASTE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING THE SAME
EP2837607A4 (en) * 2012-04-13 2016-04-27 Asahi Glass Co Ltd Vacuum multilayer glass, sealing member, and method for manufacturing vacuum multilayer glass
JP5983536B2 (en) * 2013-05-28 2016-08-31 日本電気硝子株式会社 Crystalline bismuth-based material
JP2015199629A (en) * 2014-04-08 2015-11-12 旭硝子株式会社 Sealing material and sealed body
CN106663591B (en) * 2014-07-18 2018-09-28 京瓷株式会社 Light-emitting device
CN104326678A (en) * 2014-10-16 2015-02-04 中国建筑材料科学研究总院 Refractory filler particle and preparation method thereof
DE102017111836A1 (en) 2017-05-30 2018-12-06 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Process for the production of composite particles and insulating material for the manufacture of insulating products for the building materials industry and corresponding uses
CN107189502B (en) * 2017-06-12 2019-04-30 东旭科技集团有限公司 The guard method of coating composition, tin oxide electrode coating and tin oxide electrode
CN108033684A (en) * 2017-12-13 2018-05-15 海南中航特玻科技有限公司 A kind of back of the body silver glass powder used for solar batteries and preparation method
GB201910100D0 (en) * 2019-07-15 2019-08-28 Johnson Matthey Plc Composition, paste and methods
CN114477768A (en) * 2022-03-01 2022-05-13 中国建筑材料科学研究总院有限公司 Lead-free low-melting-point sealing glass doped with fusible metal alloy and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557314B2 (en) * 1996-02-15 2010-10-06 旭硝子株式会社 Sealing composition and sealing low melting point glass
JP3814810B2 (en) * 1996-04-05 2006-08-30 日本電気硝子株式会社 Bismuth glass composition
JP4136346B2 (en) * 2001-09-18 2008-08-20 日本山村硝子株式会社 Sealing composition
DE60318517T2 (en) * 2002-04-24 2009-07-23 Central Glass Co., Ltd., Ube Lead-free low-melting glass

Also Published As

Publication number Publication date
CN1772676B (en) 2012-06-20
JP2006137637A (en) 2006-06-01
CN1772676A (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP4774721B2 (en) Low melting glass, sealing composition and sealing paste
JP4815975B2 (en) Low melting glass, sealing composition and sealing paste
US7291573B2 (en) Low melting glass, sealing composition and sealing paste
JP3827987B2 (en) Lead-free glass frit
JP4826137B2 (en) Bismuth-based lead-free glass composition
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP5083706B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP4766444B2 (en) Bismuth-based lead-free sealing material
JP4972954B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP5212884B2 (en) Bismuth-based sealing material and bismuth-based paste material
WO2019225335A1 (en) Glass composition and sealing material
TW201634419A (en) Lead-free glass and sealing material
WO2019159599A1 (en) Glass composition and sealing material
JP3748533B2 (en) Low melting glass and method for producing the same
JP5083704B2 (en) Bismuth sealing material
JP5232395B2 (en) Glass paste composition and sealing method
JP2006143480A (en) Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL
JP5419249B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JPWO2001090012A1 (en) Glass composition and glass-forming material containing the composition
JP5545589B2 (en) Manufacturing method of sealing material
JP2007161524A (en) Bismuth-based glass composition
JP6816538B2 (en) Silver phosphoric acid-based glass composition and sealing material
KR101028340B1 (en) Frit composition having softening characteristics at low temperature
WO2020235284A1 (en) Glass composition and sealing material
JP7385169B2 (en) Glass compositions and sealing materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R151 Written notification of patent or utility model registration

Ref document number: 4774721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250