JP7222182B2 - Glass composition and sealing material - Google Patents
Glass composition and sealing material Download PDFInfo
- Publication number
- JP7222182B2 JP7222182B2 JP2018100407A JP2018100407A JP7222182B2 JP 7222182 B2 JP7222182 B2 JP 7222182B2 JP 2018100407 A JP2018100407 A JP 2018100407A JP 2018100407 A JP2018100407 A JP 2018100407A JP 7222182 B2 JP7222182 B2 JP 7222182B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- content
- sealing material
- sealing
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/21—Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
- C03C8/16—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/24—Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
本発明は、有害な鉛やハロゲンを含有することなく、400℃以下の低温で気密封着することが可能なガラス組成物と、それを用いた封着材料に関するものである。 TECHNICAL FIELD The present invention relates to a glass composition that does not contain harmful lead or halogen and that can be hermetically sealed at a low temperature of 400° C. or less, and a sealing material using the same.
半導体集積回路、水晶振動子、平面表示装置やLD用ガラス端子等には、封着材料が使用される。 Sealing materials are used for semiconductor integrated circuits, crystal oscillators, flat display devices, glass terminals for LDs, and the like.
上記の封着材料には、化学的耐久性および耐熱性が要求されるため、樹脂系の接着剤ではなくガラス系封着材料が用いられている。ガラス系封着材料には、機械的強度、流動性、耐候性等の特性が要求されるが、熱に弱い素子を搭載する電子部品の封着には、封着温度をできる限り低くすることが要求される。具体的には、400℃以下での封着が要求される。それゆえ、上記特性を満足するガラスとして、融点を下げる効果が極めて大きいPbOを多量に含有する鉛硼酸系ガラスが広く用いられてきた(例えば、特許文献1参照)。 Since the above-described sealing materials are required to have chemical durability and heat resistance, glass-based sealing materials are used instead of resin-based adhesives. Glass-based sealing materials are required to have properties such as mechanical strength, fluidity, and weather resistance. When sealing electronic components with heat-sensitive elements, the sealing temperature should be kept as low as possible. is required. Specifically, sealing at 400° C. or less is required. Therefore, as a glass that satisfies the above properties, a lead-borate glass containing a large amount of PbO, which is extremely effective in lowering the melting point, has been widely used (see, for example, Patent Document 1).
近年、鉛硼酸系ガラスに含まれるPbOに対して環境上の問題が指摘されており、鉛硼酸系ガラスからPbOを含まないガラスに置き換えることが望まれている。そのため、鉛硼酸系ガラスの代替品として、様々な低融点ガラスが開発されている。中でも特許文献2に記載されているBi2O3-B2O3系ガラスは、鉛硼酸系ガラスの代替候補として期待されているが、封止温度が450℃以上と高く、より低温での封止が必要な用途には用いることが出来ない。 In recent years, environmental problems have been pointed out with respect to PbO contained in lead-borate glass, and it is desired to replace lead-borate glass with glass that does not contain PbO. Therefore, various low-melting-point glasses have been developed as substitutes for lead borate glasses. Among them, the Bi 2 O 3 -B 2 O 3 -based glass described in Patent Document 2 is expected as a candidate to replace the lead borate-based glass, but it has a high sealing temperature of 450°C or more, and can be used at a lower temperature. It cannot be used for applications that require sealing.
以上に鑑み、本発明は、環境に有害な鉛を含有させることなく、低温で封着可能なガラス組成物と、それを用いた封着材料を提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass composition capable of sealing at a low temperature without containing environmentally harmful lead, and a sealing material using the same.
本発明のガラス組成物は、モル%で、CuO 5~60%、TeO2 10~60%、MoO3 10~60%を含有することを特徴とする。 The glass composition of the present invention is characterized by containing 5 to 60% CuO, 10 to 60% TeO 2 and 10 to 60% MoO 3 in mol %.
本発明のガラス組成物は、CuOを5%以上含有することにより、低軟化点を達成している。なお、一般に、ガラスの融点を低くすると、ガラス化しなかったり、分相が生じて均質なガラスが得られにくい傾向にあるが、本発明では、TeO2の含有量を10%以上、MoO3の含有量を10%以上と規定しているため、ガラスが安定化し、均質なガラスを得ることが出来る。 The glass composition of the present invention achieves a low softening point by containing 5% or more of CuO. In general, when the melting point of glass is lowered, it tends not to be vitrified, or phase separation occurs, making it difficult to obtain homogeneous glass. Since the content is specified to be 10% or more, the glass is stabilized and homogeneous glass can be obtained.
本発明のガラス組成物は、さらに、モル%で、Bi2O3 0~10%、TiO2 0~10%、Ag2O 0~20%、AgI 0~10%を含有することが好ましい。 The glass composition of the present invention preferably further contains 0 to 10% Bi 2 O 3 , 0 to 10% TiO 2 , 0 to 20% Ag 2 O, and 0 to 10% AgI in mol %.
本発明のガラス組成物は、さらに、モル%で、P2O5 0~5%を含有することが好ましい。 The glass composition of the present invention preferably further contains 0-5% P 2 O 5 in mol %.
本発明の封着材料は、上記のガラス組成物からなるガラス粉末 40~100体積%と、耐火性フィラー粉末 0~60体積%とを含有することを特徴とする。 The sealing material of the present invention is characterized by containing 40 to 100% by volume of glass powder comprising the above glass composition and 0 to 60% by volume of refractory filler powder.
本発明の封着材料は、水晶振動子用途に使用されることが好ましい。 The sealing material of the present invention is preferably used for crystal oscillator applications.
本発明の封着材料ペーストは、上記の封着材料とビークルとを含有することを特徴とする。 The sealing material paste of the present invention is characterized by containing the above sealing material and vehicle.
環境に有害な鉛を含有させることなく、低温で封着可能なガラス組成物と、それを用いた封着材料を提供することができる。 It is possible to provide a glass composition capable of sealing at a low temperature and a sealing material using the same without containing environmentally harmful lead.
本発明のガラス組成物は、モル%で、CuO 5~60%、TeO2 10~60%、MoO3 10~60%を含有する。ガラス組成を上記のように限定した理由を以下に示す。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 The glass composition of the present invention contains 5-60% CuO, 10-60% TeO 2 and 10-60% MoO 3 in mole percent. The reasons for limiting the glass composition as described above are as follows. In the following description of the content of each component, "%" means "mol %" unless otherwise specified.
CuOは、ガラスの粘性(軟化点等)を低下させると共に、ガラスの熱膨張係数を低下させる成分である。CuOの含有量は5~60%であり、10~55%、15~50%、特に20~45%であることが好ましい。CuOの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また、ガラスの熱膨張係数が高くなり過ぎる傾向にある。一方、CuOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 CuO is a component that lowers the viscosity (softening point, etc.) of the glass and lowers the coefficient of thermal expansion of the glass. The content of CuO is 5-60%, preferably 10-55%, 15-50%, especially 20-45%. If the content of CuO is too small, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult, and the glass becomes thermally unstable, devitrifying the glass during melting or firing. becomes easier. Also, the coefficient of thermal expansion of glass tends to be too high. On the other hand, if the CuO content is too high, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.
TeO2は、ガラスネットワークを形成すると共に、耐候性を向上させる成分である。TeO2の含有量は10~60%であり、15~57%、特に25~55%であることが好ましい。TeO2の含有量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。一方、TeO2の含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また、ガラスの熱膨張係数が高くなり過ぎる傾向にある。 TeO 2 is a component that forms a glass network and improves weather resistance. The content of TeO 2 is 10-60%, preferably 15-57%, especially 25-55%. If the TeO 2 content is too low, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing, and the weather resistance tends to decrease. On the other hand, if the TeO2 content is too high, the viscosity (softening point, etc.) of the glass becomes high, making low-temperature sealing difficult, and the glass becomes thermally unstable. Devitrification easily occurs. Also, the coefficient of thermal expansion of glass tends to be too high.
なお、CuO/TeO2は0.05~10、0.1~8、特に0.2~6であることが好ましい。CuO/TeO2が小さ過ぎても大き過ぎても、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。ここで、「CuO/TeO2」は、CuOの含有量をTeO2の含有量で除した値である。 CuO/TeO 2 is preferably 0.05 to 10, 0.1 to 8, especially 0.2 to 6. If CuO/TeO 2 is too small or too large, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult, and the glass becomes thermally unstable, causing problems during melting or firing. Glass becomes easy to devitrify. Here, “CuO/TeO 2 ” is a value obtained by dividing the content of CuO by the content of TeO 2 .
MoO3は、ガラスネットワークを形成すると共に、耐候性を向上させる成分である。MoO3の含有量は10~60%であり、15~55%、特に20~50%であることが好ましい。MoO3の含有量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。一方、MoO3の含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、ガラスの熱膨張係数が高くなり過ぎる傾向にある。 MoO3 is a component that forms a glass network and improves weather resistance. The content of MoO 3 is 10-60%, preferably 15-55%, especially 20-50%. If the content of MoO3 is too small, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing. become difficult. On the other hand, if the content of MoO 3 is too high, the glass becomes thermally unstable, the glass tends to devitrify during melting or firing, and the coefficient of thermal expansion of the glass tends to become too high.
なお、TeO2+MoO3(TeO2、及びMoO3の合量)は20~95%、30~92%、特に40~90%であることが好ましい。TeO2、及びMoO3の合量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。一方、TeO2、及びMoO3の合量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。 The TeO 2 +MoO 3 (total amount of TeO 2 and MoO 3 ) is preferably 20-95%, 30-92%, particularly 40-90%. If the total amount of TeO 2 and MoO 3 is too small, the glass becomes thermally unstable and tends to devitrify during melting or firing. On the other hand, if the total amount of TeO 2 and MoO 3 is too large, the glass becomes thermally unstable, the glass tends to devitrify during melting or firing, and the viscosity (softening point, etc.) of the glass increases. It becomes difficult to perform low-temperature sealing.
本発明のガラス組成物は、上記成分以外にも、ガラス組成中に下記の成分を含有してもよい。 The glass composition of the present invention may contain the following components in addition to the above components.
Bi2O3は、ガラスの粘性(軟化点等)を低下させると共に、ガラスの熱膨張係数を低下させる成分である。Bi2O3の含有量は0~10%、0~6%、0.1~2%であることが好ましい。Bi2O3の含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 Bi 2 O 3 is a component that lowers the viscosity (softening point, etc.) of the glass and lowers the coefficient of thermal expansion of the glass. The content of Bi 2 O 3 is preferably 0-10%, 0-6%, 0.1-2%. If the content of Bi 2 O 3 is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
TiO2は、ガラスを熱的に安定化させると共に、ガラスの熱膨張係数を低下させる成分である。TiO2の含有量は0~10%、0~6%、0.1~2%であることが好ましい。TiO2の含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 TiO 2 is a component that thermally stabilizes the glass and lowers the thermal expansion coefficient of the glass. The content of TiO 2 is preferably 0-10%, 0-6%, 0.1-2%. If the content of TiO 2 is too high, the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing tends to become difficult.
Ag2Oは、ガラスの粘性(軟化点等)を低下させる成分である。Ag2Oの含有量は0~20%、0~10%、特に0.1~5%であることが好ましい。Ag2Oの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 Ag 2 O is a component that lowers the viscosity (softening point, etc.) of glass. The content of Ag 2 O is preferably 0-20%, 0-10%, particularly 0.1-5%. If the content of Ag 2 O is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
AgIは、ガラスの粘性(軟化点等)を低下させる成分である。AgIの含有量は0~10%、0~5%、0.1~2%であることが好ましい。AgIの含有量が多過ぎると、ガラスの熱膨張係数が高くなり過ぎる傾向にある。 AgI is a component that lowers the viscosity (softening point, etc.) of glass. The content of AgI is preferably 0-10%, 0-5%, 0.1-2%. If the AgI content is too high, the coefficient of thermal expansion of the glass tends to be too high.
P2O5は、ガラスネットワークを形成すると共に、ガラスを熱的に安定化させる成分である。P2O5の含有量は0~5%、0~2%、特に0.1~1%であることが好ましい。P2O5の含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に耐候性が低下し易くなる。 P 2 O 5 is a component that forms a glass network and thermally stabilizes the glass. The content of P 2 O 5 is preferably 0-5%, 0-2%, especially 0.1-1%. If the content of P 2 O 5 is too high, the viscosity (softening point, etc.) of the glass increases, making low-temperature sealing difficult and weather resistance more likely to decrease.
Li2O、Na2O、K2Oは、ガラスの粘性(軟化点等)を下げる効果があり、それらの含有量は合量で、0~20%、特に0~10%であることが好ましい。Li2O、Na2O、K2Oの合量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。なお、Li2O、Na2O、K2Oの含有量はそれぞれ、0~10%、特に0~5%であることが好ましい。 Li 2 O, Na 2 O, and K 2 O have the effect of lowering the viscosity (softening point, etc.) of the glass, and their total content is 0 to 20%, particularly 0 to 10%. preferable. If the total amount of Li 2 O, Na 2 O, and K 2 O is too large, the glass becomes thermally unstable, the glass tends to devitrify during melting or firing, and the weather resistance tends to decrease. . The contents of Li 2 O, Na 2 O and K 2 O are each preferably 0 to 10%, particularly preferably 0 to 5%.
MgO、CaO、SrO、BaOは、ガラスを熱的に安定化させると共に、耐候性を向上させる効果があり、それらの含有量は合量で、0~20%、特に0~10%であることが好ましい。MgO、CaO、SrO、BaOの合量が多過ぎると、ガラスが熱的に不安定になり溶融時または焼成時にガラスが失透し易くなる。なお、MgO、CaO、SrO、BaOの含有量はそれぞれ、0~10%、特に0~5%であることが好ましい。 MgO, CaO, SrO, and BaO have the effect of thermally stabilizing glass and improving weather resistance, and their total content is 0 to 20%, particularly 0 to 10%. is preferred. If the total amount of MgO, CaO, SrO and BaO is too large, the glass becomes thermally unstable and tends to devitrify during melting or firing. The contents of MgO, CaO, SrO and BaO are each preferably 0 to 10%, particularly preferably 0 to 5%.
ZnOは、ガラスの粘性(軟化点等)を低下させると共に、耐候性を向上させる成分である。ZnOの含有量は0~10%、特に0~5%であることが好ましい。ZnOの含有量が多過ぎると、ガラスが熱的に不安定になり溶融時または焼成時にガラスが失透し易くなる。 ZnO is a component that lowers the viscosity (softening point, etc.) of glass and improves weather resistance. The content of ZnO is preferably 0-10%, more preferably 0-5%. If the ZnO content is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
WO3は、ガラスを熱的に安定化させると共に、耐候性を向上させる成分である。WO3の含有量は0~10%、特に0~5%であることが好ましい。WO3の含有量が多過ぎると、逆にガラスが熱的に不安定になる。 WO3 is a component that thermally stabilizes the glass and improves weather resistance. The content of WO 3 is preferably 0-10%, especially 0-5%. If the WO3 content is too high, the glass becomes thermally unstable.
Nb2O5は、ガラスを熱的に安定化させると共に、耐候性を向上させる成分である。Nb2O5の含有量は0~10%、特に0~5%であることが好ましい。Nb2O5の含有量が多過ぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 Nb 2 O 5 is a component that thermally stabilizes glass and improves weather resistance. The content of Nb 2 O 5 is preferably 0-10%, especially 0-5%. If the content of Nb 2 O 5 is too large, the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing tends to become difficult.
V2O5は、ガラスネットワークを形成すると共に、ガラスの粘性(軟化点等)を低下させる成分である。V2O5の含有量は0~10%、特に0~5%であることが好ましい。V2O5の含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。 V 2 O 5 is a component that forms a glass network and lowers the viscosity (softening point, etc.) of the glass. The content of V 2 O 5 is preferably 0-10%, especially 0-5%. If the V 2 O 5 content is too high, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing, and the weather resistance tends to decrease.
Ga2O3は、ガラスを熱的に安定化させると共に、耐候性を向上させる成分であるが、非常に高価であることから、その含有量は0.01%未満、特に含有しないことが好ましい。 Ga 2 O 3 is a component that thermally stabilizes glass and improves weather resistance, but is very expensive, so its content is less than 0.01%, and it is particularly preferable not to contain it. .
SiO2、Al2O3、GeO2、Fe2O3、NiO、CeO2、B2O3、Sb2O3、ZrO2はガラスを熱的に安定化させて、失透を抑制する成分であり、各々2%未満まで添加可能である。これらの含有量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 SiO 2 , Al 2 O 3 , GeO 2 , Fe 2 O 3 , NiO, CeO 2 , B 2 O 3 , Sb 2 O 3 and ZrO 2 are components that thermally stabilize the glass and suppress devitrification. and each can be added up to less than 2%. If the content of these elements is too high, the glass becomes thermally unstable and tends to devitrify during melting or firing.
本発明のガラス組成物は、環境上の理由から、実質的にPbOを含有しないことが好ましい。ここで、本発明でいう「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm以下の場合を指す。 The glass composition of the present invention is preferably substantially free of PbO for environmental reasons. Here, "substantially free of PbO" as used in the present invention refers to the case where the content of PbO in the glass composition is 1000 ppm or less.
本発明の封着材料は、上記のガラス組成物からなるガラス粉末を含有する。本発明の封着材料は、機械的強度を向上、或いは熱膨張係数を調整するために、耐火性フィラー粉末を含有してもよい。その混合割合は、ガラス粉末40~100体積%、耐火性フィラー粉末0~60体積%であり、ガラス粉末50~99体積%、耐火性フィラー粉末1~50体積%、特にガラス粉末60~95体積%、耐火性フィラー粉末5~40体積%であることが好ましい。耐火性フィラーの含有量が多過ぎると、相対的にガラス粉末の割合が少なくなるため、所望の流動性を確保し難くなる。 The sealing material of the present invention contains glass powder comprising the glass composition described above. The sealing material of the present invention may contain refractory filler powder in order to improve the mechanical strength or adjust the coefficient of thermal expansion. The mixing ratio is 40 to 100% by volume of glass powder, 0 to 60% by volume of refractory filler powder, 50 to 99% by volume of glass powder, 1 to 50% by volume of refractory filler powder, particularly 60 to 95% by volume of glass powder. %, and 5 to 40% by volume of the refractory filler powder. If the content of the refractory filler is too high, the proportion of the glass powder will be relatively low, making it difficult to ensure the desired fluidity.
耐火性フィラー粉末は、特に限定されず、種々の材料を選択することができるが、上記のガラス粉末と反応し難いものが好ましい。 The refractory filler powder is not particularly limited, and various materials can be selected, but those that hardly react with the glass powder are preferred.
具体的には、耐火性フィラーとして、NbZr(PO4)3、Zr2WO4(PO4)2、Zr2MoO4(PO4)2、Hf2WO4(PO4)2、Hf2MoO4(PO4)2、リン酸ジルコニウム、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β-スポジュメン、ムライト、チタニア、石英ガラス、β-ユークリプタイト、β-石英、ウィレマイト、コーディエライト、Sr0.5Zr2(PO4)3等のNaZr2(PO4)3型固溶体等を、単独で又は2種以上を混合して使用することができる。なお、耐火性フィラーの粒径は平均粒子径D50が0.2~20μm程度のものを使用することが好ましい。 Specifically, NbZr( PO4 ) 3 , Zr2WO4 ( PO4) 2 , Zr2MoO4 ( PO4 ) 2 , Hf2WO4 ( PO4 ) 2 , Hf2MoO as the refractory filler 4 (PO 4 ) 2 , zirconium phosphate, zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, titania, quartz glass, β-eucryptite, β-quartz, willemite, cordierite , Sr 0.5 Zr 2 (PO 4 ) 3 , etc. can be used alone or in combination of two or more. As for the particle diameter of the refractory filler, it is preferable to use one having an average particle diameter D50 of about 0.2 to 20 μm.
本発明のガラス組成物及び封着材料の軟化点は400℃以下、390℃以下、380℃以下、特に370℃以下であることが好ましい。軟化点が高過ぎると、ガラスの粘性が高くなるため、封着温度が上昇して、封着時に素子を劣化させるおそれがある。なお、軟化点の下限は特に限定されないが、現実的には180℃以上である。ここで、「軟化点」とは、平均粒子径D50が0.5~20μmのガラス組成物及び封着材料を測定試料として、マクロ型示差熱分析装置で測定した値を指す。測定条件としては、室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型示差熱分析装置で測定した軟化点は、図1に示す測定曲線における第四屈曲点の温度(Ts)を指す。 The softening point of the glass composition and sealing material of the present invention is preferably 400° C. or lower, 390° C. or lower, 380° C. or lower, particularly 370° C. or lower. If the softening point is too high, the viscosity of the glass increases, which raises the sealing temperature and may deteriorate the element during sealing. Although the lower limit of the softening point is not particularly limited, it is practically 180° C. or higher. Here, the “softening point” refers to a value measured with a macro-type differential thermal analysis apparatus using a glass composition and a sealing material having an average particle diameter D50 of 0.5 to 20 μm as measurement samples. As for the measurement conditions, the measurement is started at room temperature, and the temperature rise rate is 10° C./min. The softening point measured by the macro-type differential thermal analyzer refers to the temperature (Ts) at the fourth inflection point in the measurement curve shown in FIG.
本発明のガラス組成物及び封着材料の熱膨張係数(30~150℃)は20×10-7/℃~180×10-7/℃、30×10-7/℃~160×10-7/℃、特に40×10-7/℃~140×10-7/℃であることが好ましい。熱膨張係数が低すぎても高すぎても、被封着材料との膨張差により封着時や封着後に封着部が破損し易くなる。 The thermal expansion coefficient (30 to 150° C.) of the glass composition and sealing material of the present invention is 20×10 −7 /° C. to 180×10 −7 /° C., 30×10 −7 /° C. to 160×10 −7 /°C, more preferably 40×10 -7 /°C to 140×10 -7 /°C. If the coefficient of thermal expansion is too low or too high, the sealing portion is likely to be damaged during or after sealing due to the difference in expansion from the material to be sealed.
上記の特性を有する本発明のガラス組成物及び封着材料は、特に低温での封着が要求される水晶振動子用途に好適である。 The glass composition and sealing material of the present invention having the properties described above are particularly suitable for use in crystal resonators that require low-temperature sealing.
次に本発明のガラス組成物を用いたガラス粉末の製造方法、及び本発明のガラス組成物を封着材料として使用する方法の一例について説明する。 Next, an example of a method for producing a glass powder using the glass composition of the present invention and a method of using the glass composition of the present invention as a sealing material will be described.
まず、上記組成を有するように調合した原料粉末を800~1000℃で1~2時間、均質なガラスが得られるまで溶融する。次いで、溶融ガラスをフィルム状等に成形した後、粉砕し、分級することにより、本発明のガラス組成物からなるガラス粉末を作製する。なお、ガラス粉末の平均粒子径D50は2~20μm程度であることが好ましい。必要に応じて、ガラス粉末に各種耐火性フィラー粉末を添加する。 First, raw material powder prepared to have the above composition is melted at 800 to 1000° C. for 1 to 2 hours until a homogeneous glass is obtained. Next, the molten glass is formed into a film or the like, pulverized, and classified to produce a glass powder comprising the glass composition of the present invention. Incidentally, the average particle diameter D50 of the glass powder is preferably about 2 to 20 μm. If necessary, various refractory filler powders are added to the glass powder.
次いでガラス粉末(あるいは封着材料)にビークルを添加して混練することによりガラスペースト(あるいは封着材料ペースト)を調製する。ビークルは、主に有機溶剤と樹脂とからなり、樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。 Next, a glass paste (or a sealing material paste) is prepared by adding a vehicle to the glass powder (or the sealing material) and kneading the mixture. The vehicle mainly consists of an organic solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste. Moreover, a surfactant, a thickening agent, etc. can also be added as needed.
有機溶剤は、沸点が低く(例えば、沸点が300℃以下)、且つ焼成後の残渣が少ないことに加えて、ガラスを変質させないものが好ましく、その含有量は10~40質量%であることが好ましい。有機溶剤としては、プロピレンカーボネート、トルエン、N,N’-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、炭酸ジメチル、ブチルカルビトールアセテート(BCA)、酢酸イソアミル、ジメチルスルホキシド、アセトン、メチルエチルケトン等を使用することが好ましい。また、有機溶剤として、高級アルコールを使用することがさらに好ましい。高級アルコールは、それ自身が粘性を有しているために、ビークルに樹脂を添加しなくても、ペースト化することができる。また、ペンタンジオールとその誘導体、具体的にはジエチルペンタンジオール(C9H20O2)も粘性に優れるため、溶剤に使用することができる。 The organic solvent preferably has a low boiling point (for example, a boiling point of 300° C. or lower), leaves little residue after firing, and does not degrade the glass, and its content is preferably 10 to 40% by mass. preferable. Organic solvents include propylene carbonate, toluene, N,N'-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, It is preferred to use dimethyl sulfoxide, acetone, methyl ethyl ketone and the like. Further, it is more preferable to use a higher alcohol as the organic solvent. Since the higher alcohol itself has viscosity, it can be made into a paste without adding a resin to the vehicle. Pentanediol and its derivatives, specifically diethylpentanediol (C 9 H 20 O 2 ), can also be used as the solvent because of their excellent viscosity.
樹脂は、分解温度が低く、焼成後の残渣が少ないことに加えて、ガラスを変質させ難いものが好ましく、その含有量は0.1~20質量%であることが好ましい。樹脂として、ニトロセルロース、ポリエチレングリコール誘導体、ポリエチレンカーボネート、アクリル酸エステル(アクリル樹脂)等を使用することが好ましい。 The resin preferably has a low decomposition temperature, leaves little residue after firing, and does not easily degrade the glass, and its content is preferably 0.1 to 20% by mass. As the resin, it is preferable to use nitrocellulose, polyethylene glycol derivatives, polyethylene carbonate, acrylic acid ester (acrylic resin), and the like.
次いで、ペーストを金属、セラミック、または、ガラスからなる第一の部材と、金属、セラミック、または、ガラスからなる第二の部材との封着箇所にディスペンサーやスクリーン印刷機等の塗布機を用いて塗布し、乾燥させ、300~400℃で熱処理する。この熱処理により、ガラス粉末が軟化流動して第一と第二の部材を封着する。 Next, the paste is applied to the sealing portion between the first member made of metal, ceramic, or glass and the second member made of metal, ceramic, or glass using a dispenser or an applicator such as a screen printer. It is applied, dried and heat treated at 300-400°C. This heat treatment causes the glass powder to soften and flow to seal the first and second members.
本発明のガラス組成物及び封着材料は、封着以外にも被覆、充填等の目的で使用できる。また、ペースト以外の形態、具体的には粉末、グリーンシート、タブレット等の状態で使用することもできる。 The glass composition and sealing material of the present invention can be used for purposes other than sealing, such as coating and filling. Moreover, it can also be used in a form other than a paste, specifically in the form of a powder, a green sheet, a tablet, or the like.
実施例に基づいて、本発明を詳細に説明する。表1及び2は、本発明の実施例(試料No.1~11)及び比較例(試料No.12~14)を示している。 The present invention will be described in detail based on examples. Tables 1 and 2 show examples of the present invention (samples No. 1 to 11) and comparative examples (samples No. 12 to 14).
まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れ、800~1000℃で1~2時間溶融した。次に、溶融ガラスの一部をTMA(押棒式熱膨張係数測定)用サンプルとしてステンレス製の金型に流し出し、その他の溶融ガラスを水冷ローラーでフィルム状に成形した。なお、耐火性フィラーを含有しないNo.2、8、9、11、12については、成形後に所定の徐冷処理(アニール)を行うことによりTMA用サンプルを得た。最後に、フィルム状のガラスをボールミルで粉砕した後、目開き75μmの篩を通過させて、平均粒子径D50が約10μmのガラス粉末を得た。 First, glass raw materials such as various oxides and carbonates were mixed so as to obtain the glass composition shown in the table, and a glass batch was prepared. Melted for 2 hours. Next, part of the molten glass was poured into a stainless steel mold as a sample for TMA (push rod type thermal expansion coefficient measurement), and the rest of the molten glass was formed into a film with a water-cooled roller. In addition, No. 1 containing no refractory filler. For Nos. 2, 8, 9, 11, and 12, samples for TMA were obtained by performing a predetermined slow cooling treatment (annealing) after molding. Finally, the film-like glass was pulverized with a ball mill and passed through a sieve with an opening of 75 μm to obtain a glass powder having an average particle diameter D50 of about 10 μm.
その後、耐火性フィラーを混合するNo.1、3~7、10、13の試料については、表中に示した通りに、得られたガラス粉末と耐火性フィラー粉末を混合し、混合粉末を得た。 After that, no. For samples 1, 3 to 7, 10 and 13, the obtained glass powder and refractory filler powder were mixed to obtain mixed powders as shown in the table.
耐火性フィラー粉末には、Zr2WO4(PO4)2(表中ではZWPと表記)、NbZr(PO4)3(表中ではNZPと表記)を用いた。また、耐火性フィラー粉末の平均粒子径D50は約10μmであった。 Zr 2 WO 4 (PO 4 ) 2 (denoted as ZWP in the table) and NbZr(PO 4 ) 3 (denoted as NZP in the table) were used as the refractory filler powder. Also, the average particle size D50 of the refractory filler powder was about 10 μm.
得られた混合粉末を450℃にて30分間焼成し、焼成体を得た。得られた焼成体をTMA用サンプルとした。 The obtained mixed powder was fired at 450° C. for 30 minutes to obtain a fired body. The obtained sintered body was used as a sample for TMA.
No.1~13の試料について、ガラス転移点、熱膨張係数、軟化点、流動性を評価した。 No. Samples 1 to 13 were evaluated for glass transition point, thermal expansion coefficient, softening point, and fluidity.
ガラス転移点及び熱膨張係数(30~150℃)は、TMA用サンプルをTMA装置により測定した。 The glass transition point and thermal expansion coefficient (30 to 150° C.) of the TMA sample were measured using a TMA apparatus.
軟化点はマクロ型示差熱分析装置により測定した。測定雰囲気は大気中、昇温速度は10℃/分とし、室温から測定を開始した。 The softening point was measured with a macro-type differential thermal analyzer. The measurement atmosphere was air, the temperature increase rate was 10° C./min, and the measurement was started from room temperature.
流動性は次のようにして評価した。粉末試料5gを、直径20mmの金型に入れプレス成型した後に、ガラス基板上で450℃にて30分間焼成した。焼成体の流動径が19mm以上であるものを「○」、19mm未満のものを「×」として評価した。 Liquidity was evaluated as follows. 5 g of the powder sample was placed in a mold with a diameter of 20 mm, press-molded, and then baked on a glass substrate at 450° C. for 30 minutes. A flow diameter of 19 mm or more of the sintered body was evaluated as "○", and a flow diameter of less than 19 mm was evaluated as "X".
表から明らかなように、本発明の実施例であるNo.1~11の試料は、流動性に優れていた。一方、比較例であるNo.12の試料は、CuOの含有量が少なく、TeO2を過剰に含有しているため焼成時に失透した。No.13の試料は、MoO3の含有量が少ないため流動性に劣っていた。No.14の試料は、CuOを過剰に含有しているためガラス化しなかった。 As is clear from the table, No. 1, which is an example of the present invention. Samples 1 to 11 were excellent in fluidity. On the other hand, no. Sample No. 12 devitrified during firing due to its low CuO content and excessive TeO 2 content. No. Sample No. 13 had poor fluidity due to low MoO3 content. No. 14 samples did not vitrify due to excessive CuO content.
本発明のガラス組成物及び封着材料は、半導体集積回路、水晶振動子、平面表示装置やLD用ガラス端子の封着に好適である。 The glass composition and sealing material of the present invention are suitable for sealing semiconductor integrated circuits, crystal oscillators, flat display devices, and glass terminals for LDs.
Claims (6)
A sealing material paste comprising the sealing material according to claim 4 or 5 and a vehicle.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018100407A JP7222182B2 (en) | 2018-05-25 | 2018-05-25 | Glass composition and sealing material |
PCT/JP2019/018557 WO2019225335A1 (en) | 2018-05-25 | 2019-05-09 | Glass composition and sealing material |
CN201980029501.3A CN112055699B (en) | 2018-05-25 | 2019-05-09 | Glass composition and sealing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018100407A JP7222182B2 (en) | 2018-05-25 | 2018-05-25 | Glass composition and sealing material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019202921A JP2019202921A (en) | 2019-11-28 |
JP7222182B2 true JP7222182B2 (en) | 2023-02-15 |
Family
ID=68617161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018100407A Active JP7222182B2 (en) | 2018-05-25 | 2018-05-25 | Glass composition and sealing material |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7222182B2 (en) |
CN (1) | CN112055699B (en) |
WO (1) | WO2019225335A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7185182B2 (en) * | 2018-10-05 | 2022-12-07 | 日本電気硝子株式会社 | Glass composition and sealing material |
JP7172650B2 (en) * | 2019-01-25 | 2022-11-16 | 日本電気硝子株式会社 | Glass powder and sealing material using it |
JP7172848B2 (en) * | 2019-05-17 | 2022-11-16 | 日本電気硝子株式会社 | Glass composition and sealing material |
WO2021166568A1 (en) * | 2020-02-18 | 2021-08-26 | 日本電気硝子株式会社 | Glass composition and sealing material |
JP7522386B2 (en) | 2020-02-18 | 2024-07-25 | 日本電気硝子株式会社 | Glass composition and sealing material |
EP4393893A1 (en) | 2021-08-26 | 2024-07-03 | Nippon Electric Glass Co., Ltd. | Glass composition and sealing material |
CN117682759A (en) * | 2023-11-24 | 2024-03-12 | 中建材玻璃新材料研究院集团有限公司 | Sealing glass blank for power lithium battery and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010016318A1 (en) | 2008-08-06 | 2010-02-11 | 日本電気硝子株式会社 | Sealing glass |
JP2010184852A (en) | 2009-01-16 | 2010-08-26 | Hitachi Powdered Metals Co Ltd | Low melting point glass composition, low-temperature sealing material using the same, and electronic component |
JP2013049614A (en) | 2011-07-29 | 2013-03-14 | Nippon Electric Glass Co Ltd | Method for producing glass substrate with sealing material layer |
JP2015163587A (en) | 2015-04-23 | 2015-09-10 | 旭硝子株式会社 | Lead-free glass for sealing, sealing material and sealing material paste |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283211A (en) * | 1990-11-28 | 1994-02-01 | Corning Incorporated | Thallium germanate, tellurite, and antimonite glasses |
JPH0514797A (en) * | 1991-06-28 | 1993-01-22 | Matsushita Electric Ind Co Ltd | Video camera device |
JPH05147974A (en) * | 1991-11-25 | 1993-06-15 | Nippon Electric Glass Co Ltd | Seal bonding material |
MY163084A (en) * | 2011-04-21 | 2017-08-15 | Shoei Chemical Ind Co | Conductive paste |
JP2013256439A (en) * | 2012-05-15 | 2013-12-26 | Ohara Inc | Optical glass, optical element and preform |
CN105073672B (en) * | 2013-02-01 | 2019-04-12 | 纳美仕有限公司 | Frit |
JP6788224B2 (en) * | 2016-11-02 | 2020-11-25 | 日本電気硝子株式会社 | Optical cap parts |
-
2018
- 2018-05-25 JP JP2018100407A patent/JP7222182B2/en active Active
-
2019
- 2019-05-09 CN CN201980029501.3A patent/CN112055699B/en active Active
- 2019-05-09 WO PCT/JP2019/018557 patent/WO2019225335A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010016318A1 (en) | 2008-08-06 | 2010-02-11 | 日本電気硝子株式会社 | Sealing glass |
JP2010184852A (en) | 2009-01-16 | 2010-08-26 | Hitachi Powdered Metals Co Ltd | Low melting point glass composition, low-temperature sealing material using the same, and electronic component |
JP2013049614A (en) | 2011-07-29 | 2013-03-14 | Nippon Electric Glass Co Ltd | Method for producing glass substrate with sealing material layer |
JP2015163587A (en) | 2015-04-23 | 2015-09-10 | 旭硝子株式会社 | Lead-free glass for sealing, sealing material and sealing material paste |
Also Published As
Publication number | Publication date |
---|---|
CN112055699B (en) | 2022-08-16 |
JP2019202921A (en) | 2019-11-28 |
WO2019225335A1 (en) | 2019-11-28 |
CN112055699A (en) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7222182B2 (en) | Glass composition and sealing material | |
JP7090838B2 (en) | Glass composition and sealing material | |
JP7185182B2 (en) | Glass composition and sealing material | |
JP7172848B2 (en) | Glass composition and sealing material | |
JP7385169B2 (en) | Glass compositions and sealing materials | |
JP2019089689A (en) | Glass composition and sealing material | |
JP6816538B2 (en) | Silver phosphoric acid-based glass composition and sealing material | |
WO2023026771A1 (en) | Glass composition and sealing material | |
JP7172209B2 (en) | sealing material | |
JP7172650B2 (en) | Glass powder and sealing material using it | |
WO2020262109A1 (en) | Glass composition and sealing material | |
JP2018123016A (en) | Silver phosphate glass composition and sealing material | |
JP2020040848A (en) | Glass composition and sealing material | |
JP7522386B2 (en) | Glass composition and sealing material | |
US20230303425A1 (en) | Glass composition and sealing material | |
WO2021166568A1 (en) | Glass composition and sealing material | |
JP2019089685A (en) | Vanadium phosphate glass composition and sealing material | |
JP2018184314A (en) | Silver phosphate-based glass composition and sealing material | |
US20240368024A1 (en) | Glass composition and sealing material | |
JP2019073403A (en) | Vanadium phosphate glass composition and sealing material | |
JP2023033083A (en) | Glass composition and sealing material | |
JP2024039789A (en) | Sealing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7222182 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |