JP4554010B2 - Artificial cultivation method of Maitake - Google Patents
Artificial cultivation method of Maitake Download PDFInfo
- Publication number
- JP4554010B2 JP4554010B2 JP21304299A JP21304299A JP4554010B2 JP 4554010 B2 JP4554010 B2 JP 4554010B2 JP 21304299 A JP21304299 A JP 21304299A JP 21304299 A JP21304299 A JP 21304299A JP 4554010 B2 JP4554010 B2 JP 4554010B2
- Authority
- JP
- Japan
- Prior art keywords
- maitake
- compound
- culture medium
- added
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mushroom Cultivation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、無機複合化合物を有効成分とする、きのこの人工栽培用材に関する。
【0002】
【従来の技術】
近年、エノキタケ、シイタケ、ヒラタケ、ナメコ、ブナシメジ、マイタケなどの食用きのこでは、コナラ、ブナ、クヌギ等の原木を用いたほだ木栽培や、鋸屑と米糠、フスマ、コーンブラン等の栄養源を混合した培養基を用いる菌床栽培などの、人工栽培方法が発達してきており、広く普及している。
しかし、きのこによってはいまだ人工栽培における収率が低いものがある。例えばマイタケの場合、菌床栽培では850mlビン当りの収穫量は100g前後と低く、その生産コストは安価とはいえない。故に人工栽培における生産性の向上が求められており、例えば特公平4−7649号では合成ハイドロタルサイトを用いることによってマイタケの生産性の改善を試みようとしている。しかしながら合成ハイドロタルサイトによる改善では、800ccビン1ビン当り10gと添加量が多く、増収も約2割と充分とは言えない。
【0003】
【発明が解決しようとする課題】
本発明の目的は、上記現状にかんがみ、人工栽培における収率の低いきのこにおいても少量の添加できのこを高収量で得ることができるきのこの人工栽培用材を提供することにある。
【0004】
【課題を解決するための手段】
本発明を概説すれば、本発明の第1の発明は、きのこの人工栽培用材に関し、(Al2O3)x:MO(MはMg及び/又はCa):(SiO2)yのモル比、x:1:yにおいて、x>2.2、y>0である化合物を有効成分として含有することを特徴とする。本発明の第2の発明は、きのこの人工栽培方法に関し、(Al2O3)x:MO(MはMg及び/又はCa):(SiO2)yのモル比、x:1:yにおいてx>2.2、y>0である化合物を有効成分として含有する人工栽培用材を使用することを特徴とする。とりわけ、本発明は(Al 2 O 3 )x:MO(MはMg及び/又はCa):(SiO 2 )yのモル比、x:1:yにおいて、xが3〜9で、yが1である化合物を有効成分として含有する人工栽培用材を使用することを特徴とするマイタケの人工栽培方法に関する。
【0005】
本発明者らは、きのこの人工栽培方法について各種の栽培実験を行い、鋭意検討を重ねた結果、(Al2O3)x:MO(MはMg及び/又はCa):(SiO2)yのモル比、x:1:yにおいて、x>2.2、y>0である化合物を培地に添加することにより、公知技術より少量添加でかつ高収量できのこが得られることを見出し、本発明を完成した。
【0006】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明におけるきのこの人工栽培用材は、(Al2O3)x:MO(MはMg及び/又はCa):(SiO2)yのモル比、x:1:yにおいて、x>2.2、y>0である化合物〔以下、本発明の化合物と表記する〕を有効成分として含有する。本発明の化合物は一般に水酸化アルミニウム、水酸化マグネシウム、ケイ酸マグネシウム,ケイ酸アルミニウム、塩化マグネシウム、シリカゾル、シリカゲル、ミョウバン、硫酸アルミニウム、ケイ酸ナトリウム、炭酸ナトリウム、塩化カルシウム、などを原料として得られる。しかしながら、本発明の化合物は(Al2O3)x:MO(MはMg及び/又はCa):(SiO2)yのモル比、x:1:yにおいて、x>2.2、y>0であればよく、原料や製造方法は問わない。また、本発明の化合物は無水物でも含水物でも良く、また不可避不純物を含有していても良い。
【0007】
次に、本発明の化合物を有効成分として含有する人工栽培用材を用いたきのこの人工栽培について説明する。
本発明を実施するためのきのこの人工栽培形態としては、ビン栽培、袋栽培、箱栽培等の菌床栽培や、原木を用いたほだ木栽培などを適用することができる。また、きのこの人工栽培の方式としては、温度、湿度等を制御した空調施設栽培(周年栽培)や、菌床あるいはほだ木を野外の林地や畑地などに設置あるいは埋設する自然栽培が挙げられるが、本発明はこれらの形態や方式に制約されるものではない。
更に、きのこの人工栽培方法について、菌床によるマイタケの周年栽培を例としてより具体的に説明する。マイタケの菌床による周年栽培は通常、鋸屑、コーンコブなどの基材にフスマ、コーンブラン、米糠等の栄養源を混合し、含水率を60〜70%に調整した培養基が用いられる。調製した培養基をビン又は袋に充てんし、常圧又は高圧殺菌釜などで雑菌を滅菌した後、放冷する。放冷終了後の培養基にマイタケ菌を接種し、温度20〜30℃、湿度40〜70%の条件下で培養して菌糸を培養基にまん延させ、次いで温度10〜20℃、湿度85%以上の条件下で子実体を生育させることによりマイタケを収穫する。
【0008】
以上、きのこの人工栽培方法について、菌床によるマイタケの周年栽培の例を述べたが、本発明は、栽培の形態や培養基の配合、栽培環境条件等に何ら限定されるものではない。
次に、本発明の化合物を含有する人工栽培用材と他の培地基材との混合比率は人工栽培用材中に含有される本発明の化合物の含水量及び人工栽培用材中における本発明の化合物の含有量によって変わるが、例えば人工栽培用材が含水率40重量%の本発明の化合物100%で構成されているとした場合、他の培地基材の乾物重に対して0.1〜10%、好ましくは0.2〜2%が良いが、本発明の化合物を含有する人工栽培用材の培地への添加量は上記の数値に特に制約されるものではない。
本発明で使用されるきのこは人工栽培できるきのこであり、例えばエノキタケ、シイタケ、ヒラタケ、ナメコ、ブナシメジ、マイタケ等が挙げられる。
【0009】
【実施例】
以下に、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例の範囲のみに限定されるものではない。
【0010】
実施例1
以下に記すA〜E液の5種類を調製した。
A液:硫酸アルミニウム液(Al2O3:7.1%)236.7gに水を加えて全量250mlとする。
B液:炭酸ナトリウム(純度99.5重量%)17.5gと水酸化ナトリウム液(濃度50重量%)10gに水を加えて全量100mlとする。
C液:塩化マグネシウム六水塩(MgO:19.8%)16.8gと硫酸アルミニウム液(Al2O3:7.1%)29.6gに水を加えて全量100mlとする。
D液:アルミン酸ナトリウム(Al2O3:18.8%)33.5gに水を加えて全量100mlとする。
E液:3号ケイ酸ナトリウム(SiO2:29.0%)17.1gに水を加えて全量100mlとする。
次に、1リットルの反応槽に水を100ml入れて40℃に加温し、かくはんしながらA液を25ml/分、B液を10ml/分の速度で、反応pHが8〜10を保持するように水酸化ナトリウム液(4mol/リットル)でpH調整しつつ同時添加した。上記の操作で得られたゲルに、C液を10ml/分、D液を10ml/分の速度で、同様に水酸化ナトリウム液(4mol/リットル)でpH8〜10に調整しつつ同時添加した。最後に、E液を10ml/分の速度で添加した。
以上により得られた反応液をヌッチェを用いてろ過、洗浄し、90℃で20時間乾燥した。乾燥後、乳鉢で粉砕し、100メッシュ篩で篩過して白色粉末を得た。得られた白色粉末について化学分析を行った結果、Al2O3:MgO:SiO2のモル比が3:1:1の酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物であることが確認された。この酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物〔以下、化合物(1)と表記する〕は、粉末X線回折装置による解析の結果、無晶形であった。また化合物(1)は含水物であり、含有水分は吸着水・構造水として約40重量%であった。
【0011】
次に、広葉樹鋸屑〔(有)トモエ物産製〕125g(乾物重)、小麦フスマ〔前田産業(株)製〕80g(新鮮重)をよく混合し、これに上記反応で得られた本発明の化合物(1)を0、0.5、1、1.5、2又は3g添加して充分混合したのち水分含有率を65%に調整したものを、ポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表1に記す。
【0012】
【表1】
【0013】
表1で明らかなように、本発明の化合物(1)を培養基に添加することによりマイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0014】
実施例2
広葉樹鋸屑〔(有)トモエ物産製〕135g(乾物重)、ホミニーフィード〔ゴードー溶剤(株)製〕80g(新鮮重)をよく混合し、これに実施例1で得られた本発明の化合物(1)を0、0.5、1、1.5、2又は3g添加して充分混合した後水分含有率を65%に調整したものをポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後、118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表2に記す。
【0015】
【表2】
【0016】
表2で明らかなように、本発明の化合物(1)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0017】
実施例3
以下に記すA〜E液の5種類を調製した。
A液:硫酸アルミニウム液(Al2O3:7.1%)473.4gに水を加えて全量500mlとする。
B液:炭酸ナトリウム(純度99.5重量%)35.0gと水酸化ナトリウム液(濃度50重量%)20gに水を加えて全量200mlとする。
C液:塩化マグネシウム六水塩(MgO:19.8%)16.8gと硫酸アルミニウム液(Al2O3:7.1%)29.6gに水を加えて全量100mlとする。
D液:アルミン酸ナトリウム(Al2O3:18.8%)33.5gに水を加えて全量100mlとする。
E液:3号ケイ酸ナトリウム(SiO2:29.0%)17.1gに水を加えて全量100mlとする。
次に、2リットルの反応槽に水を200ml入れて40℃に加温し、かくはんしながらA液を25ml/分、B液を10ml/分の速度で、反応pHが8〜10を保持するように水酸化ナトリウム液(4mol/リットル)でpH調整しつつ同時添加した。上記の操作で得られたゲルに、C液を10ml/分、D液を10ml/分の速度で、同様に水酸化ナトリウム液(4mol/リットル)でpH8〜10に調整しつつ同時添加した。最後に、E液を10ml/分の速度で添加した。
以上により得られた反応液をヌッチェを用いてろ過、洗浄し、90℃で20時間乾燥した。乾燥後、乳鉢で粉砕し、100メッシュ篩で篩過して白色粉末を得た。得られた白色粉末について化学分析を行った結果、Al2O3:MgO:SiO2のモル比が5:1:1の酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物であることが確認された。この酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物〔以下、化合物(2)と表記する〕は、粉末X線回折装置による解析の結果、無晶形であった。また化合物(2)は含水物であり、含有水分は吸着水・構造水として約26重量%であった。
【0018】
次に、広葉樹鋸屑〔(有)トモエ物産製〕125g(乾物重)、小麦フスマ〔前田産業(株)製〕80g(新鮮重)をよく混合し、これに上記反応で得られた本発明の化合物(2)を0、0.5、1、1.5、2又は3g添加して充分混合したのち水分含有率を65%に調整したものを、ポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表3に記す。
【0019】
【表3】
【0020】
表3で明らかなように、本発明の化合物(2)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0021】
実施例4
広葉樹鋸屑〔(有)トモエ物産製〕135g(乾物重)、ホミニーフィード〔ゴードー溶剤(株)製〕80g(新鮮重)をよく混合し、これに実施例3で得られた本発明の化合物(2)を0、0.5、1、1.5、2又は3gを添加して十分混合した後水分含有率を65%に調整したものをポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後、118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表4に記す。
【0022】
【表4】
【0023】
表4で明らかなように、本発明の化合物(2)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0024】
実施例5
以下に記すA〜E液の5種類を調製した。
A液:硫酸アルミニウム液(Al2O3:7.1%)710.1gに水を加えて全量750mlとする。
B液:炭酸ナトリウム(純度99.5重量%)52.5gと水酸化ナトリウム液(濃度50重量%)30gに水を加えて全量300mlとする。
C液:塩化マグネシウム六水塩(MgO:19.8%)16.8gと硫酸アルミニウム液(Al2O3:7.1%)29.6gに水を加えて全量100mlとする。
D液:アルミン酸ナトリウム(Al2O3:18.8%)33.5gに水を加えて全量100mlとする。
E液:3号ケイ酸ナトリウム(SiO2:29.0%)17.1gに水を加えて全量100mlとする。
次に、2リットルの反応槽に水を200ml入れて40℃に加温し、かくはんしながらA液を37.5ml/分、B液を20ml/分の速度で、反応pHが8〜10を保持するように水酸化ナトリウム液(6mol/リットル)でpH調整しつつ同時添加した。上記の操作で得られたゲルに、C液を10ml/分、D液を10ml/分の速度で、同様に水酸化ナトリウム液(4mol/リットル)でpH8〜10に調整しつつ同時添加した。最後に、E液を10ml/分の速度で添加した。
以上により得られた反応液をヌッチェを用いてろ過、洗浄し、90℃で20時間乾燥した。乾燥後、乳鉢で粉砕し、100メッシュ篩で篩過して白色粉末を得た。
得られた白色粉末について化学分析を行った結果、Al2O3:MgO:SiO2のモル比が7:1:1の酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物であることが確認された。この酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物〔以下、化合物(3)と表記する〕は、粉末X線回折装置による解析の結果、無晶形であった。また化合物(3)は含水物であり、含有水分は吸着水・構造水として約25重量%であった。
【0025】
次に、広葉樹鋸屑〔(有)トモエ物産製〕125g(乾物重)、小麦フスマ〔前田産業(株)製〕80g(新鮮重)をよく混合し、これに上記反応で得られた本発明の化合物(3)を0、0.5、1、1.5、2又は3g添加して充分混合したのち水分含有率を65%に調整したものを、ポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表5に記す。
【0026】
【表5】
【0027】
表5で明らかなように、本発明の化合物(3)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0028】
実施例6
広葉樹鋸屑〔(有)トモエ物産製〕135g(乾物重)、ホミニーフィード〔ゴードー溶剤(株)製〕80g(新鮮重)をよく混合し、これに実施例5で得られた本発明の化合物(3)を0、0.5、1、1.5、2又は3g添加して充分混合したのち水分含有率を65%に調整したものをポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後、118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表6に記す。
【0029】
【表6】
【0030】
表6で明らかなように、本発明の化合物(3)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0031】
実施例7
以下に記すA〜E液の5種類を調製した。
A液:硫酸アルミニウム液(Al2O3:7.1%)946.8gに水を加えて全量1000mlとする。
B液:炭酸ナトリウム(純度99.5重量%)70.0gと水酸化ナトリウム液(濃度50重量%)40gに水を加えて全量400mlとする。
C液:塩化マグネシウム六水塩(MgO:19.8%)16.8gと硫酸アルミニウム液(Al2O3:7.1%)29.6gに水を加えて全量100mlとする。
D液:アルミン酸ナトリウム(Al2O3:18.8%)33.5gに水を加えて全量100mlとする。
E液:3号ケイ酸ナトリウム(SiO2:29.0%)17.1gに水を加えて全量100mlとする。
次に、3リットルの反応槽に水を300ml入れて40℃に加温し、かくはんしながらA液を50ml/分、B液を20ml/分の速度で、反応pHが8〜10を保持するように水酸化ナトリウム液(8mol/リットル)でpH調整しつつ同時添加した。上記の操作で得られたゲルに、C液を10ml/分、D液を10ml/分の速度で、同様に水酸化ナトリウム液(4mol/リットル)でpH8〜10に調整しつつ同時添加した。最後に、E液を10ml/分の速度で添加した。以上により得られた反応液をヌッチェを用いてろ過、洗浄し、90℃で20時間乾燥した。乾燥後、乳鉢で粉砕し、100メッシュ篩で篩過して白色粉末を得た。
得られた白色粉末について化学分析を行った結果、Al2O3:MgO:SiO2のモル比が9:1:1の酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物であることが確認された。この酸化アルミニウム・ケイ酸アルミン酸マグネシウム複合物〔以下、化合物(4)と表記する〕は、粉末X線回折装置による解析の結果、無晶形であった。また化合物(4)は含水物であり、含有水分は吸着水・構造水として約30重量%であった。
【0032】
次に、広葉樹鋸屑〔(有)トモエ物産製〕125g(乾物重)、小麦フスマ〔前田産業(株)製〕80g(新鮮重)をよく混合し、これに上記反応で得られた本発明の化合物(4)を0、0.5、1、1.5、2又は3g添加して充分混合したのち水分含有率を65%に調整したものを、ポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表7に記す。
【0033】
【表7】
【0034】
表7で明らかなように、本発明の化合物(4)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0035】
実施例8
広葉樹鋸屑〔(有)トモエ物産製〕135g(乾物重)、ホミニーフィード〔ゴードー溶剤(株)製〕80g(新鮮重)をよく混合し、これに実施例7で得られた本発明の化合物(4)を0、0.5、1、1.5、2又は3g添加して充分混合した後水分含有率を65%に調整したものをポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後、118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表8に記す。
【0036】
【表8】
【0037】
表8で明らかなように、本発明の化合物(4)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0038】
実施例9
以下に記すA〜C液の3種類を調製した。
A液:塩化カルシウム二水塩(CaO:37.3%)及び硝酸アルミニウム九水塩(Al2O3:13.56%)54.57gに水を加えて全量500mlとする。
B液:アルミン酸ナトリウム(Al2O3:18.4%)69.46gに水を加えて全量150mlとする。
C液:3号ケイ酸ナトリウム(SiO2:29.0%)7.60gに水を加えて全量150mlとする。
次に、1リットルの反応槽にA液を入れて50℃に加温し、かくはんしながらB液を7.5ml/分の速度で、反応pHが8〜12を保持するように水酸化ナトリウム液(4mol/リットル)でpH調整しつつ添加した。上記の操作で得られたゲルに、C液を10ml/分の速度で、添加した。
以上により得られた反応液をヌッチェを用いてろ過、洗浄し、90℃で20時間乾燥した。乾燥後、乳鉢で粉砕し、100メッシュ篩で篩過して白色粉末35.2gを得た。
得られた白色粉末について化学分析を行った結果、Al2O3:CaO:SiO2のモル比が5:1:1のケイ酸アルミン酸カルシウム複合酸化物であることが確認された。このケイ酸アルミン酸カルシウム複合酸化物〔以下、化合物(5)と表記する〕は、粉末X線回折装置による解析の結果、無晶形であった。また化合物(5)は含水物であり、含有水分は吸着水・構造水として約34重量%であった。
【0039】
次に、広葉樹鋸屑〔(有)トモエ物産製〕125g(乾物重)、小麦フスマ〔前田産業(株)製〕80g(新鮮重)をよく混合し、これに上記反応で得られた本発明の化合物(5)を0、0.5、1、1.5、2又は3g添加して充分混合したのち水分含有率を65%に調整したものを、ポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表9に記す。
【0040】
【表9】
【0041】
表9で明らかなように、本発明の化合物(5)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0042】
実施例10
広葉樹鋸屑〔(有)トモエ物産製〕135g(乾物重)、ホミニーフィード〔ゴードー溶剤(株)製〕80g(新鮮重)をよく混合し、これに実施例9で得られた本発明の化合物(5)を0、0.5、1、1.5、2又は3g添加して充分混合した後水分含有率を65%に調整したものをポリプロピレン製850ml容広口培養ビンに圧詰めし、中央に約1cm程度の穴を開けて固形培養基とした。これを各区16本用意し、打栓後、118℃で90分間殺菌した。殺菌終了後培養基を充分に放冷し、マイタケ(森M51号)の鋸屑種菌を植菌した。これを温度24℃、湿度約50〜60%の培養室で42日間培養したのち栓を外し、温度18℃、加湿をヒューミアイ100〔(株)鷺宮製作所製〕の表示値で115〜120%となるように制御した発生室に移動し、照度100〜500ルクスの条件下で子実体を発生させ、発生室へ移動後14〜17日目にマイタケ子実体を収穫した。収穫されたマイタケ子実体の1ビン当り平均収量を表10に記す。
【0043】
【表10】
【0044】
表10で明らかなように、本発明の化合物(5)を培養基に添加することにより、マイタケの収量が飛躍的に増大した。またこの際に必要な添加量は、0.5〜3gと極めて少量であった。
【0045】
【発明の効果】
以上詳細に説明したとおり、本発明の化合物を有効成分として含有する人工栽培用材を用いることにより、人工栽培においてきのこを高収量で得ることが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material for artificial cultivation of mushrooms containing an inorganic composite compound as an active ingredient.
[0002]
[Prior art]
In recent years, edible mushrooms such as enokitake, shiitake, oyster mushrooms, sea cucumbers, beech shimeji mushrooms, maitake mushrooms, etc. Artificial cultivation methods such as fungus bed cultivation using the cultured medium have been developed and are widely used.
However, some mushrooms still have low yields in artificial cultivation. For example, in the case of maitake, the yield per 850 ml bottle is as low as about 100 g in fungus bed cultivation, and the production cost is not low. Therefore, improvement of productivity in artificial cultivation is required. For example, Japanese Patent Publication No. 4-7649 attempts to improve the productivity of maitake by using synthetic hydrotalcite. However, with the improvement by synthetic hydrotalcite, the amount added is as large as 10 g per 800 cc bottle, and the increase in sales is not sufficient, about 20%.
[0003]
[Problems to be solved by the invention]
In view of the above situation, an object of the present invention is to provide a material for artificial cultivation of mushrooms that can obtain a small amount of mushrooms that can be added in high yield even in mushrooms with low yield in artificial cultivation.
[0004]
[Means for Solving the Problems]
In summary, the first invention of the present invention relates to a material for artificial cultivation of mushrooms (Al2OThree) X: MO (M is Mg and / or Ca): (SiO2) It is characterized by containing, as an active ingredient, a compound in which x> 2.2 and y> 0 at a molar ratio of y, x: 1: y. 2nd invention of this invention is related with the artificial cultivation method of a mushroom, (Al2OThree) X: MO (M is Mg and / or Ca): (SiO2) A molar ratio of y, characterized in that a material for artificial cultivation containing a compound in which x> 2.2 and y> 0 in x: 1: y as an active ingredient is used.In particular, the present invention provides (Al 2 O Three ) X: MO (M is Mg and / or Ca): (SiO 2 ) The present invention relates to an artificial cultivation method of maitake characterized by using an artificial cultivation material containing, as an active ingredient, a compound in which x is 3 to 9 and y is 1 at a molar ratio of y, x: 1: y.
[0005]
The present inventors conducted various cultivation experiments on the artificial cultivation method of mushrooms, and as a result of intensive studies, (Al2OThree) X: MO (M is Mg and / or Ca): (SiO2) It has been found that by adding a compound in which x> 2.2 and y> 0 at a molar ratio of y, x: 1: y, to a culture medium, it is possible to obtain a mushroom with a small amount of addition and a high yield by a known technique. The present invention has been completed.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The material for artificial cultivation of mushrooms in the present invention is (Al2OThree) X: MO (M is Mg and / or Ca): (SiO2) A compound in which x> 2.2 and y> 0 in the molar ratio of y, x: 1: y (hereinafter referred to as the compound of the present invention) is contained as an active ingredient. The compound of the present invention is generally obtained from aluminum hydroxide, magnesium hydroxide, magnesium silicate, aluminum silicate, magnesium chloride, silica sol, silica gel, alum, aluminum sulfate, sodium silicate, sodium carbonate, calcium chloride, etc. as raw materials. . However, the compounds of the present invention are (Al2OThree) X: MO (M is Mg and / or Ca): (SiO2) In the molar ratio of y, x: 1: y, x> 2.2 and y> 0 may be used, and the raw material and the production method are not limited. The compound of the present invention may be an anhydride or a hydrate, and may contain inevitable impurities.
[0007]
Next, mushroom artificial cultivation using an artificial cultivation material containing the compound of the present invention as an active ingredient will be described.
As an artificial cultivation form of the mushroom for carrying out the present invention, fungus bed cultivation such as bottle cultivation, bag cultivation, box cultivation, and soda cultivation using raw wood can be applied. In addition, mushroom artificial cultivation methods include air-conditioning facility cultivation (year-round cultivation) with controlled temperature, humidity, etc., and natural cultivation in which fungus beds or sardines are installed or buried in outdoor forests or upland fields. However, the present invention is not limited to these forms and methods.
Furthermore, the artificial cultivation method for mushrooms will be described more specifically by taking as an example the year-round cultivation of maitake by fungi beds. For year-round cultivation using maitake fungi, a culture medium in which nutrient sources such as bran, corn bran and rice bran are mixed with a base material such as sawdust and corn cob and the water content is adjusted to 60 to 70% is used. The prepared culture medium is filled into a bottle or bag, sterilized with a normal pressure or high pressure sterilization pot, and then allowed to cool. Inoculated with maitake fungi on the culture medium after standing to cool, cultured under conditions of temperature 20-30 ° C. and humidity 40-70% to spread the mycelium on the culture medium, then temperature 10-20 ° C., humidity 85% or more Harvest maitake by growing fruit bodies under conditions.
[0008]
As mentioned above, although the example of the annual cultivation of the maitake by a fungus bed was described about the artificial cultivation method of the mushroom, this invention is not limited to the cultivation form, the mixing | blending of a culture medium, cultivation environmental conditions, etc. at all.
Next, the mixing ratio of the material for artificial cultivation containing the compound of the present invention and the other medium substrate is the water content of the compound of the present invention contained in the material for artificial cultivation and the compound of the present invention in the material for artificial cultivation. Depending on the content, for example, when the material for artificial cultivation is composed of 100% of the compound of the present invention having a water content of 40% by weight, 0.1 to 10% with respect to the dry weight of other medium substrate, The content is preferably 0.2 to 2%, but the amount of the artificial cultivation material containing the compound of the present invention added to the medium is not particularly limited by the above numerical values.
The mushroom used in the present invention is an artificially cultivated mushroom, and examples thereof include enokitake, shiitake, oyster mushrooms, nameko, bunashimeji, and maitake.
[0009]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited only to the scope of the following examples.
[0010]
Example 1
Five types of A to E solutions described below were prepared.
Liquid A: Aluminum sulfate liquid (Al2OThree: 7.1%) Add water to 236.7 g to make a total volume of 250 ml.
Solution B: Water is added to 17.5 g of sodium carbonate (purity 99.5 wt%) and 10 g of sodium hydroxide solution (concentration 50 wt%) to make a total volume of 100 ml.
Liquid C: Magnesium chloride hexahydrate (MgO: 19.8%) 16.8 g and aluminum sulfate liquid (Al2OThree: 7.1%) Add water to 29.6 g to make a total volume of 100 ml.
Liquid D: Sodium aluminate (Al2OThree: 18.8%) Add water to 33.5 g to a total volume of 100 ml.
Liquid E: No. 3 sodium silicate (SiO2: 29.0%) Add water to 17.1 g to make a total volume of 100 ml.
Next, 100 ml of water is placed in a 1 liter reaction tank and heated to 40 ° C., while stirring, the reaction pH is maintained at 8 to 10 at a rate of 25 ml / min for solution A and 10 ml / min for solution B. Thus, the pH was adjusted simultaneously with a sodium hydroxide solution (4 mol / liter) and added simultaneously. To the gel obtained by the above operation, solution C was added at a rate of 10 ml / min and solution D was added at a rate of 10 ml / min, while simultaneously adjusting the pH to 8 to 10 with sodium hydroxide solution (4 mol / liter). Finally, solution E was added at a rate of 10 ml / min.
The reaction solution obtained above was filtered and washed using a Nutsche, and dried at 90 ° C. for 20 hours. After drying, it was pulverized in a mortar and sieved with a 100 mesh sieve to obtain a white powder. As a result of chemical analysis of the resulting white powder, Al2OThree: MgO: SiO2This was confirmed to be an aluminum oxide / magnesium aluminate composite having a molar ratio of 3: 1: 1. This aluminum oxide / magnesium aluminate composite (hereinafter referred to as compound (1)) was amorphous as a result of analysis by a powder X-ray diffractometer. Compound (1) was a hydrated product, and the water content was about 40% by weight as adsorbed water / structured water.
[0011]
Next, 125 g of hardwood sawdust (produced by Tomoe Bussan) (dry weight) and 80 g of wheat bran (produced by Maeda Sangyo Co., Ltd.) (fresh weight) were mixed well, and this was obtained by the above reaction. After 0, 0.5, 1, 1.5, 2 or 3 g of compound (1) was added and mixed well, the water content was adjusted to 65% and packed into a 850 ml wide-mouth culture bottle made of polypropylene. A solid culture medium was made by making a hole of about 1 cm in the center. Sixteen pieces of each were prepared, and sterilized at 118 ° C. for 90 minutes after plugging. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. Table 1 shows the average yield per bottle of harvested maitake fruit bodies.
[0012]
[Table 1]
[0013]
As is apparent from Table 1, the yield of maitake was dramatically increased by adding the compound (1) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0014]
Example 2
Hardwood sawdust (produced by Tomoe Bussan) 135 g (dry weight) and Homini feed (produced by Gordo Solvents) 80 g (fresh weight) were mixed well, and the compound of the present invention obtained in Example 1 was mixed with this. (1) 0, 0.5, 1, 1.5, 2 or 3 g was added and mixed well, and then the water content was adjusted to 65% and packed into a 850 ml wide-mouth culture bottle made of polypropylene. A hole of about 1 cm was made in a solid culture medium. Sixteen pieces of each were prepared, and after sterilization, sterilized at 118 ° C. for 90 minutes. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bin of harvested maitake fruit bodies is shown in Table 2.
[0015]
[Table 2]
[0016]
As is apparent from Table 2, the yield of maitake was dramatically increased by adding the compound (1) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0017]
Example 3
Five types of A to E solutions described below were prepared.
Liquid A: Aluminum sulfate liquid (Al2OThree: 7.1%) Water is added to 473.4 g to a total volume of 500 ml.
Solution B: Water is added to 35.0 g of sodium carbonate (purity 99.5% by weight) and 20 g of sodium hydroxide solution (concentration 50% by weight) to make a total volume of 200 ml.
Liquid C: Magnesium chloride hexahydrate (MgO: 19.8%) 16.8 g and aluminum sulfate liquid (Al2OThree: 7.1%) Add water to 29.6 g to make a total volume of 100 ml.
Liquid D: Sodium aluminate (Al2OThree: 18.8%) Add water to 33.5 g to a total volume of 100 ml.
Liquid E: No. 3 sodium silicate (SiO2: 29.0%) Add water to 17.1 g to make a total volume of 100 ml.
Next, 200 ml of water is placed in a 2 liter reaction tank and heated to 40 ° C. While stirring, the reaction pH is maintained at 8 to 10 at a rate of 25 ml / min for solution A and 10 ml / min for solution B. Thus, the pH was adjusted simultaneously with a sodium hydroxide solution (4 mol / liter) and added simultaneously. To the gel obtained by the above operation, solution C was added at a rate of 10 ml / min and solution D was added at a rate of 10 ml / min, while simultaneously adjusting the pH to 8 to 10 with sodium hydroxide solution (4 mol / liter). Finally, solution E was added at a rate of 10 ml / min.
The reaction solution obtained above was filtered and washed using a Nutsche, and dried at 90 ° C. for 20 hours. After drying, it was pulverized in a mortar and sieved with a 100 mesh sieve to obtain a white powder. As a result of chemical analysis of the resulting white powder, Al2OThree: MgO: SiO2This was confirmed to be an aluminum oxide / magnesium aluminate composite having a molar ratio of 5: 1: 1. This aluminum oxide / magnesium aluminate composite (hereinafter referred to as compound (2)) was amorphous as a result of analysis by a powder X-ray diffractometer. Compound (2) was a hydrated product, and the water content was about 26% by weight as adsorbed water / structured water.
[0018]
Next, 125 g of hardwood sawdust (produced by Tomoe Bussan) (dry weight) and 80 g of wheat bran (produced by Maeda Sangyo Co., Ltd.) (fresh weight) were mixed well, and this was obtained by the above reaction. After adding 0, 0.5, 1, 1.5, 2 or 3 g of compound (2) and mixing well, the water content adjusted to 65% is packed into a 850 ml wide-mouth culture bottle made of polypropylene. A solid culture medium was made by making a hole of about 1 cm in the center. Sixteen pieces of each were prepared, and sterilized at 118 ° C. for 90 minutes after plugging. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bottle of harvested maitake fruit bodies is shown in Table 3.
[0019]
[Table 3]
[0020]
As is apparent from Table 3, the yield of maitake was drastically increased by adding the compound (2) of the present invention to the culture medium. In addition, the amount of addition required at this time was a very small amount of 0.5 to 3 g.
[0021]
Example 4
Hardwood sawdust (produced by Tomoe Bussan) 135 g (dry weight) and Homini feed [produced by Gordo Solvents Co., Ltd.] 80 g (fresh weight) were mixed well, and the compound of the present invention obtained in Example 3 (2) 0, 0.5, 1, 1.5, 2 or 3 g was added and mixed well, and then the water content was adjusted to 65% and packed into a 850 ml wide-mouth culture bottle made of polypropylene, A hole of about 1 cm was made in the center to form a solid culture medium. Sixteen pieces of each were prepared, and after sterilization, sterilized at 118 ° C. for 90 minutes. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bin of harvested maitake fruit bodies is shown in Table 4.
[0022]
[Table 4]
[0023]
As can be seen from Table 4, the yield of maitake was dramatically increased by adding the compound (2) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0024]
Example 5
Five types of A to E solutions described below were prepared.
Liquid A: Aluminum sulfate liquid (Al2OThree: 7.1%) Add water to 710.1 g to a total volume of 750 ml.
Solution B: Water is added to 52.5 g of sodium carbonate (purity 99.5% by weight) and 30 g of sodium hydroxide solution (concentration 50% by weight) to make a total volume of 300 ml.
Liquid C: Magnesium chloride hexahydrate (MgO: 19.8%) 16.8 g and aluminum sulfate liquid (Al2OThree: 7.1%) Add water to 29.6 g to make a total volume of 100 ml.
Liquid D: Sodium aluminate (Al2OThree: 18.8%) Add water to 33.5 g to a total volume of 100 ml.
Liquid E: No. 3 sodium silicate (SiO2: 29.0%) Add water to 17.1 g to make a total volume of 100 ml.
Next, 200 ml of water was placed in a 2 liter reaction tank and heated to 40 ° C., while stirring, the liquid A was 37.5 ml / min, the liquid B was 20 ml / min, and the reaction pH was 8-10. It added simultaneously, adjusting pH with a sodium hydroxide solution (6 mol / liter) so that it might be kept. To the gel obtained by the above operation, solution C was added at a rate of 10 ml / min and solution D was added at a rate of 10 ml / min, while simultaneously adjusting the pH to 8 to 10 with sodium hydroxide solution (4 mol / liter). Finally, solution E was added at a rate of 10 ml / min.
The reaction solution obtained above was filtered and washed using a Nutsche, and dried at 90 ° C. for 20 hours. After drying, it was pulverized in a mortar and sieved with a 100 mesh sieve to obtain a white powder.
As a result of chemical analysis of the resulting white powder, Al2OThree: MgO: SiO2This was confirmed to be an aluminum oxide / magnesium aluminate composite having a molar ratio of 7: 1: 1. This aluminum oxide / magnesium aluminate composite (hereinafter referred to as compound (3)) was amorphous as a result of analysis by a powder X-ray diffractometer. Compound (3) was a hydrated product, and the water content was about 25% by weight as adsorbed water / structured water.
[0025]
Next, 125 g of hardwood sawdust (made by Tomoe Bussan) (dry weight) and 80 g of wheat bran (made by Maeda Sangyo Co., Ltd.) (fresh weight) were mixed well and this was obtained by the above reaction. After adding 0, 0.5, 1, 1.5, 2 or 3 g of compound (3) and mixing well, the water content adjusted to 65% is packed into a 850 ml wide-mouth culture bottle made of polypropylene. A solid culture medium was made by making a hole of about 1 cm in the center. Sixteen pieces of each were prepared, and sterilized at 118 ° C. for 90 minutes after plugging. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bottle of harvested maitake fruit bodies is shown in Table 5.
[0026]
[Table 5]
[0027]
As is apparent from Table 5, the yield of maitake was dramatically increased by adding the compound (3) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0028]
Example 6
Hardwood sawdust (made by Tomoe Bussan) 135g (dry weight) and Homini feed [made by Gordo Solvent Co., Ltd.] 80g (fresh weight) were mixed well, and the compound of the present invention obtained in Example 5 (3) 0, 0.5, 1, 1.5, 2 or 3 g was added and mixed well, and then the water content was adjusted to 65% and packed into a 850 ml wide-mouth culture bottle made of polypropylene. A hole of about 1 cm was made in a solid culture medium. Sixteen pieces of each were prepared, and after sterilization, sterilized at 118 ° C. for 90 minutes. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bin of harvested maitake fruit bodies is shown in Table 6.
[0029]
[Table 6]
[0030]
As is apparent from Table 6, the yield of maitake was dramatically increased by adding the compound (3) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0031]
Example 7
Five types of A to E solutions described below were prepared.
Liquid A: Aluminum sulfate liquid (Al2OThree: 7.1%) Add water to 946.8 g to make a total volume of 1000 ml.
Solution B: Water is added to 70.0 g of sodium carbonate (purity 99.5% by weight) and 40 g of sodium hydroxide solution (concentration 50% by weight) to make a total amount of 400 ml.
Liquid C: Magnesium chloride hexahydrate (MgO: 19.8%) 16.8 g and aluminum sulfate liquid (Al2OThree: 7.1%) Add water to 29.6 g to make a total volume of 100 ml.
Liquid D: Sodium aluminate (Al2OThree: 18.8%) Add water to 33.5 g to a total volume of 100 ml.
Liquid E: No. 3 sodium silicate (SiO2: 29.0%) Add water to 17.1 g to make a total volume of 100 ml.
Next, 300 ml of water is placed in a 3 liter reaction tank and heated to 40 ° C., while stirring, the reaction pH is maintained at 8 to 10 at a rate of 50 ml / min for solution A and 20 ml / min for solution B. In this manner, the pH was adjusted simultaneously with a sodium hydroxide solution (8 mol / liter) and added simultaneously. To the gel obtained by the above operation, solution C was added at a rate of 10 ml / min and solution D was added at a rate of 10 ml / min, while simultaneously adjusting the pH to 8 to 10 with sodium hydroxide solution (4 mol / liter). Finally, solution E was added at a rate of 10 ml / min. The reaction solution obtained above was filtered and washed using a Nutsche, and dried at 90 ° C. for 20 hours. After drying, it was pulverized in a mortar and sieved with a 100 mesh sieve to obtain a white powder.
As a result of chemical analysis of the resulting white powder, Al2OThree: MgO: SiO2This was confirmed to be an aluminum oxide / magnesium aluminate composite having a molar ratio of 9: 1: 1. This aluminum oxide / magnesium aluminate composite (hereinafter referred to as compound (4)) was amorphous as a result of analysis by a powder X-ray diffractometer. Compound (4) was a hydrated product, and the water content was about 30% by weight as adsorbed water / structured water.
[0032]
Next, 125 g of hardwood sawdust (made by Tomoe Bussan) (dry weight) and 80 g of wheat bran (made by Maeda Sangyo Co., Ltd.) (fresh weight) were mixed well and this was obtained by the above reaction. After adding 0, 0.5, 1, 1.5, 2 or 3 g of compound (4) and mixing well, the water content was adjusted to 65% and packed into a 850 ml wide-mouth culture bottle made of polypropylene. A solid culture medium was made by making a hole of about 1 cm in the center. Sixteen pieces of each were prepared, and sterilized at 118 ° C. for 90 minutes after plugging. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bin of harvested maitake fruit bodies is shown in Table 7.
[0033]
[Table 7]
[0034]
As is clear from Table 7, the yield of maitake was dramatically increased by adding the compound (4) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0035]
Example 8
Hardwood sawdust (produced by Tomoe Bussan) 135 g (dry weight) and Homini feed [produced by Gordo Solvents Co., Ltd.] 80 g (fresh weight) were mixed well, and the compound of the present invention obtained in Example 7 (4) 0, 0.5, 1, 1.5, 2 or 3 g was added and mixed well, and then the water content was adjusted to 65% and packed into a 850 ml wide-mouth culture bottle made of polypropylene. A hole of about 1 cm was made in a solid culture medium. Sixteen pieces of each were prepared, and after sterilization, sterilized at 118 ° C. for 90 minutes. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bottle of harvested maitake fruit bodies is shown in Table 8.
[0036]
[Table 8]
[0037]
As is apparent from Table 8, the yield of maitake was drastically increased by adding the compound (4) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0038]
Example 9
Three types of A to C liquids described below were prepared.
Liquid A: calcium chloride dihydrate (CaO: 37.3%) and aluminum nitrate nonahydrate (Al2OThree: 13.56%) Add water to 54.57 g to make a total volume of 500 ml.
Liquid B: Sodium aluminate (Al2OThree: 18.4%) Add water to 69.46 g to make a total volume of 150 ml.
Liquid C: No. 3 sodium silicate (SiO2: 29.0%) Add water to 7.60 g to a total volume of 150 ml.
Next, liquid A is placed in a 1 liter reaction tank and heated to 50 ° C., while stirring, sodium hydroxide so as to maintain liquid B at a rate of 7.5 ml / min and a reaction pH of 8-12. It added, adjusting pH with a liquid (4 mol / liter). C liquid was added to the gel obtained by said operation at a speed | rate of 10 ml / min.
The reaction solution obtained above was filtered and washed using a Nutsche, and dried at 90 ° C. for 20 hours. After drying, it was pulverized in a mortar and sieved with a 100 mesh sieve to obtain 35.2 g of a white powder.
As a result of chemical analysis of the resulting white powder, Al2OThree: CaO: SiO2It was confirmed that this was a calcium aluminate silicate composite oxide having a molar ratio of 5: 1: 1. This calcium aluminate composite oxide (hereinafter referred to as compound (5)) was amorphous as a result of analysis by a powder X-ray diffractometer. Compound (5) was a hydrated product, and the water content was about 34% by weight as adsorbed water / structured water.
[0039]
Next, 125 g of hardwood sawdust (made by Tomoe Bussan) (dry weight) and 80 g of wheat bran (made by Maeda Sangyo Co., Ltd.) (fresh weight) were mixed well and this was obtained by the above reaction. After adding 0, 0.5, 1, 1.5, 2 or 3 g of compound (5) and mixing well, the water content adjusted to 65% is packed into a 850 ml wide-mouth culture bottle made of polypropylene. A solid culture medium was made by making a hole of about 1 cm in the center. Sixteen pieces of each were prepared, and sterilized at 118 ° C. for 90 minutes after plugging. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. Table 9 shows the average yield per bin of harvested maitake fruit bodies.
[0040]
[Table 9]
[0041]
As is apparent from Table 9, the yield of maitake was dramatically increased by adding the compound (5) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0042]
Example 10
Hardwood sawdust (produced by Tomoe Bussan) 135 g (dry weight) and Homini feed [produced by Gordo Solvents Co., Ltd.] 80 g (fresh weight) were mixed well, and the compound of the present invention obtained in Example 9 (5) 0, 0.5, 1, 1.5, 2 or 3 g was added and mixed well, and then the water content was adjusted to 65% and packed into a 850 ml wide-mouth culture bottle made of polypropylene. A hole of about 1 cm was made in a solid culture medium. Sixteen pieces of each were prepared, and after sterilization, sterilized at 118 ° C. for 90 minutes. After completion of sterilization, the culture medium was allowed to cool sufficiently and inoculated with sawdust seeds of Maitake (Mori M51). This was cultured for 42 days in a culture room at a temperature of 24 ° C. and a humidity of about 50 to 60%, and then the stopper was removed. It moved to the generation room controlled so that the fruit body was generated under the condition of illuminance of 100 to 500 lux, and the maitake fruit body was harvested 14 to 17 days after moving to the generation room. The average yield per bottle of harvested maitake fruit bodies is shown in Table 10.
[0043]
[Table 10]
[0044]
As is apparent from Table 10, the yield of maitake was dramatically increased by adding the compound (5) of the present invention to the culture medium. Moreover, the addition amount required in this case was a very small amount of 0.5 to 3 g.
[0045]
【The invention's effect】
As explained in detail above, it became possible to obtain mushrooms in high yield in artificial cultivation by using the material for artificial cultivation containing the compound of the present invention as an active ingredient.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21304299A JP4554010B2 (en) | 1998-07-31 | 1999-07-28 | Artificial cultivation method of Maitake |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22948498 | 1998-07-31 | ||
JP10-229484 | 1998-07-31 | ||
JP21304299A JP4554010B2 (en) | 1998-07-31 | 1999-07-28 | Artificial cultivation method of Maitake |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000102322A JP2000102322A (en) | 2000-04-11 |
JP4554010B2 true JP4554010B2 (en) | 2010-09-29 |
Family
ID=26519585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21304299A Expired - Fee Related JP4554010B2 (en) | 1998-07-31 | 1999-07-28 | Artificial cultivation method of Maitake |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4554010B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4578035B2 (en) * | 2001-09-04 | 2010-11-10 | 電気化学工業株式会社 | Mushroom artificial culture medium and mushroom artificial cultivation method using the same |
JP4578037B2 (en) * | 2001-09-04 | 2010-11-10 | 電気化学工業株式会社 | Mushroom artificial culture medium and mushroom artificial cultivation method using the same |
EP4019623A4 (en) * | 2019-08-21 | 2023-08-23 | SETOLAS Holdings, Inc. | Additive for mushroom growth medium |
-
1999
- 1999-07-28 JP JP21304299A patent/JP4554010B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000102322A (en) | 2000-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6041544A (en) | Speciality mushroom spawn | |
CN100479647C (en) | High-yield cultivating method of agaricus blazei murrill | |
US20240251721A1 (en) | Additive for mushroom growth medium | |
JP4554010B2 (en) | Artificial cultivation method of Maitake | |
JP3534295B2 (en) | Mushroom artificial culture medium and mushroom artificial cultivation method using the same | |
US5018301A (en) | Method of cultivating mushrooms | |
JP3854093B2 (en) | Hatake shimeji fruit body occurrence rate improver | |
JP2766702B2 (en) | Culture medium for mushroom cultivation | |
JP3485775B2 (en) | Mushroom artificial culture medium and mushroom artificial cultivation method using the same | |
JP3205083B2 (en) | Artificial cultivation method of Hatake shimeji | |
JP4578036B2 (en) | Mushroom artificial culture medium and mushroom artificial cultivation method using the same | |
JPS59143524A (en) | Culture medium for culturing mushroom | |
JP2829400B2 (en) | Mushroom artificial cultivation method | |
JP2001224247A (en) | Artificial culture medium for mushroom, and artificial method for culturing mushroom by using the same | |
JP4570296B2 (en) | Mushroom artificial culture medium and mushroom artificial cultivation method using the same | |
JPH09308373A (en) | Artificial culture of tricholoma irinum | |
JP4578037B2 (en) | Mushroom artificial culture medium and mushroom artificial cultivation method using the same | |
JP4570297B2 (en) | Mushroom artificial culture medium and mushroom artificial cultivation method using the same | |
JP4570295B2 (en) | Mushroom artificial culture medium and mushroom artificial cultivation method using the same | |
JPH0544247B2 (en) | ||
JPH03201911A (en) | Mushroom bed for culturing cortinellus shiitake | |
JP2002000070A (en) | Method for artificially culturing lyophyllum decastes | |
JP3735267B2 (en) | Hatake shimeji cultivation method | |
JPH08113506A (en) | Agent for stimulating growth of mushroom | |
JPH0670636A (en) | Culture substrate for culturing lyophyllum decastes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080919 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081202 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090209 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100714 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4554010 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |