JP4544752B2 - 独立に制御可能な電流ミラー・レッグを備える出力バッファ - Google Patents

独立に制御可能な電流ミラー・レッグを備える出力バッファ Download PDF

Info

Publication number
JP4544752B2
JP4544752B2 JP2000617716A JP2000617716A JP4544752B2 JP 4544752 B2 JP4544752 B2 JP 4544752B2 JP 2000617716 A JP2000617716 A JP 2000617716A JP 2000617716 A JP2000617716 A JP 2000617716A JP 4544752 B2 JP4544752 B2 JP 4544752B2
Authority
JP
Japan
Prior art keywords
current
current mirror
output
buffer
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000617716A
Other languages
English (en)
Other versions
JP2002544737A (ja
JP2002544737A5 (ja
Inventor
タンジ,トッド・エム
ウェンティンク,ロバート・エス
ウェルチ,ジム・アール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2002544737A publication Critical patent/JP2002544737A/ja
Publication of JP2002544737A5 publication Critical patent/JP2002544737A5/ja
Application granted granted Critical
Publication of JP4544752B2 publication Critical patent/JP4544752B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018585Coupling arrangements; Interface arrangements using field effect transistors only programmable

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Amplifiers (AREA)
  • Control Of Electrical Variables (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)

Description

【0001】
[同時係属出願の相互参照]
本出願は、 に出願され発明の名称が「供給電圧変化に応答して演算回路のバイアス・レベルを補償する補償機構」である米国特許出願No. 、 に出願され発明の名称が「ジャイレータを備える差動フィルタ」である米国特許出願No. 、 に出願され発明の名称が「能動フィルタ選択度及びDCオフセット制御のための被制御オフセットを備えるフィルタ」である米国特許出願No. 、 に出願され発明の名称が「双方向無線リンクを用いた状態妥当性検証」である米国特許出願No. 、 に出願され発明の名称が「可変学習された送信パワーを有する無線システム」である米国特許出願No. 、及び に出願され発明の名称が「スケジューリングされたタイム・スロットを有する無線制御ネットワーク」である米国特許出願No. に関連し、これらの全ては本発明の譲渡人に譲渡され、本明細書に援用されている。
【0002】
[発明の背景]
本発明はバッファに関し、より詳しくは、安定出力電流、プログラム可能な出力電力レベルを提供する出力バッファに関する。本願明細書において使われるように、用語「出力バッファ」は、増幅及び非増幅回路又はデバイスを含む、電気信号をバッファする全ての回路に関連する。
【0003】
電気信号を増幅またはさもなければバッファするため出力バッファを使用することは当該技術において周知である。典型的出力バッファは、バイポーラ・トランジスタ、相補型金属酸化半導体(CMOS)トランジスタ、または各々の組合せ(BiCMOS)を使用して実現される。大部分の出力バッファは、出力信号に出力電力を与える出力段を有する。CMOS技術のために、出力段は、通常n型プルダウンMOS(NMOS)トランジスタと直列に結合されたp型プルアップ金属酸化半導体(PMOS)トランジスタを含む。NMOSトランジスタはVSSに結合され、PMOSトランジスタはVDDに結合される。出力信号は、PMOS及びNMOSトランジスタ間の相互接続点で概してとられる。
【0004】
各々の出力トランジスタの大きさは、出力段の駆動能力を決定するのを助ける。一般的に、出力トランジスタは、期待される負荷(例えば「N」がゼロより大きい整数である「N」ユニット負荷)に適応させるためにサイズ設定をされる。したがって、典型的出力バッファの駆動能力は、特定の負荷サイズに対して最適化される。出力バッファが期待される負荷サイズより大きい負荷を駆動する場合、出力トランジスタは出力電圧スルー・レート必要条件を満たすために不十分な電流を導通させる傾向があり、出力バッファを許容できないほど遅くさせる。出力バッファが期待される負荷サイズ未満である負荷を駆動する場合、出力トランジスタは過度の電流を導通させる傾向があり、それは出力電圧スルー・レートを減らすが、隣接した信号及び電力線上の過渡ノイズを増やす。バスがFFの値から00まで切替えられる場合等のような、いくつかの出力バッファが同時に切替えられる場合、これらの問題は悪化する。
【0005】
これらの問題のいくらかを軽減するのを助けるために、Masiewiczに対する米国特許第5,632,019号は、特定の容量性負荷に一致されることができるプログラム可能なソース/シンク特性を有する出力バッファを提供することを提案する。Masiewiczの出力バッファは、プログラム可能な制御ブロックによって個々に使用可能にされる多くのユニット・バッファを含む。特定の負荷容量(キャパシタンス)を駆動するのに必要であるそれらのユニット・バッファだけを使用可能にすることによって、出力バッファのソース/シンク特性は、特定の負荷サイズに一致されることができる。
【0006】
Masiewiczの限界は、各々のユニット・バッファがVDD、VSS間に直列に結合されたプルアップ・トランジスタ及びプルダウン・トランジスタを含むということである。この構成において、各々のユニット・バッファのソース/シンク特性は、供給電圧に依存する。供給電圧がバッテリ等により提供される場合、これは特に問題を含む。多くのバッテリ(特にアルカリ電池)の限界は、供給電圧が時間に対して劣化する傾向があるということである。したがって、バッテリが使われる場合、Masiewiczのソース/シンク特性は時間に対して劣化する傾向がある。供給電圧がバッテリによって供給されない場合、Masiewiczのソース/シンク特性が供給電圧の変化と共に変化し得る。
【0007】
Masiewiczの他の限界は、静電気放電(ESD)保護が与えられないということである。ESDは、集積回路設計のますます重大な問題である。場合によっては、破壊的な静電パルス(それはESD現象として公知である)は、しばしば、さまざまな一時的原因(例えば処理の間の集積回路チップの人間又は機械の取り扱い、組み立て、インストール)による。大部分のESD現象は、集積回路パッドの一つで起こる。出力バッファが概して集積回路パッドに接続しているので、出力バッファ回路にある種のESD保護を設けることが望ましい。
【0008】
CMOS出力バッファに対して、典型的ESD現象は、出力パッドに対する高い電圧パルスを含み、PMOSまたはNMOSトランジスタのうちの1つを介するそれぞれVddまたはVssへの高放電電流パスをもたらす。NMOSトランジスタに対して、パッドに供給されるESD電圧パルスの極性に依存して、放電パスは、ドレイン/チャンネル接合のアバランシェ降伏を経て又はドレイン/チャンネル・ダイオードの順方向バイアスを介して生じ得る。放電パスのアバランシェ降伏タイプは最も多くの破壊である。それは、NMOSトランジスタの構造に不可逆損傷に結果としてなることが最もありそうだからである。類似した放電パスは、PMOSトランジスタでありえる。
【0009】
出力バッファのPMOS及びNMOSトランジスタにESD保護を与えるための1つの方法は、Smoohaへの米国特許第4,990,802号に開示されている。Smoohaは、集積回路パッド及びバッファ回路間に抵抗器を配置することを開示する。この抵抗器は、ESD現象の間出力トランジスタを通過できる電流を減らす。これは、出力バッファ・トランジスタの電気ストレスを減らすのを助ける。この方法の限界は、出力バッファのソース/シンク電流もまた減少するということである。出力パッドを通して比較的高い電流負荷を駆動することを必要とする出力バッファに対して、出力パッドと直列にこの種の抵抗器を配置することは、容認できない出力電圧スルー・レートを生成し得る。したがって、それらが速い応答時間を必要とすることを含む多くの応用は、この種の方法によって互換性があり得ない。
【0010】
速い応答時間がしばしば必要とする1つの応用は、RF通信においてである。RF信号を送信するための電力増幅器及びその他回路の使用は、当該技術において周知である。電力増幅器が、無線送信機、テレビジョン送信機、CBラジオ、マイクロ波リンク、人工衛星通信システム、ローカルRFネットワーク、及び他の無線通信応用において使われてきた。電力増幅器は、概してアンテナにRF信号を駆動するための出力バッファ・ステージ等を含む。
【0011】
若干のRF応用において、出力バッファは高調波フィルタ(例えば並列LC共振タンク等)に接続している。並列LC共振タンクを使用する1つの利点は、スプリアス放射を減らすと共に、タンクが所望の周波数を通過させるために所望のRFキャリア周波数に同調させられることが可能であるということである。VDDに対するRFチョークと共に並列LC共振タンクを使用する他の利点は、出力信号のピーク振幅が供給電圧の約2倍に増大されることができるということである。これは、アンテナでのRF信号の強度を増やすのを助ける。他のタンク構成は、類似した結果を提供できる。
【0012】
多くの応用(例えば低電力応用)に対して、タンクによって引き起こされる増大した出力電圧スイングは、巡回している出力バッファに損害を与え得る。典型的低電力応用において、供給電圧は例えば5.0Vから3.0Vまで減少する。これがデバイスにより消費される電力を減らすのを助ける一方、それはまたデバイスの性能を低減しがちである。いくつかの性能を回復するのを助けるために、デバイスを作るとき、特別な低電圧製造工程を使うことができる。低電圧プロセス(例えば3.0Vのプロセス)において、ゲート酸化物は、従来の5.0Vのプロセスにおけるより一層薄くされることができる。これは、能動デバイスの速度及び感度を増やす傾向がある。他のプロセス・パラメータもまた、デバイスの増加する性能のために最適化されることができる。
【0013】
低電圧プロセスを使用する限界は、結果として生じるデバイスが電圧により敏感であり得て、そしてより高い電圧に暴露される場合損害を受け得るということである。例えば、5ボルトは、若干の低電圧デバイスのゲート酸化物に損害を与えることができ、デバイスを不動作にさせる。これらの理由のために、低電圧プロセスを使用して製造される出力段は、並列LC共振タンクの使用と互換性があり得ない。上記のように、並列LC共振タンクは、デバイスの出力端子上の電圧スイングを増大し得る。この増加した電圧スイングは、低電圧デバイスのゲート酸化物または他の層に損害を与え得る。
【0014】
[発明の概要]
本発明は、供給電圧の変化から比較的独立している出力電流を導通させる出力バッファを提供することによって従来技術の不利な点の多くを克服する。これは、電流ミラーとして、CMOSトランジスタの従来のプルアップ/プルダウン対よりむしろ出力バッファを構成することにより達成される。電流ミラーは基準・レッグ及び多くの電流ミラー・レッグを有することが好ましい。基準・レッグは、供給電圧から比較的独立している基準電流を使用してバイアスされる。電流ミラー・レッグの各々は、出力バッファの出力端子に連結して、基準電流と比例している電流を通す。これは、供給電圧の変化から比較的独立している出力電流を生成する。プログラム可能な出力電力レベルを提供するために、各々の電流ミラー・レッグは、別々に使用可能にされ得る。電流ミラー・レッグのうちどちらが使用可能にされるかについて制御することによって、出力バッファの出力電力を制御できる。
【0015】
低電力RF通信のような若干の応用のために、出力バッファの出力端子が耐えられる電圧レベルを増大することが望ましい。タンク等が低電圧出力バッファと共に使われる場合、これは特に有効である。上記のように、タンクは出力バッファの出力電圧を約供給電圧の2倍のピークまで上げるようにすることができる。出力バッファが耐えられる電圧レベルを増やすために、トランジスタのいくつかまたは全てがより高い電圧デバイスであってもよい。好適な実施形態において、カスコード・トランジスタが、各々の電流ミラー・レッグ及び出力端子の間に挿入される。カスコード・トランジスタは、好ましくは各々の電流ミラー・レッグの低電圧トランジスタより高い電圧に耐えることができる。一実施形態において、カスコード・トランジスタは、他の低電圧トランジスタより厚いゲート酸化物を有する。代わりにまたはこれに加えて、カスコード・トランジスタの選択された層のスペーシング、厚さ、ドーピング等のような他のパラメータは、カスコード・トランジスタの電圧許容差を増加するため変えられることができる。
【0016】
出力バッファのESD保護を増すために、抵抗器が各々の電流ミラー・レッグに設け得る。各々の抵抗器は、ESD現象の間、対応する電流ミラー・レッグを通過できる電流を減らす。抵抗器が各々の並列の電流ミラー・レッグに置かれるので、出力パスの実効抵抗は最小にされる。許容できる性能レベルを維持すると共に、これは出力バッファのESDレベルを改良する。
【0017】
添付の図面と関連して考慮される場合、本発明の他の目的及び本発明の付随した利点の多くがより良く以下の詳細な説明を参照することにより理解されるようになるとき、本発明の他の目的及び本発明の付随した利点の多くが容易に認められるであろう。なお、類似の参照番号は図面全体を通して類似の構成要素を示す。
【0018】
[好適な実施形態の詳細な説明]
本発明は、供給電圧の変化から比較的独立している出力電流を提供する出力バッファである。供給電圧が時間に対して劣化し又はさもなければ変化する場合、これは所望の信号対雑音比、ダイナミック・レンジおよび/または他のパラメータを維持するのを助ける。本発明はまた、プログラム可能な出力電力レベルを有する出力バッファを提供する。これは、デジタル及びアナログの両方の応用を含む多くの応用に役立つ。更に詳細に下で図と共に記載されるように、1つの好適な応用は、低電力RF応用である。
【0019】
図1は、本発明の出力バッファを含む統合された直接ダウン変換狭帯域FSKトランシーバ(Direct Down Conversion Narrowband FSK Transceiver)10のブロック図である。狭帯域FSKトランシーバ10は、好ましくは外付け部品の最小の使用を有する単一の基板上に送信及び受信の両方の機能を含む。使用中に、狭帯域FSKトランシーバ10は、統計的に周波数拡散された送信が可能である半二重トランシーバ無線データ・リンクを提供する。
【0020】
2つ以上の狭帯域トランシーバ10を用いて、無線データ通信ネットワークを形成することができる。各々の狭帯域FSKトランシーバ10が送信及び受信の両方の機能を含むので、双方向伝送が可能である。双方向伝送はデータ転送を確認することができ、それにより、ユーザーにより実行されるアクセス制御アルゴリズムに従い、ほとんど100パーセントまでリンクの信頼性を増やす。
【0021】
狭帯域FSKトランシーバ10の基本アーキテクチャが、図1に示されている。オフチップ構成部品は、水晶(それは、応用マイクロプロセッサと共用されることができる)、フロントエンドLCマッチング及びフィルタリング部品、フェーズ・ロック・ループ(PLL)/電圧制御発振器(VCO)12を同調させるためのLC回路、供給ノイズをフィルタリングすることができる若干の外付けコンデンサ、プリント回路基板(PCB)、アンテナ14、及び電源を含み得る。シングルチップ狭帯域FSKトランシーバ10は、418MHz、434.92MHz、868-870MHz、及び902-928MHzの周波数帯を目的とする。
【0022】
受信器設計は直接ダウン変換原理に基づいていて、それは、直接ベースバンドへダウン変換するよう局部発振器をキャリア周波数で使用して入力信号を混合する。Behzad Rasaviによる「直接変換受信器のための設計考慮事項」(Circuits and SystemsのIEEE論文集-II:アナログ及びディジタル信号処理、第44巻、第6号、1997年6月)には、直接ダウン変換原理が説明されている。直接ダウン変換アルゴリズムにおいては、Iチャネル40及びQチャネル42を含む2つの完全な信号パスが設けられ、そこにおいて、Qチャネル42はIチャネル40に対して90度シフトされている。Iチャネル40及びQチャネル42は、受信信号を復調するために用いられる。
【0023】
受信信号が、低雑音増幅器(LNA)20に最初に与えられる。LNA 20は、好ましくは、電源電圧の変化に応答してLNA 20内の選択されたバイアス・レベルを能動的に補償する補償回路を含み、これは、発明の名称が「供給電圧変化に応答して演算回路のバイアス・レベルを補償するための補償機構」である同時係属米国特許出願No. により全面的に記載されている。LNA 20は、直角位相ミクサ対22及び24を差動的に駆動する。
【0024】
PLLシンセサイザ/(VCO)12は、それぞれインタフェース16及び18を介してミクサ22及び24に局部発振器(LO)信号を直角位相で与える。ミクサ22は、位相シフトされてないLO信号を入力信号と混合する。その一方で、ミクサ24は、90度位相シフトされたLO信号を同じ入力信号と混合する。
【0025】
本発明によれば、ミクサ22及び24はまた、好ましくは、電源電圧の変化に応答して選択されたバイアス・レベルを能動的に補償する補償回路を含み、これは、発明の名称が「供給電圧変化に応答して演算回路のバイアス・レベルを補償するための補償機構」である同時係属米国特許出願No. により全面的に記載されている。
【0026】
ミクサ22及びミクサ24の差動出力は、直角位相にある2つの同一の信号チャネル、即ちIチャンネル40及びQチャネル42に与えられる。Iチャンネル40はベースバンド・フィルタ・ブロック26を含み、そしてQチャネル42はベースバンド・フィルタ・ブロック28を含む。各々のベースバンド・フィルタ・ブロックは、2次フィルタ(2つの近いDC高域通過極及び2つの広帯域の低域通過極を有する)が続く単極低域通過フィルタ、及びジャイレータ・フィルタを含む。各々のベースバンド・フィルタ・ブロックの主チャネルフィルタはジャイレータ・フィルタであり、それは好ましくは7極楕円低域通過フィルタのジャイレータ-コンデンサ構成を含む。好適な7極楕円低域通過フィルタは、発明の名称が「ジャイレータを備える差動フィルタ」である米国特許出願No. に記載されている。楕円フィルタは、所与の選択度及びダイナミック・レンジのために必要とする全静電容量を最小にする。好適な実施例において、低域通過ジャイレータ遮断周波数は、外部抵抗により調整されることができる。
【0027】
Iチャネル40及びQチャネル42はまた、それぞれリミッタ・ブロック30及び32を含むことができる。リミッタ・ブロック30及び32は振幅を制限し、したがって、対応する信号から振幅情報を除去する。結果として生じる信号は、次いで復調器50に与えられる。リミッタ・ブロック30及び32のうちの少なくとも1つは、DSSS応用のためのまたはASK(振幅シフト・キー)またはOOK(オン・オフ・キー)信号を復調するための順方向及び逆方向リンク電力管理のために使うことができるRSSI(受信信号強度インディケータ)出力を含むことができる。そのような電力管理方法は、発明の名称が「可変学習された送信パワーを有する無線システム」である米国特許出願No. に記載されている。RSSI信号がまた、AFC(自動周波数制御周波数トラッキング)またはAGC(自動利得制御ダイナミックレンジ増強)あるいはこれら両方によって使うことができる。
【0028】
復調器50は、デジタル・データ出力52を発生するために結合して、I−チャンネル、Q−チャンネル出力を復調する。そうする際に、復調器50は、I−チャンネル、Q−チャンネル信号間の相対的な位相差を検出する。I−チャンネル信号がQ−チャンネル信号を導く場合、FSKトーン周波数がトーン周波数より上にあり、データ『1』状態を示す。I−チャンネル信号がQ−チャンネル信号を遅延させる場合、FSKトーン周波数がトーン周波数の下にあり、データ『0』状態を示す。レシーバのデジタル化された出力52は、CMOS−レベル変換器56、CMOS出力シリアル・データ・ブロック58を経て制御ブロック54に与えられる。
【0029】
ナローバンドFSKトランシーバ10の送信機は、PLL周波数シンセサイザ及び電力増幅器60を含む。電力増幅器60は、それがより充分に、図2A−4Bに関して後述するように、本出願の主題である。周波数シンセサイザは電圧制御発振器(VCO)、水晶発振器12、プレスケーラ、多くのプログラム可能な分周器、位相検出器を含む。柔軟性のためにチップの外部にループフィルタもまた提供されることができ、そして、それは単純な受動回路であってもよい。VCO12は、好ましくは一つ以上のオンチップ・バラクタを提供する。実施例において、VCO12は、ワイドバンド変調のための高チューン感度バラクタ、狭帯域変調のための低チューン感度バラクタを含む。選ばれる変調バラクタは、特定の応用に依存する。変調バラクタは、選択されたキャリア周波数の上へシリアル・データ・ストリームを変調するために用いる。変調された信号は電力増幅器60に提供され、そして、それは外部アンテナ14を駆動する。
【0030】
好ましくは、電力増幅器60の出力された電力レベルは、インタフェース55を経てた制御ブロック54により制御される。これは、ナローバンドFSKトランシーバ10が比較的低い電力レベルで信号を伝送することを可能にして、システム電源を節約する。受信しているナローバンドFSKトランシーバ10から確認応答が受け取られる場合、伝送は完全である。しかし、確認応答が受信されない場合、送信しているナローバンドFSKトランシーバ10は、電力増幅器60の電力レベルを増やすことができる。受信しているナローバンドFSKトランシーバから確認応答がさらに受け取られない場合、送信しているナローバンドFSKトランシーバ10は、再び電力増幅器60の電力レベルを増やすことができる。これは、確認応答が受信されるまで繰り返されることができ、または、電力増幅器60の最大電力レベルに達する。これの更なる議論、他のパワーマネジメント・アルゴリズムは、「Wireless System With Variable Learned−In Transmit Power」と題する、出願中の米国特許出願番号第09311250号に記載されている。
【0031】
4−ピン・シリアル周辺インターフェイス(Serial Peripheral Interface:(SPI))のバス62は、制御ブロック54の内部の構成レジスタをプログラムして、送信(Tx)FIFO64及び受信(Rx)FIFO66にアクセスするために使用される。送信動作の間、データバイトは、SPIバス62を介してTx・FIFO64に書き込まれる。コントローラ・ブロック54は、Tx・FIFO64からのデータを読み込んで、変調のために、VCO12にStart及びStopビットを加算して、連続的にデータをけた送りする。上記のように、VCO12はその時、電力増幅器60に変調された信号を提供し、そして、それは外部アンテナ14を駆動する。
【0032】
受信動作の間、受信信号は、LNA20、上記の通りのI−チャンネル40及びQ−チャンネル42、最後に復調器50に与えられる。復調された信号は、その時同期のために、Start及びStopビットを検出するためにオーバーサンプルされる。対応するStart及びStopビットを含む完全なバイトがシリアルに集められたあとに、バイトは、Rx・FIFO66へ移される。コントローラ・ブロック54は、Rx・FIFO66がいつデータを有するかについて感知して、SPIバス62にSPI割込み信号を送り出し、そして、Rx・FIFO66が、外部プロセッサ等(図示せず)による読取るように準備ができていることを示す。
【0033】
図2A−2Bは、本発明の第1の出力バッファの概要図を示す。
図示する出力バッファは、98で一般に示されており、データ入力ターミナル100及びデータ出力ターミナル102(図2Bを参照のこと)を含む。出力バッファ98は、データ入力ターミナル100でデータ入力信号を受信して、データ出力ターミナル102でデータ出力信号を出力する。出力バッファは、基準脚104、多くの電流ミラー脚106a−106gを有する電流ミラーを含む。基準脚104は、結合コンデンサ108及び抵抗器110を介して、データ入力ターミナル100に結合される。各々の電流ミラー脚106a−106gは、好ましくは結合コンデンサ154を経て、データ出力ターミナル102に結合される。
【0034】
基準脚104は、第1のターミナル122及び第2のターミナル124を有する電流源120を使用してバイアスされる。電流源120は、好ましくは供給電圧130の変化から独立している基準電流126を提供する。電流源120の第1のターミナル122は、供給電圧に結合される。第1のトランジスタ132及び第2のトランジスタ134もまた提供される。第1のトランジスタのドレインは、以下に結合される。
(1) 電流源120の第2のターミナル124;
(2) 結合コンデンサ108及び抵抗器110を介して、出力バッファのデータ入力ターミナル100;
(3) 第1のトランジスタ132のゲート。
第2のトランジスタ134のドレインは、第1のトランジスタ132のソースに結合される。第2のトランジスタ134のソースは、グランド138に結合される。最後に、図示のように、第2のトランジスタ134のゲートは、供給電圧130に結合される。
【0035】
同様に、各々の電流ミラー脚106a−106gは、好ましくは、電流ミラー・トランジスタ116a−116g及びイネーブル・トランジスタ118a−118gをそれぞれ含む。図示実施例において、各々の電流ミラー・トランジスタ116a−116gのドレインは、結合コンデンサ154を経て、出力バッファのデータ出力ターミナル102に結合される。各々の電流ミラー・トランジスタ116a−116gのゲートは、基準脚104の第1のトランジスタ132のゲートに結合される。
【0036】
各々のイネーブル・トランジスタ118a−118gのドレインは、対応する電流ミラー・トランジスタ116a−116gのソースに結合される。各々のイネーブル・トランジスタ118a−118gのソースは、グランド138に結合される。最後に、各々のイネーブル・トランジスタ118a−118gのゲートは、イネーブル・ターミナル114b−114gの対応する一つに結合される。幾つかの電流ミラー脚のために、イネーブル・ターミナルは、供給電圧に結合できる。他の電流ミラー脚のために、イネーブル・ターミナルは、コントローラ112により制御されることができる。
【0037】
使用中に、データ入力信号は、基準脚104に入力基準電流を印加する。基準脚104の入力基準電流と比例しているデータ出力ターミナル102に、各々の電流ミラー脚106a−106gが、出力電流を与える。
【0038】
プログラム可能な出力電力レベルを提供するために、コントローラ112は、電流ミラー脚106a−106gの第1のセットにデータ出力信号に対する第1の出力電流を提供して、その後電流ミラー脚106a−106gの第2のセットにデータ出力信号に対する第2の出力電流を提供するのを可能にする。好ましくは、コントローラ112は、選択された電流ミラー脚106b−106gのイネーブル・ターミナル114b−114gをデジタル的に制御し、電流ミラー脚のうちのどれが付勢されるか制御する。
【0039】
出力電力レベルの広いスペクトラムを提供するために、いくつかの電流ミラー脚106a−106gが、他の電流ミラー脚とは異なる出力電流を引き出すことができる。図示実施例において、電流ミラー脚106a−106bは、各々データ出力ターミナル102から類似した出力電流を引き出す。これは、電流ミラー・トランジスタ116a及び116bをおよそに同じサイズに、またイネーブル・トランジスタ118a及び118bをおよそに同じサイズに作ることにより達成される。電流ミラー脚106cは、好ましくは電流ミラー脚106a−106bに比べて約2倍の出力電流を引き出す。これは、電流ミラー・トランジスタ116cを電流ミラー・トランジスタ116a及び116bの2倍のサイズに、またイネーブル・トランジスタ118cをイネーブル・トランジスタ118a及び118bの約2倍のサイズに作ることにより達成される。最後に、好ましくは、電流ミラー脚106dは、電流ミラー脚106cの約2倍の出力電流を引き出し、電流ミラー脚106eは、電流ミラー脚106dの約2倍の出力電流を引き出し、電流ミラー脚106fは、電流ミラー脚106eの約2倍の出力電流を引き出し、電流ミラー脚106gは、電流ミラー脚106fの約2倍の出力電流を引き出す。
本発明の図示する方法は、次のステップを含む。
(1) データ入力信号を受信するステップ、
(2) データ入力信号を入力基準電流に変換するステップ、
(3) 2またはそれ以上の電流ミラー脚に入力基準電流を映すステップであって、そこにおいて、電流ミラー脚の各々は、入力基準電流と比例しているデータ出力信号に出力電流を提供すること、
(4) 電流ミラー脚の第1のセットが、データ出力信号において第1の出力電力レベルを成し遂げるのを可能にするステップ、
(5) 電流ミラー脚の第2のセットが、データ出力信号において第2の出力電力レベルを成し遂げるのを可能にするステップであって、そこにおいて、第1の出力電力レベルは、第2の出力電力レベルと異なること。
【0040】
図示実施例において、電流ミラー・トランジスタ116a−116gは、直接データ出力ターミナル102に接続されていない。むしろ、電流ミラー・トランジスタ116a−116gは、内部の出力ピン150に接続している。内部の出力ピン150は、コンデンサ154を経て、データ出力ターミナル102にAC結合されている。寄生的な誘導子156もまた示されている。誘導子158は、VDD供給からのRF信号出力をブロックする間に、映された出力段にDCバイアス電流を提供するために用いられる、外部的に提供されたRFチョークである。
【0041】
データ出力ターミナル102はまた、タンク160に連結して示されている。タンク160は、データ出力信号に対する調波濾過を提供して、更にデータ出力信号のピーク振幅を押し上げる。タンク150は、並列のLRC回路網を含む。並列のLCまたはLRC共振タンク160を使用する1つの利点は、周波数のバンドが通過するのを可能にするように、タンクが調整されるということであり、その一方で、スプリアス放出を減らす。RFチョークと連動して、並列のLCまたはLRC共振タンク160を使用する他の利点は、出力信号のピーク振幅が、供給電圧130の約2倍に増やされることができるということである。これは、アンテナ14でRF信号の電圧を増やすのを助ける。並列のLRCタンク構成のみが図示され、その他のタンク構成が類似した特性を提供できるということが認識される。
【0042】
タンク160が、出力信号のピーク電圧振幅を供給電圧130の約2倍に増やすので、図2A−2Bの実施例の電流ミラー・トランジスタ116a−116gは、増加する電圧を取り扱うように形成されなければならない。これは、より低い供給電圧を使用することにより達成されることができ、そして、それは出力信号のピーク振幅を減らす。代わりにまたは加えて、ために、電流ミラー・トランジスタ116a−116gは増加する電圧に耐えるように作られることが可能である。イネーブル・トランジスタ118a−118gは、同様に作られることも、または作られないことも可能である。
【0043】
多くの応用のために、デバイスの電源消費を最小にすることは、最高である。そのような応用は、バッテリ等が電源として使われる場合である。電力を減らすのを助けるために、供給電圧は、例えば、5.0Vから3.0Vまで減少できる。これがデバイスにより消費される電力を減らすのを助ける一方、またそれは、デバイスのパフォーマンスを減らす。いくつかのパフォーマンスを回復するのを助けるために、低電圧の製造工程は、低電圧デバイスを作るために用いてもよい。例えば、3.0Vの低電圧プロセスにおいて、ゲート酸化物は、従来の5.0Vのプロセスよりも、薄くされることができる。これは、能動デバイスの速度、感度を増やす傾向がある。他のプロセス・パラメータは、デバイスのパフォーマンスを増加するために、同様に変更されることができる。
【0044】
低電圧プロセスを使用する限界は、結果として生じるデバイスが電圧により敏感であり、より高い電圧に暴露される場合に、損害を受けるということである。いくつかの低電圧デバイスに対して、5ボルトだけの印加は、例えばゲート酸化物を壊して、そうすることでデバイスを正常に動作出来ないようにすることによって、デバイスに損傷を与える。この電圧スイングの増加は、低電圧デバイスのゲート酸化物、またはその他レイヤーまたはレイヤー群に損害を与える。
【0045】
図3A−3Bは、多くのカスコード(cascode)過電圧保護デバイスを含んでいる本発明の第2の出力バッファの概要図を示す。上記のように、いくつかの応用のために、出力バッファの出力ターミナルが耐えることができる電圧レベルを増やすことは望ましい。これは、低電圧プロセスを使用して作られる出力バッファと連動して、タンク等が使われる場合に、特に有用である。上記のように、タンクは、出力電圧の2倍で供給電圧で揺動するようにすることができる。
【0046】
出力バッファの出力ターミナルが耐えることができる電圧レベルを増やすために、多くのカスコード・トランジスタ170a−170gが、各々の電流ミラー脚116a−116gと出力ターミナル102との間に挿入されることができることは、熟慮される。例示する実施例において、各々のカスコード・トランジスタ170a−170gのソースは、対応する電流ミラー・トランジスタ116a−116gのドレインに結合される。各々のカスコード・トランジスタ170a−170gのドレインは、結合コンデンサ154を介して、データ出力ターミナル102に結合される。最後に、各々のカスコード・トランジスタ170a−170gのゲートは、供給電圧130に結合される。
【0047】
各々のカスコード・トランジスタ170a−170gは、電流ミラー・トランジスタ116a−116g、およびイネーブル・トランジスタ118a−118gより厚いゲート酸化物を有することができる。好ましくは、二重の酸化物プロセスは、カスコード・トランジスタ170a−170gを形成するために使用される。他の製作ステップまたは技術はまた、カスコードトランジスタ170a−170gが耐えることができる電圧を更に増やすために用いてもよい。したがって、電流ミラー・トランジスタ116a−116g及びイネーブル・トランジスタ118a−118gは、パフォーマンスを増加するための低電圧プロセスを使用して作られることが可能である。
【0048】
例えばESD事象の間に経験されるような、大きい電圧スパイクから電流ミラー脚をプロテクトするのを助けるために、多くの抵抗器180a−180gを提供できる。各々の抵抗器180a−180gは、各々の電流ミラー・トランジスタ116a−116gのドレイン・ターミナル(または、あるならば、カスコード・トランジスタ170a−170gのドレイン・ターミナル)と、データ出力ターミナル102との間で提供されることができる。図4A−4Bは、本発明の第3の出力バッファの概要図を示し、そして、これは、図3A−3Bのカスコード過電圧保護デバイスと、データ出力ターミナル102との間に挿入される多くのESD抵抗器を含む。
【0049】
各々の抵抗器180a−180gは、ESD事象の間に、対応する電流ミラー脚106a−106gを通り抜けることができる電流を減らし、出力パスの全体的な抵抗を最小にする。これは、出力バッファのESDプロテクト・レベルを改善する。抵抗器180a−180gが各々の並列の電流ミラー脚106a−106gに置かれるので、データ出力ターミナル102に対する実効抵抗は最小にされ、そして、それはバッファの許容可能なパフォーマンス・レベルを維持するのを助ける。
【0050】
好ましくは、抵抗器の抵抗と、対応する電流ミラー脚106a−106gの出力電流との乗算が、全ての電流ミラー脚106a−106gにかかる一定値に等しくなるように、各々の抵抗器180a−180gはサイズ設定される。例えば、上記のように、電流ミラー脚106a−106gは、各々データ出力ターミナル102と異なる出力電流を引き出す。
【0051】
電流ミラー脚106a及び106bのそれぞれは、類似した出力電流を引き出す。電流ミラー脚106cは、電流ミラー脚106a−106bの約2倍の出力電流を引き出す。電流ミラー脚106dは、電流ミラー脚106cの約2倍の出力電流を引き出すのが好ましい。電流ミラー脚106eは、二回、電流ミラー脚106dの約2倍の出力電流を引き出す。電流ミラー脚106fは、電流ミラー脚106eの約2倍の出力電流を引き出す。最後に、電流ミラー脚106gは、電流ミラー脚106fの約2倍の出力電流を引き出す。
【0052】
したがって、抵抗器180a及び180bは、好ましくは同じ抵抗値を有する。抵抗器180cは、好ましくは、抵抗器180a及び180bの約半分の抵抗値を有する。抵抗器180dは、好ましくは、抵抗器180cの約半分の抵抗値を有する。抵抗器180eは、好ましくは、抵抗器180dの約半分の抵抗値を有する。抵抗器180fは、好ましくは、抵抗器180eの約半分の抵抗値を有する。最後に、抵抗器180gは、好ましくは、抵抗器180fの約半分の抵抗値を有する。抵抗器180a−180gは、好ましくは、それぞれ、200オーム、200オーム、100オーム、50オーム、25オーム、12.5オーム、6.5オームの抵抗値を有するポリシリコン抵抗器である。
【0053】
最後に、アノード及びカソードを有するESDダイオード182は、データ出力ターミナル102(または内部の出力ピン150)と、グランド138との間で提供されることができる。アノードは、グランド138に結合され、カソードは、データ出力ターミナル102(または内部のデータ出力ピン150)に結合される。この構成において、ダイオード182は、データ出力ターミナル102(または、内部出力ピン150)の負の電圧スパイクを制限するのを助ける
図示実施例において、類似のダイオードは、データ出力ターミナル102と供給電圧130との間には提供されない。この種のダイオードは、データ出力ターミナル102を、供給電圧130を超える約1つのダイオードの電圧降下にクランプする傾向がある。しかし、上述のように、供給電圧130の約2倍でデータ出力信号ピークを有することが、しばしば望ましい。これは、データ出力ターミナル102と供給電圧130との間で接続されるダイオードによっては、可能ではない。
【0054】
したがって、本発明の好適な実施例を記載により、当該技術分野の専門家には、ここに示された教示が、ここに添付の請求項の範囲内で他の実施例に適用可能であることは、容易に理解できる。
【図面の簡単な説明】
【図1】 図1は、本発明を含んでいる統合化された直接ダウン変換狭帯域FSKトランシーバのブロック図である。
【図2】 図2A及び図2Bは、本発明の第1の例示的出力バッファの概要図を示す。
【図3】 図3A及び図3Bは、多くのカスコード過電圧保護デバイスを含んでいる本発明の第2の例示的出力バッファの概要図を示す。
【図4】 図4A及び図4Bは、多くのカスコード過電圧保護デバイス及び多くのESD抵抗器を含む本発明の第3の例示的出力バッファの概要図を示す。

Claims (3)

  1. データ入力端子及びデータ出力端子を有し、前記データ入力端子でデータ入力信号を受信し、前記データ出力端子でデータ出力信号を出力するバッファにおいて、
    基準レッグ及び2本以上の電流ミラー・レッグを有する電流ミラー手段であって、選択された電流ミラー・レッグは使用可能化端子を有し、基準レッグはバッファのデータ入力端子に接続されており、2本以上の電流ミラー・レッグはバッファのデータ出力端子に接続されている、電流ミラー手段と、
    直流基準電流を前記基準レッグへ供給するための電流源と、を含み、
    前記データ入力信号は基準レッグに入力信号基準電流を印加しており、
    各々の電流ミラー・レッグはデータ出力端子に、前記直流基準電流と前記入力信号基準電流と比例している出力電流を提供しており、更に、
    前記電流ミラー・レッグの第1のセットが前記データ出力信号に所望の出力電流を提供するのを可能にするために、選択された電流ミラー・レッグの使用可能化端子に接続される制御手段と、
    を含むバッファ。
  2. 給電圧によって電力を供給されるバッファであって、該バッファは、選択された周波数で前記供給電圧を上回る電圧を出力端子に生じさせるロードに接続された出力端子を有し、更に、
    該バッファの出力端子に、最終的にはロードに、ドライブ電流を印加するための駆動手段と、
    供給電圧より上に上昇する出力端子の電圧の少なくとも一部を吸収するために駆動手段と出力端子との間に配置されるカスコードトランジスタと、
    を含むことを特徴とするバッファ。
  3. データ入力信号を緩衝し、データ出力信号を出力するための方法であって、
    直流基準電流を供給するステップと、
    データ入力信号を受信するステップと
    データ入力信号を入力信号基準電流に変換するステップと
    2本以上の電流ミラー・レッグに前記直流基準電流と前記入力信号基準電流をミラーリングさせるステップであって、前記電流ミラー・レッグの各々は、前記直流基準電流と前記入力信号基準電流と比例しているデータ出力信号に出力電流を提供するステップと
    前記電流ミラー・レッグの第1のセットが、第1の出力電力レベルをデータ出力信号において提供するのを可能にするステップと
    を含む方法。
JP2000617716A 1999-05-13 2000-05-15 独立に制御可能な電流ミラー・レッグを備える出力バッファ Expired - Lifetime JP4544752B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/311,242 US6236238B1 (en) 1999-05-13 1999-05-13 Output buffer with independently controllable current mirror legs
US09/311,242 1999-05-13
PCT/US2000/013251 WO2000069245A2 (en) 1999-05-13 2000-05-15 Output buffer with independently controllable current mirror legs

Publications (3)

Publication Number Publication Date
JP2002544737A JP2002544737A (ja) 2002-12-24
JP2002544737A5 JP2002544737A5 (ja) 2007-06-21
JP4544752B2 true JP4544752B2 (ja) 2010-09-15

Family

ID=23206046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000617716A Expired - Lifetime JP4544752B2 (ja) 1999-05-13 2000-05-15 独立に制御可能な電流ミラー・レッグを備える出力バッファ

Country Status (8)

Country Link
US (1) US6236238B1 (ja)
EP (2) EP1177629B1 (ja)
JP (1) JP4544752B2 (ja)
AT (2) ATE281025T1 (ja)
AU (1) AU5014600A (ja)
CA (1) CA2372183A1 (ja)
DE (2) DE60041288D1 (ja)
WO (1) WO2000069245A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990714A (en) * 1996-12-26 1999-11-23 United Microelectronics Corporation Clock signal generating circuit using variable delay circuit
FR2817408B1 (fr) * 2000-11-30 2003-03-21 St Microelectronics Sa Ensemble commandable de sources de courant
US6710670B2 (en) * 2001-01-26 2004-03-23 True Circuits, Inc. Self-biasing phase-locking loop system
US6396351B1 (en) * 2001-02-05 2002-05-28 Em (Us) Design, Inc Preamplifier circuit for a photodetector
US6700365B2 (en) * 2001-12-10 2004-03-02 Intersil Americas Inc. Programmable current-sensing circuit providing discrete step temperature compensation for DC-DC converter
JP3966747B2 (ja) * 2002-03-13 2007-08-29 ローム株式会社 半導体集積回路装置
US7889752B2 (en) * 2003-06-05 2011-02-15 Marvell International Ltd. Dual ported network physical layer
US7053657B1 (en) * 2003-06-26 2006-05-30 Cypress Semiconductor Corporation Dynamically biased wide swing level shifting circuit for high speed voltage protection input/outputs
US7203045B2 (en) * 2004-10-01 2007-04-10 International Business Machines Corporation High voltage ESD power clamp
US7535258B1 (en) 2004-12-15 2009-05-19 Lattice Semiconductor Corporation Programmable current output and common-mode voltage buffer
US7215148B1 (en) 2004-12-15 2007-05-08 Lattice Semiconductor Corporation Programmable current output buffer
JP5406470B2 (ja) * 2008-06-20 2014-02-05 キヤノン株式会社 バッファ駆動装置
FR2945375B1 (fr) * 2009-05-07 2012-02-10 Continental Automotive France Port d'entree configurable de calculateur electronique de vehicule automobile
US8330547B2 (en) * 2009-06-30 2012-12-11 Qualcomm, Incorporated Gain control linearity in an RF driver amplifier transmitter
US8786368B2 (en) 2011-03-09 2014-07-22 Hittite Microwave Corporation Distributed amplifier with improved stabilization
US10236885B1 (en) 2018-04-02 2019-03-19 Honeywell International Inc. Digital output buffer with field status feedback
US10601614B1 (en) * 2018-09-24 2020-03-24 Texas Instruments Incorporated Methods, apparatus, and systems to increase common-mode transient immunity in isolation devices

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643183A (en) 1970-05-19 1972-02-15 Westinghouse Electric Corp Three-amplifier gyrator
NL7113893A (ja) 1971-10-09 1973-04-11
US3715693A (en) 1972-03-20 1973-02-06 J Fletcher Gyrator employing field effect transistors
US4264874A (en) 1978-01-25 1981-04-28 Harris Corporation Low voltage CMOS amplifier
US4529947A (en) 1979-03-13 1985-07-16 Spectronics, Inc. Apparatus for input amplifier stage
JPS56105161U (ja) * 1980-01-11 1981-08-17
FR2602380B1 (fr) 1986-07-30 1988-10-21 Labo Electronique Physique Circuit gyrateur simulant une inductance
JPS63290413A (ja) * 1987-05-22 1988-11-28 Matsushita Electric Ind Co Ltd ディジタル信号処理回路
JP2848500B2 (ja) * 1991-04-04 1999-01-20 三菱電機株式会社 インタフェースシステム
US5257039A (en) * 1991-09-23 1993-10-26 Eastman Kodak Company Non-impact printhead and driver circuit for use therewith
DE69223776T2 (de) 1992-06-26 1998-07-16 Discovision Associates, Irvine, Calif. Logikausgangstreiber
US5451909A (en) * 1993-02-22 1995-09-19 Texas Instruments Incorporated Feedback amplifier for regulated cascode gain enhancement
JP2550871B2 (ja) * 1993-07-29 1996-11-06 日本電気株式会社 Cmos定電流源回路
US5392003A (en) 1993-08-09 1995-02-21 Motorola, Inc. Wide tuning range operational transconductance amplifiers
US5451898A (en) 1993-11-12 1995-09-19 Rambus, Inc. Bias circuit and differential amplifier having stabilized output swing
US5565815A (en) 1993-12-17 1996-10-15 Imp, Inc. Current amplifier having a fully differential output without a d.c. bias and applications thereof
JPH07235839A (ja) * 1994-02-22 1995-09-05 Hitachi Ltd 可変コンダクタンスアンプ
US5570090A (en) * 1994-05-23 1996-10-29 Analog Devices, Incorporated DAC with digitally-programmable gain and sync level generation
US5430409A (en) 1994-06-30 1995-07-04 Delco Electronics Corporation Amplifier clipping distortion indicator with adjustable supply dependence
US5477188A (en) 1994-07-14 1995-12-19 Eni Linear RF power amplifier
ES2153849T3 (es) 1994-11-07 2001-03-16 Cit Alcatel Mezclador de transmision con entrada en modo de corriente.
CN1049538C (zh) * 1995-11-27 2000-02-16 皇家菲利浦电子有限公司 电源电路
JP3688413B2 (ja) * 1995-12-21 2005-08-31 株式会社東芝 出力回路
US5809013A (en) 1996-02-09 1998-09-15 Interactive Technologies, Inc. Message packet management in a wireless security system
EP0824794B1 (en) 1996-03-06 2003-12-10 Koninklijke Philips Electronics N.V. Funkempfänger mit RF Verstärker
SE507892C2 (sv) * 1996-11-04 1998-07-27 Ericsson Telefon Ab L M Förfarande och anordning för att åstadkomma en konstruktion för digital-till-analogomvandling med hög prestanda
US5680038A (en) * 1996-06-20 1997-10-21 Lsi Logic Corporation High-swing cascode current mirror
US5767664A (en) 1996-10-29 1998-06-16 Unitrode Corporation Bandgap voltage reference based temperature compensation circuit
US5880599A (en) * 1996-12-11 1999-03-09 Lsi Logic Corporation On/off control for a balanced differential current mode driver
FI102647B1 (fi) 1997-04-22 1999-01-15 Nokia Mobile Phones Ltd Ohjelmoitava vahvistin
US5966030A (en) * 1997-08-05 1999-10-12 Lsi Logic Corporation Output buffer with regulated voltage biasing for driving voltages greater than transistor tolerance
US5847623A (en) 1997-09-08 1998-12-08 Ericsson Inc. Low noise Gilbert Multiplier Cells and quadrature modulators
US6037811A (en) * 1997-10-10 2000-03-14 International Microcircuits, Inc. Current-controlled output buffer
SE511827C2 (sv) 1998-03-02 1999-12-06 Ericsson Telefon Ab L M Differentiell linjedrivenhet

Also Published As

Publication number Publication date
JP2002544737A (ja) 2002-12-24
CA2372183A1 (en) 2000-11-23
EP1177629B1 (en) 2004-10-27
DE60041288D1 (de) 2009-02-12
US6236238B1 (en) 2001-05-22
AU5014600A (en) 2000-12-05
EP1513256A1 (en) 2005-03-09
EP1177629A2 (en) 2002-02-06
DE60015323T2 (de) 2005-10-27
ATE281025T1 (de) 2004-11-15
DE60015323D1 (de) 2004-12-02
ATE419675T1 (de) 2009-01-15
WO2000069245A2 (en) 2000-11-23
EP1513256B1 (en) 2008-12-31
WO2000069245A3 (en) 2001-02-08

Similar Documents

Publication Publication Date Title
JP4544752B2 (ja) 独立に制御可能な電流ミラー・レッグを備える出力バッファ
US6583661B1 (en) Compensation mechanism for compensating bias levels of an operation circuit in response to supply voltage changes
US6778022B1 (en) VCO with high-Q switching capacitor bank
US6947720B2 (en) Low noise mixer circuit with improved gain
US6429733B1 (en) Filter with controlled offsets for active filter selectivity and DC offset control
US7215932B2 (en) On-chip impedance matching power amplifier
US6606489B2 (en) Differential to single-ended converter with large output swing
US7095999B2 (en) Signal processing semiconductor integrated circuit device
CA2673043A1 (en) Method and apparatus for receiving radio frequency signals
US6184747B1 (en) Differential filter with gyrator
US20010006900A1 (en) Transceiver and a method for receiving a RF signal in a transceiver
US6943618B1 (en) Compensation mechanism for compensating bias levels of an operation circuit in response to supply voltage changes
US5893027A (en) Fully integrated two-way radio transmitter utilizing current mode transmit buffer and method of using same
US6965653B2 (en) Circuit and method for processing an automatic frequency control signal
JP2009017494A (ja) バイアス回路、電力増幅回路、受信機、送信機及び送受信機
EP0821470A1 (en) Voltage-controlled oscillator circuit
JP2010004304A (ja) 電力増幅回路及び送信機並びに送受信機
US7112838B2 (en) Multipurpose metal fill
WO2003058815A1 (en) Circuit and method for processing afc signals
WO2004079782A9 (en) Power dissipation reduction in wireless transceivers
JP2001085960A (ja) 出力バッファ回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term