WO2019159599A1 - Glass composition and sealing material - Google Patents

Glass composition and sealing material Download PDF

Info

Publication number
WO2019159599A1
WO2019159599A1 PCT/JP2019/001395 JP2019001395W WO2019159599A1 WO 2019159599 A1 WO2019159599 A1 WO 2019159599A1 JP 2019001395 W JP2019001395 W JP 2019001395W WO 2019159599 A1 WO2019159599 A1 WO 2019159599A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sealing material
content
glass composition
sealing
Prior art date
Application number
PCT/JP2019/001395
Other languages
French (fr)
Japanese (ja)
Inventor
加納邦彦
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980006314.3A priority Critical patent/CN111448168A/en
Publication of WO2019159599A1 publication Critical patent/WO2019159599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures

Definitions

  • the present invention relates to a glass composition that can be hermetically sealed at a low temperature of 400 ° C. or less without containing harmful lead or halogen, and a sealing material using the same.
  • Sealing materials are used for semiconductor integrated circuits, crystal resonators, flat display devices, LD glass terminals, and the like.
  • a glass-based sealing material is used instead of a resin-based adhesive.
  • Glass sealing materials are required to have properties such as mechanical strength, fluidity, and weather resistance, but the sealing temperature should be as low as possible for sealing electronic components that are sensitive to heat. Is required. Specifically, sealing at 400 ° C. or lower is required. Therefore, as a glass that satisfies the above characteristics, lead borate glass containing a large amount of PbO that has an extremely large effect of lowering the melting point has been widely used (see, for example, Patent Document 1).
  • an object of the present invention is to provide a glass composition that can be sealed at low temperatures without containing lead harmful to the environment, and a sealing material using the same.
  • the glass composition of the present invention is characterized by containing 10 to 60% Ag 2 O, 10 to 60% TeO 2 and 10 to 60% MoO 3 in mol%.
  • the glass composition of the present invention achieves a low softening point by containing 10% or more of Ag 2 O.
  • the melting point of the glass is lowered, vitrification does not occur or phase separation occurs, and it is difficult to obtain a homogeneous glass.
  • the content of TeO 2 is 10% or more and MoO 3 Since the content is defined as 10% or more, the glass is stabilized and a homogeneous glass can be obtained.
  • the glass composition of the present invention preferably further contains, in mol%, CuO 0 to 20%, Bi 2 O 3 0 to 10%, TiO 2 0 to 10%, and AgI 0 to 10%.
  • the glass composition of the present invention preferably further contains P 2 O 5 0 to 5% in mol%.
  • the sealing material of the present invention is characterized by containing 40 to 100% by volume of a glass powder comprising the above glass composition and 0 to 60% by volume of a refractory filler powder.
  • the sealing material of the present invention is preferably used for a crystal resonator.
  • the sealing material paste of the present invention is characterized by containing the above-mentioned sealing material and a vehicle.
  • the glass composition of the present invention contains, in mol%, Ag 2 O 10 to 60%, TeO 2 10 to 60%, and MoO 3 10 to 60%.
  • % means “mol%” unless otherwise specified.
  • Ag 2 O is a component that lowers the viscosity (softening point, etc.) of the glass.
  • the content of Ag 2 O is 10 to 60%, preferably 13 to 50%, particularly preferably 15 to 45%. If Ag 2 O content is too small, high glass viscosity (softening point, etc.) tends to be difficult to cold sealing. On the other hand, when the content of Ag 2 O is too large, glass becomes thermally unstable, the glass is liable to devitrify upon melting or during sintering.
  • TeO 2 is a component that forms a glass network and improves weather resistance.
  • the content of TeO 2 is 10 to 60%, preferably 15 to 57%, particularly preferably 25 to 55%.
  • the content of TeO 2 is too small, the glass becomes thermally unstable, and the glass is easily devitrified at the time of melting or firing, and the weather resistance is easily lowered.
  • the content of TeO 2 is too large, the viscosity (softening point, etc.) of the glass becomes high and low-temperature sealing tends to be difficult.
  • MoO 3 is a component that forms a glass network and improves weather resistance.
  • the content of MoO 3 is 10 to 60%, preferably 15 to 55%, particularly preferably 20 to 50%. If the content of MoO 3 is too small or too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.
  • the glass composition of the present invention may contain the following components in addition to the above components.
  • CuO is a component that thermally stabilizes the glass and improves weather resistance.
  • the CuO content is preferably 0 to 20%, 0.5 to 18%, and 1 to 15%. When there is too much content of CuO, the viscosity (softening point etc.) of glass will become high and low temperature sealing will become difficult easily.
  • Bi 2 O 3 is a component that lowers the viscosity (softening point, etc.) of the glass and improves the weather resistance.
  • the content of Bi 2 O 3 is preferably 0 to 10%, 0 to 6%, or 0.1 to 2%. If the content of Bi 2 O 3 is too large, glass becomes thermally unstable, the glass is liable to devitrify upon melting or during sintering.
  • TiO 2 is a component that stabilizes the glass thermally and improves weather resistance.
  • the content of TiO 2 is preferably 0 to 10%, 0 to 6%, and 0.1 to 2%. When the content of TiO 2 is too large, high glass viscosity (softening point, etc.) tends to be difficult to cold sealing.
  • AgI is a component that lowers the viscosity (softening point, etc.) of glass.
  • the content of AgI is preferably 0 to 10%, 0 to 5%, or 0.1 to 2%. When there is too much content of AgI, glass will become thermally unstable and it will become easy to devitrify glass at the time of a fusion
  • P 2 O 5 is a component that forms a glass network and thermally stabilizes the glass.
  • the content of P 2 O 5 is preferably 0 to 5%, 0 to 2%, particularly preferably 0.1 to 1%.
  • the viscosity of the glass softening point, etc.
  • the weather resistance tends to decrease with low temperature sealing is difficult.
  • Li 2 O, Na 2 O, and K 2 O have an effect of lowering the viscosity (softening point, etc.) of the glass, and their total content is 0 to 20%, particularly 0 to 10%. preferable. If the total amount of Li 2 O, Na 2 O, and K 2 O is too large, the glass becomes thermally unstable, and the glass tends to be devitrified at the time of melting or firing, and the weather resistance tends to be lowered. .
  • the contents of Li 2 O, Na 2 O and K 2 O are each preferably 0 to 10%, particularly preferably 0 to 5%.
  • MgO, CaO, SrO and BaO have the effect of thermally stabilizing the glass and improving the weather resistance, and the total content thereof is 0 to 20%, particularly 0 to 10%. Is preferred. If the total amount of MgO, CaO, SrO, and BaO is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.
  • the contents of MgO, CaO, SrO, and BaO are each preferably 0 to 10%, particularly preferably 0 to 5%.
  • ZnO is a component that lowers the viscosity (softening point, etc.) of the glass and improves the weather resistance.
  • the content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%. When there is too much content of ZnO, glass will become thermally unstable and it will become easy to devitrify glass at the time of a fusion
  • WO 3 is a component that stabilizes the glass thermally and improves weather resistance.
  • the content of WO 3 is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of WO 3 is too large, the glass becomes thermally unstable.
  • Nb 2 O 5 is a component that thermally stabilizes the glass and improves weather resistance.
  • the Nb 2 O 5 content is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of Nb 2 O 5 is too large, high glass viscosity (softening point, etc.) tends to be difficult to cold sealing.
  • V 2 O 5 is a component that forms a glass network and lowers the viscosity (softening point, etc.) of the glass.
  • the content of V 2 O 5 is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of V 2 O 5 is too large, the glass becomes thermally unstable, and the glass is easily devitrified at the time of melting or firing, and the weather resistance is easily lowered.
  • Ga 2 O 3 is a component that thermally stabilizes the glass and improves the weather resistance, but it is very expensive, so its content is preferably less than 0.01% and not particularly contained. .
  • SiO 2 , Al 2 O 3 , GeO 2 , Fe 2 O 3 , NiO, CeO 2 , B 2 O 3 , Sb 2 O 3 are components that stabilize glass thermally and suppress devitrification, Each can be added to less than 2%. If the content is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.
  • the glass composition of the present invention does not substantially contain PbO.
  • substantially not containing PbO in the present invention refers to a case where the content of PbO in the glass composition is 1000 ppm or less.
  • the sealing material of the present invention contains glass powder made of the above glass composition.
  • the sealing material of the present invention may contain a refractory filler in order to improve mechanical strength or adjust the thermal expansion coefficient.
  • the mixing ratio is 40 to 100% by volume of glass powder, 0 to 60% by volume of refractory filler, 50 to 99% by volume of glass powder, 1 to 50% by volume of refractory filler, particularly 60 to 95% by volume of glass powder,
  • the refractory filler is preferably 5 to 40% by volume. When there is too much content of a refractory filler, since the ratio of glass powder will decrease relatively, it will become difficult to ensure desired fluidity
  • the refractory filler is not particularly limited, and various materials can be selected, but those that do not easily react with the glass powder are preferable.
  • NbZr (PO 4 ) 3 Zr 2 WO 4 (PO 4 ) 2 , Zr 2 MoO 4 (PO 4 ) 2 , Hf 2 WO 4 (PO 4 ) 2 , Hf 2 MoO 4 (PO 4 ) 2 , zirconium phosphate, zircon, zirconia, tin oxide, aluminum titanate, quartz, ⁇ -spodumene, mullite, titania, quartz glass, ⁇ -eucryptite, ⁇ -quartz, willemite, cordierite NaZr 2 (PO 4 ) type 3 solid solution such as Sr 0.5 Zr 2 (PO 4 ) 3 can be used alone or in admixture of two or more.
  • the particle size of the refractory filler preferably having an average particle diameter D 50 to use of about 0.2 ⁇ 20 [mu] m.
  • the softening point of the glass composition and sealing material of the present invention is preferably 400 ° C. or lower, 390 ° C. or lower, 380 ° C. or lower, and particularly preferably 370 ° C. or lower. If the softening point is too high, the viscosity of the glass increases, so that the sealing temperature rises and the element may be deteriorated during sealing. In addition, although the minimum of a softening point is not specifically limited, Actually, it is 180 degreeC or more.
  • the “softening point” refers to a value measured with a macro-type differential thermal analyzer using a glass composition having an average particle diameter D 50 of 0.5 to 20 ⁇ m and a sealing material as measurement samples.
  • mold differential thermal analyzer shows the temperature (Ts) of the 4th bending point in the measurement curve shown in FIG.
  • the thermal expansion coefficient (30 to 150 ° C.) of the glass composition and sealing material of the present invention is 40 ⁇ 10 ⁇ 7 / ° C. to 250 ⁇ 10 ⁇ 7 / ° C., 50 ⁇ 10 ⁇ 7 / ° C. to 230 ⁇ 10 ⁇ 7. / ° C., particularly 60 ⁇ 10 ⁇ 7 / ° C. to 200 ⁇ 10 ⁇ 7 / ° C. is preferable. Even if the thermal expansion coefficient is too low or too high, the sealing portion is likely to be damaged at the time of sealing or after sealing due to a difference in expansion from the material to be sealed.
  • the glass composition and sealing material of the present invention having the above characteristics are particularly suitable for crystal resonator applications that require sealing at low temperatures.
  • the raw material powder prepared to have the above composition is melted at 800 to 1000 ° C. for 1 to 2 hours until a homogeneous glass is obtained.
  • the molten glass is formed into a film or the like, and then pulverized and classified to produce a glass powder made of the glass composition of the present invention.
  • the average particle diameter D 50 of the glass powder is preferably about 2 to 20 ⁇ m. If necessary, various refractory filler powders are added to the glass powder.
  • a glass paste (or sealing material paste) is prepared by adding a vehicle to glass powder (or sealing material) and kneading.
  • the vehicle mainly includes an organic solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the organic solvent preferably has a low boiling point (for example, a boiling point of 300 ° C. or lower) and a small amount of residue after baking, and does not alter the glass, and its content is 10 to 40% by mass. preferable.
  • the organic solvent include propylene carbonate, toluene, N, N′-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, It is preferable to use dimethyl sulfoxide, acetone, methyl ethyl ketone or the like. Further, it is more preferable to use a higher alcohol as the organic solvent.
  • the higher alcohol itself has viscosity, it can be made into a paste without adding a resin to the vehicle.
  • pentanediol and its derivatives specifically diethylpentanediol (C 9 H 20 O 2 ), are excellent in viscosity and can be used as a solvent.
  • the resin preferably has a low decomposition temperature and a small amount of residue after firing, and it is difficult to alter the glass, and its content is preferably 0.1 to 20% by mass.
  • the resin it is preferable to use nitrocellulose, polyethylene glycol derivative, polyethylene carbonate, acrylic acid ester (acrylic resin) or the like.
  • the paste is sealed at the first member made of metal, ceramic or glass and the second member made of metal, ceramic or glass. Apply, dry and heat-treat at 300-400 ° C. By this heat treatment, the glass powder softens and flows to seal the first and second members.
  • the glass composition and sealing material of the present invention can be used for purposes such as coating and filling in addition to sealing. Moreover, it can also be used in forms other than paste, specifically in the state of powder, green sheets, tablets and the like.
  • Tables 1 and 2 show examples (samples Nos. 1 to 10) and comparative examples (samples Nos. 11 and 12) of the present invention.
  • glass raw materials such as various oxides and carbonates were prepared so as to have the glass composition shown in the table, and after preparing a glass batch, the glass batch was put in a platinum crucible and 1 to Melted for 2 hours.
  • a part of the molten glass was poured into a stainless steel mold as a sample for TMA (push bar type thermal expansion coefficient measurement), and the other molten glass was formed into a film shape with a water-cooled roller.
  • No. which does not contain a refractory filler.
  • samples for TMA were obtained by performing predetermined slow cooling treatment (annealing) after molding.
  • the film-like glass was pulverized by a ball mill and then passed through a sieve having an opening of 75 ⁇ m to obtain a glass powder having an average particle diameter D 50 of about 10 ⁇ m.
  • NbZr (PO 4 ) 3 shown as NZP in the table
  • Zr 2 WO 4 (PO 4 ) 2 shown as ZWP in the table
  • the average particle diameter D 50 of the refractory filler powder was about 10 [mu] m.
  • the obtained mixed powder was fired at 380 ° C. for 30 minutes to obtain a fired body.
  • the obtained fired body was used as a sample for TMA.
  • Samples 1 to 10 were evaluated for glass transition point, thermal expansion coefficient, softening point, and fluidity.
  • the glass transition point and the thermal expansion coefficient (30 to 150 ° C.) were measured using a TMA apparatus for the TMA sample.
  • Softening point was measured with a macro-type differential thermal analyzer.
  • the measurement atmosphere was air, the temperature rising rate was 10 ° C./min, and the measurement was started from room temperature.
  • the fluidity was evaluated as follows. 5 g of the powder sample was put into a mold having a diameter of 20 mm and press-molded, and then baked on a glass substrate at 380 ° C. for 30 minutes. The case where the fired body had a flow diameter of 19 mm or more was evaluated as “ ⁇ ”, and the case of less than 19 mm was evaluated as “ ⁇ ”.
  • the glass composition and sealing material of the present invention are suitable for sealing semiconductor integrated circuits, crystal resonators, flat display devices, and LD glass terminals.

Abstract

Provided are: a glass composition which can perform sealing at a low temperature and does not contain lead which is hazardous to the environment; and a sealing material using the glass composition. This glass composition is characterized by containing, in mol%, 10-60% of Ag2O, 10-60% of TeO2, and 10-60% of MoO3.

Description

ガラス組成物及び封着材料Glass composition and sealing material
 本発明は、有害な鉛やハロゲンを含有することなく、400℃以下の低温で気密封着することが可能なガラス組成物と、それを用いた封着材料に関するものである。 The present invention relates to a glass composition that can be hermetically sealed at a low temperature of 400 ° C. or less without containing harmful lead or halogen, and a sealing material using the same.
 半導体集積回路、水晶振動子、平面表示装置やLD用ガラス端子等には、封着材料が使用される。 Sealing materials are used for semiconductor integrated circuits, crystal resonators, flat display devices, LD glass terminals, and the like.
 上記の封着材料には、化学的耐久性および耐熱性が要求されるため、樹脂系の接着剤ではなくガラス系封着材料が用いられている。ガラス系封着材料には、機械的強度、流動性、耐候性等の特性が要求されるが、熱に弱い素子を搭載する電子部品の封着には、封着温度をできる限り低くすることが要求される。具体的には、400℃以下での封着が要求される。それゆえ、上記特性を満足するガラスとして、融点を下げる効果が極めて大きいPbOを多量に含有する鉛硼酸系ガラスが広く用いられてきた(例えば、特許文献1参照)。 Since the above-mentioned sealing material requires chemical durability and heat resistance, a glass-based sealing material is used instead of a resin-based adhesive. Glass sealing materials are required to have properties such as mechanical strength, fluidity, and weather resistance, but the sealing temperature should be as low as possible for sealing electronic components that are sensitive to heat. Is required. Specifically, sealing at 400 ° C. or lower is required. Therefore, as a glass that satisfies the above characteristics, lead borate glass containing a large amount of PbO that has an extremely large effect of lowering the melting point has been widely used (see, for example, Patent Document 1).
特開昭63-315536号公報JP 63-315536 A 特開平6-24797号公報JP-A-6-24797
 近年、鉛硼酸系ガラスに含まれるPbOに対して環境上の問題が指摘されており、鉛硼酸系ガラスからPbOを含まないガラスに置き換えることが望まれている。そのため、鉛硼酸系ガラスの代替品として、様々な低融点ガラスが開発されている。中でも特許文献2に記載されているBi-B系ガラスは、鉛硼酸系ガラスの代替候補として期待されているが、封止温度が450℃以上と高く、より低温で封止が必要な用途には用いることが出来ない。 In recent years, environmental problems have been pointed out with respect to PbO contained in lead borate glass, and it is desired to replace lead borate glass with glass containing no PbO. Therefore, various low melting glass has been developed as a substitute for lead borate glass. Among them, Bi 2 O 3 —B 2 O 3 glass described in Patent Document 2 is expected as an alternative candidate for lead borate glass, but has a high sealing temperature of 450 ° C. or higher and is sealed at a lower temperature. It cannot be used for applications that require stopping.
 以上に鑑み、本発明は、環境に有害な鉛を含有させることなく、低温で封着可能なガラス組成物と、それを用いた封着材料を提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass composition that can be sealed at low temperatures without containing lead harmful to the environment, and a sealing material using the same.
 本発明のガラス組成物は、モル%で、AgO 10~60%、TeO 10~60%、MoO 10~60%を含有することを特徴とする。 The glass composition of the present invention is characterized by containing 10 to 60% Ag 2 O, 10 to 60% TeO 2 and 10 to 60% MoO 3 in mol%.
 本発明のガラス組成物は、AgOを10%以上含有することにより、低軟化点を達成している。なお、一般に、ガラスの融点を低くすると、ガラス化しなかったり、分相が生じて均質なガラスが得られにくい傾向にあるが、本発明では、TeOの含有量を10%以上、MoOの含有量を10%以上と規定しているため、ガラスが安定化し、均質なガラスを得ることが出来る。 The glass composition of the present invention achieves a low softening point by containing 10% or more of Ag 2 O. In general, if the melting point of the glass is lowered, vitrification does not occur or phase separation occurs, and it is difficult to obtain a homogeneous glass. However, in the present invention, the content of TeO 2 is 10% or more and MoO 3 Since the content is defined as 10% or more, the glass is stabilized and a homogeneous glass can be obtained.
 本発明のガラス組成物は、さらに、モル%で、CuO 0~20%、Bi 0~10%、TiO 0~10%、AgI 0~10%を含有することが好ましい。 The glass composition of the present invention preferably further contains, in mol%, CuO 0 to 20%, Bi 2 O 3 0 to 10%, TiO 2 0 to 10%, and AgI 0 to 10%.
 本発明のガラス組成物は、さらに、モル%で、P 0~5%を含有することが好ましい。 The glass composition of the present invention preferably further contains P 2 O 5 0 to 5% in mol%.
 本発明の封着材料は、上記のガラス組成物からなるガラス粉末 40~100体積%と、耐火性フィラー粉末 0~60体積%とを含有することを特徴とする。 The sealing material of the present invention is characterized by containing 40 to 100% by volume of a glass powder comprising the above glass composition and 0 to 60% by volume of a refractory filler powder.
 本発明の封着材料は、水晶振動子用途に使用されることが好ましい。 The sealing material of the present invention is preferably used for a crystal resonator.
 本発明の封着材料ペーストは、上記の封着材料とビークルとを含有することを特徴とする。 The sealing material paste of the present invention is characterized by containing the above-mentioned sealing material and a vehicle.
 環境に有害な鉛を含有させることなく、低温で封着可能なガラス組成物と、それを用いた封着材料を提供することができる。 It is possible to provide a glass composition that can be sealed at a low temperature without containing lead harmful to the environment, and a sealing material using the same.
マクロ型示差熱分析装置により得られる測定曲線を示す模式図である。It is a schematic diagram which shows the measurement curve obtained by a macro type differential thermal analyzer.
 本発明のガラス組成物は、モル%で、AgO 10~60%、TeO 10~60%、MoO 10~60%を含有する。ガラス組成を上記のように限定した理由を以下に示す。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 The glass composition of the present invention contains, in mol%, Ag 2 O 10 to 60%, TeO 2 10 to 60%, and MoO 3 10 to 60%. The reason for limiting the glass composition as described above is shown below. In the following description regarding the content of each component, “%” means “mol%” unless otherwise specified.
 AgOは、ガラスの粘性(軟化点等)を低下させる成分である。AgOの含有量は10~60%であり、13~50%、特に15~45%であることが好ましい。AgOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。一方、AgOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 Ag 2 O is a component that lowers the viscosity (softening point, etc.) of the glass. The content of Ag 2 O is 10 to 60%, preferably 13 to 50%, particularly preferably 15 to 45%. If Ag 2 O content is too small, high glass viscosity (softening point, etc.) tends to be difficult to cold sealing. On the other hand, when the content of Ag 2 O is too large, glass becomes thermally unstable, the glass is liable to devitrify upon melting or during sintering.
 TeOは、ガラスネットワークを形成すると共に、耐候性を向上させる成分である。TeOの含有量は10~60%であり、15~57%、特に25~55%であることが好ましい。TeOの含有量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。一方、TeOの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 TeO 2 is a component that forms a glass network and improves weather resistance. The content of TeO 2 is 10 to 60%, preferably 15 to 57%, particularly preferably 25 to 55%. When the content of TeO 2 is too small, the glass becomes thermally unstable, and the glass is easily devitrified at the time of melting or firing, and the weather resistance is easily lowered. On the other hand, when the content of TeO 2 is too large, the viscosity (softening point, etc.) of the glass becomes high and low-temperature sealing tends to be difficult.
 MoOは、ガラスネットワークを形成する共に、耐候性を向上させる成分である。MoOの含有量は10~60%であり、15~55%、特に20~50%であることが好ましい。MoOの含有量が少な過ぎても多過ぎても、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 MoO 3 is a component that forms a glass network and improves weather resistance. The content of MoO 3 is 10 to 60%, preferably 15 to 55%, particularly preferably 20 to 50%. If the content of MoO 3 is too small or too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.
 本発明のガラス組成物は、上記成分以外にも、ガラス組成中に下記の成分を含有してもよい。 The glass composition of the present invention may contain the following components in addition to the above components.
 CuOは、ガラスを熱的に安定化させると共に、耐候性を向上させる成分である。CuOの含有量は0~20%、0.5~18%、1~15%であることが好ましい。CuOの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 CuO is a component that thermally stabilizes the glass and improves weather resistance. The CuO content is preferably 0 to 20%, 0.5 to 18%, and 1 to 15%. When there is too much content of CuO, the viscosity (softening point etc.) of glass will become high and low temperature sealing will become difficult easily.
 Biは、ガラスの粘性(軟化点等)を低下させると共に、耐候性を向上させる成分である。Biの含有量は0~10%、0~6%、0.1~2%であることが好ましい。Biの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 Bi 2 O 3 is a component that lowers the viscosity (softening point, etc.) of the glass and improves the weather resistance. The content of Bi 2 O 3 is preferably 0 to 10%, 0 to 6%, or 0.1 to 2%. If the content of Bi 2 O 3 is too large, glass becomes thermally unstable, the glass is liable to devitrify upon melting or during sintering.
 TiOは、ガラスを熱的に安定化させると共に、耐候性を向上させる成分である。TiOの含有量は0~10%、0~6%、0.1~2%であることが好ましい。TiOの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 TiO 2 is a component that stabilizes the glass thermally and improves weather resistance. The content of TiO 2 is preferably 0 to 10%, 0 to 6%, and 0.1 to 2%. When the content of TiO 2 is too large, high glass viscosity (softening point, etc.) tends to be difficult to cold sealing.
 AgIは、ガラスの粘性(軟化点等)を低下させる成分である。AgIの含有量は0~10%、0~5%、0.1~2%であることが好ましい。AgIの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 AgI is a component that lowers the viscosity (softening point, etc.) of glass. The content of AgI is preferably 0 to 10%, 0 to 5%, or 0.1 to 2%. When there is too much content of AgI, glass will become thermally unstable and it will become easy to devitrify glass at the time of a fusion | melting or baking.
 Pは、ガラスネットワークを形成すると共に、ガラスを熱的に安定化させる成分である。Pの含有量は0~5%、0~2%、特に0.1~1%であることが好ましい。Pの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に耐候性が低下し易くなる。 P 2 O 5 is a component that forms a glass network and thermally stabilizes the glass. The content of P 2 O 5 is preferably 0 to 5%, 0 to 2%, particularly preferably 0.1 to 1%. When the content of P 2 O 5 is too large, the viscosity of the glass (softening point, etc.) is high, the weather resistance tends to decrease with low temperature sealing is difficult.
 LiO、NaO、KOは、ガラスの粘性(軟化点等)を下げる効果があり、それらの含有量は合量で、0~20%、特に0~10%であることが好ましい。LiO、NaO、KOの合量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。なお、LiO、NaO、KOの含有量はそれぞれ、0~10%、特に0~5%であることが好ましい。 Li 2 O, Na 2 O, and K 2 O have an effect of lowering the viscosity (softening point, etc.) of the glass, and their total content is 0 to 20%, particularly 0 to 10%. preferable. If the total amount of Li 2 O, Na 2 O, and K 2 O is too large, the glass becomes thermally unstable, and the glass tends to be devitrified at the time of melting or firing, and the weather resistance tends to be lowered. . The contents of Li 2 O, Na 2 O and K 2 O are each preferably 0 to 10%, particularly preferably 0 to 5%.
 MgO、CaO、SrO、BaOは、ガラスを熱的に安定化させると共に、耐候性を向上させる効果があり、それらの含有量は合量で、0~20%、特に0~10%であることが好ましい。MgO、CaO、SrO、BaOの合量が多過ぎると、ガラスが熱的に不安定になり溶融時または焼成時にガラスが失透し易くなる。なお、MgO、CaO、SrO、BaOの含有量はそれぞれ、0~10%、特に0~5%であることが好ましい。 MgO, CaO, SrO and BaO have the effect of thermally stabilizing the glass and improving the weather resistance, and the total content thereof is 0 to 20%, particularly 0 to 10%. Is preferred. If the total amount of MgO, CaO, SrO, and BaO is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing. The contents of MgO, CaO, SrO, and BaO are each preferably 0 to 10%, particularly preferably 0 to 5%.
 ZnOは、ガラスの粘性(軟化点等)を低下させると共に、耐候性を向上させる成分である。ZnOの含有量は0~10%、特に0~5%であることが好ましい。ZnOの含有量が多過ぎると、ガラスが熱的に不安定になり溶融時または焼成時にガラスが失透し易くなる。 ZnO is a component that lowers the viscosity (softening point, etc.) of the glass and improves the weather resistance. The content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%. When there is too much content of ZnO, glass will become thermally unstable and it will become easy to devitrify glass at the time of a fusion | melting or baking.
 WOは、ガラスを熱的に安定化させると共に、耐候性を向上させる成分である。WOの含有量は0~10%、特に0~5%であることが好ましい。WOの含有量が多過ぎると、逆にガラスが熱的に不安定になる。 WO 3 is a component that stabilizes the glass thermally and improves weather resistance. The content of WO 3 is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of WO 3 is too large, the glass becomes thermally unstable.
 Nbは、ガラスを熱的に安定化させると共に、耐候性を向上させる成分である。Nbの含有量は0~10%、特に0~5%であることが好ましい。Nbの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 Nb 2 O 5 is a component that thermally stabilizes the glass and improves weather resistance. The Nb 2 O 5 content is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of Nb 2 O 5 is too large, high glass viscosity (softening point, etc.) tends to be difficult to cold sealing.
 Vは、ガラスネットワークを形成すると共に、ガラスの粘性(軟化点等)を低下させる成分である。Vの含有量は0~10%、特に0~5%であることが好ましい。Vの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。 V 2 O 5 is a component that forms a glass network and lowers the viscosity (softening point, etc.) of the glass. The content of V 2 O 5 is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of V 2 O 5 is too large, the glass becomes thermally unstable, and the glass is easily devitrified at the time of melting or firing, and the weather resistance is easily lowered.
 Gaは、ガラスを熱的に安定化させると共に、耐候性を向上させる成分であるが、非常に高価であることから、その含有量は0.01%未満、特に含有しないことが好ましい。 Ga 2 O 3 is a component that thermally stabilizes the glass and improves the weather resistance, but it is very expensive, so its content is preferably less than 0.01% and not particularly contained. .
 SiO、Al、GeO、Fe、NiO、CeO、B、Sbはガラスを熱的に安定化させて、失透を抑制する成分であり、各々2%未満まで添加可能である。これらの含有量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 SiO 2 , Al 2 O 3 , GeO 2 , Fe 2 O 3 , NiO, CeO 2 , B 2 O 3 , Sb 2 O 3 are components that stabilize glass thermally and suppress devitrification, Each can be added to less than 2%. If the content is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.
 本発明のガラス組成物は、実質的にPbOを含有しないことが好ましい。ここで、本発明でいう「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm以下の場合を指す。 It is preferable that the glass composition of the present invention does not substantially contain PbO. Here, “substantially not containing PbO” in the present invention refers to a case where the content of PbO in the glass composition is 1000 ppm or less.
 本発明の封着材料は、上記のガラス組成物からなるガラス粉末を含有する。本発明の封着材料は、機械的強度を向上、或いは熱膨張係数を調整するために、耐火性フィラーを含有してもよい。その混合割合は、ガラス粉末40~100体積%、耐火性フィラー0~60体積%であり、ガラス粉末50~99体積%、耐火性フィラー1~50体積%、特にガラス粉末60~95体積%、耐火性フィラー5~40体積%であることが好ましい。耐火性フィラーの含有量が多過ぎると、相対的にガラス粉末の割合が少なくなるため、所望の流動性を確保し難くなる。 The sealing material of the present invention contains glass powder made of the above glass composition. The sealing material of the present invention may contain a refractory filler in order to improve mechanical strength or adjust the thermal expansion coefficient. The mixing ratio is 40 to 100% by volume of glass powder, 0 to 60% by volume of refractory filler, 50 to 99% by volume of glass powder, 1 to 50% by volume of refractory filler, particularly 60 to 95% by volume of glass powder, The refractory filler is preferably 5 to 40% by volume. When there is too much content of a refractory filler, since the ratio of glass powder will decrease relatively, it will become difficult to ensure desired fluidity | liquidity.
 耐火性フィラーは、特に限定されず、種々の材料を選択することができるが、上記のガラス粉末と反応し難いものが好ましい。 The refractory filler is not particularly limited, and various materials can be selected, but those that do not easily react with the glass powder are preferable.
 具体的には、耐火性フィラーとして、NbZr(PO、ZrWO(PO、ZrMoO(PO、HfWO(PO、HfMoO(PO、リン酸ジルコニウム、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β-スポジュメン、ムライト、チタニア、石英ガラス、β-ユークリプタイト、β-石英、ウィレマイト、コーディエライト、Sr0.5Zr(PO等のNaZr(PO型固溶体等を、単独で又は2種以上を混合して使用することができる。なお、耐火性フィラーの粒径は平均粒子径D50が0.2~20μm程度のものを使用することが好ましい。 Specifically, as the refractory filler, NbZr (PO 4 ) 3 , Zr 2 WO 4 (PO 4 ) 2 , Zr 2 MoO 4 (PO 4 ) 2 , Hf 2 WO 4 (PO 4 ) 2 , Hf 2 MoO 4 (PO 4 ) 2 , zirconium phosphate, zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, titania, quartz glass, β-eucryptite, β-quartz, willemite, cordierite NaZr 2 (PO 4 ) type 3 solid solution such as Sr 0.5 Zr 2 (PO 4 ) 3 can be used alone or in admixture of two or more. Incidentally, the particle size of the refractory filler preferably having an average particle diameter D 50 to use of about 0.2 ~ 20 [mu] m.
 本発明のガラス組成物及び封着材料の軟化点は400℃以下、390℃以下、380℃以下、特に370℃以下であることが好ましい。軟化点が高過ぎると、ガラスの粘性が高くなるため、封着温度が上昇して、封着時に素子を劣化させるおそれがある。なお、軟化点の下限は特に限定されないが、現実的には180℃以上である。ここで、「軟化点」とは、平均粒子径D50が0.5~20μmのガラス組成物及び封着材料を測定試料として、マクロ型示差熱分析装置で測定した値を指す。測定条件としては、室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型示差熱分析装置で測定した軟化点は、図1に示す測定曲線における第四屈曲点の温度(Ts)を指す。 The softening point of the glass composition and sealing material of the present invention is preferably 400 ° C. or lower, 390 ° C. or lower, 380 ° C. or lower, and particularly preferably 370 ° C. or lower. If the softening point is too high, the viscosity of the glass increases, so that the sealing temperature rises and the element may be deteriorated during sealing. In addition, although the minimum of a softening point is not specifically limited, Actually, it is 180 degreeC or more. Here, the “softening point” refers to a value measured with a macro-type differential thermal analyzer using a glass composition having an average particle diameter D 50 of 0.5 to 20 μm and a sealing material as measurement samples. As measurement conditions, measurement is started from room temperature, and the rate of temperature rise is 10 ° C./min. In addition, the softening point measured with the macro type | mold differential thermal analyzer shows the temperature (Ts) of the 4th bending point in the measurement curve shown in FIG.
 本発明のガラス組成物及び封着材料の熱膨張係数(30~150℃)は40×10-7/℃~250×10-7/℃、50×10-7/℃~230×10-7/℃、特に60×10-7/℃~200×10-7/℃であることが好ましい。熱膨張係数が低すぎても高すぎても、被封着材料との膨張差により封着時や封着後に封着部が破損し易くなる。 The thermal expansion coefficient (30 to 150 ° C.) of the glass composition and sealing material of the present invention is 40 × 10 −7 / ° C. to 250 × 10 −7 / ° C., 50 × 10 −7 / ° C. to 230 × 10 −7. / ° C., particularly 60 × 10 −7 / ° C. to 200 × 10 −7 / ° C. is preferable. Even if the thermal expansion coefficient is too low or too high, the sealing portion is likely to be damaged at the time of sealing or after sealing due to a difference in expansion from the material to be sealed.
 上記の特性を有する本発明のガラス組成物及び封着材料は、特に低温での封着が要求される水晶振動子用途に好適である。 The glass composition and sealing material of the present invention having the above characteristics are particularly suitable for crystal resonator applications that require sealing at low temperatures.
 次に本発明のガラス組成物を用いたガラス粉末の製造方法、及び本発明のガラス組成物を封着材料として使用する方法の一例について説明する。 Next, an example of a method for producing a glass powder using the glass composition of the present invention and a method of using the glass composition of the present invention as a sealing material will be described.
 まず、上記組成を有するように調合した原料粉末を800~1000℃で1~2時間、均質なガラスが得られるまで溶融する。次いで、溶融ガラスをフィルム状等に成形した後、粉砕し、分級することにより、本発明のガラス組成物からなるガラス粉末を作製する。なお、ガラス粉末の平均粒子径D50は2~20μm程度であることが好ましい。必要に応じて、ガラス粉末に各種耐火性フィラー粉末を添加する。 First, the raw material powder prepared to have the above composition is melted at 800 to 1000 ° C. for 1 to 2 hours until a homogeneous glass is obtained. Next, the molten glass is formed into a film or the like, and then pulverized and classified to produce a glass powder made of the glass composition of the present invention. The average particle diameter D 50 of the glass powder is preferably about 2 to 20 μm. If necessary, various refractory filler powders are added to the glass powder.
 次いでガラス粉末(あるいは封着材料)にビークルを添加して混練することによりガラスペースト(あるいは封着材料ペースト)を調製する。ビークルは、主に有機溶剤と樹脂とからなり、樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。 Next, a glass paste (or sealing material paste) is prepared by adding a vehicle to glass powder (or sealing material) and kneading. The vehicle mainly includes an organic solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed.
 有機溶剤は、沸点が低く(例えば、沸点が300℃以下)、且つ焼成後の残渣が少ないことに加えて、ガラスを変質させないものが好ましく、その含有量は10~40質量%であることが好ましい。有機溶剤としては、プロピレンカーボネート、トルエン、N,N’-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、炭酸ジメチル、ブチルカルビトールアセテート(BCA)、酢酸イソアミル、ジメチルスルホキシド、アセトン、メチルエチルケトン等を使用することが好ましい。また、有機溶剤として、高級アルコールを使用することがさらに好ましい。高級アルコールは、それ自身が粘性を有しているために、ビークルに樹脂を添加しなくても、ペースト化することができる。また、ペンタンジオールとその誘導体、具体的にはジエチルペンタンジオール(C20)も粘性に優れるため、溶剤に使用することができる。 The organic solvent preferably has a low boiling point (for example, a boiling point of 300 ° C. or lower) and a small amount of residue after baking, and does not alter the glass, and its content is 10 to 40% by mass. preferable. Examples of the organic solvent include propylene carbonate, toluene, N, N′-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, It is preferable to use dimethyl sulfoxide, acetone, methyl ethyl ketone or the like. Further, it is more preferable to use a higher alcohol as the organic solvent. Since the higher alcohol itself has viscosity, it can be made into a paste without adding a resin to the vehicle. In addition, pentanediol and its derivatives, specifically diethylpentanediol (C 9 H 20 O 2 ), are excellent in viscosity and can be used as a solvent.
 樹脂は、分解温度が低く、焼成後の残渣が少ないことに加えて、ガラスを変質させ難いものが好ましく、その含有量は0.1~20質量%であることが好ましい。樹脂として、ニトロセルロース、ポリエチレングリコール誘導体、ポリエチレンカーボネート、アクリル酸エステル(アクリル樹脂)等を使用することが好ましい。 The resin preferably has a low decomposition temperature and a small amount of residue after firing, and it is difficult to alter the glass, and its content is preferably 0.1 to 20% by mass. As the resin, it is preferable to use nitrocellulose, polyethylene glycol derivative, polyethylene carbonate, acrylic acid ester (acrylic resin) or the like.
 次いで、ペーストを金属、セラミック、または、ガラスからなる第一の部材と、金属、セラミック、または、ガラスからなる第二の部材との封着箇所にディスペンサーやスクリーン印刷機等の塗布機を用いて塗布し、乾燥させ、300~400℃で熱処理する。この熱処理により、ガラス粉末が軟化流動して第一と第二の部材を封着する。 Next, using a dispenser or a coating machine such as a screen printing machine, the paste is sealed at the first member made of metal, ceramic or glass and the second member made of metal, ceramic or glass. Apply, dry and heat-treat at 300-400 ° C. By this heat treatment, the glass powder softens and flows to seal the first and second members.
 本発明のガラス組成物及び封着材料は、封着以外にも被覆、充填等の目的で使用できる。また、ペースト以外の形態、具体的には粉末、グリーンシート、タブレット等の状態で使用することもできる。 The glass composition and sealing material of the present invention can be used for purposes such as coating and filling in addition to sealing. Moreover, it can also be used in forms other than paste, specifically in the state of powder, green sheets, tablets and the like.
 実施例に基づいて、本発明を詳細に説明する。表1及び2は、本発明の実施例(試料No.1~10)及び比較例(試料No.11、12)を示している。 The present invention will be described in detail based on examples. Tables 1 and 2 show examples (samples Nos. 1 to 10) and comparative examples (samples Nos. 11 and 12) of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れ、800~1000℃で1~2時間溶融した。次に、溶融ガラスの一部をTMA(押棒式熱膨張係数測定)用サンプルとしてステンレス製の金型に流し出し、その他の溶融ガラスを水冷ローラーでフィルム状に成形した。なお、耐火性フィラーを含有しないNo.1、2、4、5、6、8、9、11、12については、成形後に所定の徐冷処理(アニール)を行うことによりTMA用サンプルを得た。最後に、フィルム状のガラスをボールミルで粉砕した後、目開き75μmの篩を通過させて、平均粒子径D50が約10μmのガラス粉末を得た。 First, glass raw materials such as various oxides and carbonates were prepared so as to have the glass composition shown in the table, and after preparing a glass batch, the glass batch was put in a platinum crucible and 1 to Melted for 2 hours. Next, a part of the molten glass was poured into a stainless steel mold as a sample for TMA (push bar type thermal expansion coefficient measurement), and the other molten glass was formed into a film shape with a water-cooled roller. In addition, No. which does not contain a refractory filler. Regarding 1, 2, 4, 5, 6, 8, 9, 11, and 12, samples for TMA were obtained by performing predetermined slow cooling treatment (annealing) after molding. Finally, the film-like glass was pulverized by a ball mill and then passed through a sieve having an opening of 75 μm to obtain a glass powder having an average particle diameter D 50 of about 10 μm.
 その後、耐火性フィラーを混合するNo.3、7、10の試料については、表中に示した通りに、得られたガラス粉末と耐火性フィラー粉末を混合し、混合粉末を得た。 After that, mix with refractory filler No. About the sample of 3, 7, and 10, as shown in the table | surface, the obtained glass powder and the refractory filler powder were mixed, and mixed powder was obtained.
 耐火性フィラー粉末には、NbZr(PO(表中ではNZPと表記)、ZrWO(PO(表中ではZWPと表記)を用いた。また、耐火性フィラー粉末の平均粒子径D50は約10μmであった。 NbZr (PO 4 ) 3 (shown as NZP in the table) and Zr 2 WO 4 (PO 4 ) 2 (shown as ZWP in the table) were used as the refractory filler powder. The average particle diameter D 50 of the refractory filler powder was about 10 [mu] m.
 得られた混合粉末を380℃にて30分間焼成し、焼成体を得た。得られた焼成体をTMA用サンプルとした。 The obtained mixed powder was fired at 380 ° C. for 30 minutes to obtain a fired body. The obtained fired body was used as a sample for TMA.
 No.1~10の試料について、ガラス転移点、熱膨張係数、軟化点、流動性を評価した。 No. Samples 1 to 10 were evaluated for glass transition point, thermal expansion coefficient, softening point, and fluidity.
 ガラス転移点及び熱膨張係数(30~150℃)は、TMA用サンプルをTMA装置により測定した。 The glass transition point and the thermal expansion coefficient (30 to 150 ° C.) were measured using a TMA apparatus for the TMA sample.
 軟化点はマクロ型示差熱分析装置により測定した。測定雰囲気は大気中、昇温速度は10℃/分とし、室温から測定を開始した。 Softening point was measured with a macro-type differential thermal analyzer. The measurement atmosphere was air, the temperature rising rate was 10 ° C./min, and the measurement was started from room temperature.
 流動性は次のようにして評価した。粉末試料5gを、直径20mmの金型に入れプレス成型した後に、ガラス基板上で380℃にて30分間焼成した。焼成体の流動径が19mm以上であるものを「○」、19mm未満のものを「×」として評価した。 The fluidity was evaluated as follows. 5 g of the powder sample was put into a mold having a diameter of 20 mm and press-molded, and then baked on a glass substrate at 380 ° C. for 30 minutes. The case where the fired body had a flow diameter of 19 mm or more was evaluated as “◯”, and the case of less than 19 mm was evaluated as “×”.
 表から明らかなように、本発明の実施例であるNo.1~10の試料は、流動性に優れていた。一方、比較例であるNo.11の試料はAgOを過剰に含有しているためガラス化しなかった。No.12の試料はMoOの含有量が少ないためガラス化しなかった。 As is apparent from the table, No. 1 as an example of the present invention. Samples 1 to 10 were excellent in fluidity. On the other hand, No. which is a comparative example. The 11 samples did not vitrify because they contained Ag 2 O in excess. No. Twelve samples were not vitrified due to low MoO 3 content.
 本発明のガラス組成物及び封着材料は、半導体集積回路、水晶振動子、平面表示装置やLD用ガラス端子の封着に好適である。
 
The glass composition and sealing material of the present invention are suitable for sealing semiconductor integrated circuits, crystal resonators, flat display devices, and LD glass terminals.

Claims (6)

  1.  モル%で、AgO 10~60%、TeO 10~60%、MoO 10~60%を含有することを特徴とするガラス組成物。 A glass composition comprising Ag 2 O 10 to 60%, TeO 2 10 to 60%, and MoO 3 10 to 60% in mol%.
  2.  さらに、モル%で、CuO 0~20%、Bi 0~10%、TiO 0~10%、AgI 0~10%を含有することを特徴とする請求項1に記載のガラス組成物。 The glass composition according to claim 1, further comprising CuO 0 to 20%, Bi 2 O 3 0 to 10%, TiO 2 0 to 10%, and AgI 0 to 10% in mol%. .
  3.  さらに、モル%で、P 0~5%を含有することを特徴とする請求項1又は2に記載のガラス組成物。 The glass composition according to claim 1 or 2, further comprising 0 to 5% of P 2 O 5 by mol%.
  4.  請求項1~3のいずれかに記載のガラス組成物からなるガラス粉末 40~100体積%と、耐火性フィラー粉末 0~60体積%とを含有することを特徴とする封着材料。 A sealing material comprising 40 to 100% by volume of a glass powder comprising the glass composition according to any one of claims 1 to 3 and 0 to 60% by volume of a refractory filler powder.
  5.  水晶振動子用途に使用されることを特徴とする請求項4に記載の封着材料。 The sealing material according to claim 4, wherein the sealing material is used for a crystal resonator application.
  6.  請求項4又は5に記載の封着材料とビークルとを含有することを特徴とする封着材料ペースト。
     
    6. A sealing material paste comprising the sealing material according to claim 4 and a vehicle.
PCT/JP2019/001395 2018-02-16 2019-01-18 Glass composition and sealing material WO2019159599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006314.3A CN111448168A (en) 2018-02-16 2019-01-18 Glass composition and sealing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018025586A JP7090838B2 (en) 2018-02-16 2018-02-16 Glass composition and sealing material
JP2018-025586 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019159599A1 true WO2019159599A1 (en) 2019-08-22

Family

ID=67618667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001395 WO2019159599A1 (en) 2018-02-16 2019-01-18 Glass composition and sealing material

Country Status (4)

Country Link
JP (1) JP7090838B2 (en)
CN (1) CN111448168A (en)
TW (1) TWI784127B (en)
WO (1) WO2019159599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038672A (en) * 2020-02-18 2022-09-09 日本电气硝子株式会社 Glass composition and sealing material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172848B2 (en) * 2019-05-17 2022-11-16 日本電気硝子株式会社 Glass composition and sealing material
CN111875249B (en) * 2020-08-10 2023-01-24 河北曜阳新材料技术有限公司 Tellurate series sealing glass and preparation method thereof
WO2023026771A1 (en) * 2021-08-26 2023-03-02 日本電気硝子株式会社 Glass composition and sealing material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259262A (en) * 1995-03-20 1996-10-08 Nippon Electric Glass Co Ltd Low melting point seal bonding composition
WO2012144335A1 (en) * 2011-04-21 2012-10-26 昭栄化学工業株式会社 Conductive paste
WO2013005600A1 (en) * 2011-07-04 2013-01-10 株式会社日立製作所 Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514797A (en) * 1991-06-28 1993-01-22 Matsushita Electric Ind Co Ltd Video camera device
JPH05147974A (en) * 1991-11-25 1993-06-15 Nippon Electric Glass Co Ltd Seal bonding material
JP3425749B2 (en) * 1991-11-25 2003-07-14 日本電気硝子株式会社 Sealing material
CN101164942A (en) * 2006-10-19 2008-04-23 北京印刷学院 Leadless tellurate low melting sealing glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259262A (en) * 1995-03-20 1996-10-08 Nippon Electric Glass Co Ltd Low melting point seal bonding composition
WO2012144335A1 (en) * 2011-04-21 2012-10-26 昭栄化学工業株式会社 Conductive paste
WO2013005600A1 (en) * 2011-07-04 2013-01-10 株式会社日立製作所 Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOWDARI ET AL.: "Effect of mixed glass-formers in Ag2O.MoO3.TeO2 system", J. PHYS. CHEM SOLIDS, vol. 58, no. 3, March 1997 (1997-03-01), pages 515 - 525, XP055634638 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038672A (en) * 2020-02-18 2022-09-09 日本电气硝子株式会社 Glass composition and sealing material

Also Published As

Publication number Publication date
JP7090838B2 (en) 2022-06-27
TWI784127B (en) 2022-11-21
JP2019142725A (en) 2019-08-29
TW201936535A (en) 2019-09-16
CN111448168A (en) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2019225335A1 (en) Glass composition and sealing material
WO2019159599A1 (en) Glass composition and sealing material
JP5083706B2 (en) Bismuth-based glass composition and bismuth-based sealing material
WO2020071095A1 (en) Glass composition and sealing material
JP2016135733A (en) Lead-free glass and sealing material
WO2020235284A1 (en) Glass composition and sealing material
JP6816538B2 (en) Silver phosphoric acid-based glass composition and sealing material
JP2019089689A (en) Glass composition and sealing material
JP7385169B2 (en) Glass compositions and sealing materials
WO2020262109A1 (en) Glass composition and sealing material
JP7172650B2 (en) Glass powder and sealing material using it
JP2018123016A (en) Silver phosphate glass composition and sealing material
JP2020040848A (en) Glass composition and sealing material
US20230303425A1 (en) Glass composition and sealing material
WO2021166568A1 (en) Glass composition and sealing material
JP2018184314A (en) Silver phosphate-based glass composition and sealing material
WO2023026771A1 (en) Glass composition and sealing material
JP2019089685A (en) Vanadium phosphate glass composition and sealing material
JP2021130602A (en) Glass composition and sealing material
JP2019073403A (en) Vanadium phosphate glass composition and sealing material
JP2023033083A (en) Glass composition and sealing material
WO2016114075A1 (en) Lead-free glass and sealing material
WO2024057824A1 (en) Bismuth-based glass powder and composite powder including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754850

Country of ref document: EP

Kind code of ref document: A1