JP4544823B2 - 熱memsアクチュエータの面外作動方法及び熱memsアクチュエータ - Google Patents

熱memsアクチュエータの面外作動方法及び熱memsアクチュエータ Download PDF

Info

Publication number
JP4544823B2
JP4544823B2 JP2003010266A JP2003010266A JP4544823B2 JP 4544823 B2 JP4544823 B2 JP 4544823B2 JP 2003010266 A JP2003010266 A JP 2003010266A JP 2003010266 A JP2003010266 A JP 2003010266A JP 4544823 B2 JP4544823 B2 JP 4544823B2
Authority
JP
Japan
Prior art keywords
actuator
thermal
frequency
planar substrate
periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003010266A
Other languages
English (en)
Other versions
JP2003260697A (ja
JP2003260697A5 (ja
Inventor
ジェイ.シンクレア マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Corp
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Publication of JP2003260697A publication Critical patent/JP2003260697A/ja
Publication of JP2003260697A5 publication Critical patent/JP2003260697A5/ja
Application granted granted Critical
Publication of JP4544823B2 publication Critical patent/JP4544823B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0024Transducers for transforming thermal into mechanical energy or vice versa, e.g. thermal or bimorph actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/053Translation according to an axis perpendicular to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/055Translation in a plane parallel to the substrate, i.e. enabling movement along any direction in the plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/058Rotation out of a plane parallel to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱マイクロエレクトロメカニカルシステム(MEMS)アクチュエータの面外作動方法及び熱MEMSアクチュエータに関し、より詳細には、ジュール加熱によって駆動される熱MEMSアクチュエータの面外作動方法及び熱MEMSアクチュエータ並びに熱MEMSアクチュエータの構造に関する。
【0002】
【従来の技術】
マイクロエレクトロメカニカルシステム(MEMS)アクチュエータは、従来の半導体(例えばCMOS)製造工程によって半導体基板上に形成される超小型の構成要素の制御を実現する。MEMSシステムおよびMEMSアクチュエータは、マイクロマシンドシステムオンチップ(micromachined systems-on-a-chip)と呼ばれることもある。
【0003】
従来のMEMSアクチュエータの1つは、静電アクチュエータまたは櫛形ドライブである。一般にこのようなアクチュエータは2つの櫛形構造を含み、この2つの櫛形構造は、基板に平行な面内に整列した複数の櫛歯(comb finger)をそれぞれ有する。2つの櫛形構造の歯は互いにかみ合う。櫛形構造に印加される電位差により、2つの櫛形構造間の静電相互作用が確立され、それによって櫛形構造は、互いに近づく方向や、離れる方向に移動する。
【0004】
静電アクチュエータの利点は、必要な電流が少なく、それによって作動エネルギーが低くなり、比較的高い周波数応答を有することである。静電アクチュエータの欠点は、高い駆動電圧(例えば数十または数百ボルト)と大面積を必要とし、出力される力が小さいことである。微細構造の配置に使用する櫛形ドライブ(静電)アクチュエータは一般に、配置されるデバイスの何倍もの面積を占有する。さらに、静電アクチュエータを操作するのに必要な高電圧(例えば数十または数百ボルト)は、従来のロジック系および低電圧系の電子機器とは両立せず、統合を妨げる可能性がある。
【0005】
擬似バイモルフ熱アクチュエータは、静電アクチュエータの代替実施形態である。このアクチュエータは、2つの異なる大きさのポリシリコンアームの差分熱膨張を利用して、基板に対して平行に円弧状に変形する擬似バイモルフを生成する。このような熱アクチュエータは、単位体積当たりに生成する力が櫛形ドライブアクチュエータよりもずっと大きく(100-400倍)、超低電圧で動作することができる。このようなアクチュエータは、掃引運動または円弧運動がアクチュエータの平面内に限定される。
いくつかの文献に上述のような従来の技術に関連した技術内容が開示されている(例えば、特許文献1〜3参照)。
【特許文献1】
欧州特許第1201602号明細書
【特許文献2】
国際公開第00/67268号パンフレット
【特許文献3】
欧州特許第1143467号明細書
【0006】
【発明が解決しようとする課題】
従来のMEMSアクチュエータには上述したような種々の問題があり、さらなる改善が望まれている。
【0007】
本発明は、このような課題に鑑みてなされたもので、その目的とするところは、面外運動が可能なジュール加熱によって駆動される熱MEMSアクチュエータの面外作動方法及び熱MEMSアクチュエータを提供することにある。
【0008】
【課題を解決するための手段】
本発明は、半導体材料(例えばシリコン)の平面基板上に形成された面外熱バックルビームマイクロエレクトロメカニカルアクチュエータを含む。このアクチュエータは、基板に固定された第1のアンカおよび第2のアンカと、アンカ間に固定された複数の細長い熱バックルビームとを含む。このバックルビームは、ポリシリコンなどの半導体材料で形成される。一実装では、各バックリングビームは、各バックルビームに固定されたフレームベースと、一端がフレームベースに結合され、アクチュエータが駆動されたときに面外に旋回する自由端を含む少なくとも1つのピボットアームとを含むピボットフレームによって結合される。
【0009】
周期電流源は、アンカを介して熱バックルビーム中に周期電流を送り、バックルビームの熱膨張をもたらし、したがって基板の平面外への(すなわち基板から離れる方向への)バックルビームの周期的湾曲運動をもたらす。一実装では、このアクチュエータは固有共振たわみ周波数範囲を有し、周期電流の周波数は、その共振たわみ周波数範囲内の第1の周波数である。
【0010】
本発明によるアクチュエータは、従来の熱アクチュエータと同程度の力で面外運動を実現する。シリコンの抵抗率により、アクチュエータが、標準的な集積回路(例えばCMOS)に適合する電圧および電流で動作することが可能となる。加えて、本発明によるアクチュエータの面積は非常に小さく、比較的大きい力を有する。この電気的誘発運動は、マイクロモータ、光学走査装置、MEMS光学配置機構、およびマイクロスケールの機械的運動を必要とする他の領域で使用することができる。例えば、本発明のアクチュエータ構造は、対のアクチュエータまたは互いに横切るアクチュエータと、協働してビデオラスタスキャナを形成する面外平面フォールドミラー(fold mirror)とを含む。
【0011】
本発明のさらなる目的および利点は、添付の図面を参照しながら進められる、発明の実施の形態から明らかとなろう。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。
【0013】
本発明を理解する助けとなるよう、図1〜15を参照しながら、MUMP工程(MUMPs process)を用いてマイクロメカニカルデバイスを製造する一般的手順を説明する。
【0014】
MUMP工程は3層のコンフォーマルポリシリコンを提供し、この3層のコンフォーマルポリシリコンをエッチングして所望の物理的構造を作成する。POLY0と呼ぶ第1の層は支持ウェハに結合され、それぞれPOLY1およびPOLY2と呼ぶ第2の層と第3層はメカニカル層である。このメカニカル層は、層を分離し工程中に除去される犠牲層を使用することによって、下にある構造と分離することができる。
【0015】
添付の図に、MEMS Technology Applications Center、3021 Cornwallis Road、Research Triangle Park、North Carolinaによって提供されるマイクロモータを構築するための一般的工程を示す。
【0016】
MUMP工程は、100mmのn型シリコンウェハ10から始まる。ウェハ表面は、POCI 3をドーパント源として使用して、標準的な拡散炉でリンを用いて高濃度にドープされる。これにより、その後でウェハ上に取り付けられる静電デバイスからシリコンへの電荷の貫通が減少する。次に、600nm LPCVD(Low Pressure Chemical Vapor Deposition)窒化シリコン層12を電気的分離層としてシリコン上に付着させる。シリコンウェハおよび窒化シリコン層は基板を形成する。
【0017】
次に、500nm LPCVDポリシリコン被膜POLY0 14を基板上に付着させる。次いでPOLY0層14をフォトリソグラフィでパターン形成する。この工程は、後でPOLY0層にパターンを転写する目的で、POLY0層をフォトレジスト16で被覆し、マスク(図示せず)でフォトレジストを露光し、露光したフォトレジストを現像して、所望のエッチングマスクを生成することを含む(図2)。フォトレジストをパターン形成した後、POLY0層14を反応性イオンエッチング(RIE)システムでエッチングする(図3)。
【0018】
図4を参照すると、LPCVDにより、2.0μmホスホシリケイト(phosphosilicate)ガラス(PSG)犠牲層18が、POLY0層14上と窒化物層12の露出部分上に付着する。本明細書中で第1の酸化物(First Oxide)と呼ぶこのPSG層は、工程の終わりに除去され、ポリシリコンPOLY1の第1のメカニカル層(以下で説明する)が、その下にある構造、すなわちPOLY0および窒化シリコン層から剥離される。DIMPLESマスクを用いてこの犠牲層をリソグラフィでパターン形成し、RIEにより第1の酸化物層中に深さ750nmのくぼみ20を形成する(図5)。次いでウェハを第3マスク層ANCHOR1でパターン形成し、エッチングして(図6)、第1の酸化物層からPOLY0層に延びるアンカ穴22が得られる。ANCHOR1の穴は、次のステップでPOLY1層24によって充填されることになる。
【0019】
ANCHOR1のエッチングの後、ポリシリコンの第1の構造層(POLY1)24を厚さ2.0μm付着させる。次いで薄い200nmPSG層26をPOLY1層24の上に付着させ、ウェハをアニールして(図7)、PSG層からのリンでPOLY1層をドープする。アニールにより、POLY1層中の応力も減少する。POLY1層およびPSGマスキング層24、26をリソグラフィでパターン形成し、POLY1層の構造を形成する。POLY1層のエッチングの後(図8)、フォトレジストをはがし、残りの酸化物マスクをRIEで除去する。
【0020】
POLY1層24をエッチングした後、第2のPSG層(以下「第2の酸化物(Second Oxide)」と呼ぶ)28を付着させる(図9)。異なる目的を有する2つの異なるエッチングマスクを使用して、第2の酸化物をパターン形成する。
【0021】
第1のに、POLY1_POLY2_VIAエッチング(30で示す)により、第2の酸化物中にPOLY1層24に至るエッチング穴を設ける。このエッチングにより、POLY1層と後続のPOLY2層との間の機械接続および電気接続が得られる。POLY1_POLY2_VIA層をリソグラフィでパターン形成し、RIEでエッチングする(図10)。
【0022】
第2のに、ANCHOR2エッチング(32で示す)を提供して、第1の酸化物層18および第2の酸化物層28と、POLY1層24の両方を1ステップでエッチングする(図11)。ANCHOR2エッチングでは、POLY1_POLY2_VIAエッチングと同様に、第2の酸化物層をリソグラフィでパターン形成し、RIEでエッチングする。図11に、POLY1_POLY2_VIAエッチングとANCHOR2エッチングがどちらも完了した後のウェハ断面図を示す。
【0023】
次いで第2の構造層POLY2 34を厚さ1.5μm付着させ、その後にPSGを200nm付着させる。次いでウェハをアニールし、POLY2層をドープして、その残留被膜応力を軽減する。次に、POLY2層を第7のマスクを用いてリソグラフィでパターン形成して、PSGおよびPOLY2層をRIEでエッチングする。次いで、フォトレジストをはがすことができ、マスキング酸化物を除去する(図13)。
【0024】
MUMP工程での最終的な付着層は、プロービング、ボンディング、および電気的経路指定を実現し、高反射率ミラー面を提供する0.5μm金属層36である。第8のマスクを用いてウェハをリソグラフィでパターン形成し、リフトオフ技法を用いて金属を付着させ、パターン形成する。最終的な未剥離の例示的構造を図14に示す。
【0025】
最後に、周知の方法を用いてウェハに犠牲層の剥離および試験を施す。図15に、犠牲酸化物を剥離した後のデバイスを示す。
【0026】
好適実施形態では、本発明のデバイスは、MUMP工程により上述のステップに従って製造される。しかし、本発明のデバイスは、図1〜15の一般的工程で図示する特定のマスクパターンを利用するのではなく、本発明の構造に特有のマスクパターンを使用する。さらに、MUMP工程についての上記のステップは、MEMS Technology Applications Centerによって指示されるように変更される可能性がある。製造工程は本発明の一部ではなく、本発明を作成するのに使用することができるいくつかのプロセスのうちの1つに過ぎない。
【0027】
図16は、本発明によるマイクロエレクトロメカニカル面外熱バックル(座屈;buckle)ビームアクチュエータ50の平面図である。アクチュエータ50は、基板(例えば、図示していないが基板10、窒化物層12)に固定された1対の構造アンカ52および54と、ベースエンド60および62でそれぞれアンカ52および54に固定された、1つまたは複数の熱バックルビーム56(複数の熱バックルビームを図示)とを含む。各バックルビーム56はほぼ同一であり、基板とほぼ平行に延び、基板から間隔を置いて配置され、アンカ52および54以外は基板から剥離される。
【0028】
ピボットフレーム64は、結合点68でバックルビーム56に固定されたフレームベース66を含む。一実装では、結合点68は、バックルビーム中点(破線70で示す)と、アンカ52と54の一方(例えばアンカ54)との間に位置する。ピボットフレーム64は、少なくとも1つのピボットアーム72(2つのピボットアームを図示)をさらに含む。ピボットアーム72は、一端でフレームベース66に結合され、アクチュエータ50が駆動されるときに面外に旋回する自由端74まで延びる。ピボットフレーム64は、フレームベース66が結合点68に固定される所以外は剥離され、自由に移動できる。図17は、ピボットフレーム64がバックルビーム56と概して平行であり、または同一平面にあるものとして示す弛緩状態のアクチュエータ50の側面図である。
【0029】
構造アンカ52および54と、バックルビーム56は半導電性を有し、正の熱膨張係数特性を有する。例えば、バックルビーム56はシリコンで形成される。
アクチュエータ50は、電流源80から、導電性結合82および84と、構造アンカ52および54とをそれぞれ介して電流がバックルビーム56を通過するときに駆動される。印加電流は、バックルビーム56のオーム加熱またはジュール加熱を誘発し、それによって、シリコンの温度膨張係数が正であるためにバックルビーム56が長手方向に膨張する。バックルビーム56のベースエンド60および62を拘束するアンカ52および54により、最終的にはバックルビーム56が基板から離れる方向に湾曲する。一実装では、バックルビーム56は、幅(基板に平行)が厚さ(基板に垂直)よりも大きい幅広のアスペクト比を有し、基板に平行に湾曲しないような偏りまたは傾向が得られるように形成される。例えば、バックルビーム56は幅3μm、厚さ2μm、および長さ194μmを有し、幅広の断面アスペクト比3:2を有する。図18は、バックルビーム56の面外湾曲を示す駆動状態のアクチュエータ50の側面図である。
【0030】
アクチュエータ50の活動状態で、基板から離れるバックルビーム56の湾曲により、ピボットフレーム64の自由端74が基板から離れる方向に旋回する。ピボットフレーム64はフレームベース66の周りに回転し、フレームベース66もまたバックルビーム56によって基板から持ち上げられる。その結果、自由端74は移動し、基板の外方向に向かう旋回力または回転力を働かせる。駆動電流が停止するとき、バックルビーム56は冷えて収縮し、それによってピボットフレーム64の自由端74はその初期位置に戻る。このようなピボットフレーム64の回転たわみは、マイクロ光デバイスで使用されるような他のマイクロメカニカル構造の面外配置の実現を含む、様々な応用例で使用することができる。図16-18に示す実装では、例えばミラー86が自由端74に固定され、ピボットフレーム64と共に旋回して、アクチュエータ50がその弛緩状態にあるか、それとも駆動状態にあるかに従って光が選択的に偏向される。
【0031】
バックルビーム56の幅広のアスペクト比により、一般に、バックルビーム56が基板に平行に湾曲することが防止される。偏りまたは傾向がない場合、バックルビーム56の基板に垂直な湾曲(例えば図18)は、基板から離れる方向、または基板に向かう方向に任意に生じる可能性がある。アクチュエータ50の動作には、基板から離れる方向の湾曲が必要である。したがって、図19および20に、バックルビーム56が基板に向かう方向にではなく、基板から離れる方向に湾曲するための偏りまたは傾向を実現する偏り構造を示す。
【0032】
図19は、バックルビーム56の中央の近くに、基板10に固定され、基板10(例えば窒化物層12)から延びる、スペーシングパッド90の上に延びる弛緩状態の例示的バックルビーム56を示す拡大側面図である。図が見やすいように、ピボットフレームは図示していない。図20は、駆動状態の例示的バックルビーム56を示す拡大側面図である。例えば、スペーシングパッド90は、厚さ0.5μmのP0層で形成することができ、バックルビーム56は、異なる(剥離)層で形成することができる。スペーシングパッド90は、製作の等角の性質(conformal nature)により、各バックルビーム56内の小さい(例えば0.5μm)こぶまたはたわみ94を押し出す。さらに、くぼみ92がバックルビーム56の各端部付近に形成される。図示するように、くぼみ92は、バックルビーム56の底面から延びる突起またはくぼみとして、またはバックルビーム56の上面内のへこみとして、あるいはその両方として形成することができる。MUMPの実装では、例えば2umのPOLY1層内の0.5umのくぼみとして、基板に触れないようにくぼみ92を形成することができる。
【0033】
スペーシングパッド90およびくぼみ92により、バックルビーム56が基板から離れる方向に湾曲し、バックルビーム56と基板(例えば窒化物層12)の間のスティクション(stiction)が低下する。典型的なアクチュエータ50内の複数のバックルビーム56では、バックルビーム56ごとに別々のスペーシングパッド90を形成することができ、またはスペーシングパッド90を、すべてのバックルビーム56の下に延びる単一の連続的パッドとして形成できることを理解されよう。スペーシングパッド90およびくぼみ92を個々にまたは一緒に使用し、これらだけで、またはバックルビーム56についての幅広のアスペクト比と共に使用して、バックルビーム56が基板から離れる方向に湾曲するような偏りまたは傾向を実現することができる。
【0034】
初期実験では、アクチュエータ50が、基板に対して少なくとも約15度のピボットフレーム64の旋回またはたわみを実現できることが実証された。一実装では、バックルビーム中点と、アンカ52と54の一方との中間の結合点68にフレームベース66を固定することにより、ピボットフレーム64の最大の旋回またはたわみが得られる。このような結合点68は、ビーム56が湾曲するときのビーム56中の反曲点に対応し、したがってピボットフレーム64の最大のたわみをもたらす。
【0035】
一般に、本発明は、正の温度膨張係数を有し、かつオーム加熱用の電流を搬送することができる少なくとも1つの剥離可能な層を含むどんな製造工程にも適合可能である。さらに、アクチュエータとその関連する導体が電流と熱に対処することができ、ビームが熱を迅速に失うことができる限り、バックルビーム56の数に関して理論上の制限がない。一実装では、元に戻せない損傷を引き起こす可能性がある自己アニーリングを防止するため、加熱温度を800℃未満に保った。
【0036】
バックルビーム56、ならびにアンカ52および54の一方または両方は、剥離可能なMUMPポリシリコン層から製作することができるが、アンカ52および54は剥離しない。このようなMUMP実装では、アクチュエータ50は、可能な厚さ1.5、2.0、または3.5μmを有することができる。ポリシリコンの抵抗率により、標準的な集積回路(例えばCMOS)に適合する電圧および電流で、アクチュエータが動作することが可能となる。加えて、本発明によるアクチュエータの面積は非常に小さく、比較的大きい力を有する。
【0037】
ある動作モードでは、ミラー86およびピボットフレーム64が、フレームベース66の周りに振動する振り子を形成することができ、これにより、アクチュエータ50が共振発振器として動作することが可能となる。一実装では、このような共振モードは14kHzで生じ、弛緩状態に対するミラー86のピークたわみ約25度が得られる。このモードでは、バックルビーム56は、近定常状態のたわみ位置を呈するように見え、ミラー86およびピボットフレーム64の静的たわみをもたらす。一方、この実装の非共振モードでは、アクチュエータ50は、半振幅応答約2kHzおよびたわみ約5度を有する。
【0038】
図21は、本発明のアクチュエータ50の共振動作を示すために、角度たわみ(angular deflection)の上限および下限を周波数の関数として示すグラフ150である。この図では、アクチュエータ50は4ボルト方形波で励起される。グラフ150は、約1kHzで半振幅帯域幅(データ点152)を示し、約8kHz(データ点154)で共振アクチュエータたわみを示す。この実装では、共振アクチュエータたわみ(例えばミラー86)は、光学的度数(optical degree)(すなわち面外)について最大合計変位18を有する。
【0039】
共振アクチュエータたわみは、減少角度たわみの周波数範囲に続く共振たわみ周波数範囲156内で生じる。共振たわみ周波数範囲156はさらに、傾きがより大きい、角度たわみの増加(または減少)によって特徴付けることができる。
【0040】
共振周波数(すなわち約8kHz)を超える周波数では、周期的なアクチュエータのたわみは、静的たわみ値(データ点158)を呈するまで急速に減少することに留意されたい。この状態では、アクチュエータ50は、バックルビーム56の急熱および急冷に機械的に応答することができないと考えられる。静的たわみ値は、静止残留応力オフセット4.5度(データ点160)に、印加する方形波についてのRMS加熱値2ボルトによるたわみを加えたものに等しく、データ点158で合計10度のオフセットが得られる。残留応力と、駆動信号の平均加熱値とによる偏りは、ミラー86を上方に持ち上げ、基板との衝突を回避することに寄与する。
【0041】
図22は、矩形(例えば正方形)のミラー120の隣接する辺に位置合せされ、互いに直交するように配置される複数(例えば2つ)のアクチュエータ102A、102Bを備えるマイクロエレクトロメカニカル面外バックルビームアクチュエータアセンブリ100の例示的実装の平面図である。アクチュエータ102A、102Bはそれぞれ、ピボットフレーム64とは異なるピボットフレーム110A、110Bを含むことを除き、上述のアクチュエータ50と類似している。同様に、ミラー120はミラー86と類似しているが、ピボットフレーム110A、110Bへの取付けおよび結合が異なっている。以下の説明はアクチュエータ102Aを対象とするが、アクチュエータ102Bにも同様に適用可能である。アクチュエータ102Aとアクチュエータ102Bの同様の構成要素は同じ参照符号で示してある。
【0042】
アクチュエータ102Aは、基板(例えば、図示していないが基板10または窒化物層12)に固定された1対の構造アンカ52Aおよび54Aと、ベースエンドでアンカ52Aおよび54Aに固定された複数の熱バックルビーム56Aとを含む。ピボットフレーム110Aは、バックルビーム56Aに固定されたフレームベース112Aと、一端がフレームベース112Aに結合され、かつアクチュエータ102Aが駆動されたときに面外に旋回する自由端116Aまで延びる1つのピボットアーム114Aとを含む。自由端116Aは、ミラー120の1つの隅に取り付けられ、ミラー120は、腱122によってミラーアンカ124に連係し、あるいは基板から剥離する。
【0043】
アクチュエータ102Aは、電流源124Aから導電結合126Aおよび128Aと構造アンカ52Aおよび54Aをそれぞれ介してバックルビーム56Aを電流が通過するときに駆動される。前述と同様に、印加電流は、バックルビーム56Aのオーム加熱またはジュール加熱を誘発し、それによって、シリコンの温度膨張係数が正であるためにバックルビーム56Aが長手方向に膨張する。
【0044】
アクチュエータ102Aおよび102Bは、それぞれ傾斜軸130Aおよび130Bの周りにミラー120を傾斜させる働きをする。それぞれに電流源124Aおよび124Bを有するアクチュエータ102Aおよび102Bは、傾斜軸130Aおよび130Bの周りにミラー120を任意に傾斜させるように別々に操作することができる。操作を調整することにより、アクチュエータアセンブリ100およびミラー120をバーコードスキャナまたはベクトルイメージスキャナでスキャン制御ミラーとして利用することができ、またはイメージ形成のためにラスタスキャンパターンを提供するのに利用することができる。
【0045】
図23は、共にビデオラスタスキャナ200(図24および27)の一部として機能するように構成された、1対のマイクロエレクトロメカニカル面外熱バックルビームアクチュエータ50Hおよび50Vの平面図である。アクチュエータ50Hおよび50Vは、図16のアクチュエータ50とほぼ同じ構成であり、したがって対応する同様の構成要素は同じ参照符号を有する。例えば、アクチュエータ50Hおよび50Vは、それぞれミラー86Hおよび86Vを含む。
【0046】
以下でより詳細に説明するように、ミラー86Hおよび86Vを備えるアクチュエータ50Hおよび50Vは、それぞれディスプレイ光源204からのイメージディスプレイ光ビーム202(図24)の水平走査および垂直走査を実現するように機能する。アクチュエータ50Hによって高周波数水平走査が実現され、アクチュエータ50Vによって低周波数垂直走査が実現される。例えばNTSC規格のディスプレイフォーマットでは、アクチュエータ50Hによって周波数約15kHzの水平走査が実現され、アクチュエータ50Vによって周波数約60Hzでの走査が実現される。したがって、アクチュエータ50Hは、公称15kHzの動作周波数を含む共振たわみ周波数範囲156で構成することができる。ディスプレイ光源204は、ピクセルごとに変調される任意の単色または多色の集束光源または平行光源でよい。
【0047】
図24は、光源204と、概して静止したフォールドミラー206とを伴うアクチュエータ50Hおよび50Vの動作を示す側面図である。アクチュエータ50Hおよび50Vは、フォールドミラー206と共に、(図示する)共通基板208上に形成され、あるいは概して同一平面上の別々の基板上に形成される。図24では、アクチュエータ50Hおよび50Vは、それぞれ横軸(例えば、図示する垂直軸)210および212の周りに、基板208の平面外に振動する。光源204からの光ビーム202は、ミラー86Hからフォールドミラー206に光ビームセグメント202Aとして反射し、次いでフォールドミラー206からミラー86Vに光ビームセグメント202Bとして反射する。
【0048】
図25および26は、それぞれフォールドミラー206の平面図および側面図である。図が見やすいように、それぞれを単独で図示している。フォールドミラー206は、基板208に対して傾斜または湾曲するボディ220上に形成される。(図24に略図で示される)アパーチャ222はボディ220を貫いて延び、光源204からの光がボディ220を貫いてアクチュエータ50Hのミラー86Hまで通過することを可能にする。
【0049】
ボディ220は、アクチュエータ50Hおよび50Vを製造するのに用いる半導体製造工程に従って、1つまたは複数の半導体層として形成される。したがってフォールドミラー206は、単に半導体材料の表面でよい。加えて、ボディ220は主表面領域224を含み、その主表面領域224上では、材料層(例えば金)が、ボディ220の半導体材料の膨張係数とは異なる膨張係数を有する。
【0050】
ボディ220の膨張係数と領域224内の層の膨張係数との差により、製造時の残留応力が誘発され、その残留応力により、ボディ220が基板208の平面外に傾き、または湾曲する。一実装では、ボディ220は、補強多層構造として形成された端部領域226を含み、それによって端部領域226で残留応力の問題が形成されることが防止される。端部領域226をミラー206と位置合せすることで、端部領域226により、ボディ220およびフォールドミラー206が概して平坦なままとすることが可能となる。その結果、ミラー206は、より正確に、アクチュエータ50Hのミラー86Hからの光をアクチュエータ50Vのミラー86Vに反射することができる。
【0051】
図27は、アクチュエータ50Hの上に配置されるフォールドミラー206を支持するボディ220を示す、ビデオラスタスキャナ200の平面図である。光源204(図24)は、光ビーム202を、アパーチャ222を通じてアクチュエータ50Hのミラー86Hに向ける。
【0052】
図28A〜28Dに、ビデオラスタスキャナ200を製造および操作する際の連続するステップの1つの実施の略図を示す。図28Aに、フォールディングミラーボディ220に対するアクチュエータ50Hおよび50Vの初期製造レイアウト250を示す。初期製造では、アクチュエータ50Hおよび50V、ならびにフォールディングミラーボディ220は、基板208の面内に形成されることを理解されたい。
【0053】
図28Bおよび28Cに、それぞれ初期製造レイアウト250の後の製造レイアウト252および254を示す。製造レイアウト252および254は、フォールディングミラーボディ220が少なくとも1対のガイド256に沿ってそれぞれ中間製造位置および最終製造位置に移動することを示す。ガイド256は基板208に固定され、基板208から延び、ボディ220のサイドマージンの上に延びる。ボディ220は、基板208およびガイド256に対して摺動可能である。
【0054】
一実装では、ガイド256は、初期製造レイアウト250でボディ220の長手方向に形成される。ボディ220が初期製造位置(レイアウト250)から中間製造位置および最終製造位置(レイアウト252および254)に移動するとき、次々とより多くの領域224がガイド256を超えて延び、領域224内の残留応力により、ボディ220は、基板208から離れる方向に傾斜または湾曲する。当技術分野で周知の自動(すなわちアクチュエータ)制御または手動オペレータ操作により、ボディ220をその初期製造位置からその最終製造位置まで移動できることを理解されよう。図28Dは、ビデオラスタスキャナ200の動作を示す平面図である。
【0055】
ミラー86H、86V、および206は、個々の移動ミラーに対する光ビーム202の移動範囲と、光ビームセグメント202Aおよび202Bの運動に対処するように十分大きく作成する必要があることに留意されたい。
【0056】
好適実施形態の説明の一部で、前述のMUMP製造工程のステップを参照している。しかし前述のように、MUMPは、広範なMEMSデバイス設計に対処する一般的な製造工程である。したがって、本発明のために具体的に設計される製造工程は、異なるステップ、追加のステップ、異なる寸法および厚さ、ならびに異なる材料を含むことがあり得る。このような特定の製造工程は、フォトリソグラフィ工程の技術分野の技術者の知識の範囲内にあり、本発明の一部ではない。
【0057】
本発明の原理を適用することができる多くの可能な実施形態に鑑みて、詳細な実施形態は単なる例に過ぎず、本発明の範囲を限定するものと解釈すべきでないことを理解されたい。むしろ、頭記の特許請求の範囲およびその均等物の、範囲および趣旨内に包含される可能性のあるすべての実施形態を発明として主張する。
【0058】
【発明の効果】
以上説明したように本発明によれば、面外運動が可能なジュール加熱によって駆動される熱MEMSアクチュエータを提供できる。
【図面の簡単な説明】
【図1】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図2】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図3】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図4】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図5】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図6】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図7】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図8】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図9】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図10】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図11】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図12】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図13】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図14】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図15】マイクロエレクトロメカニカルデバイスを製作するための、従来技術で周知の一般的マルチユーザMEMS工程の断面図であり、図示する従来技術の構造および工程が見やすいようにクロスハッチングを省略した図である。
【図16】本発明によるマイクロエレクトロメカニカル面外熱バックルビームアクチュエータの平面図である。
【図17】図16のアクチュエータの弛緩状態の側面図である。
【図18】図16のアクチュエータの駆動状態の側面図である。
【図19】バックルビームが基板から離れる方向に湾曲するような偏りまたは傾向を実現する偏り構造を有する、弛緩状態のバックルビームを示す拡大側面図である。
【図20】バックルビームが基板から離れる方向に湾曲するような偏りまたは傾向を実現する偏り構造を有する、作動状態のバックルビームを示す拡大側面図である。
【図21】本発明のアクチュエータの共振動作を示すために、角度たわみの上限および下限を周波数の関数として示すグラフである。
【図22】複数のアクチュエータを備えるマイクロエレクトロメカニカル面外バックルビームアクチュエータアセンブリの例示的実装の平面図である。
【図23】共にビデオラスタスキャナの一部として機能するように構成された、1対のマイクロエレクトロメカニカル面外熱バックルビームアクチュエータの平面図である。
【図24】図23のアクチュエータの、ビデオラスタスキャナとしての動作を示す側面図である。
【図25】図24のビデオラスタスキャナで使用されるフォールドミラーの平面図である。
【図26】図24のビデオラスタスキャナで使用されるフォールドミラーの側面図である。
【図27】図24のビデオラスタスキャナの平面図である。
【図28A】図24および27のビデオラスタスキャナを製造および操作する際の連続するステップの1つの実施の略図である。
【図28B】図24および27のビデオラスタスキャナを製造および操作する際の連続するステップの1つの実施の略図である。
【図28C】図24および27のビデオラスタスキャナを製造および操作する際の連続するステップの1つの実施の略図である。
【図28D】図24および27のビデオラスタスキャナを製造および操作する際の連続するステップの1つの実施の略図である。
【符号の説明】
10 シリコンウェハ
12 窒化シリコン層、窒化物層
14 LPCVDポリシリコン被膜POLY0、POLY0層
16 フォトレジスト
18 犠牲層、第1の酸化物層
20 くぼみ
22 アンカ穴
24 POLY1層、ポリシリコンの第1の構造層、PSGマスキング層
26 PSGマスキング層、PSG層
28 第2のPSG層、第2の酸化物層
30 POLY1_POLY2_VIAエッチング
32 ANCHOR2エッチング
34 第2の構造層POLY2
36 金属層
50、50H、50V マイクロエレクトロメカニカル面外熱バックルビームアクチュエータ
52、52A、54、54A 構造アンカ
56、56A 熱バックルビーム
60、62 ベースエンド
64 ピボットフレーム
66 フレームベース
68 結合点
70 ピボットアーム
74 自由端
80 電流源
82 導電性結合
84 導電性結合
86、86H、86V ミラー
90 スペーシングパッド
92 くぼみ
94 こぶまたはたわみ
102A、102B アクチュエータ
110A、110B ピボットフレーム
112A フレームベース
114A ピボットアーム
116A 自由端
120 ミラー
122 腱
124 ミラーアンカ
124A、124B 電流源
126A、128A 導電結合
200 ビデオラスタスキャナ
202 イメージディスプレイ光ビーム
202A、202B 光ビームセグメント
204 ディスプレイ光源
206 フォールドミラー
208 共通基板
220 ボディ
222 アパーチャ
224 主表面領域
226 端部領域
256 ガイド

Claims (34)

  1. 熱マイクロエレクトロメカニカルシステム(MEMS)アクチュエータの作動方法であって、
    平面基板に結合された第1のアンカおよび第2のアンカに固定された第1の端部および第2の端部をそれぞれ有する1つまたは複数の細長い熱バックルビームの中央に前記平面基板と逆側に凸のくぼみと前記第1および第2の端部に前記平面基板側に凸の前記平面基板に触れないくぼみとを形成することによって、前記熱バックルビームを前記平面基板から離れる方向に湾曲させるステップと、
    前記アンカを介して前記熱バックルビーム中に電流を送るステップであって、前記熱バックルビームの熱膨張と、前記平面基板から離れる方向への前記熱バックルビームの運動とをもたらし、それによって前記アクチュエータを駆動するステップと
    を備えたことを特徴とする熱MEMSアクチュエータの作動方法。
  2. 前記アクチュエータは、各バックルビームに固定されたフレームベースと、一端で前記フレームベースに固定され、かつ自由端を含む少なくとも1つのピボットアームとを含むピボットフレームをさらに含み、前記アクチュエータの駆動によって、前記自由端の前記平面基板から離れる方向への旋回が実現されることを特徴とする請求項1に記載の熱MEMSアクチュエータの作動方法。
  3. 前記湾曲させるステップは、バックルビームが幅広のアスペクト比を有しており、各バックルビームが前記平面基板に平行な幅と前記平面基板に垂直な厚さとを有し、かつ各バックルビームの前記幅が各バックルビームの厚さよりも大きいことを含むことを特徴とする請求項1に記載の熱MEMSアクチュエータの作動方法。
  4. 前記湾曲させるステップは、前記アクチュエータが前記平面基板から各バックルビームの下に延びるスペーシングパッドを有することを含むことを特徴とする請求項1に記載の熱MEMSアクチュエータの作動方法。
  5. 前記熱バックルビーム中に電流を送るステップは、前記熱バックルビーム中に経時変化電流を送り、前記アクチュエータの経時変化する駆動を実現するステップを含むことを特徴とする請求項1に記載の熱MEMSアクチュエータの作動方法。
  6. 前記経時変化電流は周期的であり、前記アクチュエータの周期的駆動を実現することを特徴とする請求項5に記載の熱MEMSアクチュエータの作動方法。
  7. 前記経時変化電流の周波数は第1の周波数であり、前記経時変化電流が、第1の範囲のたわみで前記アクチュエータの周期的駆動を実現し、前記第1の範囲のたわみが、前記第1の周波数よりも低い第2の周波数の経時変化電流で実現される第2の範囲のたわみよりも大きいことを特徴とする請求項5に記載の熱MEMSアクチュエータの作動方法。
  8. 前記アクチュエータは固有共振たわみ周波数範囲を有し、前記経時変化電流の周波数は、前記共振たわみ周波数範囲内の第1の周波数であることを特徴とする請求項6に記載の熱MEMSアクチュエータの作動方法。
  9. 前記アクチュエータは固有共振たわみ周波数を有し、前記第1の周波数は、前記共振たわみ周波数と同じであることを特徴とする請求項8に記載の熱MEMSアクチュエータの作動方法。
  10. 前記熱バックルビーム中に電流を送るステップは、前記熱バックルビーム中に経時変化電流を送り、前記アクチュエータの経時変化する駆動を実現するステップを含むことを特徴とする請求項2に記載の熱MEMSアクチュエータの作動方法。
  11. 前記経時変化電流は周期的であり、前記アクチュエータの周期的駆動を実現することを特徴とする請求項10に記載の熱MEMSアクチュエータの作動方法。
  12. 前記経時変化電流の周波数は第1の周波数であり、前記経時変化電流が、第1の範囲のたわみで前記アクチュエータの周期的駆動を実現し、前記第1の範囲のたわみが、前記第1の周波数よりも低い第2の周波数の経時変化電流で実現される第2の範囲のたわみよりも大きいことを特徴とする請求項10に記載の熱MEMSアクチュエータの作動方法。
  13. 前記経時変化電流の周波数は、共振たわみ周波数範囲内の第1の周波数であることを特徴とする請求項10に記載の熱MEMSアクチュエータの作動方法。
  14. 前記アクチュエータは固有共振たわみ周波数を有し、前記第1の周波数は、前記共振たわみ周波数と同じであることを特徴とする請求項13に記載の熱MEMSアクチュエータの作動方法。
  15. 平面基板に固定された第1のアンカおよび第2のアンカと、
    前記第1のアンカおよび第2のアンカにそれぞれ固定された第1の端部および第2の端部をそれぞれ有する1つまたは複数の細長い熱バックルビームであって、前記熱バックルビームの中央に前記平面基板と逆側に凸のくぼみと前記第1および第2の端部に前記平面基板側に凸の前記平面基板に触れないくぼみを含む前記平面基板から離れる方向に湾曲するバックルビームと、
    前記アンカを介して前記熱バックルビーム中に送られる周期電流であって、前記熱バックルビームの熱膨張と、前記平面基板から離れる方向への前記熱バックルビームの運動とをもたらし、それによって前記アクチュエータの周期的な駆動を実現する周期電流と
    を備えたことを特徴とする熱マイクロエレクトロメカニカルシステム(MEMS)アクチュエータ。
  16. 各バックルビームに固定されたフレームベースと、一端で前記フレームベースに固定され、前記アクチュエータが駆動されたときに前記平面基板から離れる方向に旋回する自由端を含む少なくとも1つのピボットアームとを含むピボットフレームをさらに含むことを特徴とする請求項15に記載の熱MEMSアクチュエータ。
  17. 前記周期電流の周波数が第1の周波数であり、前記周期電流が、第1の範囲のたわみで前記アクチュエータの周期的駆動を実現し、前記第1の範囲のたわみは、前記第1の周波数よりも低い第2の周波数の周期電流で実現される第2の範囲のたわみよりも大きいことを特徴とする請求項16に記載の熱MEMSアクチュエータ。
  18. 前記アクチュエータは固有共振たわみ周波数範囲を有し、前記周期電流の周波数が、前記共振たわみ周波数範囲内の第1の周波数であることを特徴とする請求項16に記載の熱MEMSアクチュエータ。
  19. 前記アクチュエータは固有共振たわみ周波数を有し、前記周期電流の周波数は、前記共振たわみ周波数と同じ第1の周波数であることを特徴とする請求項16に記載の熱MEMSアクチュエータ。
  20. 平面基板上に形成された熱マイクロエレクトロメカニカルシステム(MEMS)アクチュエータの構造であって、
    前記平面基板上で互いに横切る向きに配向された第1のバックルビームアクチュエータおよび第2のバックルビームアクチュエータであって、
    前記平面基板に固定された第1のアンカおよび第2のアンカに固定された第1の端部および第2の端部を有し、中央に前記平面基板と逆側に凸のくぼみと前記第1および第2の端部に前記平面基板側に凸の前記平面基板に触れないくぼみを有する複数の細長い熱バックルビームと、
    バックルビームに固定されたフレームベースと、一端で前記フレームベースに結合され、自由端を含む少なくとも1つのピボットアームとを含むピボットフレームであって、前記自由端が、光反射体を含み、かつ前記アクチュエータが駆動されたときに前記平面基板から離れる方向に旋回するピボットフレームと、
    前記アンカを介して前記熱バックルビーム中に電流を送り、前記熱バックルビームの熱膨張と、前記平面基板から離れる方向への前記熱バックルビームの運動とをもたらし、それによって前記各アクチュエータを駆動する電気的結合と
    をそれぞれ有する第1のバックルビームアクチュエータおよび第2のバックルビームアクチュエータを備え、
    前記平面基板上に取り付けられ、前記第1のアクチュエータと第2のアクチュエータの一方の上に位置するボディ上に保持される平面フォールドミラーをさらに備え、それによって前記フォールドミラーが、前記第1のアクチュエータおよび第2のアクチュエータの前記光反射体の間で光を反射するように位置合せされ、前記ボディが、光が前記光反射体に伝播することができ、または光が前記光反射体から伝播することができるアパーチャを含むことを特徴とする熱MEMSアクチュエータの構造。
  21. 前記第1のアクチュエータおよび第2のアクチュエータの周期的駆動をさらに有することを特徴とする請求項20に記載の熱MEMSアクチュエータの構造。
  22. 前記第1のアクチュエータおよび第2のアクチュエータの、異なるそれぞれの第1の周波数および第2の周波数での周期的駆動をさらに有することを特徴とする請求項20に記載の熱MEMSアクチュエータの構造。
  23. 前記第1のアクチュエータおよび第2のアクチュエータの周期的駆動をさらに有し、前記第1のアクチュエータと第2のアクチュエータの少なくとも一方が、固有共振たわみ周波数範囲を有し、前記第1のアクチュエータと第2のアクチュエータの前記少なくとも一方の前記周期的駆動の周波数が、前記共振たわみ周波数範囲内の周波数であることを特徴とする請求項22に記載の熱MEMSアクチュエータの構造。
  24. 前記第1のアクチュエータおよび第2のアクチュエータは、互いに概して直交することを特徴とする請求項20に記載の熱MEMSアクチュエータの構造。
  25. 前記第1のアクチュエータおよび第2のアクチュエータの、異なるそれぞれの第1の周波数および第2の周波数での周期的駆動をさらに有することを特徴とする請求項24に記載の熱MEMSアクチュエータの構造。
  26. 前記第1のアクチュエータおよび第2のアクチュエータは協働し、光ビームのラスタスキャンを形成することを特徴とする請求項25に記載の熱MEMSアクチュエータの構造。
  27. 周期的駆動の前記第1の周波数および第2の周波数は、NTSC規格の水平テレビジョンスキャン周波数および垂直テレビジョンスキャン周波数であることを特徴とする請求項26に記載の熱MEMSアクチュエータの構造。
  28. 平面基板に固定された第1のアンカおよび第2のアンカと、
    第1のアンカおよび第2のアンカにそれぞれ固定された第1の端部および第2の端部をそれぞれ有する1つまたは複数の細長い熱バックルビームであって、中央に前記平面基板と逆側に凸のくぼみと前記第1および第2の端部に前記平面基板側に凸の前記平面基板に触れないくぼみを含む前記平面基板から離れる方向に湾曲する熱バックルビームと、
    各バックルビームに固定されたフレームベースと、一端で前記フレームベースに固定され、前記アクチュエータが駆動されたときに前記平面基板から離れる方向にたわむ自由端を含む少なくとも1つのピボットアームとを含むピボットフレームと、
    前記ピボットアームの前記自由端の周期的たわみが共振たわみを受ける固有共振たわみ周波数範囲と
    を備えたことを特徴とする熱マイクロエレクトロメカニカルシステム(MEMS)アクチュエータ。
  29. 周期電流が前記アンカを介して前記熱バックルビーム中に送られ、前記熱バックルビームの熱膨張と、前記平面基板から離れる方向への前記熱バックルビームの運動とがもたらされ、それによって前記アクチュエータの周期的駆動が実現されることを特徴とする請求項28に記載の熱MEMSアクチュエータ。
  30. 前記周期電流の周波数は、前記共振たわみ周波数範囲内の第1の周波数であることを特徴とする請求項29に記載の熱MEMSアクチュエータ。
  31. 前記アクチュエータは固有共振たわみ周波数を有し、前記周期電流の周波数は、前記共振たわみ周波数と同じ第1の周波数であることを特徴とする請求項29に記載の熱MEMSアクチュエータ。
  32. 熱バックルビームの周期的駆動に応答して周期的たわみを受ける、一端で平面基板に固定され、かつ自由端を含むピボットアームを有する熱マイクロエレクトロメカニカルシステム(MEMS)アクチュエータであって
    前記ピボットアームの周期的たわみが共振たわみを受ける固有共振たわみ周波数範囲と、
    前記平面基板上に両端部が固定され、前記ピボットアームに結合され、前記ピボットアームの周期的駆動に応答して前記平面基板から離れる方向に前記ピボットアームをたわませるために、中央に前記平面基板と逆側に凸のくぼみと前記両端部に設けた前記平面側に凸の前記平面基板に触れないくぼみとを含む前記平面基板から離れる方向に湾曲する1つまたは複数の細長い前記熱バックルビームと
    を備え、前記周期的駆動は、前記熱バックルビーム中に周期電流を送ることを含み、前記熱バックルビームの熱膨張と、前記平面基板から離れる方向への前記熱バックルビームの運動とをもたらすことを特徴とする熱MEMSアクチュエータ。
  33. 前記周期電流の周波数は、前記共振たわみ周波数範囲内の第1の周波数であることを特徴とする請求項32に記載の熱MEMSアクチュエータ。
  34. 前記アクチュエータは固有f共振たわみ周波数を有し、前記周期電流の周波数は、前記共振たわみ周波数と同じ第1の周波数であることを特徴とする請求項32に記載の熱MEMSアクチュエータ。
JP2003010266A 2002-01-17 2003-01-17 熱memsアクチュエータの面外作動方法及び熱memsアクチュエータ Expired - Fee Related JP4544823B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/052,169 US6708492B2 (en) 2000-10-31 2002-01-17 Resonant thermal out-of-plane buckle-beam actuator
US10/052,169 2002-01-17

Publications (3)

Publication Number Publication Date
JP2003260697A JP2003260697A (ja) 2003-09-16
JP2003260697A5 JP2003260697A5 (ja) 2006-03-16
JP4544823B2 true JP4544823B2 (ja) 2010-09-15

Family

ID=21975901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010266A Expired - Fee Related JP4544823B2 (ja) 2002-01-17 2003-01-17 熱memsアクチュエータの面外作動方法及び熱memsアクチュエータ

Country Status (6)

Country Link
US (1) US6708492B2 (ja)
EP (1) EP1331201B1 (ja)
JP (1) JP4544823B2 (ja)
KR (1) KR20030067491A (ja)
DE (1) DE60223785T2 (ja)
TW (1) TW550237B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064879B1 (en) 2000-04-07 2006-06-20 Microsoft Corporation Magnetically actuated microelectrochemical systems actuator
US6775048B1 (en) * 2000-10-31 2004-08-10 Microsoft Corporation Microelectrical mechanical structure (MEMS) optical modulator and optical display system
US7464547B2 (en) * 2001-05-02 2008-12-16 Silverbrook Research Pty Ltd Thermal actuators
US6804959B2 (en) * 2001-12-31 2004-10-19 Microsoft Corporation Unilateral thermal buckle-beam actuator
US7053519B2 (en) * 2002-03-29 2006-05-30 Microsoft Corporation Electrostatic bimorph actuator
US20040207895A1 (en) * 2002-05-20 2004-10-21 Oettinger Eric G. Calibration method to maximize field of view in an optical wireless link
US6985650B2 (en) * 2003-08-05 2006-01-10 Xerox Corporation Thermal actuator and an optical waveguide switch including the same
US6985651B2 (en) * 2003-08-05 2006-01-10 Xerox Corporation Thermal actuator with offset beam segment neutral axes and an optical waveguide switch including the same
US6983088B2 (en) * 2003-08-05 2006-01-03 Xerox Corporation Thermal actuator and an optical waveguide switch including the same
US7482664B2 (en) * 2006-01-09 2009-01-27 Microsoft Corporation Out-of-plane electrostatic actuator
GB0910476D0 (en) * 2009-06-18 2009-07-29 Rolls Royce Plc Temperature activatable actuator
US11016289B2 (en) 2018-08-31 2021-05-25 Microsoft Technology Licensing, Llc Micromirror actuator assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281564A (ja) * 2000-03-30 2001-10-10 Seiko Epson Corp 微細構造体、その製造方法、光スイッチングデバイス、光スイッチングユニットおよび画像表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061914A (en) * 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US5619177A (en) * 1995-01-27 1997-04-08 Mjb Company Shape memory alloy microactuator having an electrostatic force and heating means
US5994816A (en) 1996-12-16 1999-11-30 Mcnc Thermal arched beam microelectromechanical devices and associated fabrication methods
US5867297A (en) * 1997-02-07 1999-02-02 The Regents Of The University Of California Apparatus and method for optical scanning with an oscillatory microelectromechanical system
US6130464A (en) 1997-09-08 2000-10-10 Roxburgh Ltd. Latching microaccelerometer
US6218762B1 (en) * 1999-05-03 2001-04-17 Mcnc Multi-dimensional scalable displacement enabled microelectromechanical actuator structures and arrays
US6246504B1 (en) * 1999-06-30 2001-06-12 The Regents Of The University Of Caifornia Apparatus and method for optical raster-scanning in a micromechanical system
US6360539B1 (en) * 2000-04-05 2002-03-26 Jds Uniphase Corporation Microelectromechanical actuators including driven arched beams for mechanical advantage
US6422011B1 (en) * 2000-10-31 2002-07-23 Microsoft Corporation Thermal out-of-plane buckle-beam actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281564A (ja) * 2000-03-30 2001-10-10 Seiko Epson Corp 微細構造体、その製造方法、光スイッチングデバイス、光スイッチングユニットおよび画像表示装置

Also Published As

Publication number Publication date
US6708492B2 (en) 2004-03-23
DE60223785T2 (de) 2008-10-30
KR20030067491A (ko) 2003-08-14
EP1331201A2 (en) 2003-07-30
DE60223785D1 (de) 2008-01-10
TW550237B (en) 2003-09-01
JP2003260697A (ja) 2003-09-16
EP1331201A3 (en) 2005-02-16
EP1331201B1 (en) 2007-11-28
US20020088224A1 (en) 2002-07-11
TW200302202A (en) 2003-08-01

Similar Documents

Publication Publication Date Title
US6555201B1 (en) Method for fabricating a microelectromechanical bearing
US7332367B2 (en) Bouncing mode operated scanning micro-mirror
US8043513B2 (en) Gimbal-less micro-electro-mechanical-system tip-tilt and tip-tilt-piston actuators and a method for forming the same
US6759787B2 (en) Microelectromechanical apparatus for elevating and tilting a platform
US7466474B2 (en) Micromechanical device with tilted electrodes
US6713367B2 (en) Self-aligned vertical combdrive actuator and method of fabrication
JP2001117027A (ja) マイクロ電気機械光学デバイス
JP4544823B2 (ja) 熱memsアクチュエータの面外作動方法及び熱memsアクチュエータ
US8816565B2 (en) Two-dimensional comb-drive actuator and manufacturing method thereof
US7042613B2 (en) Bouncing mode operated scanning micro-mirror
US6675578B1 (en) Thermal buckle-beam actuator
JP4115116B2 (ja) 熱マイクロエレクトリカルメカニカルアクチュエータ
US6677695B2 (en) MEMS electrostatic actuators with reduced actuation voltage
Hah et al. A self-aligned vertical comb-drive actuator on an SOI wafer for a 2D scanning micromirror
JP3723431B2 (ja) マイクロ電気機械光学デバイス
US20030168928A1 (en) Parallel plate electrostatic actuation MEMS mirrors
US6960849B1 (en) Three-dimensional microelectromechanical tilting platform operated by gear-driven racks
WO2018168658A1 (ja) 変位拡大機構及びそれを用いたシャッタ装置
Quevy et al. Realization and actuation of continuous-membrane by an array of 3D self-assembling micro-mirrors for adaptive optics
JP2010113002A (ja) マイクロミラーデバイス

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090408

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100506

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4544823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees