JP4113465B2 - Manufacturing method of temperature compensated crystal oscillator - Google Patents

Manufacturing method of temperature compensated crystal oscillator Download PDF

Info

Publication number
JP4113465B2
JP4113465B2 JP2003185893A JP2003185893A JP4113465B2 JP 4113465 B2 JP4113465 B2 JP 4113465B2 JP 2003185893 A JP2003185893 A JP 2003185893A JP 2003185893 A JP2003185893 A JP 2003185893A JP 4113465 B2 JP4113465 B2 JP 4113465B2
Authority
JP
Japan
Prior art keywords
container body
substrate
crystal oscillator
temperature
mother board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003185893A
Other languages
Japanese (ja)
Other versions
JP2005020633A (en
Inventor
英文 畠中
元晴 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003185893A priority Critical patent/JP4113465B2/en
Publication of JP2005020633A publication Critical patent/JP2005020633A/en
Application granted granted Critical
Publication of JP4113465B2 publication Critical patent/JP4113465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯用通信機器等の電子機器に用いられる温度補償型水晶発振器の製造方法に関するものである。
【0002】
【従来の技術】
従来より、携帯用通信機器等の電子機器に温度補償型水晶発振器が用いられている。
【0003】
かかる従来の温度補償型水晶発振器としては、例えば図7に示す如く、下面に複数個の外部端子22が被着されている枠状基体21の上面に、内部に水晶振動素子24が収容されている容器体23を取着させるとともに、前記枠状基体21の内壁面と容器体23の下面とで囲まれるキャビティ部25に前記水晶振動素子24の振動に基づいて発振出力を制御するIC素子26やコンデンサ等の電子部品素子27を配設し、これらのIC素子26や電子部品素子27を前記容器体23の下面に搭載した構造のものが知られている(例えば、特許文献1参照。)。
【0004】
尚、このような容器体23の基板や上述した枠状基体21は、通常、ガラス−セラミック等のセラミック材料によって一体的に形成されており、その内部及び表面には配線導体が形成され、従来周知のセラミックグリーンシート積層法等を採用することによって製作されている。
【0005】
また、前記IC素子26の内部には、水晶振動素子24の温度特性に応じて作成された温度補償データに基づいて水晶発振器の発振出力を補正するための温度補償回路が設けられており、温度補償型水晶発振器を組み立てた後、上述の温度補償データをIC素子26内のメモリに格納するために、枠状基体21の下面や外側面等に温度補償データ書込用の書込制御端子(図示せず)を設けておくのが一般的であった。
【0006】
【特許文献1】
特開2000―151283号公報(図2、図5)
【0007】
【発明が解決しようとする課題】
しかしながら、上述した従来の温度補償型水晶発振器においては、枠状基体21の下面や外側面等に温度補償データを書き込むための書込制御端子が設けられており、これらの書込制御端子を配置させるための広いスペースが枠状基体2の表面に必要となることから、その分、枠状基体21の面積が面方向もしくは厚み方向に大きくなり、全体構造の小型化に供することが不可となる欠点を有していることに加え、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際に両者の接合に用いられている導電性接合材の一部が書込制御端子に付着して温度補償型水晶発振器の外部端子との間でショートを招く恐れがあり、そのため、前記外部端子に対応したマザーボード側の電極形状に自由度がなくなる等、製品の取扱いが煩雑になるという不都合もあった。
【0008】
また、上述の書込制御端子が枠状基体21の外側面に配置させてある場合は、枠状基体21の製作に用いられるセラミック製の母基板に貫通穴を開けて、その内面に電極パターンを被着させる等の複雑な加工プロセスが必要となり、それによって生産性の低下を招いてしまう上に、枠状基体21の外側面に設けられている書込制御端子に書込装置のプローブ針を直接当てて書込作業を行うことが極めて困難であることから、個々の温度補償型水晶発振器を温度補償データ書込用のソケットに装着する等して温度補償データを書き込まなければならず、その場合、ソケット等の製造設備が別途、必要になるとともに、個々の温度補償型水晶発振器をソケットに装着する等の煩雑な工程が必要となり、製造プロセスが複雑化する欠点を有していた。
【0009】
更に上述した従来の温度補償型水晶発振器においては、容器体23と枠状基体21とがセラミックグリーンシート積層法等によって一体的に形成されており、かかる製法によって得られる容器体23の下面にIC素子26を搭載していることから、温度補償型水晶発振器を“複数個取り”の手法によって製造するにあたり、容器体23及び枠状基体21が切り出される母基板にIC素子26を搭載した後で母基板を分割するような場合には、分割に伴なう衝撃がIC素子26に対して直接的に伝わり、この衝撃によってIC素子26そのものやIC素子26と容器体23との接合部に破損を招来する欠点が誘発される。従って、従来の製造プロセスにおいては、通常、容器体23と枠状基体21だけを“複数個取り”の手法によって製作し、分割後に得られた個々の個片に水晶振動素子24やIC素子26を個別に搭載することによって製品を組み立てるようにしており、その場合、個々の個片をキャリアに搭載して保持させた上、IC素子26等の搭載作業を行なう必要があることから、その分、製造設備が増え、製造工程も複雑化する欠点を有していた。
【0010】
本発明は上記欠点に鑑み案出されたもので、その目的は、取り扱いが簡便で、かつ、生産性にも優れた小型の温度補償型水晶発振器を得ることができる温度補償型水晶発振器の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明の温度補償型水晶発振器は、矩形状の窓部を有し、該窓部を取り囲む4つの辺のうち対向配置されている一対の辺に沿って複数個の外部端子が2列状に配列されている基板領域と、前記外部端子の配列方向と直交する方向に配列された複数個の書込制御端子を有する捨代領域とを、該捨代領域の少なくとも一部が前記一対の辺間で前記基板領域と接するようにして複数個ずつ配置させてなる母基板を準備する工程Aと、
前記母基板の各基板領域に、水晶振動素子が収容されている容器体を、前記窓部を塞ぐようにして取着させるとともに、前記窓部の内側に位置する前記容器体の表面に、前記水晶振動素子の温度特性を補償する温度補償データに基づいて発振出力を制御するIC素子を搭載する工程Bと、
前記書込制御端子を介して各基板領域内のIC素子に温度補償データを入力し、IC素子内のメモリに温度補償データを格納する工程Cと、
前記母基板を各基板領域の外周に沿って切断することにより、各基板領域を捨代領域より切り離し、前記容器体に前記基板領域に対応した実装用基体とIC素子とを取着させてなる複数個の温度補償型水晶発振器を同時に得る工程Dと、を含むことを特徴とするものである。
【0012】
また本発明の温度補償型水晶発振器の製造方法は、前記母基板が樹脂材料から成り、前記容器体の基板がセラミック材料から成ることを特徴とするものである。
【0013】
更に本発明の温度補償型水晶発振器の製造方法は、前記工程Bにおいて、前記母基板の基板領域に前記容器体を取着させるとともに、該容器体に前記IC素子を搭載することによって、前記捨代領域の書込制御端子と前記IC素子とが容器体及び母基板の配線導体を介して電気的に接続されることを特徴とするものである。
【0014】
また更に本発明の温度補償型水晶発振器の製造方法は、前記工程Bにおいて、前記容器体が前記母基板に取着された後、前記IC素子が前記容器体に搭載されることを特徴とするものである。
【0015】
更にまた本発明の温度補償型水晶発振器の製造方法は、前記工程Bにおいて、前記容器体に前記IC素子を搭載した後、前記容器体が前記母基板に取着されることを特徴とするものである。
【0016】
本発明によれば、温度補償データをIC素子に書き込むのに使用される書込制御端子を母基板の捨代領域に設けておき、温度補償データの書き込みを完了した後で子基板(実装用基体)より切り離すようにしたことから、実装用基体に書込制御端子を配置させるための広いスペースは不要となり、温度補償型水晶発振器の全体構造を小型化することができる。
【0017】
しかもこの場合、温度補償型水晶発振器の製造プロセスは比較的簡素となる上に、個々の温度補償型水晶発振器に温度補償データを書き込むためのソケット等の設備は一切不要であり、これによって温度補償型水晶発振器の生産性を高く維持することもできる。
【0018】
また本発明の製造方法によって得られる温度補償型水晶発振器には、上述した如く書込制御端子が存在していないことから、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、両者の接合に用いられている導電性接合材の一部が書込制御端子に付着してショートを起こすといった不都合を発生することはなく、製品の取扱いを簡便になすことができる。
【0019】
更に本発明によれば、前記IC素子は、容器体や導電性接合材を介して母基板に搭載されており、母基板には直接搭載されていないことから、母基板より実装用基体を切り出す際、母基板に印加される衝撃は、導電性接合材、容器体等を介してIC素子に伝導し、かかる伝導過程において十分に緩和されてからIC素子へと印加される。従って、水晶振動素子が収容された容器体を母基板に取着させるとともに、前記容器体にIC素子を搭載した後で母基板を個々の基板領域毎に分割するようにしても、IC素子そのものやIC素子と容器体との接合部が母基板を分割する際の衝撃によって破損してしまうことは殆どなく、これによっても温度補償型水晶発振器の生産性を高く維持することができる。
【0020】
またこの場合、前記母基板はIC素子を搭載した後で分割されるようになっており、IC素子の搭載時、母基板自体がIC素子搭載用のキャリアとして機能することから、従来例の項で説明したようなIC素子搭載用のキャリアは不要であり、母基板の分割によって得られた個々の子基板をキャリアに搭載するといった煩雑な作業も一切不要となる。これによっても、温度補償型水晶発振器の生産性が向上されるようになる。
【0021】
更にまた本発明によれば、前記母基板は、捨代領域に設けられている複数個の書込制御端子が、基板領域に設けられている外部端子の配列と直交する方向に配列されており、しかも前記捨代領域は、その少なくとも一部が窓部に近接して配置されていることから、窓部の内側で容器体に搭載されるIC素子と複数個の書込制御端子とを電気的に接続するための導電経路(配線導体等)を、窓部と捨代領域との間に設けられる広い配線引出領域を介して、IC素子の搭載領域から捨代領域まで比較的容易に引き出すことができる。
【0022】
また更に本発明によれば、容器体を加工性や封止性に優れたセラミック材料で形成し、母基板を切断時の作業性や取扱いの簡便性に優れた樹脂材料で形成しておくことにより、信頼性の高い温度補償型水晶発振器を極めて効率良く製作することができる。
【0023】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。
【0024】
図1は本発明の製造方法によって製作された温度補償型水晶発振器の斜視図、図2は図1の温度補償型水晶発振器の断面図、図3は図1の温度補償型水晶発振器を下方より見た平面図であり、これらの図に示す温度補償型水晶発振器は、内部に水晶振動素子としての水晶振動素子5を収容した容器体1の下面に、実装用基体(一対の脚部6a,6b)と、IC素子7とを取着させた構造を有している。
【0025】
前記容器体1は、例えば、ガラス−セラミック、アルミナセラミックス等のセラミック材料から成る基板2と、42アロイやコバール,リン青銅等の金属から成るシールリング3と、シールリング3と同様の金属から成る蓋体4とから成り、前記基板2の上面にシールリング3を取着させ、その上面に蓋体4を載置・固定させることによって容器体1が構成され、シールリング3の内側に位置する基板2の上面に水晶振動素子5が実装される。
【0026】
前記容器体1は、その内部、具体的には、基板2の上面とシールリング3の内面と蓋体4の下面とで囲まれる空間内に水晶振動素子5を収容して気密封止するためのものであり、基板2の上面には水晶振動素子5の振動電極に接続される一対の搭載パッド8a等が、基板2の下面には後述する脚部6a,6bの接合電極9aに接続される複数個の接合電極8c(以下、第1接合電極という。)やIC素子7の接続パッド7aに接続される複数個の電極パッド8b等がそれぞれ設けられ、これらのパッドは基板表面の配線パターンや基板内部に埋設されているビアホール導体等によって、対応するパッド同士、相互に電気的に接続されている。
【0027】
一方、前記容器体1の内部に収容される水晶振動素子5は、所定の結晶軸でカットした水晶片の両主面に一対の振動電極を被着・形成してなり、外部からの変動電圧が一対の振動電極を介して水晶片に印加されると、所定の周波数で厚みすべり振動を起こす。
【0028】
ここで容器体1の金属製蓋体4を容器体1や一対の脚部6a,6bの配線導体8,9を介して後述するグランド端子用の外部端子9bに接続させておけば、その使用時、蓋体4がアースされることによりシールド機能が付与されることとなるため、水晶振動素子5や後述するIC素子7を外部からの不要な電気的作用より良好に保護することができる。従って、容器体1の金属製蓋体4は容器体1や脚部6a,6bの配線導体8,9を介してグランド端子用の外部端子9bに接続させておくことが好ましい。
【0029】
そして、上述した容器体1の下面に取着される一対の脚部6a,6b及びIC素子7は、IC素子7が一対の脚部6a,6b間に位置するようにして並設されている。
【0030】
前記脚部6a,6bは、各々がガラス布基材エポキシ樹脂やポリカーボネイト,エポキシ樹脂,ポリイミド樹脂等の樹脂材料やガラス−セラミック等の低温焼成基板材料(LTCC)やアルミナセラミックス等のセラミック材料等によって矩形状をなすように形成されており、間にIC素子7を挟んで平行に配置される。
【0031】
また、これら脚部6a,6bの上面には容器体下面の対応する第1接合電極8cに電気的・機械的に接続される複数個の接合電極9a(以下、第2接合電極という。)が、また下面には4つの外部端子9b(電源電圧端子、グランド端子、発振出力端子、発振制御端子)が2個の脚部6a,6bに分かれて2個ずつ設けられており、これらの第2接合電極9bと外部端子9aとは各脚部6a,6bの端面等に設けられた溝部内面の導体膜等を介して電気的に接続されている。
【0032】
上述した4個の外部端子9bは、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、外部電気回路の回路配線と電気的に接続されるようになっており、これら4個の外部端子9bのうち、グランド端子と発振出力端子を一方の脚部6aに、電源電圧端子と発振制御端子を他方の脚部6bに設けておくようにすれば、発振出力端子がグランド電位に接続されるグランド端子に近接して配置されることから、発振出力端子より出力される発振信号にノイズが干渉するのを有効に防止することができる。従って、グランド端子と発振出力端子は共通の脚部(実装用基体)に隣接させて設けておくことが好ましい。
【0033】
また一方、一対の脚部6a,6b間に配置されるIC素子7としては、上面に前記容器体1の電極パッド8bに接続される複数個の接続パッド7aを有した矩形状のフリップチップ型ICが用いられ、その回路形成面には、周囲の温度状態を検知する感温素子(サーミスタ)、水晶振動素子5の温度特性を補償する温度補償データを有し、該温度補償データに基づいて前記水晶振動素子5の振動特性を温度変化に応じて補正する温度補償回路、該温度補償回路に接続されて所定の発振出力を生成する発振回路等が設けられている。このようなIC素子7の発振回路で生成された発振出力は、外部に出力された後、例えば、クロック信号等の基準信号として利用されることとなる。
【0034】
また更に上述したIC素子7は、4個の側面のうち平行に配置されている2個の側面が上述した脚部6a,6bの側面に対向して近接配置されるようになっており、この2個の側面と直交する残りの2個の側面を一対の脚部6a,6bの端面間より露出させている。ここで、前記IC素子7の側面と前記脚部6a,6bの側面との間にできる間隙の幅は、例えば10μm〜500μmに設定される。
【0035】
そして、前記IC素子7の2個の露出側面は、容器体1の外周部よりも若干内側、例えば、容器体1の外周より1μm〜500μmだけ内側に、容器体1の外周部に沿って配されている。
【0036】
このように、前記IC素子7の露出側面と直交する方向に係る容器体1や一対の脚部6a,6bの幅寸法はIC素子7の一辺の長さと略等しくなるように設計され、またIC素子7の露出側面と平行な方向に係る容器体1の幅寸法はIC素子7の一辺の長さと脚部6a,6bの幅との和と略等しくなるように設計されているため、温度補償型水晶発振器の全体構造を縦・横いずれの方向にも小型に構成することができる。
【0037】
しかもこの場合、IC素子7の2個の露出側面は一対の脚部6a,6bに遮られることなく露出させてあり、IC素子7と容器体1との接合部が直視できるようになっているため、製品の検査等に際してIC素子7の接合状態を目視等によって容易に確認することができ、これによって温度補償型水晶発振器の生産性を向上させることも可能となる。
【0038】
更に上述した温度補償型水晶発振器は、平行に配されているIC素子7の2個の側面を一対の脚部6a,6bの側面間より露出させるようにしたことで、IC素子7の搭載領域がその両端部で外部に開放された形となっている。このため、完成した温度補償型水晶発振器をマザーボード等の外部電気回路に搭載した後に行なわれる洗浄工程等においてIC素子7の表面や容器体1の下面に対して洗浄液を接触させる場合であっても、一対の脚部6a,6b間の領域への洗浄液の流入、及び流出は上述した搭載領域両側の開放端を介して極めてスムーズ、かつ良好になされるようになり、IC素子7の搭載領域に洗浄液が残留してしまうのを有効に防止して、上述の洗浄工程を効率良く行うことができる利点もある。
【0039】
次に上述した温度補償型水晶発振器の製造方法について図4乃至図6を用いて説明する。
【0040】
ここで、図4(a)〜(e)は本発明の製造方法を説明するための断面図、図5(a)は本発明の製造方法に用いられる母基板を一主面側より見た斜視図、図5(b)は母基板を他主面側より見た斜視図、図6(a)は母基板を一主面側より見た拡大平面図、図6(b)は母基板を他主面側より見た拡大平面図である。尚、図4においては容器体1や一対の脚部6a,6b等に設けられる配線導体を省略して示し、また図4(d)については、説明の便宜上、図4(a)(b)(c)(e)の断面に対して直交する方向に係る断面を示すようにした。
【0041】
(工程A)
まず、矩形状の窓部16を有する矩形状の基板領域Aと、複数個の書込制御端子17を有する矩形状の捨代領域Bとを相互に隣接させて、これらをマトリックス状に配置した母基板15を準備する(図5及び図6参照)。尚、図6(A)(B)に示す斜線部が基板領域Aである。
【0042】
前記母基板15の基板領域Aには、窓部16を取り囲む4つの辺のうち対向配置されている一対の辺に沿って、母基板15の一主面側に複数個の第2接合電極9aが2列状に配列され、母基板15の他主面側には外部端子9bが2列状に2個ずつ配列されている。
【0043】
またこのような母基板15の捨代領域Bは、その少なくとも一部が上述した窓部16の一対の辺間で基板領域Aと接するようにして配されており、かかる捨代領域Bの書込制御端子17は、母基板15の他主面側に、外部端子9bの配列方向と直交する方向に配列されている。
【0044】
このような母基板15は、上述した一対の脚部6a,6bと同じ材料、即ち、ガラス布基材エポキシ樹脂やポリカーボネイト,エポキシ樹脂,ポリイミド樹脂等の樹脂材料、或いは、ガラス−セラミック等の低温焼成基板材料,アルミナセラミックス等のセラミック材料等によって形成されており、例えば、ガラス布基材エポキシ樹脂で形成する場合、ガラス糸を編み込んで形成したガラス布基材にエポキシ樹脂の液状前駆体を含浸させるとともに、該前駆体を高温で重合させることによってベースが形成され、その表面に銅箔等の金属箔を貼着し、これを従来周知のフォトエッチング等を採用し、所定パターンに加工することによって書込制御端子17や第2接合電極9a,外部端子9b等を含む所定の配線パターンが形成される。
【0045】
また前記母基板15の基板領域Aに形成されている窓部16は基板領域Aを縦断するように形成されており、上述のようにして製作した母基板15の各基板領域Aをパンチング等で矩形状に打ち抜くことによって所定の窓部16が穿設される。
【0046】
(工程B)
次に、図4(a)に示す如く、前記母基板15の各基板領域Aに、水晶振動素子5が収容されている容器体1を、前記窓部16を塞ぐようにして取着させ、しかる後、図4(b)に示す如く、母基板15を上下に裏返し、前記窓部16の内側に位置する容器体1の表面にIC素子7を搭載する。
【0047】
前記容器体1は、先に述べたように、基板2とシールリング3と蓋体4とで構成されており、その内部に水晶振動素子5を収容させている。
【0048】
例えば、基板2をセラミック材料により形成する場合は、セラミック材料粉末に適当な有機溶剤等を添加・混合して得たセラミックグリーンシートの表面等に配線導体8となる導体ペーストを所定パターンに印刷・塗布するとともに、これを複数枚積層してプレス成形した後、高温で焼成することによって基板2を製作し、得られた基板2の上面に水晶振動素子5を搭載する。このとき、水晶振動素子5の振動電極と基板上面の搭載パッド8aとは導電性接合材10を介して電気的・機械的に接続される。そして、基板2の上面に、水晶振動素子5を囲繞するようにしてシールリング3を載置・固定し、かかるシールリング3の上面に蓋体4を従来周知の抵抗溶接等によって接合することにより容器体1が組み立てられる。
【0049】
尚、シールリング3及び蓋体4は、従来周知の金属加工法を採用し、42アロイ等の金属を所定形状に成形することによって製作され、前記シールリング3は、基板2の上面に予め被着させておいた導体層にロウ付けすることによって基板2に固定される。また上述のように、シールリング3と蓋体4とを抵抗溶接によって接合する場合、シールリング3や蓋体4の表面には予めNiメッキ層やAuメッキ層等が被着される。
【0050】
このような容器体1は、その下面に複数個の第1接合電極8cと複数個の電極パッド8bとが設けられており、複数個の第1接合電極8cが母基板15の対応する第2接合電極9aに半田等の導電性接合材11を介して当接され、かつ複数個の電極パッド8bを窓部16の内側に位置させるようにして母基板15の各基板領域Aに一主面側より載置させ、しかる後、前記導電性接合材11を熱の印加等によって溶融させ、第1接合電極8c及び第2接合電極9aを導電性接合材11を介して接合することによって容器体1が母基板15に取着・搭載される。
【0051】
また一方、前記IC素子7としては、先に述べたように、容器体1と対向する面に複数個の接続パッド7aを有した矩形状のフリップチップ型ICが用いられる。
【0052】
前記IC素子7は、その一面に設けられている複数個の接続パッド7aが、母基板15の他主面側で窓部16内に露出する容器体1の対応する電極パッド8bに半田等の導電性接合材11を介して当接されるようにして容器体1上に載置され、しかる後、前記導電性接合材11を熱の印加等によって溶融させ、接合パッド7a及び電極パッド8bを導電性接合材11を介して接合することによってIC素子7が容器体1上に搭載される。
【0053】
かかる工程Bにおいては、母基板15の基板領域Aに容器体1を取着させるとともに、該容器体1にIC素子7を搭載することによって、IC素子7内の電子回路が容器体1の配線導体8や母基板の配線導体等を介して水晶振動素子5や外部端子9b等と電気的に接続され、また同時に、捨代領域Bの書込制御端子17とIC素子7とが容器体1及び母基板15の配線導体を介して電気的に接続されることとなる。
【0054】
ここで、母基板15と容器体1とは導電性接合材11を介して接合されており、両者の非接合部には所定の隙間が存在しているため、IC素子7を半田等の導電性接合材11を介して容器体1の下面に搭載する際、該接合に必要な熱を上述の隙間等から容器体1−IC素子7間の導電性接合材11に対して良好に伝達させることができ、IC素子7を効率良く、確実に搭載することが可能となる。これにより、温度補償型水晶発振器の信頼性及び生産性を向上させることができる。
【0055】
(工程C)
次に、図4(d)に示す如く、母基板15の捨代領域Bに設けた複数個の書込制御端子17を介して各基板領域A内のIC素子7に温度補償データを入力し、IC素子7内のメモリに温度補償データを格納する。
【0056】
このような温度補償データの書込作業は、温度補償データ書込装置のプローブ針20を書込制御端子17に当てて、水晶振動素子5の温度特性に応じて作成された温度補償データをIC素子7の温度補償回路内に設けられているメモリに入力し、これを記憶させることによって行なわれる。尚、ここでIC素子7に書き込まれる温度補償データは、水晶振動素子毎の温度特性バラツキを補正するためのものであり、その温度補償型水晶発振器に使用される水晶振動素子5の温度特性を事前に測定しておくことにより得られるものである。
【0057】
この場合、個々の温度補償型水晶発振器のIC素子7に温度補償データを書き込むためのソケット等の設備は一切不要であり、これによっても温度補償型水晶発振器の生産性向上に供することができる。
【0058】
(工程D)
そして最後に、図4(e)に示す如く、前記母基板15を各基板領域Aの外周に沿って切断することにより、各基板領域Aを捨代領域Bより切り離す。
【0059】
前記母基板15の切断は従来周知のダイシング等によって行なわれ、かかる切断工程を経て母基板15が個々の基板領域毎に分割される。これにより、容器体1の下面に、基板領域Aに対応した実装用基体(一対の脚部6a,6b)とIC素子7とを取着させてなる複数個の温度補償型水晶発振器が同時に得られる。
【0060】
このとき、前記IC素子7は、容器体1や導電性接合材11を介して母基板15に搭載されており、母基板15には直接搭載されていないことから、母基板15の切断に際して母基板15に印加される衝撃は、導電性接合材11、容器体1等を介してIC素子7に伝導し、かかる伝導過程において十分に緩和されてからIC素子7へと印加されることとなる。従って、IC素子そのものやIC素子7と容器体1との接合部が母基板15を分割する際の衝撃によって破損してしまうことは殆どなく、これによっても温度補償型水晶発振器の生産性を高く維持することができる。
【0061】
またこの場合、母基板15はIC素子7を搭載した後で分割されるようになっており、IC素子7の搭載時、母基板自体がIC素子搭載用のキャリアとして機能することから、従来例の項で説明したようなIC素子搭載用のキャリアは不要であり、母基板15の分割によって得られた個々の子基板をキャリアに搭載するといった煩雑な作業も一切不要となる。これによっても、温度補償型水晶発振器の生産性が向上されるようになる。
【0062】
そして、上述した製造工程においては、書込制御端子17を母基板15の捨代領域Bに設けておき、温度補償データの書き込みを完了した後で個々の一対の脚部6a,6bより切り離すようにしたことから、一対の脚部6a,6bに書込制御端子17を配置させるための広いスペースは不要となり、温度補償型水晶発振器の全体構造を小型化することができる。
【0063】
また、上述の工程A〜Dを経て得られる温度補償型水晶発振器には、書込制御端子17が存在していないことから、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、両者の接合に用いられている導電性接合材の一部が書込制御端子に付着してショートを起こすといった不都合を発生することもなく、製品の取扱いを簡便になすことができる。
【0064】
更に、上述の工程A〜Dにおいて使用した母基板15は、捨代領域Bの書込制御端子17が、基板領域Aの外部端子9bと直交する方向に配列されており、しかも捨代領域Bは、その少なくとも一部が窓部に近接して配置されていることから、窓部16の内側で容器体1に搭載されるIC素子7と複数個の書込制御端子17とを電気的に接続するための導電経路(配線導体8,9等)を、窓部16と捨代領域Bとの間に設けられる広い配線引出領域を介して、IC素子7の搭載領域から書込制御端子17が配されている捨代領域Bまで比較的容易に引き出すことができる。
【0065】
また更に本実施形態においては、容器体1を加工性や封止性に優れたセラミック材料で形成し、母基板15を切断時の作業性や取扱いの簡便性に優れた樹脂材料で形成しておくことにより、信頼性の高い温度補償型水晶発振器を極めて効率良く製作することができる。従って、前記容器体1をセラミック材料で形成し、前記母基板15を樹脂材料で形成しておくことが好ましい。
【0066】
尚、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
【0067】
例えば、上述した実施形態においては、工程B中、容器体1を母基板15に取着した後でIC素子7を容器体1に搭載するようにしたが、これに代えて、容器体1にIC素子7を搭載した後で容器体1を母基板15に取着させるようにしても構わない。
【0068】
また上述した実施形態においては、捨代領域Bの書込制御端子17を外部端子9bの形成面と同じ母基板15の他主面に設けるようにしたが、これに代えて、書込制御端子17を第2接合電極9aの形成面と同じ母基板15の一主面側に設けるようにしても構わない。
【0069】
更に上述した実施形態においては、母基板15より切り出される実装用基体として一対の脚部6a,6bを用いるようにしたが、これに代えて、実装用基体として1個の枠状基体を用いるようにしても良いし、各脚部6a,6bをそれぞれ2個に分断して得た4個の脚部を用いたり、或いは、脚部6a,6bのうち一方のみを2つに分断して得た3個の脚部を用いるようにしても良い。例えば、実装用基体として1個の枠状基体を用いる場合には、窓部16が基板領域Aを縦断するように母基板15を孔明けするのではなく、窓部16の外周が基板領域Aの外周より内側に離間して配されるように母基板15に孔明けをする。
【0070】
また更に上述した実施形態において、母基板15と容器体1、容器体1とIC素子7を異方性導電接着材を介して取着させるようにしても良く、この場合、母基板15と容器体1との電気的接続及び機械的接続、容器体1とIC素子7との電気的接続及び機械的接続が異方性導電接着材によって一括的になされることから、温度補償型水晶発振器の組み立て作業を大幅に簡略化することができる利点がある。
【0071】
更にまた上述した実施形態において、容器体1とIC素子7との間にできる隙間や母基板15と容器体1との間にできる隙間に樹脂材を充填・形成し、該樹脂材で対向するパッド同士、電極同士を接合する導電性接合材を被覆するようになしておいても良く、その場合、IC素子の回路形成面を樹脂材でもって良好に保護することができるとともに、IC素子7や一対の脚部6a,6bの接合部が前記樹脂材でもって補強されるようになり、これによっても温度補償型水晶発振器の信頼性を向上させることができる。
【0072】
また更に上述した実施形態においては、容器体1の蓋体4をシールリング3を介して基板2に接合させるようにしたが、これに代えて、基板2の上面に接合用のメタライズパターンを形成しておき、このメタライズパターンに対して蓋体4をダイレクトに溶接するようにしても構わない。
【0073】
更にまた上述した実施形態においては、容器体1の基板上面に直接シールリング3を取着させるようにしたが、これに代えて、基板2の上面に基板2と同材質のセラミック材料等から成る枠体を一体的に取着させた上、該枠体の上面にシールリング3を取着させるようにしても構わない。
【0074】
また更に上述した実施形態においては、脚部6a,6bの形状を矩形状となしたが、このような脚部6a,6bの内側面や外側面,角部等に切り欠きを設け、この切り欠きと接する脚部6a,6bの表面に導体パターンを被着させたり、或いは、切り欠きによってできたスペースにチップ状コンデンサ等の小さな電子部品素子を配置させるようにしても構わない。
【0075】
更にまた上述した実施形態において、IC素子7の側面と脚部6a,6bの側面との間にできる間隙に補強や封止等を目的として樹脂材等を充填するようにしても良いことは言うまでもない。
【0076】
【発明の効果】
本発明によれば、温度補償データをIC素子に書き込むのに使用される書込制御端子を母基板の捨代領域に設けておき、温度補償データの書き込みを完了した後で子基板(実装用基体)より切り離すようにしたことから、実装用基体に書込制御端子を配置させるための広いスペースは不要となり、温度補償型水晶発振器の全体構造を小型化することができる。
【0077】
しかもこの場合、温度補償型水晶発振器の製造プロセスは比較的簡素となる上に、個々の温度補償型水晶発振器に温度補償データを書き込むためのソケット等の設備は一切不要であり、これによって温度補償型水晶発振器の生産性を高く維持することもできる。
【0078】
また本発明の製造方法によって得られる温度補償型水晶発振器には、上述した如く書込制御端子が存在していないことから、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、両者の接合に用いられている導電性接合材の一部が書込制御端子に付着してショートを起こすといった不都合を発生することはなく、製品の取扱いを簡便になすことができる。
【0079】
更に本発明によれば、前記IC素子は、容器体や導電性接合材を介して母基板に搭載されており、母基板には直接搭載されていないことから、母基板より実装用基体を切り出す際、母基板に印加される衝撃は、導電性接合材、容器体等を介してIC素子に伝導し、かかる伝導過程において十分に緩和されてからIC素子へと印加される。従って、水晶振動素子が収容された容器体を母基板に取着させるとともに、前記容器体にIC素子を搭載した後で母基板を個々の基板領域毎に分割するようにしても、IC素子そのものやIC素子と容器体との接合部が母基板を分割する際の衝撃によって破損してしまうことは殆どなく、これによっても温度補償型水晶発振器の生産性を高く維持することができる。
【0080】
またこの場合、前記母基板はIC素子を搭載した後で分割されるようになっており、IC素子の搭載時、母基板自体がIC素子搭載用のキャリアとして機能することから、従来例の項で説明したようなIC素子搭載用のキャリアは不要であり、母基板の分割によって得られた個々の子基板をキャリアに搭載するといった煩雑な作業も一切不要となる。これによっても、温度補償型水晶発振器の生産性が向上されるようになる。
【0081】
更にまた本発明によれば、前記母基板は、捨代領域に設けられている複数個の書込制御端子が、基板領域に設けられている外部端子の配列と直交する方向に配列されており、しかも前記捨代領域は、その少なくとも一部が窓部に近接して配置されていることから、窓部の内側で容器体に搭載されるIC素子と複数個の書込制御端子とを電気的に接続するための導電経路(配線導体等)を、窓部と捨代領域との間に設けられる広い配線引出領域を介して、IC素子の搭載領域から捨代領域まで比較的容易に引き出すことができる。
【0082】
また更に本発明によれば、容器体を加工性や封止性に優れたセラミック材料で形成し、母基板を切断時の作業性や取扱いの簡便性に優れた樹脂材料で形成しておくことにより、信頼性の高い温度補償型水晶発振器を極めて効率良く製作することができる。
【図面の簡単な説明】
【図1】本発明の製造方法によって製作した温度補償型水晶発振器の斜視図である。
【図2】図1の温度補償型水晶発振器の断面図である。
【図3】図1の温度補償型水晶発振器を下方より見た平面図である。
【図4】(a)乃至(e)は本発明の製造方法を説明するための断面図である。
【図5】(a)は本発明の製造方法に用いられる母基板を一主面側より見た斜視図、(b)は(a)の母基板を他主面側より見た斜視図である。
【図6】(a)は図5に示す母基板を一主面側より見た拡大平面図、(b)は図5に示す母基板を他主面側より見た拡大平面図である。
【図7】(a)は従来の温度補償型水晶発振器の断面図、(b)は(a)の温度補償型水晶発振器を下方より見た平面図である。
【符号の説明】
1・・・容器体
2・・・基板
3・・・シールリング
4・・・蓋体
5・・・水晶振動素子
6a,6b・・・実装用基体(一対の脚部)
7・・・IC素子
7a・・・接続パッド
8・・・容器体の配線導体
8a・・・搭載パッド
8b・・・電極パッド
8c・・・第1接合電極
9・・・実装用基体の配線導体
9a・・・第2接合電極
9b・・・外部端子
10、11・・・導電性接合材
15・・・母基板
16・・・窓部
20・・・書込装置のプローブ針
A・・・基板領域
B・・・捨代領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a temperature-compensated crystal oscillator used in an electronic device such as a portable communication device.
[0002]
[Prior art]
Conventionally, temperature compensated crystal oscillators have been used in electronic devices such as portable communication devices.
[0003]
As such a conventional temperature compensated crystal oscillator, for example, as shown in FIG. 7, a crystal resonator element 24 is accommodated in an upper surface of a frame-like substrate 21 having a plurality of external terminals 22 attached to the lower surface. The IC element 26 that attaches the container body 23 and controls the oscillation output to the cavity portion 25 surrounded by the inner wall surface of the frame-shaped substrate 21 and the lower surface of the container body 23 based on the vibration of the crystal resonator element 24. There is known a structure in which an electronic component element 27 such as a capacitor is disposed and the IC element 26 and the electronic component element 27 are mounted on the lower surface of the container body 23 (see, for example, Patent Document 1). .
[0004]
Note that the substrate of the container body 23 and the frame-shaped base 21 described above are usually integrally formed of a ceramic material such as glass-ceramic, and wiring conductors are formed inside and on the surface. It is manufactured by adopting a known ceramic green sheet lamination method or the like.
[0005]
The IC element 26 is provided with a temperature compensation circuit for correcting the oscillation output of the crystal oscillator based on the temperature compensation data created according to the temperature characteristic of the crystal resonator element 24. After the compensation type crystal oscillator is assembled, in order to store the above temperature compensation data in the memory in the IC element 26, a write control terminal for writing temperature compensation data ( In general, it was not provided.
[0006]
[Patent Document 1]
JP 2000-151283 A (FIGS. 2 and 5)
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional temperature-compensated crystal oscillator, a write control terminal for writing temperature compensation data is provided on the lower surface, the outer surface, and the like of the frame-shaped substrate 21, and these write control terminals are arranged. Since a large space is required on the surface of the frame-shaped substrate 2, the area of the frame-shaped substrate 21 increases in the surface direction or the thickness direction, and it becomes impossible to reduce the overall structure. In addition to having drawbacks, when mounting a temperature-compensated crystal oscillator on an external electrical circuit such as a motherboard, part of the conductive bonding material used to bond the two adheres to the write control terminal. This may cause a short circuit with the external terminal of the temperature-compensated crystal oscillator, so that the handling of the product is complicated, for example, there is no freedom in the shape of the motherboard-side electrode corresponding to the external terminal. There was also a disadvantage that that.
[0008]
Further, when the above-mentioned write control terminal is arranged on the outer surface of the frame-shaped substrate 21, a through hole is formed in a ceramic mother substrate used for manufacturing the frame-shaped substrate 21, and an electrode pattern is formed on the inner surface thereof. And a complicated machining process such as depositing is required, which leads to a decrease in productivity, and the probe needle of the writing device is connected to the writing control terminal provided on the outer surface of the frame-like base 21. Since it is extremely difficult to perform the writing operation by directly applying the temperature compensation data, it is necessary to write the temperature compensation data by attaching each temperature compensation crystal oscillator to the temperature compensation data writing socket, In that case, a manufacturing facility such as a socket is required separately, and complicated steps such as mounting individual temperature-compensated crystal oscillators on the socket are required, which has the disadvantage that the manufacturing process becomes complicated.
[0009]
Further, in the above-described conventional temperature-compensated crystal oscillator, the container body 23 and the frame base 21 are integrally formed by a ceramic green sheet lamination method or the like, and an IC is formed on the lower surface of the container body 23 obtained by such a manufacturing method. Since the element 26 is mounted, the IC element 26 is mounted on the mother board from which the container body 23 and the frame-shaped substrate 21 are cut out in manufacturing the temperature-compensated crystal oscillator by the “multiple pick-up” technique. When the mother board is divided, the impact accompanying the division is directly transmitted to the IC element 26, and the impact damages the IC element 26 itself or the joint between the IC element 26 and the container body 23. Invite the disadvantages. Therefore, in the conventional manufacturing process, usually, only the container body 23 and the frame-shaped substrate 21 are manufactured by the “multiple picking” technique, and the crystal vibration element 24 and the IC element 26 are added to individual pieces obtained after the division. In this case, it is necessary to mount the IC element 26 and the like after mounting the individual pieces on the carrier and holding them. However, the manufacturing equipment has increased, and the manufacturing process has become complicated.
[0010]
The present invention has been devised in view of the above drawbacks, and its purpose is to manufacture a temperature-compensated crystal oscillator that is easy to handle and can provide a compact temperature-compensated crystal oscillator that is excellent in productivity. It is to provide a method.
[0011]
[Means for Solving the Problems]
The temperature-compensated crystal oscillator of the present invention has a rectangular window portion, and a plurality of external terminals are arranged in two rows along a pair of oppositely arranged sides of four sides surrounding the window portion. A substrate region that is arranged, and a spare region having a plurality of write control terminals arranged in a direction orthogonal to the direction of arrangement of the external terminals, wherein at least a part of the spare region is the pair of sides. A step A for preparing a mother substrate which is arranged in plural so as to be in contact with the substrate region between;
In each substrate region of the mother substrate, the container body in which the crystal resonator element is accommodated is attached so as to close the window portion, and on the surface of the container body located inside the window portion, A process B for mounting an IC element for controlling an oscillation output based on temperature compensation data for compensating a temperature characteristic of the crystal resonator element;
Step C for inputting temperature compensation data to the IC element in each substrate region via the write control terminal, and storing the temperature compensation data in a memory in the IC element;
By cutting the mother substrate along the outer periphery of each substrate region, each substrate region is separated from the abandoned region, and the mounting body and the IC element corresponding to the substrate region are attached to the container body. And a step D of simultaneously obtaining a plurality of temperature compensated crystal oscillators.
[0012]
The temperature-compensated crystal oscillator manufacturing method of the present invention is characterized in that the mother substrate is made of a resin material and the substrate of the container body is made of a ceramic material.
[0013]
Furthermore, in the method for manufacturing a temperature compensated crystal oscillator according to the present invention, in the step B, the container body is attached to a substrate region of the mother substrate, and the IC element is mounted on the container body, thereby removing the waste. The writing control terminal in the substitute area and the IC element are electrically connected through the wiring conductor of the container body and the mother board.
[0014]
Furthermore, in the method for manufacturing a temperature compensated crystal oscillator according to the present invention, the IC element is mounted on the container body after the container body is attached to the mother board in the step B. Is.
[0015]
Furthermore, the method for manufacturing a temperature compensated crystal oscillator according to the present invention is characterized in that, in the step B, after the IC element is mounted on the container body, the container body is attached to the mother board. It is.
[0016]
According to the present invention, the write control terminal used for writing the temperature compensation data to the IC element is provided in the abandoned area of the mother board, and after the writing of the temperature compensation data is completed, the sub board (for mounting) Therefore, a large space for arranging the write control terminals on the mounting substrate is not necessary, and the overall structure of the temperature compensated crystal oscillator can be reduced in size.
[0017]
In this case, the temperature-compensated crystal oscillator manufacturing process is relatively simple, and there is no need for a socket or other equipment for writing temperature-compensated data in each temperature-compensated crystal oscillator. The productivity of the crystal oscillator can also be maintained high.
[0018]
In addition, since the temperature compensated crystal oscillator obtained by the manufacturing method of the present invention does not have a write control terminal as described above, when the temperature compensated crystal oscillator is mounted on an external electric circuit such as a mother board, both Therefore, there is no inconvenience that a part of the conductive bonding material used for bonding adheres to the write control terminal to cause a short circuit, and the product can be handled easily.
[0019]
Further, according to the present invention, the IC element is mounted on the mother board via the container body and the conductive bonding material, and is not directly mounted on the mother board. Therefore, the mounting base is cut out from the mother board. At this time, the impact applied to the mother substrate is conducted to the IC element through the conductive bonding material, the container body, and the like, and is sufficiently relaxed in the conduction process before being applied to the IC element. Therefore, the IC element itself may be formed by attaching the container body containing the crystal resonator element to the mother board and dividing the mother board into individual substrate areas after mounting the IC element on the container body. In addition, the joint between the IC element and the container is hardly damaged by the impact when dividing the mother substrate, and this can also maintain high productivity of the temperature compensated crystal oscillator.
[0020]
In this case, the mother board is divided after the IC element is mounted, and when the IC element is mounted, the mother board itself functions as a carrier for mounting the IC element. The carrier for mounting an IC element as described in (1) is unnecessary, and the complicated operation of mounting individual child boards obtained by dividing the mother board on the carrier is completely unnecessary. This also improves the productivity of the temperature compensated crystal oscillator.
[0021]
Furthermore, according to the present invention, the mother board has a plurality of write control terminals provided in the spare area arranged in a direction orthogonal to the arrangement of the external terminals provided in the board area. In addition, since at least a part of the abandoned region is disposed close to the window, the IC element mounted on the container body and the plurality of write control terminals are electrically connected to the inside of the window. Conductive paths (wiring conductors, etc.) for connection to each other can be pulled out relatively easily from the IC element mounting area to the abandoned area through a wide wiring extraction area provided between the window portion and the abandoned area. be able to.
[0022]
Furthermore, according to the present invention, the container body is formed of a ceramic material excellent in workability and sealing performance, and the mother substrate is formed of a resin material excellent in workability during cutting and easy handling. Thus, a highly reliable temperature compensated crystal oscillator can be manufactured extremely efficiently.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0024]
FIG. 1 is a perspective view of a temperature compensated crystal oscillator manufactured by the manufacturing method of the present invention, FIG. 2 is a cross-sectional view of the temperature compensated crystal oscillator of FIG. 1, and FIG. The temperature-compensated crystal oscillator shown in these drawings has a mounting base (a pair of leg portions 6a, 6a) on the lower surface of the container body 1 in which a crystal resonator element 5 serving as a crystal resonator element is accommodated. 6b) and the IC element 7 are attached.
[0025]
The container body 1 is made of, for example, a substrate 2 made of a ceramic material such as glass-ceramic or alumina ceramic, a seal ring 3 made of a metal such as 42 alloy, Kovar, or phosphor bronze, and a metal similar to the seal ring 3. The container body 1 is formed by attaching the seal ring 3 to the upper surface of the substrate 2 and placing and fixing the cover body 4 on the upper surface of the substrate 2, and is located inside the seal ring 3. A crystal resonator element 5 is mounted on the upper surface of the substrate 2.
[0026]
The container body 1 is for hermetically sealing the quartz resonator element 5 in its interior, specifically, in a space surrounded by the upper surface of the substrate 2, the inner surface of the seal ring 3, and the lower surface of the lid body 4. A pair of mounting pads 8a and the like connected to the vibration electrodes of the crystal resonator element 5 are connected to the upper surface of the substrate 2, and the lower surfaces of the substrate 2 are connected to bonding electrodes 9a of legs 6a and 6b described later. A plurality of bonding electrodes 8c (hereinafter referred to as first bonding electrodes) and a plurality of electrode pads 8b connected to the connection pads 7a of the IC element 7 are provided, and these pads are used as wiring patterns on the substrate surface. And corresponding pads are electrically connected to each other by via-hole conductors embedded in the substrate.
[0027]
On the other hand, the quartz crystal vibrating element 5 accommodated in the container body 1 is formed by attaching and forming a pair of vibrating electrodes on both main surfaces of a crystal piece cut along a predetermined crystal axis, and a variable voltage from the outside. Is applied to the quartz piece via a pair of vibrating electrodes, thickness shear vibration is caused at a predetermined frequency.
[0028]
Here, if the metal lid 4 of the container body 1 is connected to the external terminal 9b for the ground terminal described later via the container body 1 and the wiring conductors 8 and 9 of the pair of legs 6a and 6b, the use thereof At that time, since the lid 4 is grounded, a shielding function is provided, so that the crystal resonator element 5 and the IC element 7 to be described later can be protected better than unnecessary electrical action from the outside. Therefore, the metal lid 4 of the container body 1 is preferably connected to the external terminal 9b for the ground terminal via the container body 1 and the wiring conductors 8 and 9 of the legs 6a and 6b.
[0029]
And a pair of leg part 6a, 6b and IC element 7 attached to the lower surface of the container body 1 mentioned above are arranged in parallel so that IC element 7 may be located between a pair of leg part 6a, 6b. .
[0030]
Each of the legs 6a and 6b is made of a resin material such as glass cloth base epoxy resin, polycarbonate, epoxy resin or polyimide resin, a low-temperature fired substrate material (LTCC) such as glass-ceramic, or a ceramic material such as alumina ceramic. They are formed in a rectangular shape, and are arranged in parallel with the IC element 7 interposed therebetween.
[0031]
A plurality of joining electrodes 9a (hereinafter referred to as second joining electrodes) that are electrically and mechanically connected to the corresponding first joining electrodes 8c on the lower surface of the container body are provided on the upper surfaces of the legs 6a and 6b. On the lower surface, four external terminals 9b (power supply voltage terminal, ground terminal, oscillation output terminal, oscillation control terminal) are divided into two legs 6a and 6b, and two of these are provided. The bonding electrode 9b and the external terminal 9a are electrically connected via a conductor film or the like on the inner surface of the groove provided on the end surfaces of the leg portions 6a and 6b.
[0032]
The four external terminals 9b described above are electrically connected to the circuit wiring of the external electric circuit when the temperature-compensated crystal oscillator is mounted on an external electric circuit such as a mother board. Of the external terminals 9b, if the ground terminal and the oscillation output terminal are provided on one leg 6a and the power supply voltage terminal and the oscillation control terminal are provided on the other leg 6b, the oscillation output terminal is connected to the ground potential. Therefore, it is possible to effectively prevent noise from interfering with the oscillation signal output from the oscillation output terminal. Therefore, the ground terminal and the oscillation output terminal are preferably provided adjacent to the common leg (mounting base).
[0033]
On the other hand, as the IC element 7 disposed between the pair of leg portions 6a and 6b, a rectangular flip chip type having a plurality of connection pads 7a connected to the electrode pads 8b of the container body 1 on the upper surface. An IC is used, and the circuit forming surface has a temperature sensing element (thermistor) for detecting the ambient temperature state and temperature compensation data for compensating the temperature characteristics of the crystal resonator element 5, and based on the temperature compensation data. A temperature compensation circuit that corrects the vibration characteristics of the crystal resonator element 5 according to a temperature change, an oscillation circuit that is connected to the temperature compensation circuit and generates a predetermined oscillation output, and the like are provided. The oscillation output generated by the oscillation circuit of the IC element 7 is output to the outside and then used as a reference signal such as a clock signal.
[0034]
Further, in the IC element 7 described above, two side surfaces arranged in parallel among the four side surfaces are arranged in close proximity to the side surfaces of the leg portions 6a and 6b described above. The remaining two side surfaces orthogonal to the two side surfaces are exposed between the end surfaces of the pair of leg portions 6a and 6b. Here, the width of the gap formed between the side surface of the IC element 7 and the side surfaces of the leg portions 6a and 6b is set to 10 μm to 500 μm, for example.
[0035]
The two exposed side surfaces of the IC element 7 are arranged along the outer peripheral portion of the container body 1 slightly inside the outer peripheral portion of the container body 1, for example, 1 μm to 500 μm inward from the outer periphery of the container body 1. Has been.
[0036]
Thus, the width dimension of the container body 1 and the pair of leg portions 6a and 6b in the direction orthogonal to the exposed side surface of the IC element 7 is designed to be substantially equal to the length of one side of the IC element 7, and the IC Since the width dimension of the container body 1 in the direction parallel to the exposed side surface of the element 7 is designed to be substantially equal to the sum of the length of one side of the IC element 7 and the width of the legs 6a and 6b, temperature compensation The overall structure of the quartz crystal oscillator can be made compact in both vertical and horizontal directions.
[0037]
In addition, in this case, the two exposed side surfaces of the IC element 7 are exposed without being blocked by the pair of leg portions 6a and 6b, so that the joint between the IC element 7 and the container body 1 can be directly viewed. Therefore, it is possible to easily confirm the bonding state of the IC element 7 by visual inspection or the like when inspecting the product, thereby improving the productivity of the temperature compensated crystal oscillator.
[0038]
Further, the temperature compensated crystal oscillator described above is configured such that the two side surfaces of the IC element 7 arranged in parallel are exposed from between the side surfaces of the pair of leg portions 6a and 6b. Is open to the outside at both ends. Therefore, even when the cleaning liquid is brought into contact with the surface of the IC element 7 or the lower surface of the container body 1 in a cleaning process or the like performed after the completed temperature compensated crystal oscillator is mounted on an external electric circuit such as a motherboard. The inflow and outflow of the cleaning liquid to the region between the pair of leg portions 6a and 6b are made extremely smoothly and satisfactorily through the open ends on both sides of the mounting region described above. There is also an advantage that the cleaning liquid can be effectively prevented from remaining and the above-described cleaning process can be performed efficiently.
[0039]
Next, a manufacturing method of the above-described temperature compensated crystal oscillator will be described with reference to FIGS.
[0040]
Here, FIGS. 4A to 4E are cross-sectional views for explaining the manufacturing method of the present invention, and FIG. 5A shows the mother substrate used in the manufacturing method of the present invention as viewed from one main surface side. FIG. 5B is a perspective view of the mother board viewed from the other main surface, FIG. 6A is an enlarged plan view of the mother board viewed from the one main surface, and FIG. 6B is the mother board. It is the enlarged plan view which looked at from the other main surface side. In FIG. 4, wiring conductors provided in the container body 1 and the pair of legs 6a and 6b are omitted, and FIG. 4D is shown in FIGS. 4A and 4B for convenience of explanation. (C) A cross section in a direction perpendicular to the cross section of (e) is shown.
[0041]
(Process A)
First, a rectangular substrate region A having a rectangular window 16 and a rectangular separation region B having a plurality of write control terminals 17 are arranged adjacent to each other and arranged in a matrix. A mother board 15 is prepared (see FIGS. 5 and 6). 6A and 6B is the substrate area A.
[0042]
In the substrate region A of the mother substrate 15, a plurality of second bonding electrodes 9 a are formed on one main surface side of the mother substrate 15 along a pair of oppositely arranged sides of four sides surrounding the window portion 16. Are arranged in two rows, and two external terminals 9 b are arranged in two rows on the other main surface side of the mother board 15.
[0043]
Further, such a surrogate area B of the mother board 15 is arranged so that at least a part thereof is in contact with the board area A between the pair of sides of the window portion 16 described above. The insertion control terminals 17 are arranged on the other main surface side of the mother board 15 in a direction orthogonal to the arrangement direction of the external terminals 9b.
[0044]
Such a mother substrate 15 is made of the same material as the pair of legs 6a and 6b described above, that is, a resin material such as glass cloth base epoxy resin, polycarbonate, epoxy resin, polyimide resin, or low temperature such as glass-ceramic. It is made of fired substrate material, ceramic materials such as alumina ceramics, etc. For example, when forming with glass cloth base epoxy resin, glass cloth base formed by weaving glass yarn is impregnated with liquid precursor of epoxy resin In addition, the base is formed by polymerizing the precursor at a high temperature, and a metal foil such as a copper foil is attached to the surface, and this is processed into a predetermined pattern by using a conventionally well-known photo-etching or the like. As a result, a predetermined wiring pattern including the write control terminal 17, the second bonding electrode 9a, the external terminal 9b, and the like is formed.
[0045]
The window portion 16 formed in the substrate area A of the mother board 15 is formed so as to cut the substrate area A vertically, and each of the substrate areas A of the mother board 15 manufactured as described above is punched or the like. A predetermined window 16 is formed by punching into a rectangular shape.
[0046]
(Process B)
Next, as shown in FIG. 4A, the container body 1 in which the crystal resonator element 5 is accommodated is attached to each substrate region A of the mother substrate 15 so as to close the window 16. Thereafter, as shown in FIG. 4B, the mother board 15 is turned upside down, and the IC element 7 is mounted on the surface of the container body 1 located inside the window portion 16.
[0047]
As described above, the container body 1 is composed of the substrate 2, the seal ring 3, and the lid body 4, and the crystal resonator element 5 is accommodated therein.
[0048]
For example, when the substrate 2 is formed of a ceramic material, a conductive paste to be the wiring conductor 8 is printed in a predetermined pattern on the surface of a ceramic green sheet obtained by adding and mixing an appropriate organic solvent to the ceramic material powder. The substrate 2 is applied and laminated, press-molded, and then fired at a high temperature to produce the substrate 2, and the crystal resonator element 5 is mounted on the upper surface of the obtained substrate 2. At this time, the vibration electrode of the crystal resonator element 5 and the mounting pad 8 a on the upper surface of the substrate are electrically and mechanically connected via the conductive bonding material 10. Then, the seal ring 3 is placed and fixed on the upper surface of the substrate 2 so as to surround the crystal resonator element 5, and the lid body 4 is joined to the upper surface of the seal ring 3 by conventionally known resistance welding or the like. The container body 1 is assembled.
[0049]
The seal ring 3 and the lid 4 are manufactured by forming a metal such as 42 alloy into a predetermined shape using a conventionally known metal processing method, and the seal ring 3 is applied to the upper surface of the substrate 2 in advance. It is fixed to the substrate 2 by brazing to the conductor layer that has been applied. Further, as described above, when the seal ring 3 and the lid 4 are joined by resistance welding, a Ni plating layer, an Au plating layer, or the like is previously deposited on the surfaces of the seal ring 3 and the lid 4.
[0050]
The container body 1 has a plurality of first bonding electrodes 8 c and a plurality of electrode pads 8 b provided on the lower surface thereof, and the plurality of first bonding electrodes 8 c correspond to the second corresponding to the mother substrate 15. One main surface of each substrate region A of the mother substrate 15 is brought into contact with the bonding electrode 9a via a conductive bonding material 11 such as solder, and the plurality of electrode pads 8b are positioned inside the window portion 16. Then, the container body is formed by melting the conductive bonding material 11 by applying heat or the like, and bonding the first bonding electrode 8c and the second bonding electrode 9a via the conductive bonding material 11. 1 is attached to and mounted on the mother board 15.
[0051]
On the other hand, as the IC element 7, as described above, a rectangular flip chip IC having a plurality of connection pads 7a on the surface facing the container body 1 is used.
[0052]
The IC element 7 has a plurality of connection pads 7a provided on one surface thereof, which are exposed to the corresponding electrode pads 8b of the container body 1 exposed in the window portion 16 on the other main surface side of the mother substrate 15, such as solder. The conductive bonding material 11 is placed on the container body 1 so as to be in contact with the conductive bonding material 11, and then the conductive bonding material 11 is melted by application of heat or the like, so that the bonding pad 7a and the electrode pad 8b are formed. The IC element 7 is mounted on the container body 1 by bonding through the conductive bonding material 11.
[0053]
In the process B, the container body 1 is attached to the substrate region A of the mother board 15 and the IC element 7 is mounted on the container body 1 so that the electronic circuit in the IC element 7 is wired to the container body 1. The crystal resonator element 5 and the external terminal 9b are electrically connected via the conductor 8 and the wiring conductor of the mother board. At the same time, the writing control terminal 17 and the IC element 7 in the separation area B are connected to the container body 1. In addition, they are electrically connected via the wiring conductor of the mother board 15.
[0054]
Here, since the mother board 15 and the container body 1 are bonded via the conductive bonding material 11 and there is a predetermined gap in the non-bonded portion between them, the IC element 7 is electrically conductive such as solder. When mounting on the lower surface of the container body 1 via the conductive bonding material 11, the heat necessary for the bonding is satisfactorily transmitted to the conductive bonding material 11 between the container body 1 and the IC element 7 through the gaps described above. Therefore, the IC element 7 can be mounted efficiently and reliably. Thereby, the reliability and productivity of the temperature compensated crystal oscillator can be improved.
[0055]
(Process C)
Next, as shown in FIG. 4D, temperature compensation data is input to the IC elements 7 in each substrate region A via a plurality of write control terminals 17 provided in the abandoned region B of the mother substrate 15. The temperature compensation data is stored in the memory in the IC element 7.
[0056]
Such temperature compensation data writing operation is performed by placing the probe needle 20 of the temperature compensation data writing device against the write control terminal 17 and using the temperature compensation data created according to the temperature characteristics of the crystal resonator element 5 as IC. This is performed by inputting to a memory provided in the temperature compensation circuit of the element 7 and storing it. Here, the temperature compensation data written in the IC element 7 is for correcting the temperature characteristic variation for each crystal vibration element, and the temperature characteristic of the crystal vibration element 5 used in the temperature compensated crystal oscillator is shown. It is obtained by measuring in advance.
[0057]
In this case, there is no need for any equipment such as a socket for writing temperature compensation data in the IC element 7 of each temperature compensation crystal oscillator, which can also be used to improve the productivity of the temperature compensation crystal oscillator.
[0058]
(Process D)
Finally, as shown in FIG. 4E, the mother board 15 is cut along the outer periphery of each board area A so that each board area A is separated from the surplus area B.
[0059]
The mother substrate 15 is cut by conventionally known dicing or the like, and the mother substrate 15 is divided into individual substrate regions through the cutting process. As a result, a plurality of temperature-compensated crystal oscillators in which the mounting base (a pair of legs 6a and 6b) corresponding to the substrate region A and the IC element 7 are attached to the lower surface of the container body 1 are obtained at the same time. It is done.
[0060]
At this time, the IC element 7 is mounted on the mother board 15 via the container body 1 and the conductive bonding material 11 and is not directly mounted on the mother board 15. The impact applied to the substrate 15 is conducted to the IC element 7 through the conductive bonding material 11, the container body 1 and the like, and is applied to the IC element 7 after being sufficiently relaxed in the conduction process. . Therefore, the IC element itself or the joint between the IC element 7 and the container body 1 is hardly damaged by the impact when dividing the mother board 15, and this also increases the productivity of the temperature compensated crystal oscillator. Can be maintained.
[0061]
In this case, the mother board 15 is divided after the IC element 7 is mounted, and when the IC element 7 is mounted, the mother board itself functions as a carrier for mounting the IC element. The carrier for mounting an IC element as described in the above section is not necessary, and the complicated work of mounting individual child boards obtained by dividing the mother board 15 on the carrier is completely unnecessary. This also improves the productivity of the temperature compensated crystal oscillator.
[0062]
In the manufacturing process described above, the write control terminal 17 is provided in the abandoned region B of the mother board 15, and after the temperature compensation data has been written, the write control terminal 17 is separated from the pair of legs 6a and 6b. As a result, a large space for disposing the write control terminal 17 on the pair of legs 6a and 6b is not necessary, and the entire structure of the temperature compensated crystal oscillator can be reduced in size.
[0063]
In addition, since the temperature compensated crystal oscillator obtained through the above-described steps A to D does not have the write control terminal 17, when the temperature compensated crystal oscillator is mounted on an external electric circuit such as a motherboard, A part of the conductive bonding material used for bonding the two adheres to the write control terminal and causes a short circuit, so that the product can be handled easily.
[0064]
Further, in the mother board 15 used in the above-described steps A to D, the write control terminals 17 in the surrogate area B are arranged in a direction orthogonal to the external terminals 9b in the substrate area A, and the surrogate area B Since at least a part thereof is disposed close to the window portion, the IC element 7 mounted on the container body 1 and the plurality of write control terminals 17 are electrically connected to the inside of the window portion 16. A conductive path (wiring conductors 8, 9, etc.) for connection is connected from the mounting area of the IC element 7 to the writing control terminal 17 through a wide wiring extraction area provided between the window portion 16 and the abandonment area B. Can be pulled out relatively easily up to the abandoned area B.
[0065]
Furthermore, in the present embodiment, the container body 1 is formed of a ceramic material excellent in workability and sealing performance, and the mother board 15 is formed of a resin material excellent in workability during cutting and ease of handling. This makes it possible to manufacture a highly reliable temperature compensated crystal oscillator extremely efficiently. Therefore, it is preferable that the container body 1 is formed of a ceramic material and the mother board 15 is formed of a resin material.
[0066]
In addition, this invention is not limited to the above-mentioned embodiment, A various change, improvement, etc. are possible in the range which does not deviate from the summary of this invention.
[0067]
For example, in the above-described embodiment, the IC element 7 is mounted on the container body 1 after the container body 1 is attached to the mother board 15 in the step B. The container body 1 may be attached to the mother board 15 after the IC element 7 is mounted.
[0068]
In the embodiment described above, the write control terminal 17 in the abandoned area B is provided on the other main surface of the mother board 15 that is the same as the surface on which the external terminal 9b is formed. 17 may be provided on one main surface side of the mother substrate 15 that is the same as the surface on which the second bonding electrode 9a is formed.
[0069]
Further, in the above-described embodiment, the pair of leg portions 6a and 6b is used as the mounting base cut out from the mother board 15. However, instead of this, one frame base is used as the mounting base. Alternatively, four legs obtained by dividing each of the legs 6a and 6b into two parts may be used, or only one of the legs 6a and 6b may be divided into two. Only three legs may be used. For example, when a single frame-shaped substrate is used as the mounting substrate, the outer periphery of the window portion 16 is not formed in the substrate region A, rather than perforating the mother substrate 15 so that the window portion 16 cuts the substrate region A vertically. The mother board 15 is perforated so as to be spaced apart from the outer periphery of the mother board 15.
[0070]
Further, in the above-described embodiment, the mother board 15 and the container body 1, and the container body 1 and the IC element 7 may be attached via an anisotropic conductive adhesive. Since the electrical connection and mechanical connection with the body 1 and the electrical connection and mechanical connection between the container body 1 and the IC element 7 are collectively made by the anisotropic conductive adhesive, the temperature compensated crystal oscillator There is an advantage that the assembling work can be greatly simplified.
[0071]
Furthermore, in the above-described embodiment, a resin material is filled and formed in a gap formed between the container body 1 and the IC element 7 or a gap formed between the mother substrate 15 and the container body 1 and is opposed to the resin material. A conductive bonding material for bonding pads and electrodes may be covered. In that case, the circuit forming surface of the IC element can be well protected with a resin material, and the IC element 7 can be protected. In addition, the joint portion between the pair of leg portions 6a and 6b is reinforced with the resin material, and this can also improve the reliability of the temperature compensated crystal oscillator.
[0072]
Furthermore, in the above-described embodiment, the lid 4 of the container body 1 is bonded to the substrate 2 via the seal ring 3. Instead, a metallized pattern for bonding is formed on the upper surface of the substrate 2. In addition, the lid 4 may be directly welded to the metallized pattern.
[0073]
Furthermore, in the above-described embodiment, the seal ring 3 is directly attached to the upper surface of the substrate of the container body 1, but instead of this, the upper surface of the substrate 2 is made of the same ceramic material as the substrate 2. The frame body may be attached integrally, and the seal ring 3 may be attached to the upper surface of the frame body.
[0074]
Furthermore, in the embodiment described above, the leg portions 6a, 6b have a rectangular shape. However, the leg portions 6a, 6b are provided with notches on the inner side surface, the outer side surface, the corner portion, etc. A conductor pattern may be attached to the surfaces of the legs 6a and 6b in contact with the notches, or a small electronic component element such as a chip capacitor may be disposed in a space formed by the notches.
[0075]
Furthermore, in the embodiment described above, it goes without saying that the gap formed between the side surface of the IC element 7 and the side surfaces of the leg portions 6a and 6b may be filled with a resin material or the like for the purpose of reinforcement or sealing. Yes.
[0076]
【The invention's effect】
According to the present invention, the write control terminal used for writing the temperature compensation data to the IC element is provided in the abandoned area of the mother board, and after the writing of the temperature compensation data is completed, the sub board (for mounting) Therefore, a large space for arranging the write control terminals on the mounting substrate is not necessary, and the overall structure of the temperature compensated crystal oscillator can be reduced in size.
[0077]
In this case, the temperature-compensated crystal oscillator manufacturing process is relatively simple, and there is no need for a socket or other equipment for writing temperature-compensated data in each temperature-compensated crystal oscillator. The productivity of the crystal oscillator can also be maintained high.
[0078]
In addition, since the temperature compensated crystal oscillator obtained by the manufacturing method of the present invention does not have a write control terminal as described above, when the temperature compensated crystal oscillator is mounted on an external electric circuit such as a mother board, both Therefore, there is no inconvenience that a part of the conductive bonding material used for bonding adheres to the write control terminal to cause a short circuit, and the product can be handled easily.
[0079]
Further, according to the present invention, the IC element is mounted on the mother board via the container body and the conductive bonding material, and is not directly mounted on the mother board. Therefore, the mounting base is cut out from the mother board. At this time, the impact applied to the mother substrate is conducted to the IC element through the conductive bonding material, the container body, and the like, and is sufficiently relaxed in the conduction process before being applied to the IC element. Therefore, the IC element itself may be formed by attaching the container body containing the crystal resonator element to the mother board and dividing the mother board into individual substrate areas after mounting the IC element on the container body. In addition, the joint between the IC element and the container is hardly damaged by the impact when dividing the mother substrate, and this can also maintain high productivity of the temperature compensated crystal oscillator.
[0080]
In this case, the mother board is divided after the IC element is mounted, and when the IC element is mounted, the mother board itself functions as a carrier for mounting the IC element. The carrier for mounting an IC element as described in (1) is unnecessary, and the complicated operation of mounting individual child boards obtained by dividing the mother board on the carrier is completely unnecessary. This also improves the productivity of the temperature compensated crystal oscillator.
[0081]
Furthermore, according to the present invention, the mother board has a plurality of write control terminals provided in the spare area arranged in a direction orthogonal to the arrangement of the external terminals provided in the board area. In addition, since at least a part of the abandoned region is disposed close to the window, the IC element mounted on the container body and the plurality of write control terminals are electrically connected to the inside of the window. Conductive paths (wiring conductors, etc.) for connection to each other can be pulled out relatively easily from the IC element mounting area to the abandoned area through a wide wiring extraction area provided between the window portion and the abandoned area. be able to.
[0082]
Furthermore, according to the present invention, the container body is formed of a ceramic material excellent in workability and sealing performance, and the mother substrate is formed of a resin material excellent in workability during cutting and easy handling. Thus, a highly reliable temperature compensated crystal oscillator can be manufactured extremely efficiently.
[Brief description of the drawings]
FIG. 1 is a perspective view of a temperature compensated crystal oscillator manufactured by a manufacturing method of the present invention.
2 is a cross-sectional view of the temperature compensated crystal oscillator of FIG. 1. FIG.
3 is a plan view of the temperature-compensated crystal oscillator of FIG. 1 viewed from below. FIG.
4A to 4E are cross-sectional views for explaining the manufacturing method of the present invention.
5A is a perspective view of a mother board used in the manufacturing method of the present invention when viewed from one main surface side, and FIG. 5B is a perspective view of the mother substrate of FIG. is there.
6A is an enlarged plan view of the mother board shown in FIG. 5 viewed from one main surface side, and FIG. 6B is an enlarged plan view of the mother board shown in FIG. 5 viewed from the other main surface side.
7A is a cross-sectional view of a conventional temperature compensated crystal oscillator, and FIG. 7B is a plan view of the temperature compensated crystal oscillator of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container body 2 ... Board | substrate 3 ... Seal ring 4 ... Lid body 5 ... Crystal oscillator 6a, 6b ... Mounting base | substrate (a pair of leg part)
DESCRIPTION OF SYMBOLS 7 ... IC element 7a ... Connection pad 8 ... Container wiring conductor 8a ... Mounting pad 8b ... Electrode pad 8c ... First bonding electrode 9 ... Wiring of mounting substrate Conductor 9a ... second bonding electrode 9b ... external terminals 10, 11 ... conductive bonding material 15 ... mother substrate 16 ... window 20 ... probe needle A of writing apparatus ...・ Substrate area B ... Disposal area

Claims (5)

矩形状の窓部を有し、該窓部を取り囲む4つの辺のうち対向配置されている一対の辺に沿って複数個の外部端子が2列状に配列されている基板領域と、前記外部端子の配列方向と直交する方向に配列された複数個の書込制御端子を有する捨代領域とを、該捨代領域の少なくとも一部が前記一対の辺間で前記基板領域と接するようにして複数個ずつ配置させてなる母基板を準備する工程Aと、
前記母基板の各基板領域に、水晶振動素子が収容されている容器体を、前記窓部を塞ぐようにして取着させるとともに、前記窓部の内側に位置する前記容器体の表面に、前記水晶振動素子の温度特性を補償する温度補償データに基づいて発振出力を制御するIC素子を搭載する工程Bと、
前記書込制御端子を介して各基板領域内のIC素子に温度補償データを入力し、IC素子内のメモリに温度補償データを格納する工程Cと、
前記母基板を各基板領域の外周に沿って切断することにより、各基板領域を捨代領域より切り離し、前記容器体に前記基板領域に対応した実装用基体とIC素子とを取着させてなる複数個の温度補償型水晶発振器を同時に得る工程Dと、を含む温度補償型水晶発振器の製造方法。
A substrate region having a rectangular window portion, and a plurality of external terminals arranged in two rows along a pair of opposite sides of four sides surrounding the window portion; A spare area having a plurality of write control terminals arranged in a direction orthogonal to the terminal arrangement direction, such that at least a part of the spare area is in contact with the substrate area between the pair of sides. Preparing a mother substrate in which a plurality of substrates are arranged;
In each substrate region of the mother substrate, the container body in which the crystal resonator element is accommodated is attached so as to close the window portion, and on the surface of the container body located inside the window portion, A process B for mounting an IC element for controlling an oscillation output based on temperature compensation data for compensating a temperature characteristic of the crystal resonator element;
Step C for inputting temperature compensation data to the IC element in each substrate region via the write control terminal, and storing the temperature compensation data in a memory in the IC element;
By cutting the mother substrate along the outer periphery of each substrate region, each substrate region is separated from the abandoned region, and the mounting body and the IC element corresponding to the substrate region are attached to the container body. And a step D of simultaneously obtaining a plurality of temperature-compensated crystal oscillators.
前記母基板が樹脂材料から成り、前記容器体の基板がセラミック材料から成ることを特徴とする請求項1に記載の温度補償型水晶発振器の製造方法。2. The method of manufacturing a temperature compensated crystal oscillator according to claim 1, wherein the mother substrate is made of a resin material, and the substrate of the container body is made of a ceramic material. 前記工程Bにおいて、前記母基板の基板領域に前記容器体を取着させるとともに、該容器体に前記IC素子を搭載することによって、前記捨代領域の書込制御端子と前記IC素子とが容器体及び母基板の配線導体を介して電気的に接続されることを特徴とする請求項1または請求項2に記載の温度補償型水晶発振器の製造方法。In the step B, the container body is attached to the substrate area of the mother board, and the IC element is mounted on the container body, whereby the write control terminal and the IC element in the surplus area are 3. The method of manufacturing a temperature compensated crystal oscillator according to claim 1, wherein the temperature compensation type crystal oscillator is electrically connected through a wiring conductor of the body and the mother board. 前記工程Bにおいて、前記容器体が前記母基板に取着された後、前記IC素子が前記容器体に搭載されることを特徴とする請求項1乃至請求項3のいずれかに記載の温度補償型水晶発振器の製造方法。The temperature compensation according to any one of claims 1 to 3, wherein, in the step B, the IC element is mounted on the container body after the container body is attached to the mother board. Of manufacturing a quartz crystal oscillator. 前記工程Bにおいて、前記容器体に前記IC素子を搭載した後、前記容器体が前記母基板に取着されることを特徴とする請求項1乃至請求項3のいずれかに記載の温度補償型水晶発振器の製造方法。4. The temperature compensation type according to claim 1, wherein, in the step B, after the IC element is mounted on the container body, the container body is attached to the mother board. 5. A method for manufacturing a crystal oscillator.
JP2003185893A 2003-06-27 2003-06-27 Manufacturing method of temperature compensated crystal oscillator Expired - Fee Related JP4113465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185893A JP4113465B2 (en) 2003-06-27 2003-06-27 Manufacturing method of temperature compensated crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185893A JP4113465B2 (en) 2003-06-27 2003-06-27 Manufacturing method of temperature compensated crystal oscillator

Publications (2)

Publication Number Publication Date
JP2005020633A JP2005020633A (en) 2005-01-20
JP4113465B2 true JP4113465B2 (en) 2008-07-09

Family

ID=34185174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185893A Expired - Fee Related JP4113465B2 (en) 2003-06-27 2003-06-27 Manufacturing method of temperature compensated crystal oscillator

Country Status (1)

Country Link
JP (1) JP4113465B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075417B2 (en) * 2007-01-31 2012-11-21 京セラクリスタルデバイス株式会社 Method for manufacturing piezoelectric oscillator
JP5075448B2 (en) * 2007-03-30 2012-11-21 京セラクリスタルデバイス株式会社 Method for manufacturing piezoelectric oscillator
JP5188933B2 (en) * 2008-10-31 2013-04-24 京セラクリスタルデバイス株式会社 Piezoelectric oscillator
WO2015170484A1 (en) 2014-05-07 2015-11-12 株式会社村田製作所 Crystal oscillation apparatus

Also Published As

Publication number Publication date
JP2005020633A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4545004B2 (en) Piezoelectric oscillator
JP2005244639A (en) Temperature compensated crystal oscillator
JP4167557B2 (en) Method for manufacturing piezoelectric oscillator
JP4113465B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4113459B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4585908B2 (en) Method for manufacturing piezoelectric device
JP4262116B2 (en) Manufacturing method of electronic device
JP4113460B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4578231B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP4384567B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4472445B2 (en) Method for manufacturing piezoelectric oscillator
JP4549158B2 (en) Method for manufacturing crystal oscillator
JP4594139B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP2004297209A (en) Surface mount piezoelectric vibrator
JP2008187751A (en) Surface mount piezoelectric oscillator
JP2004343681A (en) Manufacturing method for temperature compensated crystal oscillator
JP2006101241A (en) Piezoelectric oscillator and manufacturing method thereof
JP2004297211A (en) Surface mount piezoelectric vibrator
JP4472479B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP2006129188A (en) Crystal oscillator
JP2009089437A (en) Surface-mounting piezoelectric oscillator
JP2005244641A (en) Temperature compensated crystal oscillator
JP5075417B2 (en) Method for manufacturing piezoelectric oscillator
JP2004297208A (en) Surface mount type piezoelectric vibrator
JP2004260626A (en) Surface mount piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees