JP2018184314A - Silver phosphate-based glass composition and sealing material - Google Patents

Silver phosphate-based glass composition and sealing material Download PDF

Info

Publication number
JP2018184314A
JP2018184314A JP2017085851A JP2017085851A JP2018184314A JP 2018184314 A JP2018184314 A JP 2018184314A JP 2017085851 A JP2017085851 A JP 2017085851A JP 2017085851 A JP2017085851 A JP 2017085851A JP 2018184314 A JP2018184314 A JP 2018184314A
Authority
JP
Japan
Prior art keywords
glass
silver phosphate
glass composition
content
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017085851A
Other languages
Japanese (ja)
Inventor
朋子 山田
Tomoko Yamada
朋子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017085851A priority Critical patent/JP2018184314A/en
Publication of JP2018184314A publication Critical patent/JP2018184314A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silver phosphate-based glass composition that can be sealed at low temperature without containing environmentally harmful lead and halogen, and a sealing material using the same.SOLUTION: A silver phosphate-based glass composition contains, by mol%, 20 or more and less than 40% of AgO, 20-35% of PO, 0-10% of NbO, 15-40% of TeOand more than 5 to less than 20% of ZnO.SELECTED DRAWING: Figure 1

Description

本発明は、有害な鉛やハロゲンを含有することなく、400℃以下の低温で気密封着することが可能な銀リン酸系ガラスと、それを用いた封着材料に関するものである。   The present invention relates to a silver phosphate glass that can be hermetically sealed at a low temperature of 400 ° C. or less without containing harmful lead and halogen, and a sealing material using the same.

半導体集積回路、水晶振動子、平面表示装置やLD用ガラス端子等には、封着材料が使用される。   Sealing materials are used for semiconductor integrated circuits, crystal resonators, flat display devices, LD glass terminals, and the like.

上記の封着材料には、化学的耐久性および耐熱性が要求されるため、樹脂系の接着剤ではなくガラス系封着材料が用いられている。ガラス系封着材料には、機械的強度、流動性、耐候性等の特性が要求されるが、熱に弱い素子を搭載する電子部品の封着には、封着温度をできる限り低くすることが要求される。具体的には、400℃以下での封着が要求される。それゆえ、上記特性を満足するガラスとして、融点を下げる効果が極めて大きいPbOを多量に含有する鉛硼酸系ガラスが広く用いられてきた(例えば、特許文献1参照)。   Since the above-mentioned sealing material requires chemical durability and heat resistance, a glass-based sealing material is used instead of a resin-based adhesive. Glass sealing materials are required to have properties such as mechanical strength, fluidity, and weather resistance, but the sealing temperature should be as low as possible for sealing electronic components that are sensitive to heat. Is required. Specifically, sealing at 400 ° C. or lower is required. Therefore, as a glass that satisfies the above characteristics, lead borate glass containing a large amount of PbO that has an extremely large effect of lowering the melting point has been widely used (see, for example, Patent Document 1).

特開昭63−315536号公報Japanese Unexamined Patent Publication No. Sho 63-315536 特開平6−24797号公報JP-A-6-24797 特許4573204号公報Japanese Patent No. 4573204

近年、鉛硼酸系ガラスに含まれるPbOに対して環境上の問題が指摘されており、鉛硼酸系ガラスからPbOを含まないガラスに置き換えることが望まれている。そのため、鉛硼酸系ガラスの代替品として、様々な低融点ガラスが開発されている。中でも特許文献2に記載されているBi−B系ガラスは、鉛硼酸系ガラスの代替候補として期待されているが、封止温度が450℃以上と高く、より低温で封止が必要な用途には用いることが出来ない。 In recent years, environmental problems have been pointed out with respect to PbO contained in lead borate glass, and it is desired to replace lead borate glass with glass containing no PbO. Therefore, various low melting glass has been developed as a substitute for lead borate glass. Among them, Bi 2 O 3 —B 2 O 3 glass described in Patent Document 2 is expected as an alternative candidate for lead borate glass, but its sealing temperature is as high as 450 ° C. or higher, and sealing is performed at a lower temperature. It cannot be used for applications that require stopping.

また、特許文献3では、400℃以下の低温で封着可能なガラスとしてAgI−AgO系ガラスが開示されているが、ハロゲンも環境上の問題が指摘されており、ハロゲンを含有しないガラスが望まれている。 Patent Document 3 discloses AgI-Ag 2 O-based glass as a glass that can be sealed at a low temperature of 400 ° C. or lower. However, halogen has also been pointed out as an environmental problem, and does not contain halogen. Is desired.

以上に鑑み、本発明は、環境に有害な鉛やハロゲンを含有させることなく、低温で封着可能な銀リン酸系ガラス組成物と、それを用いた封着材料を提供することを目的とする。 In view of the above, an object of the present invention is to provide a silver phosphate glass composition that can be sealed at a low temperature without containing environmentally harmful lead or halogen, and a sealing material using the same. To do.

本発明の銀リン酸系ガラス組成物は、モル%で、AgO 20〜40%未満、P 20〜35%、Nb 0〜10%、TeO 15〜40%、ZnO 5超〜20%未満を含有することを特徴とする。 Silver phosphate glass composition of the present invention, in mol%, Ag 2 O less than 20~40%, P 2 O 5 20~35 %, Nb 2 O 5 0~10%, TeO 2 15~40%, It contains more than ZnO 5 and less than 20%.

本発明の銀リン酸系ガラス組成物は、必須成分としてAgO、ZnOを含有させているため、低融点で、しかも耐水性に優れている。また、一般に、ガラスの融点を低くすると、ガラス化しなかったり、乳白化や分相が生じて均質なガラスが得られにくい傾向にあるが、Pを必須成分として20%以上含有しているため、ガラスが安定し、均質なガラスを得ることが出来る。 Since the silver phosphate glass composition of the present invention contains Ag 2 O and ZnO as essential components, it has a low melting point and is excellent in water resistance. In general, when the melting point of the glass is lowered, vitrification does not occur, or milky whitening or phase separation occurs and it is difficult to obtain a homogeneous glass. However, it contains 20% or more of P 2 O 5 as an essential component. Therefore, the glass is stable and a homogeneous glass can be obtained.

本発明の銀リン酸系ガラス組成物は、実質的にPbO、ハロゲンを含有しないことが好ましい。ハロゲンとは、フッ素、塩素、臭素、ヨウ素のハロゲン単体の他、ハロゲン化物を含む。ハロゲン化物とは、フッ化物、塩化物、臭化物、ヨウ化物のことである。ここで、本発明でいう「実質的にPbO、ハロゲンを含有しない」とは、ガラス組成中のPbO、ハロゲンの含有量が各々1000ppm以下の場合を指す。   The silver phosphate glass composition of the present invention preferably contains substantially no PbO or halogen. Halogen includes halides as well as fluorine, chlorine, bromine and iodine. Halides are fluoride, chloride, bromide, and iodide. Here, “substantially free of PbO and halogen” in the present invention refers to the case where the PbO and halogen contents in the glass composition are each 1000 ppm or less.

本発明の封着材料は、上記の銀リン酸系ガラス組成物からなるガラス粉末 50〜100体積%と、耐火性フィラー粉末 0〜50体積%とを含有することを特徴とする。   The sealing material of the present invention is characterized by containing 50 to 100% by volume of a glass powder made of the above silver phosphate glass composition and 0 to 50% by volume of a refractory filler powder.

環境に有害な鉛やハロゲンを含有させることなく、低温で封着可能な銀リン酸系ガラス組成物と、それを用いた封着材料を提供することができる。   It is possible to provide a silver phosphate glass composition that can be sealed at a low temperature without containing lead or halogen harmful to the environment, and a sealing material using the same.

マクロ型示差熱分析装置により得られる測定曲線を示す模式図である。It is a schematic diagram which shows the measurement curve obtained by a macro type differential thermal analyzer.

本発明の銀リン酸系ガラス組成物は、モル%で、AgO 20〜40%未満、P 20〜35%、Nb 0〜10%、TeO 15〜40%、ZnO 5超〜20%未満を含有する。ガラス組成を上記のように限定した理由を以下に示す。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 Silver phosphate glass composition of the present invention, in mol%, Ag 2 O less than 20~40%, P 2 O 5 20~35 %, Nb 2 O 5 0~10%, TeO 2 15~40%, ZnO more than 5 to less than 20%. The reason for limiting the glass composition as described above is shown below. In the following description regarding the content of each component, “%” means “mol%” unless otherwise specified.

AgOは、軟化点を下げるための主要成分であると共に、水に溶け難いためにガラスの耐水性を高める効果があり、その含有量は20〜40%未満であり、好ましくは25〜35%である。AgOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に耐水性が低下し易くなる。一方、AgOの含有量が多過ぎるとガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 Ag 2 O is a main component for lowering the softening point and has the effect of increasing the water resistance of the glass because it is hardly soluble in water, and its content is 20 to less than 40%, preferably 25 to 35. %. When the content of Ag 2 O is too small, the viscosity of the glass (softening point, etc.) becomes high, the water resistance tends to decrease with low temperature sealing is difficult. On the other hand, the glass when the content of Ag 2 O is too large, thermally unstable, the glass is liable to devitrify upon melting or during sintering.

は、ガラスネットワークを形成する成分であり、その含有量は20〜35%であり、好ましくは21〜33%、より好ましくは22〜30%である。Pの含有量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。一方、Pの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に耐水性が低下し易くなる。 P 2 O 5 is a component for forming a glass network, the content is from 20 to 35%, preferably 21 to 33%, more preferably 22 to 30%. When the content of P 2 O 5 is too small, glass becomes thermally unstable, the glass is liable to devitrify upon melting or during sintering. On the other hand, when the content of P 2 O 5 is too large, the viscosity of the glass (softening point, etc.) becomes high, the water resistance tends to decrease with low temperature sealing is difficult.

Nbは、ガラスを熱的に安定化させるとともに、耐水性及び流動性の向上に効果があり、その含有量は0〜10%であり、好ましくは0〜7%、より好ましくは1〜5%である。Nbの含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 Nb 2 O 5 stabilizes the glass thermally, and is effective in improving water resistance and fluidity. Its content is 0 to 10%, preferably 0 to 7%, more preferably 1 ~ 5%. When the content of Nb 2 O 5 has too large, high glass viscosity (softening point, etc.) it tends to be difficult to cold sealing.

TeOは、軟化点を下げると共に、耐水性の向上に効果があり、その含有量は15〜40%であり、好ましくは20〜35%である。TeOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、耐水性が低下し易くなる。一方、TeOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また、流動性が低下しやすくなる。 TeO 2 lowers the softening point and is effective for improving water resistance, and its content is 15 to 40%, preferably 20 to 35%. When the content of TeO 2 is too small, the viscosity (softening point, etc.) of the glass becomes high, and it becomes difficult to seal at low temperature, and the water resistance tends to decrease. On the other hand, when the content of TeO 2 is too large, glass becomes thermally unstable, the glass is liable to devitrify upon melting or during sintering. Moreover, fluidity tends to be lowered.

ZnOは、軟化点を下げる効果があり、その含有量は5超〜20%未満であり、好ましくは6〜18%である。ZnOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易くなる。一方、ZnOの含有量が多過ぎるとガラスが熱的に不安定になり溶融時または焼成時にガラスが失透し易くなる。   ZnO has the effect of lowering the softening point, and its content is more than 5 to less than 20%, preferably 6 to 18%. When there is too little content of ZnO, the viscosity (softening point etc.) of glass will become high and low temperature sealing will become difficult easily. On the other hand, if the ZnO content is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.

本発明の銀リン酸系ガラス組成物は、上記成分以外にも、ガラス組成中に下記の成分を含有してもよい。   In addition to the above components, the silver phosphate glass composition of the present invention may contain the following components in the glass composition.

WOは、ガラスを熱的に安定化させて、失透を抑制する成分であると共に、耐水性を高める成分であり、その含有量は好ましくは0〜10%、より好ましくは0〜5%である。WOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが熱的に不安定になる。 WO 3 is a component that thermally stabilizes the glass and suppresses devitrification and is a component that increases water resistance, and its content is preferably 0 to 10%, more preferably 0 to 5%. It is. When the content of WO 3 is too large, is impaired balance of components glass composition, glass becomes thermally unstable in reverse.

BaO、SrO、CaOは、ガラスを熱的に安定化させると共に、耐水性を高める成分であり、それらの含有量は合量で、好ましくは0〜5%である。それらの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。なお、BaO、SrO、CaOの含有量はそれぞれ、好ましくは0〜5%である。   BaO, SrO, and CaO are components that stabilize the glass thermally and increase water resistance, and their content is a total amount, preferably 0 to 5%. If the content is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing. The contents of BaO, SrO, and CaO are each preferably 0 to 5%.

LiO、NaO、KOは、軟化点を下げる効果があり、それらの含有量は合量で、好ましくは0〜5%である。それらの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐水性が低下し易くなる。なお、LiO、NaO、KOの含有量はそれぞれ、好ましくは0〜5%である。 Li 2 O, Na 2 O, and K 2 O have an effect of lowering the softening point, and their content is a total amount, preferably 0 to 5%. If the content is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing, and the water resistance tends to decrease. The contents of Li 2 O, Na 2 O, and K 2 O are each preferably 0 to 5%.

Gaは、ガラスを熱的に安定化させると共に、耐水性を高める成分であるが、非常に高価であることから、その含有量は0.01%未満が好ましく、含有しないことがより好ましい。 Ga 2 O 3 is a component that thermally stabilizes the glass and increases water resistance. However, since it is very expensive, its content is preferably less than 0.01%, more preferably not contained. preferable.

MnO、Fe、NiO、CuOはガラスを熱的に安定化させて、失透を抑制する成分であり、各々2%未満まで添加可能である。これらの含有量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 MnO 2 , Fe 2 O 3 , NiO, and CuO are components that thermally stabilize the glass and suppress devitrification, and each can be added to less than 2%. If the content is too large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.

上記成分に加えて、ガラス組成中にMgO、SiO、B、Al、Bi等の他成分を合量で10%まで添加してもよい。 In addition to the above components, other components such as MgO, SiO 2 , B 2 O 3 , Al 2 O 3 , and Bi 2 O 3 may be added up to 10% in total in the glass composition.

本発明の封着材料は、上記の銀リン酸系ガラス組成物からなるガラス粉末に、機械的強度を向上、或いは熱膨張係数を調整するために、耐火性フィラーを含有してもよい。その混合割合は、ガラス粉末50〜100体積%、耐火性フィラー0〜50体積%であり、ガラス粉末70〜99体積%、耐火性フィラー1〜30体積%がより好ましく、ガラス粉末80〜95体積%、耐火性フィラー5〜20体積%が更に好ましい。耐火性フィラーの含有量が多過ぎると、相対的にガラス粉末の割合が少なくなるため、所望の流動性を確保し難くなる。   The sealing material of the present invention may contain a refractory filler in order to improve the mechanical strength or adjust the thermal expansion coefficient in the glass powder made of the above silver phosphate glass composition. The mixing ratio is 50 to 100% by volume of glass powder and 0 to 50% by volume of refractory filler, more preferably 70 to 99% by volume of glass powder and 1 to 30% by volume of refractory filler, and 80 to 95 volume of glass powder. %, Refractory filler 5 to 20% by volume is more preferable. When there is too much content of a refractory filler, since the ratio of glass powder will decrease relatively, it will become difficult to ensure desired fluidity | liquidity.

耐火性フィラーは、特に限定されず、種々の材料を選択することができるが、上記のガラス粉末と反応し難いものが好ましい。 The refractory filler is not particularly limited, and various materials can be selected, but those that do not easily react with the glass powder are preferable.

具体的には、耐火性フィラーとして、NbZr(PO、ZrWO(PO,リン酸ジルコニウム、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β−スポジュメン、ムライト、チタニア、石英ガラス、β−ユークリプタイト、β−石英、ウイレマイト、コーディエライト、Sr0.5Zr(PO等のNaZr(PO型固溶体等を、単独で又は2種以上を混合して使用することができる。なお、耐火性フィラーの粒径は平均粒子径D50が0.2〜20μm程度のものを使用することが好ましい。 Specifically, as a refractory filler, NbZr (PO 4 ) 3 , Zr 2 WO 4 (PO 4 ) 2 , zirconium phosphate, zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, Titania, quartz glass, β-eucryptite, β-quartz, willemite, cordierite, NaZr 2 (PO 4 ) 3 type solid solution such as Sr 0.5 Zr 2 (PO 4 ) 3 or the like alone or 2 A mixture of seeds or more can be used. The particle diameter of the refractory filler is preferably one having an average particle diameter D50 of about 0.2 to 20 μm.

本発明の銀リン酸系ガラス組成物及び封着材料の軟化点は380℃以下、特に360℃以下が好ましい。軟化点が高過ぎると、ガラスの粘性が高くなるため、焼成温度(特に封着温度等)が上昇して、焼成時に素子を傷めるおそれがある。なお、軟化点の下限は特に限定されないが、現実的には180℃以上である。ここで、「軟化点」とは、平均粒子径D50が0.5〜20μmのガラス粉末を測定試料として、マクロ型示差熱分析装置で測定した値を指す。測定条件としては、室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型示差熱分析装置で測定した軟化点は、図1に示す測定曲線における第四屈曲点の温度(Ts)を指す。 The softening point of the silver phosphate glass composition and the sealing material of the present invention is preferably 380 ° C. or lower, particularly 360 ° C. or lower. If the softening point is too high, the viscosity of the glass increases, and the firing temperature (especially the sealing temperature, etc.) increases, which may damage the device during firing. In addition, although the minimum of a softening point is not specifically limited, Actually, it is 180 degreeC or more. Here, the “softening point” refers to a value measured with a macro-type differential thermal analyzer using glass powder having an average particle diameter D 50 of 0.5 to 20 μm as a measurement sample. As measurement conditions, measurement is started from room temperature, and the rate of temperature rise is 10 ° C./min. In addition, the softening point measured with the macro type | mold differential thermal analyzer shows the temperature (Ts) of the 4th bending point in the measurement curve shown in FIG.

次に本発明の銀リン酸系ガラス組成物を用いたガラス粉末の製造方法、及び本発明の銀リン酸系ガラス組成物を封着材料として使用する方法の一例について説明する。   Next, an example of a method for producing a glass powder using the silver phosphate glass composition of the present invention and a method of using the silver phosphate glass composition of the present invention as a sealing material will be described.

まず、上記組成を有するように調合した原料粉末を約700〜900℃で1〜2時間程度、均質なガラスが得られるまで溶融する。次いで、溶融ガラスをフィルム状等に成形した後、粉砕し、分級することにより、本発明の銀リン酸系ガラス組成物からなるガラス粉末を作製する。なお、ガラス粉末の平均粒子径D50は2〜20μm程度であることが好ましい。必要に応じて、ガラス粉末に各種耐火性フィラー粉末を添加する。 First, the raw material powder prepared to have the above composition is melted at about 700 to 900 ° C. for about 1 to 2 hours until a homogeneous glass is obtained. Next, the molten glass is formed into a film or the like, and then pulverized and classified to produce a glass powder made of the silver phosphate glass composition of the present invention. Incidentally, it is preferable that the average particle diameter D 50 of the glass powder is about 2 to 20 [mu] m. If necessary, various refractory filler powders are added to the glass powder.

次いでガラス粉末(あるいはガラス粉末と耐火性フィラー粉末の混合粉末)にビークルを添加して混練することによりガラスペーストを調整する。ビークルは、主に有機溶剤と樹脂とからなり、樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。   Next, a glass paste is prepared by adding a vehicle to glass powder (or a mixed powder of glass powder and refractory filler powder) and kneading. The vehicle mainly includes an organic solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed.

有機溶剤は、沸点が低く(例えば、沸点が300℃以下)、且つ焼成後の残渣が少ないことに加えて、銀リン酸系ガラスを変質させないものが好ましく、その含有量は10〜40質量%であることが好ましい。有機溶剤としては、プロピレンカーボネート、トルエン、N,N’−ジメチルホルムアミド(DMF)、1,3−ジメチル−2−イミダゾリジノン(DMI)、炭酸ジメチル、ブチルカルビトールアセテート(BCA)、酢酸イソアミル、ジメチルスルホキシド、アセトン、メチルエチルケトン等を使用することが好ましい。また、有機溶剤として、高級アルコールを使用することがさらに好ましい。高級アルコールは、それ自身が粘性を有しているために、ビークルに樹脂を添加しなくても、ペースト化することができる。また、ペンタンジオールとその誘導体、具体的にはジエチルペンタンジオール(C20)も粘性に優れるため、溶剤に使用することができる。 The organic solvent preferably has a low boiling point (for example, a boiling point of 300 ° C. or lower) and a small amount of residue after baking, and does not alter the silver phosphate glass, and its content is 10 to 40% by mass. It is preferable that Examples of the organic solvent include propylene carbonate, toluene, N, N′-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, It is preferable to use dimethyl sulfoxide, acetone, methyl ethyl ketone or the like. Further, it is more preferable to use a higher alcohol as the organic solvent. Since the higher alcohol itself has viscosity, it can be made into a paste without adding a resin to the vehicle. In addition, pentanediol and its derivatives, specifically diethylpentanediol (C 9 H 20 O 2 ), are excellent in viscosity and can be used as a solvent.

樹脂は、分解温度が低く、焼成後の残渣が少ないことに加えて、銀リン酸系ガラスを変質させ難いものが好ましく、その含有量は0.1〜20質量%であることが好ましい。樹脂として、ニトロセルロース、ポリエチレングリコール誘導体、ポリエチレンカーボネート、アクリル酸エステル(アクリル樹脂)等を使用することが好ましい。   The resin preferably has a low decomposition temperature and a small amount of residue after firing, and it is difficult to alter the silver phosphate glass, and its content is preferably 0.1 to 20% by mass. As the resin, it is preferable to use nitrocellulose, polyethylene glycol derivative, polyethylene carbonate, acrylic acid ester (acrylic resin) or the like.

次いで、ペーストを金属、セラミック、または、ガラスからなる第一の部材と、金属、セラミック、または、ガラスからなる第二の部材との封着箇所にディスペンサーやスクリーン印刷機等の塗布機を用いて塗布し、乾燥させ、200〜400℃で熱処理する。この熱処理により、ガラス粉末が軟化流動して第一及び第二の部材を封着する。   Next, using a dispenser or a coating machine such as a screen printing machine, the paste is sealed at the first member made of metal, ceramic or glass and the second member made of metal, ceramic or glass. Apply, dry and heat-treat at 200-400 ° C. By this heat treatment, the glass powder softens and flows to seal the first and second members.

本発明の銀リン酸系ガラス組成物及び封着材料は、封着以外にも被覆、充填等の目的で使用できる。また、ペースト以外の形態、具体的には粉末、グリーンシート、タブレット等の状態で使用することもできる。   The silver phosphate glass composition and sealing material of the present invention can be used for purposes such as coating and filling in addition to sealing. Moreover, it can also be used in forms other than paste, specifically in the state of powder, green sheets, tablets and the like.

実施例に基づいて、本発明を詳細に説明する。表1及び2は、本発明の実施例(試料No.1〜7)及び比較例(試料No.8〜10)を示している。
The present invention will be described in detail based on examples. Tables 1 and 2 show Examples (Sample Nos. 1 to 7) and Comparative Examples (Sample Nos. 8 to 10) of the present invention.

まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れ、700〜900℃で1〜2時間溶融した。次に、溶融ガラスの一部をTMA(押棒式熱膨張係数測定)用サンプルとしてステンレス製の金型に流し出し、その他の溶融ガラスを水冷ローラーでフィルム状に成形した。なお、TMA用サンプルは、成形後に所定の徐冷処理(アニール)を行った。最後に、フィルム状のガラスをボールミルで粉砕した後、目開き75μmの篩を通過させて、平均粒子径D50が約10μmのガラス粉末を得た。 First, after preparing glass batches such as various oxides and carbonates so as to have the glass composition shown in the table and preparing a glass batch, the glass batch was put in a platinum crucible, and 1 to 700-900 ° C. Melted for 2 hours. Next, a part of the molten glass was poured into a stainless steel mold as a sample for TMA (push bar type thermal expansion coefficient measurement), and the other molten glass was formed into a film shape with a water-cooled roller. In addition, the sample for TMA performed the predetermined slow cooling process (annealing) after shaping | molding. Finally, the film-like glass was pulverized by a ball mill and then passed through a sieve having an opening of 75 μm to obtain a glass powder having an average particle diameter D 50 of about 10 μm.

その後、耐火性フィラーを混合するNo.1、2、4、5、7の試料については、表中に示した通りに、得られたガラス粉末と耐火性フィラー粉末を混合し、混合粉末を得た。   Then, No. which mixes a refractory filler. For the samples 1, 2, 4, 5, and 7, as shown in the table, the obtained glass powder and the refractory filler powder were mixed to obtain a mixed powder.

耐火性フィラー粉末には、NbZr(PO(表中ではNZPと表記)、ZrWO(PO(表中ではZWPと表記)を用いた。また、耐火性フィラー粉末の平均粒子径D50は約10μmであった。 NbZr (PO 4 ) 3 (shown as NZP in the table) and Zr 2 WO 4 (PO 4 ) 2 (shown as ZWP in the table) were used as the refractory filler powder. The average particle diameter D 50 of the refractory filler powder was about 10 [mu] m.

得られた混合粉末を390℃にて30分間焼成し、焼成体を得た。得られた焼成体をTMA用サンプルとした。   The obtained mixed powder was fired at 390 ° C. for 30 minutes to obtain a fired body. The obtained fired body was used as a sample for TMA.

No.1〜10の試料について、ガラス転移点、熱膨張係数、軟化点、流動性、及び、耐失透性を評価した。   No. About the samples of 1-10, the glass transition point, the thermal expansion coefficient, the softening point, the fluidity, and the devitrification resistance were evaluated.

ガラス転移点及び熱膨張係数(30〜150℃)は、TMA用サンプルをTMA装置により測定した。   The glass transition point and the thermal expansion coefficient (30 to 150 ° C.) were measured using a TMA apparatus for the TMA sample.

軟化点はマクロ型示差熱分析装置により測定した。測定雰囲気は大気中、昇温速度は10℃/分とし、室温から測定を開始した。   The softening point was measured with a macro type differential thermal analyzer. The measurement atmosphere was air, the temperature rising rate was 10 ° C./min, and the measurement was started from room temperature.

流動性は次のようにして評価した。粉末試料1gを、直径10mmの金型に入れプレス成型した後に、ステンレス板上で390℃にて30分間焼成した。焼成体の流動径が9mm以上であるものを「◎」、8.8〜9mm未満のものを「○」、8.8mm未満のものを「×」として評価した。   The fluidity was evaluated as follows. 1 g of the powder sample was put into a mold having a diameter of 10 mm, press-molded, and then fired on a stainless steel plate at 390 ° C. for 30 minutes. The sintered body was evaluated as “を” when the flow diameter was 9 mm or more, “◯” when it was less than 8.8 to 9 mm, and “X” when less than 8.8 mm.

耐失透性は次のようにして評価した。光学顕微鏡(倍率100倍)を用いて、焼成体の表面状態を観察した。焼成体の表面に結晶が認められなかったものを「○」、焼成体の表面に結晶が認められたものを「×」として評価した。   The devitrification resistance was evaluated as follows. The surface state of the fired body was observed using an optical microscope (magnification 100 times). The case where no crystal was observed on the surface of the fired body was evaluated as “◯”, and the case where crystal was observed on the surface of the fired body was evaluated as “x”.

表1から明らかなように、本発明の実施例であるNo.1〜7の試料は、流動性、及び、耐失透性に優れていた。一方、比較例であるNo.8の試料はZnOを過剰に含有しているため、No.10の試料はAgOを過剰に含有しているため、流動性、及び、耐失透性に劣っていた。また、No.9の試料はZnOの含有量が少なすぎるため、流動性に劣っていた。 As is apparent from Table 1, No. 1 as an example of the present invention. Samples 1 to 7 were excellent in fluidity and devitrification resistance. On the other hand, No. which is a comparative example. Since the sample No. 8 contains ZnO in excess, No. 8 Since the 10 samples are contained excessively Ag 2 O, fluidity, and was inferior in devitrification resistance. No. Sample 9 was inferior in fluidity because the ZnO content was too small.

本発明の銀リン酸系ガラス組成物及び封着材料は、半導体集積回路、水晶振動子、平面表示装置やLD用ガラス端子の封着に好適である。   The silver phosphate glass composition and the sealing material of the present invention are suitable for sealing semiconductor integrated circuits, crystal resonators, flat display devices, and LD glass terminals.

Claims (3)

モル%で、AgO 20〜40%未満、P 20〜35%、Nb 0〜10%、TeO 15〜40%、ZnO 5超〜20%未満を含有することを特徴とする銀リン酸系ガラス組成物。 It contains, in mol%, Ag 2 O 20 to less than 40%, P 2 O 5 20 to 35%, Nb 2 O 5 0 to 10%, TeO 2 15 to 40%, ZnO 5 to less than 20%. A silver phosphate glass composition. 実質的にPbO、ハロゲンを含有しないことを特徴とする請求項1に記載の銀リン酸系ガラス組成物。   The silver phosphate glass composition according to claim 1, which contains substantially no PbO or halogen. 請求項1または2のいずれかに記載の銀リン酸系ガラス組成物からなるガラス粉末 50〜100体積%と、耐火性フィラー粉末 0〜50体積%とを含有することを特徴とする封着材料。   A sealing material comprising 50 to 100% by volume of a glass powder comprising the silver phosphate glass composition according to claim 1 and 0 to 50% by volume of a refractory filler powder. .
JP2017085851A 2017-04-25 2017-04-25 Silver phosphate-based glass composition and sealing material Pending JP2018184314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085851A JP2018184314A (en) 2017-04-25 2017-04-25 Silver phosphate-based glass composition and sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085851A JP2018184314A (en) 2017-04-25 2017-04-25 Silver phosphate-based glass composition and sealing material

Publications (1)

Publication Number Publication Date
JP2018184314A true JP2018184314A (en) 2018-11-22

Family

ID=64355395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085851A Pending JP2018184314A (en) 2017-04-25 2017-04-25 Silver phosphate-based glass composition and sealing material

Country Status (1)

Country Link
JP (1) JP2018184314A (en)

Similar Documents

Publication Publication Date Title
JP7222182B2 (en) Glass composition and sealing material
WO2019159599A1 (en) Glass composition and sealing material
JP6617541B2 (en) Lead-free glass and sealing materials
JP5083706B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2007332018A (en) Bismuth-based sealing material and bismuth-based paste material
CN112789248B (en) Glass composition and sealing material
JP3748533B2 (en) Low melting glass and method for producing the same
JP5751744B2 (en) Glass
JP6816538B2 (en) Silver phosphoric acid-based glass composition and sealing material
JP2019089689A (en) Glass composition and sealing material
WO2020235284A1 (en) Glass composition and sealing material
JP7385169B2 (en) Glass compositions and sealing materials
JP2018123016A (en) Silver phosphate glass composition and sealing material
WO2020153061A1 (en) Glass powder and sealing material using same
JP2018184314A (en) Silver phosphate-based glass composition and sealing material
WO2020262109A1 (en) Glass composition and sealing material
JP2019073403A (en) Vanadium phosphate glass composition and sealing material
US20230303425A1 (en) Glass composition and sealing material
JP2020040848A (en) Glass composition and sealing material
JP2019089685A (en) Vanadium phosphate glass composition and sealing material
WO2021166568A1 (en) Glass composition and sealing material
JP2021130602A (en) Glass composition and sealing material
JP2023033083A (en) Glass composition and sealing material