JP4545995B2 - 画像処理方法及び画像処理装置 - Google Patents

画像処理方法及び画像処理装置 Download PDF

Info

Publication number
JP4545995B2
JP4545995B2 JP2001201242A JP2001201242A JP4545995B2 JP 4545995 B2 JP4545995 B2 JP 4545995B2 JP 2001201242 A JP2001201242 A JP 2001201242A JP 2001201242 A JP2001201242 A JP 2001201242A JP 4545995 B2 JP4545995 B2 JP 4545995B2
Authority
JP
Japan
Prior art keywords
color space
signal
color
lab
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001201242A
Other languages
English (en)
Other versions
JP2003018419A (ja
JP2003018419A5 (ja
Inventor
健 波潟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001201242A priority Critical patent/JP4545995B2/ja
Priority to US10/180,132 priority patent/US7206100B2/en
Publication of JP2003018419A publication Critical patent/JP2003018419A/ja
Priority to US11/467,621 priority patent/US7583420B2/en
Publication of JP2003018419A5 publication Critical patent/JP2003018419A5/ja
Application granted granted Critical
Publication of JP4545995B2 publication Critical patent/JP4545995B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Color, Gradation (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は画像処理方法および画像処理装置に関し、例えば、プリンタの色再現処理に関する。
【0002】
【従来の技術】
プリンタや印刷機の色再現処理において、色再現効果を向上するための色修正を行う手法として、入力色空間のデータに行列演算を施して出力色空間のデータを得るカラーマスキング法によって入力色空間のデータを出力色空間のデータに変換する方法が多用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、一般にカラープリンタや印刷機の出力特性は強い非線型性を示す。従って、カラーマスキング法のような大域的な方法、つまり行列の要素を変更すると出力色空間全体に影響するような色修正方法では、すべての色域でカラープリンタや印刷機の特性を充分に近似することはできなかった。
【0004】
本発明は上記問題を解決するためになされたものであり、カラープリンタや印刷機がもつ強い非線型出力特性を精度よく近似し、高精度な色再現を可能にするプロファイルを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するための一手法として、本発明の画像処理方法は以下の工程を有する。
【0006】
すなわち、出力デバイスから出力されたカラーパッチの測色値を入力する測色工程と、前記測色値に基づき、ターゲットデバイスに従属する第1の色空間上の信号をデバイスに独立な第2の色空間上の信号に変換するための第1の変換条件を作成する第1の作成工程と、デバイスRGB色空間上で各色成分値が等しい複数のグレイ信号を前記出力デバイスに従属する第3の色空間上の信号に変換し、該変換後の第3の色空間上の信号を前記第1の変換条件により前記第2の色空間上の信号に変換することで、前記グレイ信号に関する前記第2の色空間のL*の指数関数近似を求め、該指数関数近似からγ値を算出する算出工程と、前記γ値をパラメータとして用いて、前記デバイスRGB色空間上の信号を前記第1の色空間上の信号に変換するための第1のデバイスRGB変換条件を作成する第2の作成工程と、前記デバイスRGB色空間上の信号を前記第1の色空間上の信号に変換し、さらに前記第1のデバイスRGB変換条件に従い変換することで、前記デバイスRGB色空間上の信号を前記第2の色空間上の信号に変換するための第2のデバイスRGB変換条件を作成する第3の作成工程と、前記第2の色空間上の信号を前記第2のデバイスRGB変換条件により前記デバイスRGB色空間上の信号に変換し、さらに前記第1のデバイスRGB変換条件に従い変換することで、前記第2の色空間上の信号を前記第3の色空間上の信号に変換するための第2の変換条件を作成する第4の作成工程と、を有する。
【0012】
【発明の実施の形態】
以下、本発明に係る一実施形態について、図面を参照して詳細に説明する。
【0013】
【第1実施形態】
図1は実施形態の画像処理装置の構成例を示すブロック図である。
【0014】
図1に示す画像処理装置に入力される信号は、何らかのデバイスに依存する色空間の画像信号で、例えば、あるスキャナにより原稿から読み取られた画像を示すRGB信号であったり、あるプリンタに出力すべきCMYK信号であってもよい。本実施形態を複写機に適用する場合は、入力信号はスキャナで読み取られた画像を示すRGB信号である。また、プルーフ(試し刷り、校正刷り)を目的とする場合は、ターゲットである印刷機へ出力されるCMYK信号である。
【0015】
このような入力信号は、入力色→Lab変換部101に入力されて、デバイスに独立な色空間であるLab色空間の信号に変換される。この変換は、入力色→Lab変換LUT102を用いるLUT変換により実現される。
【0016】
入力色→Lab変換LUT102のテーブルには、入力信号の色空間に対応するテーブルをセットする必要がある。例えば、スキャナAのRGB色空間に依存する画像信号が入力される場合は、スキャナAのRGB色空間に従属するRGB値とLab値との対応を表す三次元入力-三次元出力のRGB→Lab変換テーブルを入力色→Lab変換LUT102のテーブルとしてセットする。同様に、プリンタBのCMYK色空間に従属する画像信号が入力される場合は、プリンタBの色空間に従属するCMYK値とLab値との対応を表す四次元入力-三次元出力のCMYK→Lab変換テーブルを入力色→Lab変換LUT102のテーブルとしてセットする。
【0017】
図2はRGB→Lab変換テーブルの一例を示す図で、それぞれ8ビットのRGB値とLab値との対応を示している。実際のテーブルには代表的なRGB値をアドレスとするLab値が格納されているので、入力色→Lab変換部101は、入力されるRGB値の近傍のLab値をテーブルから取り出し、取り出したLab値を補間演算することで、入力されるRGB値に対応するLab値を取得する。
【0018】
入力色→Lab変換部101から出力されるLab信号は、Lab→デバイスRGB変換部104により、デバイスRGB→Lab変換LUT105に基づき、デバイスRGB色空間の信号に変換される。この変換処理の詳細は後述する。
【0019】
ここで、入力信号の色空間がRGB色空間である場合、その色域はプリンタの色再現域よりも広い場合が多い。このため、入力色→Lab変換部101から出力されるLab信号を、色空間圧縮変換部103においてプリンタ107の色再現範囲へマッピング(ガマットマッピング)した後、Lab→デバイスRGB変換部104に入力するものとする。ガマットマッピングの具体的な方法としては例えば、特開平8-130655号公報に開示されている均等色空間内において色空間圧縮処理を行う方法などを用いれば良いが、他の周知の色空間圧縮方法を用いても良い。
【0020】
Lab→デバイスRGB変換部104から出力されるデバイスRGB色空間の信号は、デバイスRGB→CMYK変換部106により、プリンタ107に従属なCMYK色空間の信号に変換された後、プリンタ107に送られる。RGB→CMYK変換についても様々な方法があり、どのような方法を用いても構わないが、例えば、次の変換式(1)を用いる。
C = (1.0 - R) - K
M = (1.0 - G) - K ・・・(1)
Y = (1.0 - B) - K
K = min{(1.0 - R), (1.0 - G), (1.0 - B)}[Lab→デバイスRGB変換]
次に、Lab→デバイスRGB変換部104の詳細について説明する。
【0021】
Lab→デバイスRGB変換部104は、予め得られているデバイスRGB値とLab測色値との対応関係に基づき信号を変換する。図3はデバイスRGB値⇔Lab測色値の対応関係を得て、Lab→デバイスRGB変換を行う手順を示すフローチャートである。勿論、既に、RGB値⇔Lab測色値の対応関係が得られている場合は、ステップS1およびS2は省略される。
【0022】
●ステップS1
カラーパッチ生成部108により、図4に示すような複数のカラーパッチからなるサンプル画像を生成する。そして、生成されたサンプル画像のRGB信号をデバイスRGB→CMYK変換部106を通してプリンタ107に出力し、サンプル画像109を得る。
【0023】
カラーパッチ生成部108で生成されるサンプル画像は、デバイスRGB色空間を均等分割するように作成される。図4の例では、RGBそれぞれ8ビットのRGB色空間を9×9×9に均等分割して729個のパッチを得る。本来、プリンタ107に従属な色空間はCMYK色空間であるが、RGB色空間からの変換ルールによりCMYK色空間に変換可能であるという意味で、RGB色空間をプリンタ107に従属な色空間であると考える。
【0024】
●ステップS2
得られたサンプル画像109の各カラーパッチをカラーパッチ測色部110により測色し、各カラーパッチのLab測色値を得る。得られたLab測色値は、図5に示されるようにLab色空間上に分布する。この操作により、カラーパッチ生成部108で生成されたRGB値、および、カラーパッチ測色部110で測色されたLab測色値が得られ、デバイスRGB→Lab変換LUT105のテーブルを得ることができる。このデバイスRGB→Lab変換LUT105を用いてLab→デバイスRGB変換を行う。
【0025】
ところで、LUTを利用する場合、周知の手法である立方体補間や四面体補間などの補間演算が利用される。これらの補間演算はLUTの入力側に相当するグリッドが等間隔である必要がある。デバイスRGB→Lab変換LUT105のテーブルにおけるデバイスRGB値は均等に並んでいるが、Lab測色値は均等に並んではいない。このため、Lab値を入力とする場合、デバイスRGB→Lab変換LUT105のテーブルは等間隔のグリッドをもつLUTを構成しない。従って、単純に、Lab値を入力する補間演算を行うことはできない。そこで、以下の手順により、Lab→デバイスRGB変換を行う。
【0026】
●ステップS3
デバイスRGB→Lab変換LUT105のテーブルに含まれるLab値と、入力Lab値との距離d(Lab色差式による色差と等価)を計算してメモリに格納する。
【0027】
●ステップS4
図6に示すように、入力Lab値(◎)に対して、距離dが小さい順にN個のエントリ(●)を選択する。このとき、距離dが小さい順に下記のように表記する。
Figure 0004545995
ここで、d1 < d2 < d3 < … < dN
●ステップS5
入力Lab値に対する変換値(RGB値)を次式により計算する。
RGB = (1/N)×Σi=1 NRGBi×f(di)
ここで、f(x) = 1/(1+x4)
関数f(x)は図7に示すような特性をもつから、上式による計算は、Lab色空間上で、より近傍にあるLab測色値に対応するRGB値に、より大きい重みを付けて補間演算を行っていることになる。
【0028】
補間演算に用いるサンプル点の数Nは、Lab色空間全域において、定数(例えば8)にすることもできる。しかし、デバイスRGB→CMYK変換部106における変換手法によっては、図5に示すように明度L*が低い領域に測色値が集中するために、Nを定数にすると不都合が生じることがある。つまり、測色値が集中する領域においては距離dが極めて小さくなり、Nが小さいと、少数のサンプル点に大きい重みを付けて補間演算が行われ、その結果、デバイスRGB色空間における階調ジャンプ、低明度領域でのホワイトバランスの崩れ、などの問題を生じ易い。
【0029】
そこで、図8に示すように、入力Lab値のL*値に応じてサンプル点の数を変化させて補間演算を行えば、上記の問題を効果的に解決することができる。勿論、明度が高い領域においても、補間演算に使うサンプル数が制限されることになり、色の濁りなどが生じ難くなる。なお、図8に示す関数N(L*)の一例は、L*=0で128、L*=100で4になる1/4乗関数を示している。
【0030】
上記ステップS3からS5の処理を入力Lab値すべてに繰り返し施せば、Lab信号をデバイスRGB信号に変換することができる。
【0031】
【第2実施形態】
以下、本発明にかかる第2実施形態の画像処理装置を説明する。なお、本実施形態において、第1実施形態と略同様の構成については、同一符号を付して、その詳細説明を省略する。
【0032】
図9は第2実施形態の画像処理装置の構成例を示すブロック図である。第2実施形態の画像処理装置は、デバイスに独立な色空間の信号からプリンタ107の色空間の信号への変換を、入力信号をデバイスに独立な色空間の信号へ変換する際と同様に、LUTで行う点で第1実施形態の画像処理装置と異なる。
【0033】
Lab→CMYK変換部803は、Lab→CMYK変換LUT804を用いて、Lab信号をプリンタ107に従属なCMYK色空間の信号に変換する。Lab→CMYK変換部803から出力されるCMYK信号はプリンタ107に送られる。Lab→CMYK変換LUT804は、次のようにして作成される。
【0034】
カラーパッチ生成部808で生成されたサンプル画像のCMYK信号はプリンタ107に出力され、サンプル画像109が得られる。
【0035】
得られたサンプル画像109の各カラーパッチをカラーパッチ測色部110により測色し、各カラーパッチのLab測色値を得る。得られたLab測色値およびカラーパッチ生成部808で生成されたCMYK値に基づき、Lab→CMYK変換LUT作成部810においてCMYK→Lab変換LUTを作成する。そして、作成されたCMYK→Lab変換LUTに基づき、第1実施形態と同様の方法を用いてLab→CMYK変換LUT804を作成する。
【0036】
例えば、Lab値を8ビット信号とすると、L*値は0から255まで、a*およびb*値は-128〜127までである。Labの各範囲を16ステップで刻んでLabのグリッドを構成すれば、173=4913回の計算によりLab→CMYK変換LUT804のテーブルができあがる。
【0037】
第1実施形態においては、LUTによりLab色空間からデバイスRGB色空間へ変換した後、演算処理によりデバイスRGB色空間からCMYK色空間へ変換したが、これら変換処理を、第2実施形態では一つのLUTで行うことができ、変換処理を効率化することができる。
【0038】
【第3実施形態】
以下、本発明にかかる第3実施形態の画像処理装置を説明する。なお、本実施形態において、第1実施形態と略同様の構成については、同一符号を付して、その詳細説明を省略する。
【0039】
図10は第3実施形態の画像処理装置の構成例を示すブロック図で、近年、インターネットで標準的な色空間になりつつあるsRGB色空間の入力信号を入力する構成を有する。sRGB色空間は、XYZ色空間との対応が定義付けられていて、デバイスに独立な色空間と考えることが可能である。そこで、sRGB値をXYZ値やLab値に変換し、さらに、上述したようなLab色空間からプリンタ色空間への変換を行えば、プリンタ107により、sRGB色空間の信号によって表される画像を再現することが可能になる。
【0040】
図10において、sRGB→CMYK変換部901は、sRGB→CMYK変換LUT902を用いて、sRGB色空間の入力信号をプリンタ107に従属なCMYK色空間の信号に変換する。sRGB→CMYK変換部901から出力されるCMYK信号はプリンタ107に送られる。sRGB→CMYK変換LUT902は、次のようにして作成される。
【0041】
カラーパッチ生成部108で生成されたサンプル画像のRGB信号は、デバイスRGB→CMYK変換部106によりプリンタ107に従属なCMYK信号に変換された後、プリンタ107に出力され、サンプル画像109が得られる。
【0042】
得られたサンプル画像109の各カラーパッチをカラーパッチ測色部110により測色し、各カラーパッチのLab測色値を得る。得られたLab測色値およびカラーパッチ生成部108で生成されたRGB値に基づき、sRGB→CMYK変換LUT作成部908は、sRGB→CMYK変換LUT902のテーブルを作成する。
【0043】
sRGB→CMYK変換LUT作成部908の処理は、第1実施形態で説明したデバイスRGB→CMYK変換処理をカラーパッチ生成部108で生成されたRGB値に施して得たCMYK値と、Lab測色値に定義式に従うLab→XYZおよびXYZ→sRGB変換を施して得たsRGB値とからsRGB→CMYK変換LUT902のテーブルを作成する。例えば、sRGB信号を8ビット信号とすると、sRGBの各範囲を16ステップで刻んで17×17×17のsRGBのグリッドを構成すれば、173=4913回の計算によりsRGB→CMYK変換LUT902のテーブルができあがる。
【0044】
以上説明した第1乃至第3実施形態のそれぞれによれば、カラープリンタや印刷機がもつ強い非線型出力特性を精度よく近似し、高精度な色再現を可能にする色変換方法を提供することができる。従って、デバイスに独立な色空間において、プリンタや印刷機の特性を良好に反映する色空間変換を行うため、どのような入力色空間に対しても、高精度な色再現がプリンタや印刷機で可能になる。
【0045】
なお、上記の実施形態においては、デバイスに独立な色空間をLab色空間として説明したが、他の均等色空間、例えばLuv色空間を用いてもまったく同様の効果を得ることができる。
【0046】
【第4実施形態】
以下、本発明にかかる第4実施形態の画像処理装置を説明する。なお、本実施形態における画像処理装置の構成例は第1実施形態と略同様であるため、各構成に同一符号を付して、その詳細説明を省略する。第4実施形態においては、デバイスRGB→CMYK変換部106における変換方法を、第1実施形態とは異なる方法に置き換えた例を示す。
【0047】
図11は、第4実施形態のデバイスRGB→CMYK変換部106における処理の流れを示す図である。入力され、[0:1]に正規化されたデバイスRGB値は、ステップS1001で反転処理されてCMY信号に変換される。その後ステップS1002において、次式に示すようにパラメータγを用いたγ変換が施される。
C = Cγ
M = Mγ
Y = Yγ
なお第4実施形態においては、上式におけるパラメータγを、γ = 1.6とした。
【0048】
ガンマ変換されたCMY信号は、ステップS1003において以下に説明するようなグリッド(格子点)を用いた補間演算が施されることによって、CMYK信号に変換される。
【0049】
補間演算処理S1003において用いられるグリッド1004は、CMY各々が[0:1]の範囲を取るようにしたCMY空間上における立方体の頂点に位置し、各グリッドは以下のようにCMYK値に対応している。
【0050】
Figure 0004545995
入力されたCMY値1005は、上記の各CMYグリッド値との距離が算出され、該距離に応じた重みにより対応CMYK値に対する線形の重み付け演算がなされて、CMYK値が出力される。
【0051】
一般に、電子写真プリンタであればトナーの転写性や定着性等によって、またインクジェットプリンタであればインクの浸透性等によって、理想的なトナー(インク)量が乗らない場合がある。これにより、2次色(RGB)を2色分のトナー量で出力できない、あるいは、Bkを3色または4色分のトナー量で出力できない場合が発生する。
【0052】
第4実施形態では、出力対象であるプリンタ107において、2次色については1.8色分のトナーしか乗らず、ブラックについては2.2色分しかトナーが乗らないものとし、従って上記表に示すように、レッド、グリーン、ブルーの各色を示すCMY値 (0,1,1), (1,0,1), (1,1,0)に対して、対応するCMYK値をそれぞれ (0.0,0.9,0.9,0.0), (0.9,0.0,0.9,0.0), (0.9,0.9,0.0,0.0)と設定した。また、ブラックの対応CMYK値を(0.4,0.4,0.4,1.0)としている。
【0053】
より一般的に表現すれば、2次色トナー量をcol2、Bkトナー量をcol4とすると、レッド, グリーン, ブルー, ブラックの対応CMYK値を、以下のように設定する。
【0054】
レッド = (0 , col2/2 , col2/2 , 0)
グリーン = (col2/2 , 0 , col2/2 , 0)
ブルー = (col2/2 , col2/2 , 0 , 0)
ブラック = ((col4-1)/3, (col4-1)/3, (col4-1)/3, 1)
すなわち第4実施形態においては、col2 = 1.8,col4 = 2.2とした。
【0055】
もちろん、上述した対応CMYK値や定義はこの例に限定されるものではなく、デバイス特性あるいは出力目的に応じて任意に設定することができる。例えば、ブラックの対応CMYK値を(0, 0, 0, 1)とすれば、RGB=(0,0,0)で表わされる純黒色を黒トナー単色で印字することができ、100%UCRが実現できる。
【0056】
第4実施形態においても、第1実施形態のステップS1と同様に、カラーパッチ生成部108から出力されたカラーパッチに基くデバイスRGB→CMYK変換を行うことによって、プリンタ107からサンプル画像109を出力する。そしてステップS2と同様に、得られたサンプル画像109の各カラーパッチをカラーパッチ測色部110で測色し、各カラーパッチのLab測色値を得る。第4実施形態において得られたLab測色値は、図12に示されるようにLab色空間上に分布する。図12によれば、第1実施形態において図5に示した、式(1)によるデバイスRGB→CMYK変換を用いた出力パッチのLab測色値分布と比較して、L*が低い領域での分布の密度が薄くなり、L*が高い領域での密度が高くなっていることが分かる。
【0057】
従って、第4実施形態におけるデバイスRGB→CMYK変換に基づいて出力したカラーパッチを用いれば、第1実施形態で述べたような問題、つまり、低明度領域でのサンプル密集に起因するデバイスRGB色空間における階調ジャンプ、低明度領域でのホワイトバランス崩れ等の問題について、第1実施形態の図8に示したようにサンプル点数を変化させる必要がなく、容易に解決することができる。
【0058】
カラーパッチの測色値分布の密度をなるべく明度によらないものにするためには、第4実施形態で示したように出力プリンタの階調特性に応じてγ変換のパラメータ(γ値)を適当に変化させれば良いが、ガンマ変換に代えて多項式関数等の他の計算方法を用いることも有効である。
【0059】
【第5実施形態】
以下、本発明にかかる第5実施形態の画像処理装置を説明する。なお第5実施形態において、第1実施形態と略同様の構成については、同一符号を付して、その詳細説明を省略する。
【0060】
図13は第5実施形態の画像処理装置の構成例を示すブロック図である。第5実施形態においても第2実施形態と同様に、デバイスに独立な色空間の信号からプリンタ107の色空間の信号への変換をLUTによって行う。更に、該LUTの作成方法についても詳細に説明する。
【0061】
上述した各実施形態においては、出力デバイスのプロファイルの作成方法を説明した。すなわち、デバイス値(例えばCMYK)→Lab変換LUT、及びLab→デバイス値(例えばCMYK)変換LUTがそれぞれ、出力デバイスのデスティネーションプロファイル、及びソースプロファイルに相当する。
【0062】
プルーフ(試し刷り、校正刷り)を目的として、ターゲットである印刷機の出力特性に合わせて色変換された画像を、複写機やプリンタでプリントする場合がある。このようなプルーフを行うには、上述した各実施形態で説明した方法によって、プルーフに用いられる出力デバイスにサンプル画像データを供給し印刷させ、得られたサンプル画像の各カラーパッチの測色値からプロファイルを作成する必要がある。そして、作成したプロファイルを使用して色変換を施した画像を出力デバイスでプリントすることになる。
【0063】
第5実施形態においては、プルーフに用いる出力デバイスのプロファイル作成処理ついて説明する。なお、第5実施形態で作成するプロファイルはプルーフ用に限られず、通常の出力(印刷)にも使用できることは言うまでもない。
【0064】
図13に示す、CMYK→Lab変換部1201、Lab→CMYK変換部1202、プリンタ107、CMYK→Lab変換LUT1204、およびLab→CMYK変換LUT1205による構成は、一般的なプルーフシステムの構成である。
【0065】
CMYK→Lab変換部1201に入力されるCMYK信号は、ターゲットである印刷機の特性に依存したCMYK信号であり、該印刷機デバイスに従属するCMYK色空間とデバイス独立色空間(Lab)との対応関係を保持するCMYK→Lab変換LUT1204を用いたCMYK→Lab変換により、デバイス独立な色空間であるLab色空間の信号に変換される。
【0066】
変換されたLab信号は、Lab→CMYK変換部1202により、プリンタ107に従属するCMYK色空間とLab色空間との対応関係を保持するLab→CMYK変換LUT1205を用いてCMYK色空間の信号に変換され、プリンタ107から出力される。
【0067】
このように、第5実施形態におけるCMYK→Lab変換、Lab→CMYK変換はともに、LUTを読み込み、該LUTを入力信号でアドレッシングして補間演算を行うことによって、実行される。
【0068】
このようなカラーマッチング方法は、ポストスクリプト(PostScript)におけるCRDを用いたカラーマッチング、あるいはICCプロファイルを用いたカラーマッチングの際に行われている。特にICCプロファイルは、デバイス従属な色空間とデバイス独立な色空間との相互変換を可能にするよう、CMYK→Lab変換LUT、およびLab→CMYK変換LUTを備えている。
【0069】
Lab→CMYK変換LUT1205およびCMYK→Lab変換LUT1204は、カラーパッチ生成部1206から出力されたCMYKカラーパッチをプリンタ107から出力し、得られたサンプル画像109をカラーパッチ測色部110で測色した測色値に基き、Lab→CMYK変換LUT作成部1211及びCMYK→Lab変換LUT作成部1212において作成される。
【0070】
ここで、Lab→CMYK変換LUT作成部1211においては、第1実施形態のLab→デバイスRGB変換部104及びデバイスRGB→CMYK変換部106における処理と同様に、サンプル画像のLab測色値からCMYKへの変換を行うことにより、Lab→CMYK変換LUT1205を作成する。しかしながら、第1実施形態におけるLab→CMYK変換はRGBカラーパッチの測色値に基づいて演算されるものであるため、第5実施形態におけるCMYKカラーパッチの測色値をそのまま適用することはできない。そこで第5実施形態においては、RGBカラーパッチの測色値テーブルを擬似的に作成するために、デバイスRGB→Lab変換LUT作成部1209を設けている。
【0071】
一方、CMYK→Lab変換LUT作成部1212においては、CMYKカラーパッチの測色値テーブルを用いた補間演算によって、CMYK→Lab変換LUT1204を作成する。
【0072】
作成されたLUTは記憶部1213に記憶され、Lab→CMYK変換部1202で参照されるLab→CMYK変換LUT1205としてセットされたり、他の印刷機に対するプルーフシステムのためにCMYK→Lab変換部1201で参照されるCMYK→Lab変換LUT1204としてセットされ、利用される。図13に示す各処理部における動作の詳細については後述する。
【0073】
図14は、第5実施形態の画像処理装置を計算機システム上で実現する際の構成例を示す図であり、ごく一般的な計算機システム構成をなしている。図13に示した各処理部(1201,1202,1206,1209,1211,1212)は、RAM1303あるいはROM1304に配置されたプログラムのモジュールとして実現され、CPU1302によって読み出されて実行される。また、図13に示した各LUT(1204,1205)はRAM1303上に確保された領域として実現される。また、プリンタ1312がCPU1302で実行されるプリンタドライバによりプリンタI/F1311を介して制御されることによって、図13のプリンタ107として機能する。なお、プリンタ107としては、ネットワークI/F1305を介してネットワーク1306上に存在する他のプリンタを用いてもよい。
【0074】
図13のカラーパッチ測色部110はシリアルI/F1309を介して制御されるカラー測色器1310によって実現され、記憶部1213としてはHDD1308を用いる。モニタ1314はビデオI/F1313を介して制御され、各モジュールを制御するためのGUI、カラーパッチ表示等に利用される。また、キーボード1301、マウス1307は、該GUIを介したユーザ入力等に用いられる。
【0075】
以下、図15A及び図15Bを参照して、図13に示した各処理部の動作を詳細に説明する。
【0076】
図15Aは、第5実施形態におけるパッチ生成・測色系及びCMYK→Lab変換LUT作成部1212の詳細動作を説明するための図である。
【0077】
同図において、カラーパッチ生成部1206で生成したCMYK画像をプリンタ107に出力して得られたサンプル画像109をカラーパッチ測色部110で測色することにより、CMYK→Lab測色値対応テーブル1401を得る。
【0078】
カラーパッチ生成部1206では、例えば、以下のようなCMYK値を持つカラーパッチ画像を生成する。
【0079】
Figure 0004545995
ここでは、C,M,Yのそれぞれが32刻み、Kが51刻みの値を取り、9x9x9x5個の色値を持つカラーパッチを生成するとする。もちろん、CMYK値はこれに限られるものではない。これらCMYK値と、該CMYK値に対応するパッチの測色値(全9x9x9x5個)の組み合わせが、CMYK→Lab測色値対応テーブル1401となる。
【0080】
次に、CMYK→Lab変換LUT作成部1212における動作について詳細に説明する。CMYK→Lab変換LUT作成部1212は、CMYKグリッド発生部1402、CMYK→Lab変換部1403からなり、上述したように作成されたCMYK→Lab測色値対応テーブル1401を参照して、CMYK→Lab変換LUT1204を作成する。
【0081】
CMYKグリッド発生部1402では、カラーパッチ生成部1206で発生したようなCMYK値の組み合わせを、ユーザの指定したグリッド数の数だけ発生させる。例えば、C,M,Y,Kをそれぞれ32刻みとして、9x9x9x9個のCMYK値を発生させる。こうして生成されたCMYK値は、CMYK→Lab変換部1403に入力され、パッチ生成/測色によって得られたCMYK→Lab測色値対応テーブル1401を用いた補間演算により、Lab値に変換される。変換されたLab値は、CMYKグリッド発生部1402で発生したCMYK値の情報とともに、CMYK→Lab変換LUT1204として格納される。
【0082】
図15Bは、第5実施形態におけるデバイスRGB→Lab変換LUT作成部1209及びLab→CMYK変換LUT作成部1211の詳細動作を説明するための図である。
【0083】
同図において、デバイスRGB→Lab変換LUT作成部1209は、デバイスRGBグリッド発生部1410で発生されたRGB値をデバイスRGB→CMYK変換部1411でCMYK値に変換した後、CMYK→Lab変換部1412において、図15Aに示したパッチ生成/測色によって得られたCMYK→Lab測色値対応テーブル1401を参照してLab値に変換することにより、デバイスRGB→Lab変換LUT1413を得る。なお、CMYK→Lab変換部1412としては、CMYK→Lab変換LUT作成部1212で用いられるモジュールであるCMYK→Lab変換部1403を共用しても良い。
【0084】
例えば、デバイスRGBグリッド発生部1410の発生するRGBグリッド値を
Figure 0004545995
とすれば、これらのグリッド値に対するLab値を算出できる。つまり、RGBカラーパッチを生成して測色した場合と同等のLab値が得られる。
【0085】
次に、Lab→CMYK変換LUT作成部1211における動作について詳細に説明する。Lab→CMYK変換LUT作成部1211は、Labグリッド発生部1420、色空間圧縮変換部1421、Lab→デバイスRGB変換部1422、およびデバイスRGB→CMYK変換部1423からなり、デバイスRGB→Lab変換LUT作成部1209において作成されたデバイスRGB→Lab変換LUT1413を参照して、Lab→CMYK変換LUT1205を作成する。なお、デバイスRGB→CMYK変換部1423としては、デバイスRGB→Lab変換LUT作成部1209で用いられるモジュールであるデバイスRGB→CMYK変換部1411を共用しても良い。
【0086】
Labグリッド発生部1420は、ユーザにより指定されたグリッド数で、Labグリッド値を生成する。例えば、Lab値を8ビット信号として扱うとし、ユーザが17x17x17のグリッド数を指定した場合には、L*の0から255まで、a*,b*の-128から127までを、それぞれ16刻みの値をとるものとして、4913(=17x17x17)個のLabグリッド値を生成する。こうして生成されたLab値は、第1実施形態の色空間圧縮変換部103を共用可能な色空間圧縮変換部1421、Lab→デバイスRGB変換部1422、第1実施形態のデバイスRGB→CMYK変換部106を共用可能なデバイスRGB→CMYK変換部1411によって、CMYK値に変換される。変換されたCMYK値は、Labグリッド発生部1420で発生したLabグリッドの情報とともに、Lab→CMYK変換LUT1205として格納される。
【0087】
図16は、第5実施形態の処理を制御するためのユーザインタフェース(UI)の一例を示す図であり、図14に示す計算機システム上において、ビデオI/F1313を介してモニタ1314上に表示される。
【0088】
同図に示すGUI1500は、カラーパッチ生成部1206が出力するパッチ画像を表示するビュー1501を持つ。ビュー1501は、カラーパッチ生成部1206におけるパッチ生成が正常であるか否かを確認するために用いられる。また、ボタン1502〜1505はそれぞれ、パッチ出力、測色、CMYK→Lab変換LUT作成、およびLab→CMYK変換LUT作成の指示ボタンであり、各処理の開始を指示する。
【0089】
LUT作成の際には、CMYK→Lab変換LUT設定フィールド1506内のグリッド数設定ボックス1507において、CMYK→Lab変換LUTのグリッド数を設定できる。これは例えばプルダウンメニューとして、9x9x9x9や17x17x17x17などのグリッド数が選べるようにしておけば良い。
【0090】
Lab→CMYK変換LUT設定フィールド1508内においては、グリッド数設定ボックス1509でグリッド数の設定が行えるのに加えて、出力プリンタのデバイス特性が設定できる。デバイス特性の個別設定フィールド1510においては、2次色トナー量、ブラックトナー量、階調補正ガンマを数値設定でき、これらの数値は、第4実施形態で説明したパラメータcol2、col4、γとして設定されて、デバイスRGB→CMYK変換部1411(1423)における変換の際のパラメータとして使用される。これら個別設定値は、デバイス特性保存ボタン1513により保存可能であり、保存した設定値はデバイス特性読み込みボタン1514の押下によって、再び読み込んで使用することができる。
【0091】
また、デバイス特性の推奨値を得たい場合には、デバイス推奨値設定フィールド1511でデバイスの種類を指定すれば良い。すなわち、選択可能な複数のデバイスについて、そのデバイス名とそれぞれに適した2次色トナー量、ブラックトナー量、階調補正ガンマが予め記憶されており、ユーザがデバイス名を指定すれば、対応する適切な2次色トナー量、ブラックトナー量、階調補正ガンマが自動的にセットされる。なお、該セットされた値を個別設定フィールド1510の各設定欄に表示するようにしても良い。
【0092】
なお、個別設定とデバイス推奨値設定は、チェックボタンによって排他的に指定可能とする。例えば、一方が指定されている場合は他方をグレーアウト表示とすることによって、選択状態が把握しやすくなる。
【0093】
図17A〜図17Eは、GUI1500上でのパッチ出力ボタン1502、測色ボタン1503、CMYK→Lab変換LUT作成ボタン1504、Lab→CMYK変換LUT作成ボタン1505の押下によって、各動作が指示された場合の処理を示すフローチャートである。
【0094】
図17Aは、パッチ出力ボタン1502の押下によって開始される、図15Aに示したパッチ出力処理のフローチャートである。該処理はすなわち、カラーパッチ生成部1206及びプリンタ107において実行される。先ずステップS1601でCMYK→Lab測色値対応テーブル1401を格納するためのメモリ領域を確保した後、ステップS1602でカラーパッチを示すCMYK値を生成し、ステップS1603で該CMYK値をCMYK→Lab測色値対応テーブル1401に格納する。次にステップS1604において、デバイス推奨値設定フィールド1511で出力対象となるプリンタ107を選択し、ステップS1605で該選択されたプリンタ107に対してカラーパッチのCMYK値を出力することによって、プリンタ107からサンプル画像109が出力される。
【0095】
サンプル画像109が得られると、次に測色ボタン1503の押下によって、図15Aに示したサンプル画像109の測色処理が開始される。図17Bは該測色処理を示すフローチャートであり、該処理はすなわちカラーパッチ測色部110によって実行される。プリンタ107から出力されたサンプル画像109をカラーパッチ測色部110(カラー測色器1310)にセットしてから、測色ボタン1503を押下する。するとステップS1611において、カラー測色器1310に測色開始を指示するコマンドをシリアルI/F1309を介して送り、ステップS1612でカラー測色器1310から測色値を受け取る。そしてステップS1613において、該測色値をCMYK→Lab測色値対応テーブル1401に格納することによって、CMYK→Lab測色値対応テーブル1401が完成する。
【0096】
次に、各LUTの作成処理について説明する。
【0097】
図17Cは、CMYK→Lab変換LUT作成ボタン1504の押下によって開始される、図15Aに示したCMYK→Lab変換LUT作成処理のフローチャートである。該処理はすなわち、CMYK→Lab変換LUT作成部1212において実行される。
【0098】
先ずステップS1621において、グリッド数設定ボックス1507に設定されているグリッド数をチェックし、ステップS1622でCMYK→Lab変換LUT1204を格納するためのメモリ領域を該グリッド数に応じて確保する。そしてステップS1623でグリッド数に応じたCMYKグリッド値を生成し、ステップS1624で該CMYKグリッド値をLab値に変換し、ステップS1625で該Lab値をCMYK→Lab変換LUT1204に格納することによって、該LUTが完成する。
【0099】
図17D及び図17Eは、Lab→CMYK変換LUT作成ボタン1505の押下によって開始される、図15Bに示したLab→CMYK変換LUT作成処理のフローチャートである。該処理はすなわち、デバイスRGB→Lab変換LUT作成部1209、及びLab→CMYK変換LUT作成部1211において実行される。
【0100】
先ず、ステップS1701でLab→CMYK変換LUT設定フィールド1508内における各設定値(グリッド数、2次色トナー量、Blackトナー量、階調補正ガンマ値)を取得し、記憶する。次にステップS1702において、デバイスRGB→Lab変換LUT1413の作成処理を開始する。
【0101】
ここで、デバイスRGB→Lab変換LUT作成の詳細を図17Eを参照して説明する。先ずステップS1710で、デバイスRGB→Lab変換LUT1413を格納するためのメモリ領域を確保する。そしてステップS1711でデバイスRGBのグリッド値を生成してデバイスRGB→Lab変換LUT1413に格納するとともに、ステップS1712のデバイスRGB→CMYK変換、及びステップS1713のCMYK→Lab変換によって得られたLab値を、ステップS1714でデバイスRGB→Lab変換LUT1413に格納することによって、該LUTが完成する。
【0102】
ステップS1702でデバイスRGB→Lab変換LUT1413が得られたらステップS1703において、Lab→CMYK変換LUT1205を格納するためのメモリ領域を、グリッド数設定ボックス1509に設定されたグリッド数に応じて確保する。そしてステップS1704において、該グリッド数に応じたLabグリッド値を生成する。該Labグリッド値は、ステップS1705の色空間圧縮、ステップS1706のLab→デバイスRGB変換、ステップS1707のデバイスRGB→CMYK変換処理を経てCMYK値に変換され、ステップS1708でLab→CMYK変換LUT1205に格納されることによって、該LUTが完成する。
【0103】
以上説明したように第5実施形態によれば、出力デバイスのプロファイルを適切に作成することができるため、適切なプルーフ処理が行える。
【0104】
【第6実施形態】
以下、本発明にかかる第6実施形態の画像処理装置を説明する。
【0105】
上述した第1実施形態で説明したように、Lab→デバイスRGB変換においては、RGBパッチの測色値分布の密度がなるべく明度によらず均一になっていることが望ましい。そこで第1実施形態では、測色値分布が密集している低明度領域では計算に使用するLab値のサンプル数を多くし、測色値分布が疎である高明度領域ではサンプル数を少なくする例を示した。
【0106】
同様の目的を達成するためには、第4実施形態及び第5実施形態で説明したデバイスRGB→CMYK変換におけるパラメータγを、適当な値に調整すればよい。該調整の結果、図5に示すように低明度領域に分布が集中していた測色値分布が、図12に示すような明度によらない分布として得られることは既に説明した通りである。
【0107】
上述した第5実施形態においてはパラメータγをGUIを介してユーザが設定する例を示したが、第6実施形態では、該パラメータγを自動設定することを特徴とする。
【0108】
図18は、第6実施形態における画像処理装置の構成を示すブロック図であり、図13に示す第5実施形態の構成に加えて、CMYKカラーパッチに対するLab測色値を解析してパラメータγを自動設定する、測色値分布解析部1901を設けたことを特徴とする。なお、その他の構成については第5実施形態と同様であるため、同一番号を付して詳細説明を省略する。
【0109】
図19は、測色値分布解析部1901の詳細構成を示すブロック図である。同図において、グレイ値生成部1910によりR=G=Bのグレイ値が複数点生成されて、デバイスRGB→CMYK変換部1911に渡される。ここで変換されたCMYK値が、CMYK→Lab変換部1912においてカラーパッチ測色部110で生成されたCMYK→Lab測色値対応テーブル1401(図15A)に基づきLab値に変換されることによって、グレイ値→L*テーブル1913が構成される。γ値算出部1914は、Gray値→L*テーブル1913に基づいて、後述するように適切なγ値を算出する。得られたγ値は、デバイスRGB→Lab変換LUT作成部1209やLab→CMYK変換LUT作成部1211に与えられ、デバイスRGB→CMYK変換部1411,1423のパラメータとしてセットされる。
【0110】
なお、デバイスRGB→CMYK変換部1911としては、第5実施形態においてデバイスRGB→Lab変換LUT作成部1209内のモジュールとして図15Bに示した、デバイスRGB→CMYK変換部1411を共用しても良い。また同様に、CMYK→Lab変換部1912としては、図15Aに示したCMYK→Lab変換LUT作成部1212内のモジュールであるCMYK→Lab変換部1403を共用しても良い。
【0111】
以下、第6実施形態におけるLab→CMYK変換LUT作成処理(図15B)について説明する。該処理はすなわち、デバイスRGB→Lab変換LUT作成部1209、及びLab→CMYK変換LUT作成部1211において実行され、その概要は第5実施形態で説明した図17Dと同様である。第6実施形態においては、図17DのステップS1702に示すデバイスRGB→Lab変換LUT作成処理が第5実施形態とは異なり、その詳細を図20のフローチャートに示す。
【0112】
図20に示すように第6実施形態においては、Lab→CMYK変換LUT作成処理の開始直後にステップS1801で測色値を解析してγ値を決定することを特徴とし、以降の処理は図17Eと同様である。
【0113】
以下、測色値分布解析部1901におけるγ値の算出方法について、図21のフローチャートを参照して具体的に説明する。
【0114】
●ステップS21
グレイ値生成部1910においてグレイ信号を生成し、該グレイ信号に対するL*値を求める。
【0115】
例えば、先ずグレイ値生成部1910でR=G=B=0,16,32,,,255 のような複数のグレイ信号を生成し、デバイスRGB→CMYK変換部1911で該グレイ信号をCMYK値に変換する。この時、デバイスRGB→CMYK変換部1911におけるパラメータとしては、γ=1.0とし、col2,col4は第5実施形態のGUIによって指定された値とする。
【0116】
次に、変換されたCMYK値を、CMYK→Lab変換部1912でLab値に変換する。これによりグレイ信号に対するLab値が得られる。図22は、グレイ信号を[0:1]に正規化して対応するL*値をプロットしたグラフであり、これがすなわち、グレイ値→L*テーブル1913である。
【0117】
●ステップS22
図22に示すグレイ信号とL*値との対応関係(グレイ値→L*テーブル1913)を指数関数で近似する。
【0118】
まずL*を、L*'=(L*-L*min)/(L*max-L*min)として[0:1]に正規化する。そして正規化されたグレイ-L*'曲線を、周知の関数フィッティング方法によって指数関数で近似することにより、γ値を求める。
【0119】
以上のようにして得られたγ値を、デバイスRGB→CMYK変換部1411,1423のパラメータとしてセットすることによって、デバイスRGB→Lab変換LUT作成部1209により得られるデバイスRGB→Lab変換LUT1412、及びLab→CMYK変換LUT作成部1211により得られるLab→CMYK変換LUT1205においては、そのLab値の分布がL*値に対して均一なものとなる。
【0120】
また、γ変換ではなく、多項式により階調特性を補正する場合にも、得られたグレイ信号-L*曲線を多項式に当てはめるように演算を行えば、同様の効果が得られる。
【0121】
以上説明したように第6実施形態によれば、デバイスRGB→CMYK変換時に利用されるパラメータγを、適切な値に自動設定することができる。
【0122】
【他の実施形態】
なお、本発明は、複数の機器(例えばホストコンピュータ、インタフェイス機器、リーダ、プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置など)に適用してもよい。
【0123】
また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体(または記録媒体)を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。また、コンピュータが読み出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム(OS)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
【0124】
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張カードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
【0125】
【発明の効果】
以上説明したように本発明によれば、カラープリンタや印刷機がもつ強い非線型出力特性を精度よく近似し、高精度な色再現を可能にするプロファイルを提供することができる。
【0126】
従って、デバイス独立色空間においてプリンタ特性をよく反映した色空間変換を行えるため、どのような入力色空間に対しても、高精度なプリンタ色再現が可能となる。また、出力デバイスの特性に適した色分解が容易にできるため、デバイス独立色空間での色空間変換の精度をさらに高めることができる。
【図面の簡単な説明】
【図1】第1実施形態の画像処理装置の構成例を示すブロック図、
【図2】 RGB→Lab変換テーブルの一例を示す図、
【図3】デバイスRGB値⇔Lab測色値の対応関係を得て、デバイスRGB→Lab変換を行う手順を示すフローチャート、
【図4】サンプル画像の一例を示す図、
【図5】カラーパッチ測色部による測色結果の一例を示す図、
【図6】サンプル点の選択を説明する図、
【図7】距離dに応じた重み付け関数を説明する図、
【図8】サンプル点の数を変化させる関数を説明する図、
【図9】第2実施形態の画像処理装置の構成例を示すブロック図、
【図10】第3実施形態の画像処理装置の構成例を示すブロック図、
【図11】第4実施形態のデバイスRGB→CMYK変換の処理の流れを示す図、
【図12】第4実施形態におけるカラーパッチ測色結果の一例を示す図、
【図13】第5実施形態の画像処理装置の構成例を示すブロック図、
【図14】第5実施形態を計算機システム上で実現する際の構成例を示す図、
【図15A】第5実施形態のパッチ生成・測色系及びCMYK→Lab変換LUT作成の詳細動作を示す図、
【図15B】第5実施形態のデバイスRGB→Lab変換LUT作成、及びLab→CMYK変換LUT作成の詳細動作を示す図、
【図16】第5実施形態のGUIの一例を示す図、
【図17A】第5実施形態のパッチ出力処理を示すフローチャート、
【図17B】第5実施形態の測色処理を示すフローチャート、
【図17C】第5実施形態のCMYK→Lab変換LUT作成処理を示すフローチャート、
【図17D】第5実施形態のLab→CMYK変換LUT作成処理を示すフローチャート、
【図17E】第5実施形態のデバイスRGB→Lab変換LUT作成処理を示すフローチャート、
【図18】第6実施形態における画像処理装置の構成を示すブロック図
【図19】第6実施形態の測色値分布解析部の詳細構成を示すブロック図、
【図20】第6実施形態のLab→CMYK変換LUT作成処理の際のデバイスRGB→Lab変換LUT作成処理を示すフローチャート、
【図21】第6実施形態の測色値分布解析によるガンマ値算出方法を示すフローチャート、
【図22】グレイ信号とL*値の関係を示すグラフ、である。

Claims (13)

  1. 出力デバイスから出力されたカラーパッチの測色値を入力する測色工程と、
    前記測色値に基づき、ターゲットデバイスに従属する第1の色空間上の信号をデバイスに独立な第2の色空間上の信号に変換するための第1の変換条件を作成する第1の作成工程と、
    デバイスRGB色空間上で各色成分値が等しい複数のグレイ信号を前記出力デバイスに従属する第3の色空間上の信号に変換し、該変換後の第3の色空間上の信号を前記第1の変換条件により前記第2の色空間上の信号に変換することで、前記グレイ信号に関する前記第2の色空間のL*の指数関数近似を求め、該指数関数近似からγ値を算出する算出工程と、
    前記γ値をパラメータとして用いて、前記デバイスRGB色空間上の信号を前記第1の色空間上の信号に変換するための第1のデバイスRGB変換条件を作成する第2の作成工程と、
    前記デバイスRGB色空間上の信号を前記第1の色空間上の信号に変換し、さらに前記第1のデバイスRGB変換条件に従い変換することで、前記デバイスRGB色空間上の信号を前記第2の色空間上の信号に変換するための第2のデバイスRGB変換条件を作成する第3の作成工程と、
    前記第2の色空間上の信号を前記第2のデバイスRGB変換条件により前記デバイスRGB色空間上の信号に変換し、さらに前記第1のデバイスRGB変換条件に従い変換することで、前記第2の色空間上の信号を前記第3の色空間上の信号に変換するための第2の変換条件を作成する第4の作成工程と、
    を有することを特徴とする画像処理方法。
  2. 前記測色工程において、前記測色値として前記第2の色空間上の信号を入力することを特徴とする請求項1に記載の画像処理方法。
  3. 前記第3の作成工程において、前記デバイスRGB色空間上の信号はデバイスRGBグリッド値に対応する信号であることを特徴とする請求項1に記載の画像処理方法。
  4. 前記第1のデバイスRGB変換条件は、前記出力デバイスの特性に応じたトナー量を更なるパラメータとして用いて作成されることを特徴とする請求項1に記載の画像処理方法。
  5. 前記第1及び第3の色空間はCMYK色空間であり、
    前記第2の色空間は均等色空間であることを特徴とする請求項1に記載の画像処理方法。
  6. 前記第1及び第2の変換条件は、色変換用のルックアップテーブルであることを特徴とする請求項1に記載の画像処理方法。
  7. 出力デバイスから出力されたカラーパッチの測色値を入力する測色手段と、
    前記測色値に基づき、ターゲットデバイスに従属する第1の色空間上の信号をデバイスに独立な第2の色空間上の信号に変換するための第1の変換条件を作成する第1の作成手段と、
    デバイスRGB色空間上で各色成分値が等しい複数のグレイ信号を前記出力デバイスに従属する第3の色空間上の信号に変換し、該変換後の第3の色空間上の信号を前記第1の変換条件により前記第2の色空間上の信号に変換することで、前記グレイ信号に関する前記第2の色空間のL*の指数関数近似を求め、該指数関数近似からγ値を算出する算出手段と、
    前記γ値をパラメータとして用いて、前記デバイスRGB色空間上の信号を前記第1の色空間上の信号に変換するための第1のデバイスRGB変換条件を作成する第2の作成手段と、
    前記デバイスRGB色空間上の信号を前記第1の色空間上の信号に変換し、さらに前記第1のデバイスRGB変換条件に従い変換することで、前記デバイスRGB色空間上の信号を前記第2の色空間上の信号に変換するための第2のデバイスRGB変換条件を作成する第3の作成手段と、
    前記第2の色空間上の信号を前記第2のデバイスRGB変換条件により前記デバイスRGB色空間上の信号に変換し、さらに前記第1のデバイスRGB変換条件に従い変換することで、前記第2の色空間上の信号を前記第3の色空間上の信号に変換するための第2の変換条件を作成する第4の作成手段と、
    を有することを特徴とする画像処理装置。
  8. 前記測色手段は、前記測色値として前記第2の色空間上の信号を入力することを特徴とする請求項7に記載の画像処理装置。
  9. 前記第3の作成手段において、前記デバイスRGB色空間上の信号はデバイスRGBグリッド値に対応する信号であることを特徴とする請求項7に記載の画像処理装置。
  10. 前記第1のデバイスRGB変換条件は、前記出力デバイスの特性に応じたトナー量を更なるパラメータとして用いて作成されることを特徴とする請求項7に記載の画像処理装置。
  11. 前記第1及び第3の色空間はCMYK色空間であり、
    前記第2の色空間は均等色空間であることを特徴とする請求項7に記載の画像処理装置。
  12. 前記第1及び第2の変換条件は、色変換用のルックアップテーブルであることを特徴とする請求項7に記載の画像処理装置。
  13. コンピュータに、請求項1乃至6の何れか一項に記載の画像処理方法の各工程を実行させるためのプログラム。
JP2001201242A 2001-07-02 2001-07-02 画像処理方法及び画像処理装置 Expired - Fee Related JP4545995B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001201242A JP4545995B2 (ja) 2001-07-02 2001-07-02 画像処理方法及び画像処理装置
US10/180,132 US7206100B2 (en) 2001-07-02 2002-06-27 Image processing method and apparatus
US11/467,621 US7583420B2 (en) 2001-07-02 2006-08-28 Image processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201242A JP4545995B2 (ja) 2001-07-02 2001-07-02 画像処理方法及び画像処理装置

Publications (3)

Publication Number Publication Date
JP2003018419A JP2003018419A (ja) 2003-01-17
JP2003018419A5 JP2003018419A5 (ja) 2008-08-14
JP4545995B2 true JP4545995B2 (ja) 2010-09-15

Family

ID=19038241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201242A Expired - Fee Related JP4545995B2 (ja) 2001-07-02 2001-07-02 画像処理方法及び画像処理装置

Country Status (1)

Country Link
JP (1) JP4545995B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345435A (ja) * 2005-06-10 2006-12-21 Fuji Xerox Co Ltd 画像処理装置、画像処理方法、画像処理プログラム、及び記憶媒体
WO2010082320A1 (ja) * 2009-01-14 2010-07-22 株式会社ミマキエンジニアリング プログラム、画像形成方法、及び印刷システム
CN102171052A (zh) * 2009-01-14 2011-08-31 株式会社御牧工程 程序、图像形成方法以及印刷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184073A (ja) * 1993-12-22 1995-07-21 Canon Inc 色変換装置
JPH08237495A (ja) * 1994-12-12 1996-09-13 Xerox Corp 選択されたカラーを正確に描写するためのカラープリンタ校正方法
JPH10150566A (ja) * 1996-11-18 1998-06-02 Nec Corp 明度補正装置
JPH10276337A (ja) * 1997-03-28 1998-10-13 Sharp Corp カラー画像処理装置
JP2000137806A (ja) * 1998-10-29 2000-05-16 Canon Inc 画像処理装置及びその方法
JP2000253270A (ja) * 1999-03-04 2000-09-14 Dainippon Printing Co Ltd 色変換テーブル作成装置、作成方法、色変換テーブル作成プログラムを記録した記録媒体、および、色変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184073A (ja) * 1993-12-22 1995-07-21 Canon Inc 色変換装置
JPH08237495A (ja) * 1994-12-12 1996-09-13 Xerox Corp 選択されたカラーを正確に描写するためのカラープリンタ校正方法
JPH10150566A (ja) * 1996-11-18 1998-06-02 Nec Corp 明度補正装置
JPH10276337A (ja) * 1997-03-28 1998-10-13 Sharp Corp カラー画像処理装置
JP2000137806A (ja) * 1998-10-29 2000-05-16 Canon Inc 画像処理装置及びその方法
JP2000253270A (ja) * 1999-03-04 2000-09-14 Dainippon Printing Co Ltd 色変換テーブル作成装置、作成方法、色変換テーブル作成プログラムを記録した記録媒体、および、色変換装置

Also Published As

Publication number Publication date
JP2003018419A (ja) 2003-01-17

Similar Documents

Publication Publication Date Title
US7206100B2 (en) Image processing method and apparatus
JP3720691B2 (ja) 色処理方法および装置
EP1294177B1 (en) Image processing method and apparatus
US7697167B2 (en) Color processing method and apparatus
Vrhel et al. Color device calibration: A mathematical formulation
US7463386B2 (en) Color processing device and its method
JP4009812B2 (ja) 画像処理装置、コンピュータ読取可能な記憶媒体、及び画像処理方法
JP5188082B2 (ja) 画像出力機器の色変換定義の作成方法、作成装置及びそのプログラム
US6919972B2 (en) Image processing apparatus and its control method, and image processing method
US8427696B2 (en) Color processing method and apparatus thereof
JP2012023711A (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP3990859B2 (ja) 色処理方法およびその装置
JP4046967B2 (ja) 画像処理装置およびその方法
JP4545995B2 (ja) 画像処理方法及び画像処理装置
JP4532797B2 (ja) 画像処理方法及び画像処理装置
US7518752B2 (en) System and method for two color document rendering
JP4533291B2 (ja) 色処理方法およびその装置
JP4250609B2 (ja) 色処理方法、装置および記録媒体
JP4603665B2 (ja) 色処理装置およびその方法
JP2004064542A (ja) 画像処理システム、装置及び方法
JP2007208737A (ja) 色変換方法および装置
JP2004023650A (ja) 画像処理装置及び該画像処理装置に用いる画像生成もしくは処理プログラム
US20180332181A1 (en) Image processing apparatus, image processing system, and recording medium
JP2009284261A (ja) 色処理装置、方法及びプログラム
JP2004153685A (ja) 画像処理装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4545995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees