JP4545004B2 - Piezoelectric oscillator - Google Patents

Piezoelectric oscillator Download PDF

Info

Publication number
JP4545004B2
JP4545004B2 JP2005016599A JP2005016599A JP4545004B2 JP 4545004 B2 JP4545004 B2 JP 4545004B2 JP 2005016599 A JP2005016599 A JP 2005016599A JP 2005016599 A JP2005016599 A JP 2005016599A JP 4545004 B2 JP4545004 B2 JP 4545004B2
Authority
JP
Japan
Prior art keywords
oscillation
support substrate
sealing member
piezoelectric oscillator
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005016599A
Other languages
Japanese (ja)
Other versions
JP2006129417A (en
Inventor
英文 畠中
浩之 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Kyocera Crystal Device Corp
Original Assignee
Kyocera Corp
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Kyocera Crystal Device Corp filed Critical Kyocera Corp
Priority to JP2005016599A priority Critical patent/JP4545004B2/en
Publication of JP2006129417A publication Critical patent/JP2006129417A/en
Application granted granted Critical
Publication of JP4545004B2 publication Critical patent/JP4545004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、携帯用通信機器等の電子機器に用いられる圧電発振器に関するものである。   The present invention relates to a piezoelectric oscillator used in an electronic device such as a portable communication device.

従来より、携帯用通信機器等の電子機器に組み込まれるタイミングデバイスとして温度補償型水晶発振器(TCXO)等の圧電発振器が幅広く用いられている。   Conventionally, a piezoelectric oscillator such as a temperature-compensated crystal oscillator (TCXO) has been widely used as a timing device incorporated in an electronic device such as a portable communication device.

かかる従来の圧電発振器としては、例えば図10に示すように、上方が開口した凹部内に水晶振動素子(圧電振動素子)を収容した第1の容器体21を、下面に複数個の外部端子を設け、上方が開口した凹部内に水晶振動素子の発振出力を制御するための発振用IC22を収容した第2の容器体23上に、載置・固定した構造のものが知られている(例えば、特許文献1参照。)。   As such a conventional piezoelectric oscillator, for example, as shown in FIG. 10, a first container body 21 in which a crystal vibration element (piezoelectric vibration element) is accommodated in a recess opened upward, and a plurality of external terminals are provided on the lower surface. There is a known structure in which a structure is mounted and fixed on a second container body 23 that houses an oscillation IC 22 for controlling the oscillation output of a crystal resonator element in a recess that is open at the top (for example, , See Patent Document 1).

なお、第2の容器体23の開口部周辺には複数個の接続電極24が、第1の容器体21の下面には接続電極24と1対1に対応する接続電極(図示せず)が設けられ、この両者を半田等のロウ材を介して接合することにより第1の容器体21が第2の容器体23上に固定される。   A plurality of connection electrodes 24 are provided around the opening of the second container body 23, and connection electrodes (not shown) corresponding to the connection electrodes 24 on the lower surface of the first container body 21. The first container body 21 is fixed on the second container body 23 by joining the two together via a brazing material such as solder.

その組み立てを終えた後、第1の容器体21の開口部は、金属製の蓋体25を従来周知のシーム溶接(抵抗溶接)等で接合することにより塞がれ、これによって水晶振動素子の収容領域が気密封止される。   After the assembly is completed, the opening of the first container body 21 is closed by joining a metal lid 25 by a well-known seam welding (resistance welding) or the like. The receiving area is hermetically sealed.

また、このような従来の圧電発振器の製造方法としては、通常、第1の容器体21と第2の容器体23だけを“複数個取り”の手法によって製作し、分割後に得られた個片(第1の容器体21、第2の容器体23)に水晶振動素子や発振用IC22を個別に搭載した上、両者を接合して製品を組み立てていた。
特開平10−98151号公報
In addition, as a method of manufacturing such a conventional piezoelectric oscillator, usually, only the first container body 21 and the second container body 23 are manufactured by the “multiple picking” technique, and the individual pieces obtained after the division are obtained. The crystal resonator element and the oscillation IC 22 are individually mounted on the (first container body 21 and second container body 23), and both are joined to assemble the product.
JP-A-10-98151

しかしながら、上述した従来の圧電発振器は、水晶振動素子が収容されている第1の容器体21と発振用IC22が収容されている第2の容器体23とを縦に積み上げて組み立てたものであり、全体構造が高背化してしまう。したがって圧電発振器を低背化(薄型化)させることが困難であるという欠点を有していた。   However, the above-described conventional piezoelectric oscillator is assembled by vertically stacking the first container body 21 in which the crystal resonator element is accommodated and the second container body 23 in which the oscillation IC 22 is accommodated. The overall structure will become taller. Therefore, it has a drawback that it is difficult to reduce the thickness (thinner) of the piezoelectric oscillator.

また、上述した製造方法では、第2の容器体23を個片に分割した後で発振用IC22や第1の容器体21等を第2の容器体23上に搭載する場合、その作業が完了するまでの間、第2の容器体23を個々にキャリア部材等で保持しておく必要があり、組み立て作業が煩雑である上に、キャリア部材等の製造設備が別途必要になり、これによっても温度補償型水晶発振器の生産性が低下するという欠点を有していた。   Further, in the above-described manufacturing method, when the second container body 23 is divided into individual pieces and the oscillation IC 22 and the first container body 21 are mounted on the second container body 23, the operation is completed. In the meantime, it is necessary to hold the second container body 23 individually with a carrier member or the like, and the assembly work is complicated, and additional manufacturing equipment for the carrier member or the like is required. There was a disadvantage that the productivity of the temperature compensated crystal oscillator was lowered.

本発明は上記欠点に鑑み案出されたもので、その目的は、低背化に最適な構造の圧電発振器を提供することにある。   The present invention has been devised in view of the above-described drawbacks, and an object thereof is to provide a piezoelectric oscillator having a structure optimal for reducing the height.

本発明の圧電発振器は、支持基板の上面と発振用ICの下面とを、封止部材で両者間に封止空間を形成するように接合し、前記封止空間内に前記発振用ICと電気的に接続される圧電振動素子を収容してなる圧電発振器において、前記支持基板の上面及び前記発振用ICの下面が平面状であって、前記支持基板及び前記発振用ICに当接させて前記封止空間の変動を抑制するスペーサ部材が設けられているとともに、前記封止空間の内方で前記支持基板上の接続パッドと発振用IC上の電極パッドとが導電性接合材を介して接続され、前記圧電振動素子が導電性接着剤を介して前記支持基板又は前記発振用ICに実装されていて、前記導電性接着剤を前記スペーサ部材として利用していることを特徴とする。
In the piezoelectric oscillator of the present invention, the upper surface of the support substrate and the lower surface of the oscillation IC are joined with a sealing member so as to form a sealed space therebetween, and the oscillation IC and the electrical circuit are electrically connected in the sealed space. In the piezoelectric oscillator that accommodates the piezoelectric vibration elements connected to each other, the upper surface of the support substrate and the lower surface of the oscillation IC are planar, and are in contact with the support substrate and the oscillation IC. with suppressing the spacer member varies in the sealed space is provided, the connection pad before Symbol supporting substrate at the inside of the sealed space and the electrode pads on the oscillation IC via a conductive bonding material connected, the piezoelectric vibrating element is being mounted on the supporting substrate or the oscillation IC via a conductive adhesive, it characterized that you have to use the conductive adhesive as the spacer member.

前記圧電振動素子が前記発振用ICの下面に実装されていることを特徴とする。   The piezoelectric vibration element is mounted on the lower surface of the oscillation IC.

前記封止部材がロウ材から成ることを特徴とする。   The sealing member is made of a brazing material.

前記封止部材と前記導電性接合材とが同一の金属材料から成ることを特徴とする。   The sealing member and the conductive bonding material are made of the same metal material.

前記封止部材が金属材料により形成されるとともに、該封止部材を支持基板下面のグランド端子に電気的に接続したことを特徴とする。   The sealing member is formed of a metal material, and the sealing member is electrically connected to a ground terminal on the lower surface of the support substrate.

前記発振用ICの上面にシールド層が被着されていることを特徴とする。   A shield layer is deposited on the upper surface of the oscillation IC.

前記シールド層の端部は、前記発振用ICの側面に沿って前記封止部材まで延在されていることを特徴とする。   An end portion of the shield layer is extended to the sealing member along a side surface of the oscillation IC.

前記発振用ICの上面に電波吸収体層が被着されていることを特徴とする。   A radio wave absorber layer is deposited on the upper surface of the oscillation IC.

前記支持基板をセラミック材料で、前記封止部材を金属材料で形成し、前記電波吸収体層の端部を前記発振用ICの側面に沿って前記支持基板及び/又は前記封止部材まで延在させたことを特徴とする。   The support substrate is formed of a ceramic material, the sealing member is formed of a metal material, and an end portion of the radio wave absorber layer extends to the support substrate and / or the sealing member along a side surface of the oscillation IC. It was made to be characterized.

本発明の圧電発振器によれば、支持基板の上面及び発振用ICの下面を平面状とし、支持基板上に配置される圧電振動素子の収容領域を発振用ICで塞ぐようにしたことから、従来例に比し全体構造を薄く形成することができ、圧電発振器の低背化に供することが可
能となる。
According to the piezoelectric oscillator of the present invention, the upper surface of the support substrate and the lower surface of the oscillation IC are planar, and the accommodation area of the piezoelectric vibration element disposed on the support substrate is closed with the oscillation IC. Compared to the example, the entire structure can be formed thin, and the piezoelectric oscillator can be reduced in height.

また、封止空間の内方で、前記支持基板上の接続パッドと発振用IC上の電極パッドとが導電性接合材を介して接続されるようにしたことから、発振用IC−支持基板間の封止状態を目視等によって容易に確認することができるため、製品の検査等にかかる作業性が良好となる。更にまた、支持基板及び発振用ICに当接させて封止空間の変動を抑制するスペーサ部材が設けられているとともに、圧電振動素子が導電性接着剤を介して支持基板又は発振用ICに実装されていて、導電性接着剤をスペーサ部材として利用していことから、支持基板及び発振用ICにスペーサ部材を形成する領域を別途設ける必要なく、リフロー処理などの際に封止部材や導電性接合材が軟化して封止空間が変動することを抑制できる。
Further, in the inside of the sealed space, since it was set to the connection pads on the supporting substrate and the electrode pads on the oscillation IC is connected via a conductive bonding material, between the oscillation IC- support substrate Since the sealing state can be easily confirmed by visual inspection or the like, the workability required for the inspection of the product is improved. In addition, a spacer member is provided that is brought into contact with the support substrate and the oscillation IC to suppress variation in the sealing space, and the piezoelectric vibration element is mounted on the support substrate or the oscillation IC via a conductive adhesive. It has been, a conductive adhesive since you are used as a spacer member, separately without the need of providing a region for forming the spacer member to the supporting substrate and the oscillation IC, the sealing member or the conductive during the reflow process It is possible to suppress the bonding material from being softened and the sealing space from fluctuating.

更に、圧電振動素子を発振用ICの下面に実装しておけば、圧電振動素子の振動電極が発振用ICの電極パッドに直接接続されるようになるため、発振用ICを支持基板側に実装する場合に比し圧電振動素子と発振用ICの電子回路とを接続する配線の長さが短縮されて配線抵抗に起因した容量の発生を有効に防止することができ、設計値に近い発振特性が得られるようになる。   Furthermore, if the piezoelectric vibration element is mounted on the lower surface of the oscillation IC, the vibration electrode of the piezoelectric vibration element is directly connected to the electrode pad of the oscillation IC, so the oscillation IC is mounted on the support substrate side. Compared with the case where the piezoelectric vibration element and the electronic circuit of the oscillation IC are connected, the length of the wiring is shortened to effectively prevent the generation of capacitance due to the wiring resistance, and the oscillation characteristics close to the design value. Can be obtained.

また更に、封止部材をロウ材で形成することにより、支持基板と発振用ICとの接合強度を高くすることができ、支持基板及び発振用IC間の熱応力に起因した封止部や接続部の破損等が有効に防止されるようになり、圧電発振器の生産性、信頼性を向上させることが可能となる。特に、前記封止部材と前記導電性接合材とを同一のロウ材で形成すれば、両者を同一の工程で形成した上、同一の工程でロウ付けすることができ、圧電発振器の生産性を向上させることができる。   Furthermore, by forming the sealing member with a brazing material, the bonding strength between the support substrate and the oscillation IC can be increased, and the sealing portion or connection caused by the thermal stress between the support substrate and the oscillation IC can be increased. It becomes possible to effectively prevent the breakage of the portion and improve the productivity and reliability of the piezoelectric oscillator. In particular, if the sealing member and the conductive bonding material are formed of the same brazing material, both can be formed in the same process and then brazed in the same process, which increases the productivity of the piezoelectric oscillator. Can be improved.

更にまた、封止部材を金属材料で形成するとともに、該封止部材を支持基板下面のグランド端子と電気的に接続させておくことにより、圧電発振器の使用時、圧電振動素子が収容されている封止空間や発振用ICの回路形成面(発振用ICの下面)がグランド電位に保持された封止部材で取り囲まれた形となることから、封止空間内に侵入しようとする外部からのノイズの一部を前記封止部材でもって遮蔽し、発振用ICや封止空間内の圧電振動素子をより安定して動作させることができるようになる。なお、封止部材は、支持基板を構成する複数の絶縁層の層間に形成された配線パターンや絶縁層を貫くように形成されたビアホール導体などを介して、グランド端子に電気的に接続されておけば良い。   Furthermore, the sealing member is formed of a metal material, and the sealing member is electrically connected to the ground terminal on the lower surface of the support substrate, so that the piezoelectric vibration element is accommodated when the piezoelectric oscillator is used. Since the sealing space and the circuit forming surface of the oscillation IC (the lower surface of the oscillation IC) are surrounded by the sealing member held at the ground potential, the external space is about to enter the sealing space. A part of noise is shielded by the sealing member, and the oscillation IC and the piezoelectric vibration element in the sealing space can be operated more stably. The sealing member is electrically connected to the ground terminal via a wiring pattern formed between the plurality of insulating layers constituting the support substrate, a via hole conductor formed so as to penetrate the insulating layer, and the like. It ’s fine.

更にまた、発振用ICの上面にシールド層を被着させておけば、外部からのノイズをシールド層により良好に遮蔽することができ、これによって圧電発振器の動作信頼性を高く維持することができる。特にこの場合、シールド層の端部を前記発振用ICの側面に沿って前記封止部材まで延在させておけば、外部からのノイズをより良好に遮蔽することができ、これによって圧電発振器の動作信頼性を高く維持することができる。   Furthermore, if a shield layer is deposited on the upper surface of the oscillation IC, noise from the outside can be well shielded by the shield layer, thereby maintaining high operational reliability of the piezoelectric oscillator. . In particular, in this case, if the end of the shield layer extends to the sealing member along the side surface of the oscillation IC, noise from the outside can be better shielded. The operation reliability can be kept high.

また更に、発振用ICの上面に電波吸収体を被着させておけば、圧電発振器の使用時、外部からのノイズを前記電波吸収体で良好に吸収して、外部からのノイズが封止空間内に侵入しようとするのを有効に防止することができる。従って、このような場合であっても、圧電発振器の使用時、圧電振動素子や発振用ICを安定して動作させることができる。特に、支持基板をセラミック材料で、封止部材を金属材料で形成し、電波吸収体層の端部を発振用ICの側面に沿って支持基板及び/又は封止部材まで延在させておけば、外部からのノイズを吸収することによって発生した熱エネルギーを、支持基板を介して外部へ良好に放散することができ、このような熱エネルギーが圧電発振器の内部に蓄積されることに起因した種々の不都合を有効に防止することが可能となる。   Furthermore, if a radio wave absorber is attached to the upper surface of the oscillation IC, noise from the outside is satisfactorily absorbed by the radio wave absorber when the piezoelectric oscillator is used, and the noise from the outside is sealed. It is possible to effectively prevent the user from entering the inside. Therefore, even in such a case, the piezoelectric vibration element and the oscillation IC can be stably operated when the piezoelectric oscillator is used. In particular, if the support substrate is made of a ceramic material, the sealing member is made of a metal material, and the end of the radio wave absorber layer extends to the support substrate and / or the sealing member along the side surface of the oscillation IC. The heat energy generated by absorbing noise from the outside can be dissipated well to the outside through the support substrate, and various kinds of heat energy caused by the accumulation inside the piezoelectric oscillator This inconvenience can be effectively prevented.

更にまた、前記発振用IC及び前記支持基板が平面視して略同一となるように設定しておけば、圧電発振器に側面から加わる衝撃を発振用IC及び支持基板の両者で緩和することが可能となる。   Furthermore, if the oscillation IC and the support substrate are set to be substantially the same in plan view, the impact applied to the piezoelectric oscillator from the side surface can be reduced by both the oscillation IC and the support substrate. It becomes.

以下、本発明の圧電発振器の一実施形態を添付図面に基づいて詳細に説明する。
Hereinafter, an embodiment of a piezoelectric oscillator of the present invention will be described in detail with reference to the accompanying drawings.

図1は参考例としての圧電発振器を表面実装型の水晶発振器に適用した例を示す分解斜視図、図2は図1の水晶発振器の断面図、図3は図1の水晶発振器に用いられる支持基板を上方より見た平面図、図4は図1の水晶発振器に用いられる発振用ICを下方より見た平面図である。
Figure 1 is an exploded perspective view showing an example of applying the pressure electrostatic oscillator as a reference example the crystal oscillator of the surface mount, FIG. 2 is a sectional view of the crystal oscillator of FIG. 1, FIG. 3 is used in the crystal oscillator of FIG. 1 FIG. 4 is a plan view of the supporting substrate viewed from above, and FIG. 4 is a plan view of the oscillation IC used in the crystal oscillator of FIG. 1 viewed from below.

これらの図に示す水晶発振器は、大略的に、支持基板1と、発振用IC2と、圧電振動素子としての水晶振動素子3とで構成されている。なお、IC2及び支持基板1は平面視して略同一に設定されている。   The crystal oscillators shown in these drawings are generally composed of a support substrate 1, an oscillation IC 2, and a crystal resonator element 3 as a piezoelectric resonator element. The IC 2 and the support substrate 1 are set to be substantially the same in plan view.

支持基板1は、例えば、平板状の絶縁層1a上に枠状の絶縁層1bを積層することにより形成され、上面側の中央域に凹部6を有した構造となっている。かかる支持基板1は、その表面や隣接する絶縁層間に所定の配線導体が形成され、また内部には配線導体同士を電気的に接続するためのビアホール導体4等が埋設されている。また、支持基板1の下面には複数個の外部端子電極5が設けられている。本実施形態においては支持基板1の下面四隅に配される4個の外部端子電極5が設けられており、それぞれ電源電圧端子、グランド端子、発振出力端子、発振制御端子として機能する。これらの外部端子電極5は、水晶発振器をマザーボード(図示せず)等の外部電気回路に搭載する際、半田付け等によって外部電気回路の回路配線と電気的に接続されることとなる。   The support substrate 1 is formed, for example, by laminating a frame-like insulating layer 1b on a flat insulating layer 1a, and has a structure having a recess 6 in the central region on the upper surface side. The support substrate 1 has a predetermined wiring conductor formed on the surface or between adjacent insulating layers, and a via-hole conductor 4 or the like for electrically connecting the wiring conductors is embedded therein. A plurality of external terminal electrodes 5 are provided on the lower surface of the support substrate 1. In the present embodiment, four external terminal electrodes 5 are provided at the four corners of the lower surface of the support substrate 1, and function as a power supply voltage terminal, a ground terminal, an oscillation output terminal, and an oscillation control terminal, respectively. These external terminal electrodes 5 are electrically connected to the circuit wiring of the external electric circuit by soldering or the like when the crystal oscillator is mounted on an external electric circuit such as a mother board (not shown).

なお、絶縁層1a、1bは、例えば、ガラス−セラミック、アルミナセラミックス等のセラミック材料や樹脂等の有機材料から形成されている。   The insulating layers 1a and 1b are made of, for example, a ceramic material such as glass-ceramic or alumina ceramic, or an organic material such as resin.

また、このような支持基板1の上面側に設けられた凹部6内には、水晶振動素子3が収容されている。本実施形態において水晶振動素子3は発振用IC2の下面に実装された状態で凹部6内に収容されており、発振用IC2の下面に設けられる搭載パッドに水晶振動素子3の対応する振動電極が導電性接着剤を介して電気的に接続されている。   In addition, the crystal resonator element 3 is accommodated in the recess 6 provided on the upper surface side of the support substrate 1. In this embodiment, the crystal resonator element 3 is housed in the recess 6 in a state of being mounted on the lower surface of the oscillation IC 2, and the corresponding vibration electrode of the crystal resonator element 3 is mounted on the mounting pad provided on the lower surface of the oscillation IC 2. It is electrically connected via a conductive adhesive.

更に、枠状の絶縁層1bの上面には図3に示す如く、内周側に複数個の接続パッド10が、外周側に基板側封止用導体12が被着・形成されている。   Furthermore, as shown in FIG. 3, a plurality of connection pads 10 are attached to the upper surface of the frame-like insulating layer 1b, and a substrate-side sealing conductor 12 is formed on the outer peripheral side.

なお、支持基板1は、アルミナセラミックスから成る場合、例えば、アルミナセラミックスの原料粉末に適当な有機溶剤等を添加・混合した上、これを従来周知のドクターブレード法等で所定形状に成形することによりセラミックグリーンシートを得、その表面等に配線導体となる導体ペーストを所定パターンに塗布し、これを複数枚積層してプレス成形した後、高温で焼成することによって製作される。また凹部6は、支持基板1の製作に使用されるセラミックグリーンシートのうち上部領域に配されるセラミックグリーンシートの中央域に矩形状の貫通孔を穿設しておくことにより形成される。   When the support substrate 1 is made of alumina ceramic, for example, an appropriate organic solvent or the like is added to and mixed with the raw material powder of alumina ceramic, and then formed into a predetermined shape by a conventionally known doctor blade method or the like. A ceramic green sheet is obtained, and a conductive paste serving as a wiring conductor is applied to a surface of the ceramic green sheet in a predetermined pattern, a plurality of these are laminated, press-molded, and then fired at a high temperature. The recess 6 is formed by forming a rectangular through-hole in the central region of the ceramic green sheet disposed in the upper region of the ceramic green sheet used for manufacturing the support substrate 1.

そして支持基板1上には、フリップチップ型の発振用IC2が配置されている。この発振用IC2の下面には、水晶振動素子3が実装されており、かかる水晶振動素子3は、所定の結晶軸でカットした水晶片の両主面に一対の振動電極を被着・形成してなり、外部からの変動電圧が一対の振動電極を介して水晶片に印加されると、所定の周波数で厚みすべり振動を起こすようになっている。   On the support substrate 1, a flip-chip type oscillation IC 2 is arranged. A crystal resonator element 3 is mounted on the lower surface of the oscillation IC 2, and the crystal resonator element 3 is formed by attaching and forming a pair of vibration electrodes on both main surfaces of a crystal piece cut along a predetermined crystal axis. Thus, when an externally varying voltage is applied to the crystal piece via a pair of vibrating electrodes, thickness-shear vibration is caused at a predetermined frequency.

また、水晶振動素子3は、一対の振動電極を発振用IC2の下面に設けた対応する搭載パッド15に導電性接着剤を介して電気的に接続させることにより発振用IC2の下面に実装され、この状態で支持基板1の凹部6内に配置される。   The crystal resonator element 3 is mounted on the lower surface of the oscillation IC 2 by electrically connecting a pair of vibration electrodes to a corresponding mounting pad 15 provided on the lower surface of the oscillation IC 2 via a conductive adhesive. It arrange | positions in the recessed part 6 of the support substrate 1 in this state.

このように、水晶振動素子3を発振用IC2の下面に実装させておけば、水晶振動素子3の振動電極が発振用IC2の搭載パッド15に直接接続されることになるため、発振用IC2を支持基板1側に実装する場合に比し水晶振動素子3と発振用IC2の電子回路とを接続する配線の長さは著しく短縮され、配線抵抗に起因した容量の発生を有効に防止することができる。これにより、設計値に近い発振特性が得られる。
If the crystal resonator element 3 is mounted on the lower surface of the oscillation IC 2 in this way, the vibration electrode of the crystal resonator element 3 is directly connected to the mounting pad 15 of the oscillation IC 2. Compared with mounting on the support substrate 1 side, the length of the wiring connecting the crystal resonator element 3 and the electronic circuit of the oscillation IC 2 is remarkably shortened, and it is possible to effectively prevent the generation of capacitance due to the wiring resistance. it can. Thereby, an oscillation characteristic close to the design value can be obtained.

また発振用IC2の下面には、図4に示す如く、中央領域に水晶振動素子3が搭載され、また、その周辺に発振用IC2の電子回路や搭載パッド15と電気的に接続している複数個の電極パッド9が形成されている。そして、水晶振動素子3を包囲し、且つ、搭載パッド15の外方に基板側封止用導体12と略同形状をなすようにして形成されたIC側封止用導体13が設けられている。   On the lower surface of the oscillation IC 2, as shown in FIG. 4, a crystal resonator element 3 is mounted in the central region, and a plurality of electronic circuits and mounting pads 15 that are electrically connected to the periphery of the oscillation circuit 2. A number of electrode pads 9 are formed. The IC-side sealing conductor 13 is provided so as to surround the crystal resonator element 3 and to be formed substantially in the same shape as the substrate-side sealing conductor 12 outside the mounting pad 15. .

なお発振用IC2の上面には、シールド層16が被着されている。このシールド層16により、外部からのノイズを良好に遮蔽することができ、水晶発振器の動作信頼性を高く維持することが可能となる。このようなシールド層16の材質としては、例えば、Ag等の金属粒子を含有させたエポキシ樹脂等が用いられる。図8に示すように、シールド層16の端部を発振用IC2の側面に沿って封止部材11まで延在させておけば、外部からのノイズをより良好に遮蔽することができ、これによって圧電発振器の動作信頼性を高く維持することができる。   A shield layer 16 is attached to the upper surface of the oscillation IC 2. The shield layer 16 can shield external noise satisfactorily and maintain high operational reliability of the crystal oscillator. As a material of such a shield layer 16, for example, an epoxy resin containing metal particles such as Ag is used. As shown in FIG. 8, if the end portion of the shield layer 16 is extended to the sealing member 11 along the side surface of the oscillation IC 2, noise from the outside can be shielded better, thereby The operation reliability of the piezoelectric oscillator can be maintained high.

発振用IC2は、単結晶シリコン等から成る基体の下面に、周囲の温度状態を検知する感温素子(サーミスタ)、水晶振動素子3の温度特性を補償する温度補償データを格納するとともに該温度補償データに基づいて水晶振動素子3の振動特性を温度変化に応じて補正する温度補償回路、該温度補償回路に接続されて所定の発振出力を生成する発振回路等の電子回路が設けられており、前述した発振回路で生成された発振出力は、外部に出力された後、例えば、クロック信号等の基準信号として利用されることとなる。   The oscillation IC 2 stores temperature compensation data for compensating the temperature characteristics of the temperature sensing element (thermistor) for detecting the ambient temperature state and the crystal oscillation element 3 on the lower surface of the substrate made of single crystal silicon or the like, and the temperature compensation. An electronic circuit such as a temperature compensation circuit that corrects the vibration characteristics of the crystal resonator element 3 according to a temperature change based on data and an oscillation circuit that is connected to the temperature compensation circuit and generates a predetermined oscillation output is provided. The oscillation output generated by the oscillation circuit described above is output to the outside and then used as a reference signal such as a clock signal.

そして、発振用IC2の下面に形成されたIC側封止用導体13と支持基板1の上面に形成された基板側封止用導体12とを封止部材8を介して接続させることにより、発振用IC2と支持基板1との間に設けられる封止空間11、すなわち発振用IC2下面及び凹部6内面等によって囲まれた水晶振動素子3の収納領域が気密封止されることとなる。   Then, the IC-side sealing conductor 13 formed on the lower surface of the oscillation IC 2 and the substrate-side sealing conductor 12 formed on the upper surface of the support substrate 1 are connected via the sealing member 8 to oscillate. The storage space of the crystal resonator element 3 surrounded by the sealing space 11 provided between the IC 2 for use and the support substrate 1, that is, the lower surface of the oscillation IC 2 and the inner surface of the recess 6 is hermetically sealed.

また、封止部材8の内方には、導電性接合材7が配され、この導電性接合材7によって発振用IC2の下面に形成された電極パッド9と絶縁層1bの上面に形成された接続パッド10とが電気的・機械的に接続している。   In addition, a conductive bonding material 7 is disposed on the inner side of the sealing member 8. The conductive bonding material 7 is formed on the upper surface of the insulating layer 1 b and the electrode pad 9 formed on the lower surface of the oscillation IC 2. The connection pad 10 is electrically and mechanically connected.

このように、支持基板1上に配置される水晶振動素子3の収容領域を発振用IC2で塞ぐように構成することで、従来例に比し全体構造を薄く形成することができ、水晶発振器の低背化に供することが可能となる。   In this way, by configuring the accommodation area of the crystal resonator element 3 disposed on the support substrate 1 with the oscillation IC 2, the overall structure can be formed thinner than in the conventional example. It becomes possible to use for low profile.

しかも発振用IC2の下面に形成されたIC側封止用導体13と支持基板1の上面に形成された基板側封止用導体12とを接続する封止部材8を、導電性接合材7よりも外方に形成することにより、発振用IC−支持基板間の封止状態を目視等によって極めて容易に確認することができるため、製品の検査等にかかる作業性が良好となる。   In addition, the sealing member 8 that connects the IC-side sealing conductor 13 formed on the lower surface of the oscillation IC 2 and the substrate-side sealing conductor 12 formed on the upper surface of the support substrate 1 is connected to the conductive bonding material 7. In addition, since the sealing state between the oscillation IC and the support substrate can be confirmed very easily by visual observation or the like, the workability for product inspection and the like is improved.

なお、発振用IC2は、単結晶シリコンのインゴットを所定厚みにスライスしてシリコンウエハを得、その一主面に従来周知の半導体製造技術を採用し、発振回路等の電子回路や電極パッド、接合用導体層等を形成して製作されたICウエハを分割することによって得られる。   The oscillation IC 2 is obtained by slicing a single crystal silicon ingot to a predetermined thickness to obtain a silicon wafer, and adopting a well-known semiconductor manufacturing technique on one main surface thereof, an electronic circuit such as an oscillation circuit, electrode pads, bonding It is obtained by dividing an IC wafer manufactured by forming a conductor layer for use.

また上述した導電性接合材7や封止部材8としては、例えば、AuやAu−Sn合金、半田等の金属から成るロウ材が好適に用いられ、封止部材8は支持基板1の配線導体等を介して支持基板下面のグランド端子5と電気的に接続されている。このように封止部材8をグランド端子5と電気的に接続させておけば、水晶発振器の使用時、水晶振動素子3が収容されている封止空間11や発振用IC2の回路形成面(発振用IC2の下面)がグランド電位GNDに保持された封止部材8で取り囲まれた形となることから、封止空間11内に侵入しようとする外部からのノイズの一部を封止部材8でもって遮蔽し、発振用IC2や封止空間11内の水晶振動素子3をより安定して動作させることができる。   Moreover, as the conductive bonding material 7 and the sealing member 8 described above, for example, a brazing material made of metal such as Au, Au—Sn alloy, or solder is preferably used. The sealing member 8 is a wiring conductor of the support substrate 1. Etc., and electrically connected to the ground terminal 5 on the lower surface of the support substrate. If the sealing member 8 is electrically connected to the ground terminal 5 in this way, when the crystal oscillator is used, the sealing space 11 in which the crystal resonator element 3 is accommodated and the circuit forming surface (oscillation IC 2). Since the lower surface of the IC 2 is surrounded by the sealing member 8 held at the ground potential GND, a part of the external noise that tries to enter the sealing space 11 is removed by the sealing member 8. Therefore, the oscillation IC 2 and the crystal resonator element 3 in the sealed space 11 can be operated more stably.

上述のような水晶発振器は、まず水晶振動素子3を発振用IC2の下面に搭載し、次に発振用IC2を下面に実装した水晶振動素子3が支持基板1の凹部6内に配置されるようにして支持基板1上に導電性接合材7及び封止部材8を介して載置させ、しかる後、これをNガスやArガス等の不活性ガス雰囲気中または所定の真空度に保たれた真空中で熱処理し、導電性接合材7及び封止部材8を支持基板1の上面、発振用IC2の下面にそれぞれ接合することにより組み立てられる。 In the crystal oscillator as described above, the crystal resonator element 3 is first mounted on the bottom surface of the oscillation IC 2, and then the crystal resonator element 3 having the oscillator IC 2 mounted on the bottom surface is disposed in the recess 6 of the support substrate 1. Then, it is placed on the support substrate 1 via the conductive bonding material 7 and the sealing member 8, and thereafter, this is maintained in an inert gas atmosphere such as N 2 gas or Ar gas or at a predetermined degree of vacuum. Then, heat treatment is performed in a vacuum, and the conductive bonding material 7 and the sealing member 8 are bonded to the upper surface of the support substrate 1 and the lower surface of the oscillation IC 2, respectively.

ここで封止部材8をロウ材により形成しておけば、支持基板1と発振用IC2との接合強度が高くなることから、支持基板1及び発振用IC2間の熱応力に起因した封止部や接続部の破損等が有効に防止されるようになり、水晶発振器の生産性、信頼性を向上させることができる。またこの場合、封止部材8と導電性接合材7とを同一のロウ材で形成するようにすれば、両者を同一の工程で形成した上、同一の工程でロウ付けすることができ、水晶発振器の生産性を高く維持することができる利点もある。   Here, if the sealing member 8 is formed of a brazing material, the bonding strength between the support substrate 1 and the oscillation IC 2 is increased. Therefore, the sealing portion caused by the thermal stress between the support substrate 1 and the oscillation IC 2 is obtained. As a result, breakage of the connection portion and the like can be effectively prevented, and the productivity and reliability of the crystal oscillator can be improved. In this case, if the sealing member 8 and the conductive bonding material 7 are formed of the same brazing material, both can be formed in the same process and brazed in the same process. There is also an advantage that the productivity of the oscillator can be maintained high.

なお、上述した組み立て工程において支持基板1に対する発振用IC2の接合を不活性ガス雰囲気中で行なうのは水晶振動素子3が収容される封止空間11内に不活性ガスを充填しておくことで水晶振動素子3等の電気的特性を安定させるためである。また、発振用IC2の接合を真空中で行う場合、水晶振動素子3の電気的特性を安定させることができるとともに、水晶振動素子3のクリスタルインピーダンスを低く抑えることができる。   In the assembly process described above, the oscillation IC 2 is bonded to the support substrate 1 in an inert gas atmosphere by filling the sealing space 11 in which the crystal resonator element 3 is accommodated with an inert gas. This is to stabilize the electrical characteristics of the crystal resonator element 3 and the like. Further, when the oscillation IC 2 is joined in a vacuum, the electrical characteristics of the crystal resonator element 3 can be stabilized and the crystal impedance of the crystal resonator element 3 can be kept low.

また導電性接合材7や封止部材8として半田を用いる場合には、フラックス等の汚染物質を用いることなく酸化膜を良好に除去するために、従来周知の水素還元方式を採用することが好ましい。   When solder is used as the conductive bonding material 7 or the sealing member 8, it is preferable to employ a conventionally known hydrogen reduction method in order to remove the oxide film satisfactorily without using contaminants such as flux. .

そして最後に、支持基板1の外表面に設けられる書込制御端子(図示せず)に温度補償データ書込装置のプローブ針を当て、予め測定しておいた水晶振動素子3の温度特性に応じた温度補償データを書き込むことによって発振用IC2のメモリ内に温度補償データが格納される。   Finally, the probe needle of the temperature compensation data writing device is applied to a writing control terminal (not shown) provided on the outer surface of the support substrate 1, and the temperature characteristic of the crystal resonator element 3 measured in advance is determined. The temperature compensation data is stored in the memory of the oscillation IC 2 by writing the temperature compensation data.

かくして上述した水晶発振器は、マザーボード等の外部配線基板上に半田付け等によって搭載され、その温度状態に応じて発振用IC2の温度補償回路で発振出力を補正しながら、水晶振動素子3の共振周波数に応じた所定の発振信号を出力することによって水晶発振器として機能する。   Thus, the above-described crystal oscillator is mounted on an external wiring board such as a mother board by soldering or the like, and the resonance frequency of the crystal resonator element 3 is corrected while correcting the oscillation output by the temperature compensation circuit of the oscillation IC 2 according to the temperature state. It functions as a crystal oscillator by outputting a predetermined oscillation signal according to the above.

次に、上述した水晶発振器(圧電発振器)の製造方法について図5−1乃至図5−4を用いて説明する。   Next, a manufacturing method of the above-described crystal oscillator (piezoelectric oscillator) will be described with reference to FIGS.

(工程A)
初めに、図5−1に示すようなICウエハ18を準備する。
(Process A)
First, an IC wafer 18 as shown in FIG. 5A is prepared.

ICウエハ18は、単結晶シリコンのインゴットを所定厚みにスライスしてシリコンウエハを得、その一主面に従来周知の半導体製造技術を採用し、発振回路等の電子回路や電極パッド,接合用導体層等を形成することによって製作される。   The IC wafer 18 is obtained by slicing a single crystal silicon ingot to a predetermined thickness to obtain a silicon wafer, and adopting a well-known semiconductor manufacturing technique on one main surface thereof, an electronic circuit such as an oscillation circuit, an electrode pad, and a bonding conductor It is manufactured by forming a layer or the like.

そして、ICウエハ18の各発振用IC2に水晶振動素子3が1個ずつ搭載され、水晶振動素子3の振動電極(図示せず)とICウエハ18上面の搭載パッドとが導電性接着剤を介して電気的・機械的に接続される。   Then, one crystal resonator element 3 is mounted on each oscillation IC 2 of the IC wafer 18, and a vibration electrode (not shown) of the crystal resonator element 3 and a mounting pad on the upper surface of the IC wafer 18 are interposed via a conductive adhesive. Connected electrically and mechanically.

尚、本実施形態では、縦横に(マトリクス状に)配された発振用IC2の間に所定の捨代領域が設けている。   In the present embodiment, a predetermined separation area is provided between the oscillation ICs 2 arranged vertically and horizontally (in a matrix).

(工程B)
次に、図5−2に示すような母基板17を準備する。
(Process B)
Next, a mother board 17 as shown in FIG.

母基板17は、上述した支持基板1と同じ材料、即ち、ガラス−セラミック、アルミナセラミックス等のセラミック材料からなる矩形状の平板状基板が3層積層され、さらにセラミック材料からなるマトリクス状、即ち、縦m列×横n行(m,nは2以上の自然数。)の行列状に配置された多数の矩形状の孔を有する基板を積層して形成されており、当該孔を中心に有する個々の基板領域19には、上面側にキャビティ部底面の一対の接続パッドと開口周縁を囲む接合用の導体層が被着・形成され、下面側には入出力端子やグランド端子等の外部端子が被着・形成されている。   The mother substrate 17 is formed by laminating three layers of the same flat plate substrate made of the same material as the above-described support substrate 1, that is, a ceramic material such as glass-ceramic and alumina ceramic, and further in a matrix form made of a ceramic material, It is formed by laminating substrates having a large number of rectangular holes arranged in a matrix of vertical m columns × horizontal n rows (m and n are natural numbers of 2 or more). In the substrate region 19, a pair of connection pads on the bottom surface of the cavity and a bonding conductor layer surrounding the periphery of the opening are deposited and formed on the upper surface side, and external terminals such as input / output terminals and ground terminals are formed on the lower surface side. Deposited and formed.

このような母基板17は、例えば、アルミナセラミックス等から成るセラミック材料粉末に適当な有機溶剤等を添加・混合して得たセラミックグリーンシートの表面等に接続パッドや外部端子、導体パターン等となる導体ペーストを所定パターンに印刷・塗布するとともに、これを複数枚積層してプレス成形した後、高温で焼成することによって製作される。   Such a mother substrate 17 becomes, for example, a connection pad, an external terminal, a conductor pattern, etc. on the surface of a ceramic green sheet obtained by adding and mixing a suitable organic solvent or the like to a ceramic material powder made of alumina ceramic or the like. The conductor paste is printed and applied in a predetermined pattern, and a plurality of the pastes are laminated and press-molded, and then fired at a high temperature.

そして、図5−3に示すように、水晶振動素子3が搭載されたICウエハ18を、複数の基板領域19を有する母基板17上に、水晶振動素子3を気密封止する封止部材8を介して接合することによって、集合圧電発振器を形成する。   Then, as shown in FIG. 5C, the sealing member 8 that hermetically seals the crystal resonator element 3 on the mother substrate 17 having the plurality of substrate regions 19 is mounted on the IC wafer 18 on which the crystal resonator element 3 is mounted. The collective piezoelectric oscillator is formed by bonding via the.

ここで、水晶振動素子3は、一対の振動電極をICウエハ18の各発振用IC2の下面に設けた対応する搭載パッド15に導電性接着材を介して電気的に接続させることにより発振用IC2の下面に実装され、このように実装された状態のまま、母基板17の各支持基板に設けられている凹部6内に配置される。
Here, the crystal resonator element 3 is configured such that a pair of vibration electrodes is electrically connected to a corresponding mounting pad 15 provided on the lower surface of each oscillation IC 2 of the IC wafer 18 through a conductive adhesive, thereby causing the oscillation IC 2. is mounted in the lower surface, it remains thus mounted state, is arranged in the recess 6 that are provided at each support substrate of the mother substrate 17.

また、ICウエハ18の各発振用IC2と母基板17の各基板領域19との間には、発振用IC2の電子回路と基板領域19の接続パッドとを電気的に接続する複数個の導電性接合材7が、これら導電性接合材7の外方には環状の封止部材8が介在されており、かかる封止部材8は発振用IC2と基板領域19との間に設けられる封止空間11、具体的には、発振用IC2の下面や凹部6の内面等によって囲まれた水晶振動素子3の収納領域を包囲することにより気密封止している。   Further, a plurality of conductive materials for electrically connecting the electronic circuit of the oscillation IC 2 and the connection pads of the substrate region 19 are provided between the oscillation ICs 2 of the IC wafer 18 and the substrate regions 19 of the mother substrate 17. In the bonding material 7, an annular sealing member 8 is interposed outside the conductive bonding material 7, and the sealing member 8 is a sealing space provided between the oscillation IC 2 and the substrate region 19. 11. More specifically, hermetic sealing is performed by surrounding the storage area of the crystal resonator element 3 surrounded by the lower surface of the oscillation IC 2, the inner surface of the recess 6, and the like.

(工程C)
そして、図5−4に示すように、得られた集合圧電発振器の母基板17及びICウエハ18を、各基板領域19及び発振用IC2の外周に沿ってダイサーなどで切断することで、複数の圧電発振器を得ることができる。
(Process C)
Then, as shown in FIG. 5-4, the mother substrate 17 and the IC wafer 18 of the obtained collective piezoelectric oscillator are cut with a dicer or the like along the outer periphery of each substrate region 19 and the oscillation IC 2. A piezoelectric oscillator can be obtained.

以上のような製造方法によれば、製造過程においてICウエハ18がキャリア部材として機能するため、別途キャリア部材を用意し、該キャリア部材にICウエハ18を分割して得た個々の発振用IC2を搭載するといった煩雑な作業が一切不要となり、圧電発振器の生産性を飛躍的に向上させることができる。しかも母基板17の状態でICウエハ18に接合することから、支持基板1を個別に実装する作業も一切不要となる。   According to the manufacturing method as described above, since the IC wafer 18 functions as a carrier member in the manufacturing process, a separate carrier member is prepared, and the individual oscillation ICs 2 obtained by dividing the IC wafer 18 into the carrier member are obtained. No complicated work such as mounting is required, and the productivity of the piezoelectric oscillator can be dramatically improved. In addition, since it is bonded to the IC wafer 18 in the state of the mother board 17, the work of mounting the supporting board 1 individually becomes unnecessary.

また、封止空間11の内方で、支持基板1上の接続パッド10と発振用IC2上の電極パッド9とが導電性接合材7を介して接続されるようにすることが好ましく、これによって、発振用IC−支持基板間の封止状態を目視等によって容易に確認することができるため、製品の検査等にかかる作業性が良好となる。   Further, it is preferable that the connection pad 10 on the support substrate 1 and the electrode pad 9 on the oscillation IC 2 are connected to each other via the conductive bonding material 7 inside the sealing space 11. In addition, since the sealing state between the oscillation IC and the support substrate can be easily confirmed by visual observation or the like, the workability required for the inspection of the product is improved.

さらに、工程Bにおいて、発振用IC2及び基板領域19に対応する領域外で、ICウエハ18及び母基板17に当接するスペーサ部材を設けるようにすれば、リフロー処理などの製造過程において封止部材等が軟化して封止空間が変動することを簡易に抑制することができる。   Further, if a spacer member that contacts the IC wafer 18 and the mother substrate 17 is provided outside the region corresponding to the oscillation IC 2 and the substrate region 19 in the process B, a sealing member or the like in the manufacturing process such as a reflow process. Softening and fluctuations in the sealing space can be easily suppressed.

例えば、上述した実施形態においては、水晶振動素子3を発振用IC2の下面に実装するようにしたが、これに代えて、図6に示すように、水晶振動素子3を支持基板1の凹部6底面に実装するようにしても構わない。   For example, in the above-described embodiment, the crystal resonator element 3 is mounted on the lower surface of the oscillation IC 2. Instead, as shown in FIG. You may make it mount in a bottom face.

また上述した実施形態においては、水晶振動素子3を支持基板1の凹部6内に収容させるようにしたが、図7に示すように、本発明は支持基板1´の上面及び発振用IC2の下面が平面状であり、水晶振動素子3が導電性接着剤14を介して支持基板1´又は発振用IC2に実装され、封止空間の内方で支持基板1´上の接続パッド10と発振用IC2上の電極パッド9とが導電性接合材7を介して接続され、導電性接着剤14がスペーサ部材として支持基板1´及び前記発振用IC2に当接していることを特徴とするものである。水晶振動素子3を、上面が平面状である支持基板1´上に実装することで、導電性接合材7や封止部材8が封止空間11を形成するためのスペーサとして機能し、これらの厚みに相当する空間が発振用IC2と支持基板1との間に形成されることとなる。
In the above-described embodiment, but so as to accommodate the quartz crystal vibrating element 3 into the recess 6 of the support substrate 1, as shown in FIG. 7, the present invention is the upper and lower surfaces of the oscillation IC2 of the support substrate 1 ' Is mounted on the support substrate 1 ′ or the oscillation IC 2 via the conductive adhesive 14, and the connection pads 10 on the support substrate 1 ′ and the oscillation pads are inward of the sealing space. The electrode pad 9 on the IC 2 is connected via the conductive bonding material 7, and the conductive adhesive 14 is in contact with the support substrate 1 ′ and the oscillation IC 2 as a spacer member. . The quartz crystal resonator element 3, the upper surface by mounting on a supporting substrate 1 'is planar, conductive bonding material 7 and the sealing member 8 functions as a spacer for forming a sealing space 11, these A space corresponding to the thickness is formed between the oscillation IC 2 and the support substrate 1.

そして、図7(b)に示すように、水晶振動素子3を支持基板1´又は発振用IC2に実装するために用いる導電性接着剤14をスペーサ部材として利用していることが重要でありこれにより支持基板1´及び発振用IC2上にスペーサ部材を形成する領域を別途
設ける必要がなく、リフロー処理などの際に封止部材8等が軟化して封止空間11が変動することを抑制することが可能となる。
As shown in FIG. 7B, it is important that the conductive adhesive 14 used for mounting the crystal resonator element 3 on the support substrate 1 or the oscillation IC 2 is used as a spacer member. Thus the support substrate 1 'and on the oscillation IC2 spacer member is required separately rather names that provide a region for forming the sealing member 8 and the like during the reflow process to change the sealing space 11 is softened It becomes possible to suppress.

更に上述した実施形態においては、発振用IC2の上面にシールド層16を被着させることにより外部からのノイズを遮蔽するようにしたが、これに代えて図9に示すように、発振用IC2の上面に電波吸収体層20を被着させるようにしても良い。このような電波吸収体層20を被着させた場合、水晶発振器の使用時、外部からのノイズを電波吸収体層20で良好に吸収して、外部からのノイズが封止空間11内に侵入しようとするのを有効に防止し、水晶振動素子3や発振用IC2を常に安定して動作させることができる。特に、支持基板1をセラミック材料で形成し、電波吸収体層20の端部を発振用IC2の側面に沿って支持基板1まで延在させておけば、外部からのノイズを吸収することによって発生した熱エネルギーを、支持基板1を介して外部へ良好に放散することができ、このような熱エネルギーが水晶発振器の内部に蓄積されることに起因した種々の不都合を有効に防止することが可能となる。なお、セラミック材料としてはセラミックス、ガラスセラミックス及びLTCC(Low Temperature Co-fired Ceramics)などが用いられ、また、電波吸収体層20の材質としては、ウレタンフォームやスチロール等の樹脂にカーボンを含浸させた抵抗体タイプのものや、焼結フェライトの磁性損失を利用した焼結フェライトタイプのものが用いられる。   Further, in the above-described embodiment, noise from the outside is shielded by attaching the shield layer 16 to the upper surface of the oscillation IC 2, but instead of this, as shown in FIG. The radio wave absorber layer 20 may be deposited on the upper surface. When such a radio wave absorber layer 20 is applied, when the crystal oscillator is used, external noise is absorbed well by the radio wave absorber layer 20 and the external noise enters the sealed space 11. This effectively prevents the crystal oscillation element 3 and the oscillation IC 2 from operating stably. In particular, if the support substrate 1 is formed of a ceramic material and the end of the radio wave absorber layer 20 extends to the support substrate 1 along the side surface of the oscillation IC 2, the noise is generated by absorbing noise from the outside. The heat energy can be dissipated well through the support substrate 1, and various inconveniences caused by the accumulation of such heat energy inside the crystal oscillator can be effectively prevented. It becomes. In addition, ceramics, glass ceramics, LTCC (Low Temperature Co-fired Ceramics), etc. are used as the ceramic material, and as a material of the radio wave absorber layer 20, a resin such as urethane foam or styrene is impregnated with carbon. A resistor type or a sintered ferrite type utilizing the magnetic loss of sintered ferrite is used.

また更に上述した実施形態においては、ICウエハ18をキャリア部材として用いたが、これに代えて、母基板17をキャリア部材として用いてもよく、この場合にも、別途キャリア部材を用意し、該キャリア部材に母基板17を分割して得た個々の支持基板1を搭載するといった煩雑な作業が一切不要となり、圧電発振器の生産性を飛躍的に向上させることができる。しかもICウエハ18の状態で母基板17に接合することから、発振用IC2を個別に実装する作業も一切不要とすることができる。   Further, in the above-described embodiment, the IC wafer 18 is used as a carrier member. Alternatively, the mother board 17 may be used as a carrier member. In this case, a carrier member is separately prepared, The troublesome work of mounting individual support substrates 1 obtained by dividing the mother substrate 17 on the carrier member is not required, and the productivity of the piezoelectric oscillator can be dramatically improved. In addition, since the IC wafer 18 is bonded to the mother board 17, the operation of individually mounting the oscillation IC 2 can be eliminated.

また更に上述した実施形態においては、圧電振動素子3として水晶振動素子を用いた表面実装型の水晶発振器を例にとって説明したが、これに代えて、圧電振動素子として弾性表面波(SAW)フィルタ等の他の圧電振動素子を用いる場合にも本発明は適用可能である。   Further, in the above-described embodiment, the surface-mount type crystal oscillator using a crystal resonator element as the piezoelectric resonator element 3 has been described as an example, but instead, a surface acoustic wave (SAW) filter or the like is used as the piezoelectric resonator element. The present invention can also be applied when other piezoelectric vibration elements are used.

参考例としての圧電発振器の一実施形態を表面実装型の水晶発振器に適用した例を示す分解斜視図である。Is an exploded perspective view showing an example of applying an embodiment of the pressure conductive oscillator as a reference example the crystal oscillator of the surface mount. 図1の水晶発振器の断面図である。It is sectional drawing of the crystal oscillator of FIG. 図1の水晶発振器に用いられる支持基板を上方より見た平面図である。It is the top view which looked at the support substrate used for the crystal oscillator of FIG. 1 from upper direction. 図1の水晶発振器に用いられる発振用ICを下方より見た平面図である。It is the top view which looked at IC for oscillation used for the crystal oscillator of Drawing 1 from the lower part. 晶発振器の製造方法に用いるICウエハを説明するための斜視図であり、(a)は上面側より見た図、(b)下面側より見た図である。Is a perspective view for explaining the IC wafer for use in the production method of the water crystal oscillator, is (a) is a view seen from the upper side, as viewed from (b) lower surface. 晶発振器の製造方法に用いる母基板を説明するための斜視図である。Is a perspective view for explaining a mother substrate for use in the production method of the water crystal oscillator. 晶発振器の製造方法を説明するための斜視図であり、特に集合圧電発振器を示すものである。Method for producing a water crystal oscillator is a perspective view for explaining, in particular those showing a collection piezoelectric oscillator. 晶発振器の製造方法を説明するための斜視図であり、複数の圧電発振器を示すものである。Method for producing a water crystal oscillator is a perspective view for explaining a shows a plurality of piezoelectric oscillators. 参考例としての他の実施形態に係る圧電発振器の断面図である。It is sectional drawing of the piezoelectric oscillator which concerns on other embodiment as a reference example . (a)は参考例としての圧電発振器の断面図であり、(b)は本発明の一実施形態に係る圧電発振器の断面図である。(A) is a sectional view of the piezoelectric oscillator as a reference example, is a cross-sectional view of a piezoelectric oscillator according to Kazumi facilities form of (b) the present invention. 参考例としての他の実施形態に係る圧電発振器の断面図である。It is sectional drawing of the piezoelectric oscillator which concerns on other embodiment as a reference example . 参考例としての他の実施形態に係る圧電発振器の断面図である。It is sectional drawing of the piezoelectric oscillator which concerns on other embodiment as a reference example . 従来の圧電発振器の分解斜視図である。It is a disassembled perspective view of the conventional piezoelectric oscillator.

符号の説明Explanation of symbols

、1´・支持基板
2・・・・発振用IC
3・・・・圧電振動素子(水晶振動素子)
4・・・・ビアホール導体
5・・・・外部端子電極
6・・・・凹部
7・・・・導電性接合材
8・・・・封止部材
9・・・・電極パッド
10・・・接続パッド
11・・・封止空間
12・・・基板側封止用導体
13・・・IC側封止用導体
14・・・導電性接着剤
15・・・搭載パッド
16・・・シールド層
17・・・母基板
18・・・ICウエハ
19・・・基板領域(支持基板)
20・・・電波吸収体層
1 , 1 ′ , support substrate 2... IC for oscillation
3 ... Piezoelectric vibration element (crystal vibration element)
4 .... via-hole conductor 5 .... external terminal electrode 6 .... concave 7 .... conductive bonding material 8 .... sealing member 9 .... electrode pad 10 .... connection Pad 11 ... Sealing space 12 ... Substrate side sealing conductor 13 ... IC side sealing conductor 14 ... Conductive adhesive 15 ... Mounting pad 16 ... Shield layer 17 ..Mother substrate 18 ... IC wafer 19 ... Substrate area (support substrate)
20 ... Radio wave absorber layer

Claims (9)

支持基板の上面と発振用ICの下面とを、封止部材で両者間に封止空間を形成するように接合し、前記封止空間内に前記発振用ICと電気的に接続される圧電振動素子を収容してなる圧電発振器において、
前記支持基板の上面及び前記発振用ICの下面が平面状であって、前記支持基板及び前記発振用ICに当接させて前記封止空間の変動を抑制するスペーサ部材が設けられているとともに、前記封止空間の内方で前記支持基板上の接続パッドと発振用IC上の電極パッドとが導電性接合材を介して接続され、前記圧電振動素子が導電性接着剤を介して前記支持基板又は前記発振用ICに実装されていて、前記導電性接着剤を前記スペーサ部材として利用していることを特徴とする圧電発振器。
Piezoelectric vibrations in which the upper surface of the support substrate and the lower surface of the oscillation IC are joined with a sealing member so as to form a sealed space therebetween, and are electrically connected to the oscillation IC in the sealed space. In a piezoelectric oscillator containing an element,
The upper surface of the support substrate and the lower surface of the oscillation IC are planar, and a spacer member is provided that abuts against the support substrate and the oscillation IC to suppress fluctuations in the sealing space. wherein the connection pads before Symbol supporting substrate at the inside of the sealed space and the electrode pads on the oscillation IC is connected via a conductive bonding material, said support said piezoelectric vibrating element through the conductive adhesive substrate or be mounted on the said oscillation IC, piezoelectric oscillator, characterized that you have to use the conductive adhesive as the spacer member.
前記圧電振動素子が前記発振用ICの下面に実装されていることを特徴とする請求項1に記載の圧電発振器。   The piezoelectric oscillator according to claim 1, wherein the piezoelectric vibration element is mounted on a lower surface of the oscillation IC. 前記封止部材がロウ材から成ることを特徴とする請求項1に記載の圧電発振器。   The piezoelectric oscillator according to claim 1, wherein the sealing member is made of a brazing material. 前記封止部材と前記導電性接合材とが同一の金属材料から成ることを特徴とする請求項1に記載の圧電発振器。   The piezoelectric oscillator according to claim 1, wherein the sealing member and the conductive bonding material are made of the same metal material. 前記封止部材が金属材料により形成されるとともに、該封止部材を支持基板下面のグランド端子に電気的に接続したことを特徴とする請求項1に記載の圧電発振器。   2. The piezoelectric oscillator according to claim 1, wherein the sealing member is made of a metal material, and the sealing member is electrically connected to a ground terminal on a lower surface of the support substrate. 前記発振用ICの上面にシールド層が被着されていることを特徴とする請求項1に記載の圧電発振器。   The piezoelectric oscillator according to claim 1, wherein a shield layer is attached to an upper surface of the oscillation IC. 前記シールド層の端部は、前記発振用ICの側面に沿って前記封止部材まで延在されていることを特徴とする請求項6に記載の圧電発振器。   The piezoelectric oscillator according to claim 6, wherein an end portion of the shield layer extends to the sealing member along a side surface of the oscillation IC. 前記発振用ICの上面に電波吸収体層が被着されていることを特徴とする請求項1に記載の圧電発振器。   The piezoelectric oscillator according to claim 1, wherein a radio wave absorber layer is attached to an upper surface of the oscillation IC. 前記支持基板をセラミック材料で、前記封止部材を金属材料で形成し、前記電波吸収体層の端部を前記発振用ICの側面に沿って前記支持基板及び/又は前記封止部材まで延在させたことを特徴とする請求項8に記載の圧電発振器。   The support substrate is formed of a ceramic material, the sealing member is formed of a metal material, and an end portion of the radio wave absorber layer extends to the support substrate and / or the sealing member along a side surface of the oscillation IC. The piezoelectric oscillator according to claim 8, wherein
JP2005016599A 2004-09-29 2005-01-25 Piezoelectric oscillator Expired - Fee Related JP4545004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016599A JP4545004B2 (en) 2004-09-29 2005-01-25 Piezoelectric oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004284470 2004-09-29
JP2005016599A JP4545004B2 (en) 2004-09-29 2005-01-25 Piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JP2006129417A JP2006129417A (en) 2006-05-18
JP4545004B2 true JP4545004B2 (en) 2010-09-15

Family

ID=36723567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016599A Expired - Fee Related JP4545004B2 (en) 2004-09-29 2005-01-25 Piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP4545004B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097929B2 (en) * 2006-06-29 2012-12-12 京セラ株式会社 Manufacturing method of electronic parts
JP4948930B2 (en) * 2006-07-28 2012-06-06 京セラ株式会社 Piezoelectric oscillator
JP2008035276A (en) * 2006-07-28 2008-02-14 Kyocera Corp Method of manufacturing piezoelectric oscillator
US8069549B2 (en) 2007-03-22 2011-12-06 Seiko Epson Corporation Method for sealing a quartz crystal device
JP5119866B2 (en) * 2007-03-22 2013-01-16 セイコーエプソン株式会社 Quartz device and sealing method thereof
JP2009027477A (en) * 2007-07-19 2009-02-05 Citizen Finetech Miyota Co Ltd Piezoelectric oscillator
JP5442216B2 (en) * 2008-05-16 2014-03-12 京セラ株式会社 SAW device
JP5466537B2 (en) * 2009-09-30 2014-04-09 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrator, oscillator and oscillator package
JP6100586B2 (en) * 2013-04-01 2017-03-22 京セラクリスタルデバイス株式会社 Piezoelectric oscillator and piezoelectric device
JP6436280B2 (en) 2014-03-27 2018-12-12 セイコーエプソン株式会社 Method of manufacturing a thermostatic oven oscillator
JP2016178437A (en) * 2015-03-19 2016-10-06 株式会社立山科学デバイステクノロジー Crystal oscillator and manufacturing method of the same
JP2020005092A (en) * 2018-06-27 2020-01-09 京セラ株式会社 Crystal device, crystal module, and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293310A (en) * 1991-03-22 1992-10-16 Murata Mfg Co Ltd Surface acoustic wave device
JP2003017941A (en) * 2001-07-05 2003-01-17 Toyo Commun Equip Co Ltd Piezoelectric oscillator
JP2003017886A (en) * 2001-06-29 2003-01-17 Murata Mfg Co Ltd Radio wave absorber
JP2003332844A (en) * 2002-05-13 2003-11-21 Seiko Epson Corp Piezo-oscillator and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293310A (en) * 1991-03-22 1992-10-16 Murata Mfg Co Ltd Surface acoustic wave device
JP2003017886A (en) * 2001-06-29 2003-01-17 Murata Mfg Co Ltd Radio wave absorber
JP2003017941A (en) * 2001-07-05 2003-01-17 Toyo Commun Equip Co Ltd Piezoelectric oscillator
JP2003332844A (en) * 2002-05-13 2003-11-21 Seiko Epson Corp Piezo-oscillator and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006129417A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4545004B2 (en) Piezoelectric oscillator
JP2006279872A (en) Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
JP2007060593A (en) Piezoelectric device and manufacturing method thereof
JP2005244639A (en) Temperature compensated crystal oscillator
JP4724518B2 (en) Piezoelectric oscillator
JP4578231B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP4167557B2 (en) Method for manufacturing piezoelectric oscillator
JP5097929B2 (en) Manufacturing method of electronic parts
JP4380419B2 (en) Manufacturing method of electronic device
JP4549158B2 (en) Method for manufacturing crystal oscillator
JP4113465B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4113459B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP2007180701A (en) Piezoelectric oscillator and its manufacturing method
JP4472445B2 (en) Method for manufacturing piezoelectric oscillator
JP4384567B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4472479B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP2006101241A (en) Piezoelectric oscillator and manufacturing method thereof
JP2005253007A (en) Temperature compensated crystal oscillator
JP4113460B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP2006129188A (en) Crystal oscillator
JP4336213B2 (en) Piezoelectric oscillator
JP2005210673A (en) Surface-mounted crystal oscillator
JP2005295249A (en) Piezoelectric oscillator
JP2007300417A (en) Piezoelectric oscillator
JP2005217782A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees