JP4538509B2 - イオン発生素子、帯電装置および画像形成装置 - Google Patents

イオン発生素子、帯電装置および画像形成装置 Download PDF

Info

Publication number
JP4538509B2
JP4538509B2 JP2008146851A JP2008146851A JP4538509B2 JP 4538509 B2 JP4538509 B2 JP 4538509B2 JP 2008146851 A JP2008146851 A JP 2008146851A JP 2008146851 A JP2008146851 A JP 2008146851A JP 4538509 B2 JP4538509 B2 JP 4538509B2
Authority
JP
Japan
Prior art keywords
electrode
ion generating
generating element
discharge
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008146851A
Other languages
English (en)
Other versions
JP2009230093A (ja
Inventor
克己 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008146851A priority Critical patent/JP4538509B2/ja
Priority to US12/391,485 priority patent/US8055157B2/en
Priority to CN2009101180000A priority patent/CN101520626B/zh
Publication of JP2009230093A publication Critical patent/JP2009230093A/ja
Application granted granted Critical
Publication of JP4538509B2 publication Critical patent/JP4538509B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

本発明は、複写機、プリンタ、ファクシミリ等の画像形成装置に用いられ、像担持体上に形成された静電潜像をトナーによって現像し、これを印字媒体上に転写定着させる画像形成プロセスに用いられるイオン発生素子、これを備える帯電装置および画像形成装置に関する。
更に詳しくは、誘電体の表裏に放電電極と誘導電極を配置し、両者間に高圧交番電圧を印加して沿面放電を生じさせ、所望極性のイオンを取り出して、被帯電体(例えば感光体)を帯電させたり、像担持体(例えば感光体や中間転写体)上のトナー像を転写対象物(例えば中間転写体や記録紙)への転写前に帯電させるイオン発生素子、およびこれを備える帯電装置に関するものである。また、本発明は、この帯電装置を備えた画像形成装置に関するものである。
従来、電子写真方式を用いた画像形成装置においては、感光体を帯電させる帯電装置、感光体等に形成されるトナー像を記録用紙等に静電的に転写させる転写装置、感光体等に静電的に接触する記録用紙等を剥離させる剥離装置などに、コロナ放電方式の帯電装置がよく用いられている。
このようなコロナ放電方式の帯電装置としては、一般に、感光体や記録用紙等の被帯電物に対向する開口部を有するシールドケースと、このシールドケース内部に張設される線状あるいは鋸歯状の放電電極とを備えている。そして、放電電極に高電圧を印加することでコロナ放電を発生させて被帯電物を一様に帯電させる所謂コロトロンや、放電電極と被帯電物との間にグリッド電極を設け、このグリッド電極に所望の電圧を印加することで被帯電物を一様に帯電させる所謂スコロトロンなどが用いられている(例えば、特許文献1参照)。
このコロナ放電方式の帯電装置を、中間転写体や記録紙等の転写媒体に転写する前のトナー像を帯電するための転写前帯電装置に利用したものが、例えば特許文献2、3に開示されている。特許文献2,3に開示された技術によれば、像担持体に形成されたトナー像内に帯電量のばらつきがあっても、転写前にトナー像の帯電量を均一にするので、トナー像を転写するときの転写余裕度の低下を抑え、トナー像を転写媒体に安定して転写することができる。
しかしながら、上述した従来の帯電装置は複数の問題を抱えている。第一に、帯電装置として放電電極のみならずシールドケースやグリッド電極等が必要である。また、放電電極と帯電対象物との間一定の距離(10mm)を確保する必要がある。そのため、帯電装置を設置するためのスペースが多く必要となる。一般に一次転写部周辺には現像装置や一次転写装置、二次転写部前には感光体や二次転写装置等が配置されており、転写前帯電装置を配置するためのスペースは少ない。そのため、従来のコロナ放電方式の帯電装置ではレイアウトが非常に困難となる、といった問題がある。
また第二に、従来のコロナ放電方式の帯電装置では、オゾン(O)や窒素酸化物(NOx)等の放電生成物が大量に生成される、という問題がある。オゾンが大量に生成されると、オゾン臭の発生、人体に対する有害な影響、強い酸化力による部品劣化等の問題を引き起こす。また、窒素酸化物が生成されると、窒素酸化物が感光体にアンモニウム塩(硝酸アンモニウム)として付着し、異常画像の原因になるといった問題が生じる。特に、通常用いられている有機感光体(OPC)は、オゾンやNOxによりシロ抜けや像流れ等の画像欠陥を生じやすい。
このようなことから、転写部位が複数存在するような中間転写方式のカラー画像形成装置では、全ての転写部位(複数の一次転写部位、および二次転写部位)の上流に転写前帯電装置を設けることは、転写前にトナー像の帯電量を均一にする点から好ましいものの、実際上、オゾンやNOxの発生量の問題から困難であった。
また、オゾンレス化の目的で、近年、感光体自体を帯電する帯電装置として、導電性ローラや導電性ブラシによる接触帯電方式が採用されてきている。しかし、接触帯電方式によってトナー像を乱さずに帯電させることは困難である。従って、転写前帯電装置には、非接触のコロナ放電方式のものを用いることになる。だが、接触帯電方式を搭載した画像形成装置に従来のコロナ放電方式による転写前帯電装置を設けた場合、オゾンレスという特徴は発揮されない。
なお、オゾン発生量を低減させるための技術として、例えば特許文献4には、ほぼ一定のピッチで所定の軸方向に並べられた多数の放電電極と、放電電極に放電開始電圧以上の電圧を印加するための高圧電源と、高圧電源の出力電極と放電電極との間に設置された抵抗体と、放電電極と近接し該放電電極と被帯電物との間の位置に設置されたグリッド電極と、グリッド電極にグリッド電圧を印加するためのグリッド電源とを備え、放電電極とグリッド電極とのギャップを4mm以下にすることで放電電流を低減してオゾン発生量を低減する帯電装置が開示されている。
しかしながら、特許文献4に開示された技術では、放電電流を低減することによってオゾン発生量を低減することはできるものの、それでもなおオゾンの低減量が十分でなく、1.0ppm程度のオゾンが発生してしまう。また、放電生成物やトナー、紙粉等が放電電極に付着したり、放電エネルギーによって放電電極の先端が磨耗・劣化したりすることにより、放電が不安定になるという別の問題もある。さらに、放電電極の形状から放電電極に付着した放電生成物やトナー、紙粉等をクリーニングするのが困難である。
その上、放電電極と被帯電物とのギャップが狭いために、複数の放電電極のピッチに起因する長手方向(放電電極のピッチ方向)の帯電ばらつきが生じやすいという問題もある。ここで、帯電ばらつきを解消するために放電電極ピッチを小さくすることが考えられるが、その場合には放電電極数が増えて製造コストが増大してしまう。
上記のような従来の帯電装置の課題を解決するため、例えば特許文献5には、誘電体を間に介して、外周辺に尖頭形の凸部を備えた放電電極と誘導電極とを配設し、この電極間に高圧交番電圧を印加することでイオンを発生させる(以後、このタイプの帯電方式を沿面放電方式と称する)イオン発生素子(沿面放電素子)を備えた帯電装置が開示されている。
この沿面放電方式の帯電装置は、シールドケースやグリッド電極等がないため小型である。また、放電面がフラットであることからクリーニングがしやすく、メンテナンス性にも優れている。
ここで、イオン発生素子(沿面放電素子)は、高湿環境下において放電特性が低下する傾向がある。これを回避する方策として、例えば特許文献6や特許文献7に開示された技術では、ヒータ部材をイオン発生素子に配置し、素子を加温することで放電領域の吸着水分を除去して放電性能を向上させている。特に特許文献7には、誘導電極部分に通電することでジュール熱を発生させて、ヒータ作用も兼用することが記載されており、引用文献7に開示の技術は、別途ヒータ素子を配置するのに比べ、コンパクトにかつ、低コストにできる。
特開平6−11946号公報(公開日:1994年1月21日) 特開平10−274892号公報(公開日:1998年10月13日) 特開2004−69860号公報(公開日:2004年3月4日) 特開平8−160711号公報(公開日:1996年6月21日) 特開2003−249327号公報(公開日:2003年9月5日) 特開2004−157447号公報(公開日:2004年6月3日) 特開2002−237368号公報(公開日:2002年8月23日) 特開平9−305001号公報(公開日:1997年11月28日)
しかしながら、上記のようなヒータラインを有するイオン発生素子の場合、次のような問題点がある。例えば不慮のアクシデントで素子が割れたり、製造時の品質バラツキで高圧線とヒータライン間の絶縁性能が不十分であったりする場合、高圧線からヒータラインへのリークが発生する危険性がある。その結果、ヒータ電源の破損を招いたり、イオン発生素子を備えたマシン本体の破壊や発火事故につながる可能性もある。
ここで、素子の割れが生じた場合、放電電極に最も近い誘導電極へのリークが先に起こるが、特許文献7のように誘導電極とヒータ電極とが兼用のイオン発生素子を図7(a)に示すが、このような構成の場合、リーク発生によってヒータ電源34がダメージを受ける可能性が高い。また、図7(b)に示すような誘導電極23とヒータ電極25とが別になっているイオン発生素子であっても、素子に割れが生じた場合、放電電極22に最も近い誘導電極23へのリークが先に起こるが、放電電極22への印加電圧と、放電電極22とヒータ電極25との距離や割れ面の状態とによって、ヒータ電極25へもリークが発生する危険性がある。また放電を伴うリークであった場合、上部誘電体21aが樹脂などの場合に、溶融した樹脂が誘導電極23へのリークパスを封じてしまう。またオゾンの発生などを抑えたい場合には誘導電極23を線状にして、放電領域幅を小さくすることが有効であるが、線幅を細くした場合に上述のリークパスが封じられる可能性が高い。その結果、放電電極23からのリーク先がヒータ電極25となり、ヒータ電源34の破損を招いたり、イオン発生素子を備えたマシン本体の破壊につながることもある。
このような事態を防ぐために、例えば誘電体を3ないし4層構造にし、誘導電極層の下側(放電電極と反対側)の層にヒータ電極を設けて、放電電極とヒータ電極の距離を大きくとる方法などが考えられる。特許文献8には、誘導電極の反対側にセラミック基板を介してヒータ電極を設け、さらにヒータ電極の表面側に接着剤層とバインダー層を設けたイオン発生素子の構成が開示されている。
しかしながら、特許文献8の技術は、上部誘電体のガラスやセラミック基板が割れたりした場合であっても、前記の接着剤やバインダー層によって割れた破片の飛散りや画像形成装置内に散逸することを防ぐことを目的としたものである。ヒータ電極へのリーク防止の観点からするとセラミック基板の厚みで絶縁距離を確保する必要があるが、その厚みは0.5mmと十分な厚みではなく、ヒータ電極へのリーク対策を意図したものではない。また仮にこのような多層構成を採っても、絶縁性能を確保するには誘電電極とヒータ電極との間の誘電体はかなり厚くする必要があることや、層構成の複雑化によって高コストになる。
本発明は上記問題に鑑みなかれたものであり、その目的は、沿面放電に伴ってイオンを発生させるイオン発生素子において、低コストでヒータ電極へのリークを防止でき、安全面に配慮したイオン発生素子、帯電装置および画像形成装置を提供することである。
本発明に係るイオン発生素子は、上記課題を解決するために、誘電体を挟んで設けられた放電電極と誘導電極との間に電位差を与えるよう電圧が印加されることにより、沿面放電に伴ってイオンを発生するイオン発生素子であって、通電により発生するジュール熱で当該イオン発生素子を加温するヒータ電極が、前記誘電体の前記誘導電極が形成される側の面で、前記放電電極と当該ヒータ電極との間の距離が前記放電電極と前記誘導電極との間の距離より大きくなる位置に配置され、前記誘電体の前記誘導電極が形成される側の面で、前記ヒータ電極と前記誘導電極との間に、接地用接続部を有するシールド電極が配置されていることを特徴としている。
上記構成によると、誘電体の誘導電極が設けられた面と同じ面に、ヒータ電極を設け、さらに、誘導電極とヒータ電極との間に接地用接続部を有するシールド電極が配置されている。そのため、イオン発生素子に割れが発生したときに、誘導電極へのリークパスが封じられても、シールド電極が次のリーク先となり、シールド電極は接地用接続部により接地電位へ接続するので、リーク電流は接地電位に流れる。よって、ヒータ電極へリークを防止することが可能となる。ここで、シールド電極は誘導電極の幅に対して太く設けられているのがシールド機能を確保する上でも好ましい。ヒータ電極へのリークを防止できるため、ヒータ電源の破損を招くこともなく、イオン発生素子を備えたマシン本体の破壊や発火事故も防止することができる。よって、安全面を考慮したイオン発生素子を提供することができる。
また、誘電体の同じ面に、誘導電極とヒータ電極と、その間にシールド電極と、を配置しているために、誘電体の面方向で絶縁距離を確保しやすい。よって、放電電極とヒータ電極とを遠ざけるためにこれらの間に厚い誘電体を用いる必要も無い。さらに、電極層は、誘電体を挟んで、2層(放電電極および、誘導電極とヒータ電極とシールド電極)であるため、構造も簡素であり、低コストで容易に作成することができる。
本発明に係るイオン発生素子では、上記構成に加え、前記誘導電極は前記シールド電極の接地用接続部と接続していてもよい。
誘導電極にバイアス電圧を与える電源を接続していた場合、素子の割れが生じて誘導電極へリークが発生した場合そのバイアス電源へのリークによって、電源の破損が起こる危険性がある。そこで、本発明に係る上記構成を採ることで、リーク電流は接地電位へ流れるため、上述のような電源破壊の心配が無い。さらに誘導電極とシールド電極とを共通の電極パターンを介して接地電位へ接続することができるため、素子の配線パターンを簡素化できると共に、接地電位への接続構造も簡素化され、装置の信頼性向上や低コスト化に貢献できる。なお、誘導電極の接地用接続部とシールド電極の接地用接続部とが接続していてもよいし、誘導電極の接地用接続部とシールド電極の接地用接続部とが共通化されていてもよい。
本発明に係るイオン発生素子では、上記構成に加え、前記ヒータ電極は、ヒータ電源に接続される一端と、前記シールド電極の接地用接続部とは別の接地用接続部に接続される他端と、を有していてもよい。
上記構成によると、ヒータ電極の一端はヒータ電源に接続され、他端は、シールド電極の接地用接続部とは別の接地用接続部に接続される。ここで、誘導電極は、シールド電極の接地用接続部に接続している。よって、誘導電極とヒータ電極とは電気的に接続しておらず、放電電流がヒータ電極を通してヒータ電源に流れ込み機器全体へのダメージとなること、を防止することができる。
本発明に係るイオン発生素子では、上記構成に加え、前記ヒータ電極は、ヒータ電源に接続される一端と、前記シールド電極の前記接地用接続部に接続される他端と、を有していてもよい。
上記構成によると、ヒータ電極の一端の電極とシールド電極を共通の電極パターンを介して接地電位へ接続することができるため、素子の配線パターンを簡素化できると共に、接地電位への接続構造も簡素化され、装置の信頼性向上や低コスト化に貢献できる。なお、ヒータ電極の接地用接続部とシールド電極の接地用接続部とが接続していてもよいし、ヒータ電極の接地用接続部とシールド電極の接地用接続部とが共通化されていてもよい。
本発明に係るイオン発生素子では、上記構成に加え、前記誘導電極は前記シールド電極の接地用接続部とは別の接地用接続部に接続されていてもよい。
ここで、誘導電極の接続が浮く(例えば、接地されていない、あるいは所望の電位供給部に接続されていない)と、ヒータ電極を通して放電電流がヒータ電源に流れ込み機器全体へのダメージとなる場合がある。しかし、上記構成によると、誘導電極とヒータ電極とは電気的に接続しておらず、放電電流がヒータ電極を通してヒータ電源に流れ込み機器全体へのダメージとなること、を防止することができる。
本発明に係るイオン発生素子では、上記構成に加え、前記シールド電極はライン状に形成されており、その長手方向の両端に接地用接続部が設けられていてもよい。
イオン発生素子が、シールド電極の長手方向とは垂直方向に割れた場合、シールド電極の接地用接続部側は接地電位を保っているが、接地していない側はフローティング状態となってしまう。この場合、フローティング状態になった部分がヒータラインまでの橋渡し的な電極となり、リーク電流をシールドする機能を果たさない懸念がある。そこで、上記構成のように、シールド電極の長手方向の両端に接地用接続部を有する構成を採ることで、割れた両側部分共に接地電位を維持でき、シールド電極作用を安定に果たすことが可能となり、より好ましい。
また、本発明に係るイオン発生素子では、前記シールド電極と誘導電極との間の距離は、前記放電電極と前記誘導電極との間の距離よりも大きいのが好ましい。
シールド電極が、誘導電極にあまり近づきすぎると、シールド電極自体が誘導電極的な作用をし、放電特性が変化する場合がある。そこで、上記構成とすることで、シールド電極が誘導電極作用の主たる担い手ではない状態にすることができる。なお、シールド電極が誘導電極作用の主たる担い手ではない状態にすることができれば、上記構成には限定されない。
また、本発明に係るイオン発生素子では、前記誘電体は、セラミックあるいはガラスを主成分として形成されているのが好ましい。
イオン発生素子(沿面放電素子)では、放電電極と誘導電極との間に配される誘電体の絶縁性能が長期にわたり維持されることが望ましい。ここで、誘電体として、有機材料系のものを用いた場合、長期の放電による電気的ストレスや発生したオゾンによるダメージで誘電体の絶縁性能が低下する場合がある。一方、誘電体としてセラミックやガラス等の無機系材料を用いた場合、上述のような性能劣化が少なく、長期にわたり安定した性能を維持できる。しかし、このような材料では不意の接触や荷重により割れなどの破損が生じやすいが、本発明のシールド電極を設けた構成を採用することで、不慮の破損が生じた場合でも、ヒータ電極へのリークを防ぐことができ、重大な事故を未然に防ぐことができる。よって、上記構成を有する本発明に係るイオン発生素子は、性能の向上と安全性とを両立できる。
本発明に係る帯電装置は、上記課題を解決するために、上記いずれか1つのイオン発生素子と、上記放電電極と上記誘導電極との間に交番電圧を印加する電源部とを備えることを特徴としている。
上記構成によると、本発明に係るイオン発生素子を備えているために、ヒータ電源の破損を防ぐことができ、安全な、また、コンパクトな帯電装置を提供できる。
本発明に係る画像形成装置は、上記帯電装置を、静電潜像担持体を帯電させる帯電装置として備えることを特徴としている。
静電潜像担持体を帯電させる装置に本発明の帯電装置を用いることで、帯電装置のヒータ電源の破損を防ぐことができ、画像形成装置本体の破壊を防止することができる。よって、安全な画像形成装置を提供することができる。さらに本発明の帯電装置は、上記したようにコンパクトであるため、コンパクトな画像形成装置を提供できる。
本発明に係る画像形成装置は、上記帯電装置を担持体上に担持されたトナーに電荷を与える転写前帯電用の帯電装置として備えることを特徴としている。
転写前帯電用の帯電装置として本発明に係る帯電装置を用いることで、帯電装置のヒータ電源の破損を防ぐことができ、画像形成装置本体の破壊を防止することができる。よって、安全な画像形成装置を提供することができる。さらに本発明の帯電装置は、上記したようにコンパクトであるため、転写前トナーの帯電を限られたスペースで行うことができ、画像形成装置の縮小化を図ることができる。
本発明のイオン発生素子は、以上のように、通電により発生するジュール熱で当該イオン発生素子を加温するヒータ電極が、前記誘電体の前記誘導電極が形成される側の面で、前記放電電極と当該ヒータ電極との間の距離が前記放電電極と前記誘導電極との間の距離より大きくなる位置に配置され、前記誘電体の前記誘導電極が形成される側の面で、前記ヒータ電極と前記誘導電極との間に、接地用接続部を有するシールド電極が配置されている。
上記構成によると、誘電体の誘導電極が設けられた面と同じ面に、ヒータ電極を設け、さらに、誘導電極とヒータ電極との間に接地用接続部を有するシールド電極が配置されている。そのため、イオン発生素子に割れが発生したときに、誘導電極へのリークパスが封じられても、シールド電極が次のリーク先となり、シールド電極は接地用接続部により接地電位へ接続するので、リーク電流は接地電位に流れる。よって、ヒータ電極へリークを防止することが可能となる。ここで、シールド電極は誘導電極の幅に対して太く設けられているのがシールド機能を確保する上でも好ましい。ヒータ電極へのリークを防止できるため、ヒータ電源の破損を招くこともなく、イオン発生素子を備えたマシン本体の破壊や発火事故も防止することができる。よって、安全面を考慮したイオン発生素子を提供することができる。
また、誘電体の同じ面に、誘導電極とヒータ電極と、その間にシールド電極と、を配置しているために、誘電体の面方向で絶縁距離を確保しやすい。よって、放電電極とヒータ電極とを遠ざけるためにこれらの間に厚い誘電体を用いる必要も無い。さらに、電極層は、誘電体を挟んで、2層(放電電極および、誘導電極とヒータ電極とシールド電極)であるため、構造も簡素であり、低コストで容易に作成することができる。
〔実施の形態〕
以下、本発明に係るイオン発生素子、これを備えた本発明に係る帯電装置、およびこれを備えた画像形成装置についての一実施形態を、図1〜6に基づいて、具体的に説明する。なお、以下の実施形態は、本発明を具体化した一例であり、本発明の技術的範囲を限定する性格のものではない。
まず、本実施形態における画像形成装置の全体構成について説明する。図2は、本実施形態の転写前帯電装置を備えた画像形成装置100の概略構成を示す断面図である。この画像形成装置100は、いわゆるタンデム式で、かつ、中間転写方式のプリンタであり、フルカラー画像を形成できる。
図2に示すように、画像形成装置100は、4色(C・M・Y・K)分の可視像形成ユニット50a〜50d、転写ユニット40、及び定着装置14を備えている。
転写ユニット40は、中間転写ベルト15(像担持体)と、この中間転写ベルト15の周囲に配置された4つの一次転写装置12a〜12d、二次転写前帯電装置3、二次転写装置16、及び転写用クリーニング装置17を備えている。
中間転写ベルト15は、可視像形成ユニット50a〜50dによって可視化された各色のトナー像が重ね合わせて転写されるとともに、転写されたトナー像を記録紙Pに再転写するためのものである。具体的には、中間転写ベルト15は無端状のベルトであり、一対の駆動ローラ及びアイドリングローラによって張架されているとともに、画像形成の際には所定の周速度(本実施形態では167〜225mm/s)に制御されて搬送駆動される。
一次転写装置12a〜12dは、可視像形成ユニット50a〜50dごとに設けられており、感光体ドラム7の表面に形成されたトナー像とは逆極性のバイアス電圧が印加されることにより、トナー像を中間転写ベルトへ転写する。それぞれの一次転写装置12a〜12dは、対応する可視像形成ユニット50a〜50dと中間転写ベルト15を挟んで反対側に配置されている。
二次転写前帯電装置3は、中間転写ベルト15に重ね合わせて転写されたトナー像を再帯電させるものであり、詳細については後述するが、本実施形態では、イオンを放出することによってトナー像を帯電させる。
二次転写装置16は、中間転写ベルト15上に転写されたトナー像を、記録紙Pに対して再転写するためのものであり、中間転写ベルト15に接して設けられている。転写用クリーニング装置17は、トナー像の再転写が行われた後の中間転写ベルト15の表面をクリーニングするものである。
なお、転写ユニット40の中間転写ベルト15の周囲には、中間転写ベルト15の搬送方向上流から一次転写装置12a〜12d、二次転写前帯電装置3、二次転写装置16、転写用クリーニング装置17の順で各装置が配置されている。
二次転写装置16の記録紙P搬送方向下流側には、定着装置14が設けられている。定着装置14は、二次転写装置16によって記録紙P上に転写されたトナー像を記録紙Pに定着させるものである。
また、中間転写ベルト15には、4つの可視像形成ユニット50a〜50dがベルトの搬送方向に沿って接して設けられている。4つの可視像形成ユニット50a〜50dは、用いるトナーの色が異なっている点以外は同一構成であり、それぞれ、イエロー(Y)・マゼンタ(M)・シアン(C)・ブラック(K)のトナーが用いられる。以下では、可視像形成ユニット50aのみについて説明し、その他の可視像形成ユニット50b〜50dについては説明を省略する。これに伴い、図2では、可視像形成ユニット50aにおける部材しか図示していないが、他の可視像形成ユニット50b〜50dも可視像形成ユニット50aと同様の部材を有している。
可視像形成ユニット50aは、感光体ドラム(像担持体)7と、この感光体ドラム7の周りに配置された潜像用帯電装置4、レーザ書き込みユニット(図示せず)、現像装置11、一次転写前帯電装置2、クリーニング装置13などを備えている。
潜像用帯電装置4は、感光体ドラム7の表面を所定の電位に帯電させるためのものである。潜像用帯電装置4の詳細については後述するが、本実施形態では、潜像用帯電装置4から放出するイオンによって感光体ドラムを帯電させるようになっている。
レーザ書き込みユニットは、外部装置から受信した画像データに基づいて、感光体ドラム7にレーザ光を照射(露光)し、均一に帯電された感光体ドラム7上に光像を走査して静電潜像を書き込むものである。
現像装置11は、感光体ドラム7の表面に形成された静電潜像にトナーを供給し、静電潜像を顕像化してトナー像を形成するものである。
一次転写前帯電装置2は、感光体ドラム7の表面に形成されたトナー像を転写前に再帯電させるためのものである。一次転写前帯電装置2の詳細については後述するが、本実施形態では、イオンを放出することによってトナー像を帯電させるようになっている。
クリーニング装置13は、中間転写ベルト15にトナー像を転写した後の感光体ドラム7上に残留したトナーを除去・回収して感光体ドラム7上に新たな静電潜像およびトナー像を記録することを可能にするものである。
なお、可視像形成ユニット50aの感光体ドラム7の周囲には、感光体ドラム7の回転方向上流から、潜像用帯電装置4、レーザ書き込みユニット、現像装置11、一次転写前帯電装置2、一次転写装置12a、クリーニング装置13の順で各装置が配置されている。
次に、画像形成装置100の画像形成動作について説明する。可視像形成ユニットの動作については、上記した可視像形成ユニット50aの構成部材(参照符号がふられているもの)を用いて説明するが、可視像形成ユニット50b〜50dでも同様の動作が行われる。
まず、画像形成装置100は、図示しない外部装置から画像データを取得する。また、画像形成装置100の図示しない駆動ユニットが、感光体ドラム7を図2に示した矢印の方向に所定の速度(本実施形態では167〜225mm/s)で回転させるとともに、潜像用帯電装置4が感光体ドラム7の表面を所定の電位に帯電させる。
次に、取得した画像データに応じてレーザ書き込みユニットが感光体ドラム7の表面を露光し、感光体ドラム7の表面に上記画像データに応じた静電潜像の書き込みを行う。続いて、感光体ドラム7の表面に形成された静電潜像に対して、現像装置11がトナーを供給する。これにより、静電潜像にトナーを付着させてトナー像が形成される。
このようにして感光体ドラム7の表面に形成されたトナー像を、一次転写前帯電装置2が再帯電させる。そして、一次転写装置12aに感光体ドラム7の表面に形成されたトナー像とは逆極性のバイアス電圧が印加されることにより、一次転写前帯電装置2により再帯電させられたトナー像を中間転写ベルトへ転写する(一次転写)。
可視像形成ユニット50a〜50dが上記動作を順に行うことにより、中間転写ベルト15には、Y,M,C,Kの4色のトナー像が順に重ね合わされる。
重ね合わされたトナー像は、中間転写ベルト15によって二次転写前帯電装置3まで搬送され、搬送されたトナー像に対して、二次転写前帯電装置3が再帯電を行う。そして、再帯電が行われたトナー像を担持する中間転写ベルト15を、二次転写装置16が図示しない給紙ユニットから給紙された記録紙Pに対して圧接し、トナーの帯電とは逆極性の電圧が印加されることにより、記録紙Pにトナー像が転写される(二次転写)。
その後、定着装置14がトナー像を記録紙Pに定着させ、画像の記録された記録紙Pが図示しない排紙ユニットに排出される。なお、上記の転写後に感光体ドラム7上に残存したトナーは、クリーニング装置13によって、また、中間転写ベルト15上の残存したトナーは転写用クリーニング装置17によって除去・回収される。以上の動作により、画像形成装置100は、記録紙Pに適切な印刷を行うことができる。
次に、転写前帯電装置の構成について詳細に説明する。上述した一次転写前帯電装置2、潜像用帯電装置4、二次転写前帯電装置3は、設置される位置が異なっている点以外は同一であり、同じ構成の装置となっている。なお、潜像用帯電装置4では、帯電電位を制御するためのグリッド電極を以下で説明するイオン発生素子(沿面放電素子)1と感光体ドラム7との間に配置してもよい。このグリッド電極の位置は感光体ドラム7からは約1mm程度、イオン発生素子1からは2〜10mm程度隔てて配置するのがよい。以下では、二次転写前帯電装置3の詳細を説明し、一次転写前帯電装置2および潜像用帯電装置4については詳細な説明を省略する。
図3(a)は、中間転写ベルト15近傍に配置されたイオン発生素子1を備えた二次転写前帯電装置3の構成図であり、図3(b)は、電源に繋がった状態のイオン発生素子1の側面図である。また、図1(a)はイオン発生素子1の正面図、図1(b)は、図1(a)のイオン発生素子1のA−A’矢視断面図である。
図3(a)に示すように、二次転写前帯電装置3は、イオン発生素子1、対向電極31、高圧電源32、および電圧制御回路33を備えている。
イオン発生素子1は、図3(a)および(b)に示すように、誘電体21、放電電極22、誘導電極23、コート層(保護層)24、ヒータ電極25、およびシールド電極26を有しており、放電電極22と誘導電極23との間の電位差に基づいて発生する放電(放電電極22付近で誘電体21の沿面方向に生じるコロナ放電)により、イオンを発生させる。
誘電体21は略長方形状の上部誘電体21aと下部誘電体21bとを貼り合わせた平板状で構成されている。誘電体21の材料としては、有機物であれば耐酸化性に優れた材料が好適である。例えばポリイミドまたはガラスエポキシ等の樹脂を使用することができる。また、誘電体21の材料として無機物を選択するのであれば、マイカ集製材やアルミナ、結晶化ガラス、フォルステライト、ステアタイト等のセラミックを使用することができる。なお、耐食性の面を考えれば、誘電体21の材料として無機系のもののほうが望ましく、さらに成形性や後述する電極形成の容易性、耐湿性の低さ等を考えれば、セラミックを用いて成形するのが好適である。また、放電電極22と誘導電極23との間の絶縁抵抗が均一であることが望ましいため、誘電体21の材料内部の密度バラツキが少なく、誘電体21の絶縁率が均一であればあるほど好適である。誘電体26の厚みは、50〜250μmが好ましいが、この数値に限定はされない。
放電電極22は誘電体21(上部誘電体21a)の表面に誘電体21と一体的に形成されている。放電電極22の材料としては、例えばタングステンや銀、ステンレスのように導電性を有するものであれば、特に制限なく使用することができる。ただし、放電によって溶融や飛散する等の変形を起こさないものであることが条件となる。放電電極22は誘電体21の表面からの深さ(誘電体21の表面より誘導電極23側に放電電極22を設ける場合)、あるいは厚み(誘電体21の表面より突出して放電電極22を設ける場合)が、均一であるほうが望ましい。なお、本実施形態では、放電電極22の材料としてタングステン及びステンレスを使用する。
放電電極22の形状は、中間転写ベルト15の移動方向と直交する方向に均一に伸びた形状であればいずれの形状であってもよい。ただし、誘導電極23との電界集中が起こりやすい形状とするほうが、放電電極22と誘導電極23との間に印加する電圧が低くても、上記両電極間で放電させることができるので、できればそのほうが望ましい。本実施形態では、図1(a)に示すように、放電電極22の形状は櫛歯状となっており、放電を起こしやすい形状となっている。なお、本実施形態では、放電電極22は櫛歯状とするが、図5,6に示す構成のように、誘電体21の長手方向に伸びた長方形の電極となっていてもよい。
誘導電極23は、誘電体21の内部(上部誘電体21aと下部誘電体21bとの間)に形成され、放電電極22に対向して配置される。これは、放電電極22と誘導電極23との間の絶縁抵抗は均一であることが望ましく、放電電極22と誘導電極23とは並行であることが望ましいからである。このような配置により、放電電極22と誘導電極23との距離(以下、電極間距離と称する)が一定となるので、放電電極22と誘導電極23との間の放電状態が安定し、イオンを好適に発生させることが可能となる。図1(a),(b)に示す構成では、誘導電極23は、2本の線状電極であり、上部誘電体21aを挟んで、放電電極22を長手方向に沿って両側から挟むようにして対向配置されている。そして、2本の誘導電極23のそれぞれの一端は、接地用接続部27により、接地電位(グランド)に接続されている。なお、誘電電極23は、上記の形状に限定されることはなく、例えば図6に示すような、放電電極22と対向配置したベタ電極であってもよい。
また、誘導電極23は、誘電体21を1層として、誘電体21の裏面に設けても問題ないが、この場合は、誘電体の表面を伝って、放電電極と誘導電極がリークしないよう、印加電圧に対し十分な沿面距離を確保するか、或いは放電電極や誘導電極を絶縁性のコート層(保護層)で被覆する必要がある。
誘導電極23の材料としては、放電電極22と同様に、例えばタングステンや銀、ステンレスのように導電性を有するものであれば、特に制限なく使用することができる。本実施形態では、誘導電極23の材料としてタングステン及びステンレスを用いる。
ヒータ電極25は、誘電体21の内部(上部誘電体21aと下部誘電体21bとの間)に、誘導電極23とは別に設けられており、ライン状で、誘電体21の長手方向に一往復半ループした形状となっている。このようなループ形状であるのは、抵抗を所定の値に高めるためであるが。1本のシンプルなパターンで所望の抵抗値を出せる要件(材料変更、厚み制御等)が揃っていればループする必要はない。なお、ループ形状とする優位点は、細線パターンでの断線(印刷、焼成、使用時)の回避が挙げられる。また、ヒータ電極25は、放電電極22とヒータ電極2との間の距離が放電電極22と誘導電極23との間の距離より大きくなる位置に配置される。
ヒータ電極25の、一端はヒータ電源34に、他端は接地電位に接続するよう設置されている。そして、ヒータ電源34によりヒータ電極25に所定の電圧(本実施形態では12V)が印加されることで、ヒータ電極25がジュール熱により発熱するよう構成されている。このように、ヒータ電極25を発熱させることで、誘電体21が昇温(本実施形態では約60℃)し、誘電体21の吸湿を抑制することができる。よって、高湿環境下でも安定してイオンを発生させることができる。誘電体21がセラミックの場合、誘電体21自体は吸湿しないものの、誘電体21の表面が結露すると、放電特性が低下することから、ヒータの発熱により結露を防止、或いは結露を解消することは有効である。ヒータ電極25と誘導電極23とは、下部誘電体21bの上面に、シールド電極26を挟んで配線されている。
シールド電極26は、下部誘電体21bの上面に、ヒータ電極25と誘導電極23との間に配置され、接地電位と接続する接地用接続部27を有している。シールド電極26は、ヒータ電極25へのリークを防ぐために設けられる。シールド電極26は誘導電極23の幅に対して太く設けられているのがシールド機能を確保する上でも好ましい。
ここで、シールド電極26は、少なくともシールド電極26が誘導電極作用の主たる担い手ではない状態となるよう配置される必要がある。これは、要求される放電電流量、均一性、オゾン発生量、目標ライフなどの実使用性能とコストの兼ね合い等を考慮して決定すればよい。そのためには、例えば、シールド電極26と誘導電極23間を、放電電極22と誘導電極23間の距離よりも大きく取る(距離を2倍以上、電界強度を半分以下)ような構成としてもよい。しかしこれは単なる例示であり、シールド電極26が誘導電極作用の主たる担い手ではない状態に配置されれば、この構成に限定されることはない。なお、放電電極22と誘導電極23との間の距離とは、図1(a)に示す放電電極22の長手方向と垂直な方向での距離(投影した距離)と、上部誘電体21の厚み(積層方向での距離)とを用いて、((投影距離)2+(積層方向距離)20.5と表せる。ただし、積層方向距離は数10ないし200μm程度であり、投影距離がmmオーダーならば、放電電極22と誘導電極23との間の距離は、投影距離とほぼ同じと考えてよい。
また、本実施形態のイオン発生素子1では、ヒータ電極25は、上部誘電体21aの誘導電極23が形成される面(下部誘電体21bの上面とも言える)に、誘導電極23とは別に形成されている。そして、誘導電極23にはヒータ電流が流れないように、誘導電極23とヒータ電極25とが配されている。このような構成であるため、誘導電極23の抵抗値は、ヒータ電極25に影響しない。そのため、誘導電極23は、様々な条件に応じて誘導電極23としての適切な大きさや形状を設定することができる。また、ヒータ電極25は、放電電極22と誘導電極23間の放電特性に影響を与えることなく、イオン発生素子1を加温し、吸着水分を減じることができる。よって、イオン発生素子1は、安定した効率のよい放電を行うことができる。また、ヒータ電極25は、イオン発生のための放電に用いられる電圧と共用の電圧(例えば、12Vや24Vなど)にて、所望の投入電力となるように、電極幅や長さを調整することができる。
なお、放電電極22および誘導電極23は、銅、金、ニッケル等にてメッキされていることが望ましい。メッキすることで、電極としてのライフが延びると共に強度を高めることができる。
コート層24は、放電電極22を覆うように誘電体21上に形成されるものであり、例えばアルミナ(酸化アルミニウム)やガラス、シリコン等で形成される。また放電電極22が酸化や電気的作用による磨耗などに対して強い材料からなる場合、コート層24を廃止しても良い。
ここで、本実施形態のイオン発生素子1の製造方法について説明するが、本発明に係るイオン発生素子の製造方法は以下の方法、数値に限定されることはない。まず、例えば、厚さ0.2mmのアルミナシートを所定の大きさ(例えば、幅8.5mm×長さ320mm)に切断し、2つの略同一の大きさを有するアルミナの基材を形成し、これらを上部誘電体21a及び下部誘電体21bとする。次に、上部誘電体21aの上面に、放電電極22として櫛歯状にタングステンをスクリーン印刷し、放電電極22を上部誘電体21aと一体成形する。一方、下部誘電体21bの上面に、ヒータ電極25、シールド電極26、および誘導電極23としてタングステンをスクリーン印刷し、ヒータ電極25、シールド電極および誘導電極23を下部誘電体21bと一体成形する。本実施形態では、誘導電極23は、誘電体21の長手方向に沿って、放電電極22を挟むように2本、印刷する。ヒータ電極25は、放電電極22とヒータ電極25との間の距離が、放電電極22と誘導電極23との間の距離より大きくなる位置に、印刷する。また、シールド電極26は、ヒータ電極25と誘導電極23との間に、配置するよう印刷する。なお、シールド電極26は誘導電極23の幅に対して太く設けられているのがシールド機能を確保する上でも好ましい。
さらに、上部誘電体21aの表面に、放電電極22を覆うようにアルミナのコート層24を形成して、放電電極22を絶縁コートする。そして、上部誘電体21aを介して誘導電極23が放電電極22を挟むように、上部誘電体21aの下面と下部誘電体21bの上面とを重ね合わせた後、圧着を行う。その後、これを炉に入れて1400〜1600℃の非酸化性雰囲気で焼成する。このようにして、本実施形態のイオン発生素子1を容易に製造することができる。なお、焼成前シートの圧着の順番や回数は、放電電極22印刷前でも良いし、コート層24形成前後でも構わない。
対向電極31は、本実施形態ではステンレス製の板状形状となっており、中間転写ベルト15を介してイオン発生素子1と対向する位置に、中間転写ベルト15の裏面側(トナー像が形成されない側)に密着するよう配置される。そして、対向電極電源35を介してグランドに接続されている。対向電極電源35は、対向電極31に所定の電圧を印加する構となっている。このような対向電極電源35は、放電電極22からの放電を生じ易くするために配されるものであり、必ず必要なものではなく、省略することもできる。
高圧電源(電圧印加回路)32は、電圧制御回路33の制御により、イオン発生素子1の放電電極22と誘導電極23との間に電圧を供給する構成となっている。印加電圧はVpp:2〜4kV、オフセットバイアスは−1〜−2kV、周波数は500〜2kHzのパルス波が用いられる。パルス波のDutyは高圧側時間が10〜50%となるようにしている。なお、波形は正弦波でも構わないが、放電の効率、特に高湿条件での放電性能を考慮すると、パルス波の方が良好である。
上記の構成の高圧電源32を動作させ、放電電極22と誘導電極23との間に交流高電圧を印加すると、放電電極22と誘導電極23との間の電位差に基づいて、放電電極22近傍で沿面放電(コロナ放電)が起こる。これにより、放電電極22の周囲の空気をイオン化することでマイナスイオンを発生させ、中間転写ベルト15上のトナー像を所定の帯電量(ここでは約−30μC/g)に帯電させる。
また、高圧電源32は電圧制御回路33に接続されている。電圧制御回路33は、高圧電源の印加電圧の大きさを制御するものである。具体的には、電圧制御回路33は、対向電極電源35を流れる電流の値を計測し、この計測した電流の値が目標値になるように、高圧電源32の印加電圧をフィードバック制御する。
対向電極31を流れる電流の大きさは、トナー像の帯電量と相関する。従って、対向電極31を流れる電流を一定の目標値に保つことによって、トナー像の帯電量も一定の値となる。
このように、高圧電源32の印加電圧の大きさを、対向電極31を流れる電流の大きさに基づいてフィードバック制御することにより、放電電極22の先端部への異物の付着や、環境条件の変化、また画像形成装置100内における風の流れの変化等によって、イオンの発生量や発生したイオンがトナー像に到達する割合が変動しても、常に最適な量のイオンをトナー像に供給できる。
以上で説明したように本実施形態の帯電装置(一次転写前帯電装置2、二次転写前帯電装置3、潜像用帯電装置4)が有する、本実施形態のイオン発生素子1では、通電により発生するジュール熱で当該イオン発生素子1を加温するヒータ電極25が、上部誘電体21aの誘導電極23が形成される側の面で、放電電極22とヒータ電極25との間の距離が放電電極22と誘導電極23との間の距離より大きくなる位置に配置されている。また、上部誘電体21aの誘導電極23が形成される側の面で、ヒータ電極25と誘導電極23との間に、接地用接続部27を有するシールド電極26が配置されている。
上記構成によると、イオン発生素子1に割れが発生したときに、誘導電極23へのリークパスが封じられても、シールド電極26が次のリーク先となり、シールド電極26は接地用接続部により接地電位へ接続しているので、リーク電流は接地電位に流れる。よって、ヒータ電極25へリークを防止することが可能となる。ヒータ電極25へのリークを防止できるため、ヒータ電源34の破損を招くこともなく、イオン発生素子1を備えたマシン本体の破壊や発火事故も防止することができる。よって、安全面を考慮したイオン発生素子を提供することができる。
また、上部誘電体21aの下面(あるいは下部誘電体21bの上面ということもできる)という同じ面に、誘導電極23とヒータ電極25と、その間にシールド電極26と、を配置しているために、誘電体21の面方向で絶縁距離を確保しやすい。よって、放電電極22とヒータ電極25とを遠ざけるためにこれらの間に厚い誘電体を用いる必要も無い。さらに、電極層は、上部誘電体21aを挟んで、2層(放電電極22および、誘導電極23とヒータ電極25とシールド電極26)であるため、構造も簡素であり、低コストで容易に作成することができる。
なお、本実施形態ではシールド電極26、誘導電極23、およびヒータ電極25の一端を共通の接地用電極(接地用接続部27)として構成しているが、それぞれ別個の電位や電極であっても本実施形態と同様の作用を奏する。別個の電極となっている例を、図8に示す。図8のイオン発生素子10では、誘導電極23の接地用接続部27a、シールド電極26の接地用接続部27b、ヒータ電極25の接地用接続部27cが別々に設けられている。
図10に示すように、例えば、イオンの供給量を制御する目的で誘導電極23に任意のバイアスを印加する場合、シールド電極26の電位は単独で接地、あるいはヒータ電極の一端と共通の接地としてもよい。図10には、誘導電極23に任意のバイアスを印加するため、イオン供給量を制御する電源29を設けた構成を示す。図10のイオン発生素子12では、誘導電極23の接地用接続部27fと、シールド電極26およびヒータ電極25の共通の接地用接続部27gとが設けられている。このような構成でイオン発生素子1の割れが発生した場合、誘導電極23に高圧ラインからのリークが及ぶが、イオン供給量を制御する電源29としては数100Vの電圧を印加できる高圧電源を用いるため、高圧線からのリークに対する耐性が比較的高く、誘導電極23の電源の損傷が甚大となる可能性が低い。また画像形成装置としてのマシン全体で見た場合の、5V系や12V系のマシン全体動作に関わる電源とは異なるため、マシン全体へのダメージへと進展する可能性は低い。また、シールド電極26自身は接地電位に接続されているので、リーク発生時のヒータ電極25を介してのヒータ電源34あるいはマシン全体へのダメージを防止できる効果は得られる。さらにシールド電極とヒータラインの一端を共通の接地電位接点にすることで素子の構成をシンプルに出来るため、好適である。
あるいは別の構成例として、図9に示すように誘導電極23とシールド電極26とを共通の接地電位としてもよい。これは例えばヒータ電極25のヒータ電源34と逆の一端が直接接地されずに、ヒータ動作検知用の抵抗などが接続されている場合や、シールド電極26の接地用接続部(接地端子部分)近傍にヒータ電極25の接地電極が存在しない電極パターンである場合などが考えられる。例えば、ヒータ電極25の動作を検知するためにヒータ動作検出部28を設ける必要がある場合などは、図9に示すような構成を採ることで、シンプルにかつ機能的に素子を構成でき、望ましい。図9のイオン発生素子11では、誘導電極23およびシールド電極26の共通の接地用接続部27dと、ヒータ電極25の接地用接続部27eとが設けられている。
以上のように、シールド電極26の接地用接続部の共通化は、関連する周辺の条件により適宜選択可能であるが、上述の実施形態のように全て共通の接地用接続部27とすることで、パターンの簡略化による素子不良の防止、素子と接地電位の接続配線の簡易さ、リーク発生時の更なる安全性の確保、といった点で有効である。
〔実施例1〕
次に、本発明のイオン発生素子を用いた実施例について説明する。ここでは、本発明に係る実施例および比較例のイオン発生素子について図1,4,7を用いて説明する。
図7(a),(b)は、比較例のイオン発生素子を示す図である。図7(a)に示す比較例1のイオン発生素子の誘導電極23はライン状であり、放電電極22を囲むようにU字状にループしており、その両端にバイアス電圧を印加してヒータとしての機能を与えられている。つまり、比較例1のイオン発生素子では、誘導電極23とヒータ電極とが兼用となっている。この比較例1の誘導電極23の幅は約0.2mm、長さは約600(300×2)mmであり、抵抗は約30Ωとした。
図7(b)に示す比較例2のイオン発生素子は、誘導電極23とヒータ電極25とが分離した構造となっている。誘導電極23として、幅0.2mmの線状電極が、放電電極22を長手方向に沿って挟むように放電電極22の両側に1本ずつ設けられている。
ヒータ電極25は、誘電体21の長手方向に一往復半ループされて配置されており、その両端にバイアス電圧が印加されてヒータとしての機能を与えられる。ヒータ電極25の電極幅は0.2mm、長さは約900(300×3)mmであり、抵抗は30Ωとした。
一方、本発明に係る実施例(実施例1)のイオン発生素子1は、図1に示すように誘導電極23とヒータ電極25との間にシールド電極26が配置されている。ただし、放電電極22は、比較例2のイオン発生素子と同様、ライン状になっている。つまり、本実施例1のイオン発生素子1は、図7(b)に示す比較例2のイオン発生素子と比べ、放電電極22と誘導電極23の位置は誘電体21のやや端寄りにシフトしているが、放電電極22、誘導電極23、ヒータ電極25は、上記した比較例2と同様の構成である。なお、放電電極22と誘導電極23の位置は誘電体21のやや端寄りにシフトしているので、被帯電物との相対位置の設計配慮は必要であり、図3(a)に示すように被帯電物を適切に帯電できるように設置されていればよい。
シールド電極26の幅は約1mmであり、誘導電極23とヒータ電極25とのほぼ中間の位置に配置されている。ここで、シールド電極26が、誘導電極23にあまり近づきすぎると、シールド電極26自体が誘導電極的な作用をし、放電特性が変化する場合がある。そのため、シールド電極26と誘導電極23間の距離は、少なくとも放電電極22と誘導電極23との間の距離よりも大きく取ることが望ましい。本実施例では、シールド電極26と誘導電極23間の距離は0.7mm、放電電極22と誘導電極23との間の距離は、0.1mmとした。
また本実施例ではシールド電極26は、一端に接地するための接地用接続部を有しており、かつ、当該接地用接続部と、誘導電極23の接地用接続部とヒータ電極25の一端の接地用接続部とが共通した配線パターンとなっている。そのため接地電位への接続も簡易な構造で行うことができ、低コストで信頼性の高い接地用接続部を形成しやすい。
イオン発生素子の加熱性能としては、室温に比べて20〜30度程度の加温が望ましい。あまりに加熱しすぎると安全性の面や、付着したトナーなどが融着してしまい、放電性能に悪影響をもたらす場合があるためである。本実施例および比較例1,2では、ヒータラインには12Vが印加され、おおよそ5W程度の投入電力で素子を加温するようにしている。本実施例および比較例1,2では放電電極22と誘導電極23の間の上部誘電体21aが0.2mmのセラミックとし、下部誘電体21bは、誘導電極23やヒータ電極25の保護や強度アップの目的で0.7mmのセラミックとし、誘電体21の総厚みは約0.9mmとしている。誘電体21にセラミックを用いるのは、長期にわたり材料特性変化が少なく、絶縁性能が安定しており、一定の放電特性を維持できるからである。また厚みはさらに厚くすることも可能であるが、コストアップや、ヒータで所望の温度に加熱するのに電力が多く必要となったり、加熱時間が長くなり使い勝手が悪くなったりするという不具合がある。
次に本実施例の作用について、図4(a),(b)を用いて説明する。図4(a)は、本実施例のイオン発生素子の断面図、図4(b)は、比較例2のイオン発生素子の断面図であり、不慮のアクシデント等で素子が割れたときの放電電極22からのリークの発生状況を説明するための図である。
まず、比較例2のイオン発生素子の場合では、素子に割れが生じた場合、図4(b)に示すように、放電電極22に最も近い誘導電極23へのリークが先に起こるが、放電電極22への印加電圧、放電電極22とヒータ電極25との距離や割れ面の状態によって、ヒータ電極25へもリークが発生する危険性がある。また例えば放電を伴うリークであった場合、上部誘電体21aが樹脂などの場合に、溶融した樹脂が誘導電極23へのリークパスを封じてしまう。またオゾンの発生などを抑えたい場合には誘導電極23を線状にして、放電領域幅を小さくすることが有効であるが、線幅を細くした場合に上述のリークパスが封じられる可能性が高い。その結果、放電電極22からのリーク先がヒータ電極25となり、ヒータ電源34の破損を招いたり、最悪の場合、イオン発生素子を取り付けたマシン本体の破壊や発火事故につながる可能性がある。
また、比較例1のイオン発生素子の場合は、誘電電極とヒータとが共通であることから、素子の割れが生じた場合、放電電極から誘導電極へリークが発生することによってヒータ電源の破損を招いたり、イオン発生素子を備えたマシン本体の破壊や発火事故につながる可能性もある。
本実施例のイオン発生素子1の場合、図4(a)に示すように、素子が割れた場合に誘導電極23へのリークの次の段階としては、シールド電極26へのリークが起こる。シールド電極26とヒータ電極25と間の電位差は高々数10V程度、電極間の距離もmmオーダーあるため、両者間の電界強度は甚だ小さく、シールド電極26からヒータ電極25へのリークは発生しない。
〔実施例2〕
本発明に係るイオン発生素子の別の実施例について説明する。本実施例(実施例2)のイオン発生素子1’は、図5に示すように、実施例1のイオン発生素子1の構成に加え、シール電極26の長手方向の両端に接地用接続部を有し、接地電位に接続される構成となっている。イオン発生素子1が割れた場合、シールド電極26の接地用接続部がある端部(接地電位に接続されている側)は接地電位を保っているが、反対側の端部はフローティング状態となってしまう。この場合、フローティングになった部分がヒータラインまでの単なる橋渡し的な電極となり、リーク電流をシールドする機能を果たさない懸念がある。しかし、本実施例のイオン発生素子’のようにシール電極26の長手方向の両端に接地用接続部を有する構成を採ることで、割れた両側部分共に接地電位を維持でき、シールド電極作用を安定に果たすことが可能となり、より好ましい。
〔実施例3〕
本発明に係るイオン発生素子のさらに別の実施例について説明する。本実施例(実施例3)のイオン発生素子1”は、図6に示すように、ベタ状の誘導電極23の周りにヒータ電極25がU字状に形成されており、さらにこのヒータ電極25と誘導電極23との間にシールド電極26がU字状に設けられている。この場合も、シールド電極の両端は、接地用接続部を有しており、接地電位に接続される。このような構成であっても、ヒータ電極25へのリーク発生を効果的に防止することができる。
本発明は上述した実施形態および各実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書で示した数値範囲以外であっても、本発明の趣旨に反しない合理的な範囲であれば、本発明に含まれることは言うまでもない。
本発明は、電子写真方式を用いる画像形成装置において、感光体や中間転写体などの像担持体上に形成されるトナー像を転写前に帯電させるための転写前帯電や、感光体を帯電させる潜像用帯電、或いは現像装置内のトナーの帯電を補助するトナーの予備帯電等を行う帯電装置として用いることができる。
(a)は、本発明に係るイオン発生素子の一実施形態を示す平面図であり、(b)はその断面図である。 本願発明に係る画像形成装置の要部構成を示す説明図である。 (a)は本発明に係る帯電装置の構成を示す図、(b)は電源に繋がったイオン発生素子の断面図である。 (a),(b)は、放電電極からのリークの発生を説明するための図である。 本発明に係るイオン発生素子の他の例を示す平面図である。 本発明に係るイオン発生素子のさらに他の例を示す正面図である。 (a),(b)は、それぞれ比較例のイオン発生素子の平面図である。 本発明に係るイオン発生素子のさらに他の例を示す正面図である。 本発明に係るイオン発生素子のさらに他の例を示す正面図である。 本発明に係るイオン発生素子のさらに他の例を示す正面図である。
符号の説明
1,1’,1”,10,11,12 イオン発生素子
2 一次転写前帯電装置(帯電装置)
4 潜像用帯電装置(帯電装置)
3 二次転写前帯電装置(帯電装置)
7 感光体
15 中間ベルト
21 誘電体
21a 上部誘電体(誘電体)
21b 下部誘電体
22 放電電極
23 誘導電極
24 カバー層
25 ヒータ電極
26 シールド電極
31 対向電極
32 高圧電源(電源部)
33 電圧制御回路
34 ヒータ電源
35 対向電極電源
100 画像形成装置

Claims (10)

  1. 誘電体を挟んで設けられた放電電極と誘導電極との間に電位差を与えるよう電圧が印加されることにより、沿面放電に伴ってイオンを発生するイオン発生素子であって、
    通電により発生するジュール熱で当該イオン発生素子を加温するヒータ電極が、前記誘電体の前記誘導電極が形成される側の面で、前記放電電極と当該ヒータ電極との間の距離が前記放電電極と前記誘導電極との間の距離より大きくなる位置に配置され、
    前記誘電体の前記誘導電極が形成される側の面で、前記ヒータ電極と前記誘導電極との間に、接地用接続部を有し、前記ヒータ電極へのリークを防ぐシールド電極が配置されており、
    前記シールド電極と誘導電極との間の距離は、前記放電電極と前記誘導電極との間の距離よりも大きく、
    前記シールド電極と前記誘導電極とはライン状に設けられており、前記シールド電極のライン幅は、前記誘導電極のライン幅よりも太く設けられている、ことを特徴とするイオン発生素子。
  2. 前記誘導電極は前記シールド電極の接地用接続部と接続していることを特徴とする請求項1記載のイオン発生素子。
  3. 前記ヒータ電極は、ヒータ電源に接続される一端と、前記シールド電極の接地用接続部とは別の接地用接続部に接続される他端と、を有することを特徴とする請求項2記載のイオン発生素子。
  4. 前記ヒータ電極は、ヒータ電源に接続される一端と、前記シールド電極の前記接地用接続部に接続される他端と、を有することを特徴とする請求項1に記載のイオン発生素子。
  5. 前記誘導電極は前記シールド電極の接地用接続部とは別の接地用接続部に接続されていることを特徴とする請求項4に記載のイオン発生素子。
  6. 前記シールド電極はライン状に形成されており、その長手方向の両端に接地用接続部が設けられていることを特徴とする請求項1から5のいずれか1項に記載のイオン発生素子。
  7. 前記誘電体は、セラミックあるいはガラスを主成分として形成されることを特徴とする請求項1からのいずれか1項に記載のイオン発生素子。
  8. 請求項1からのいずれか1項に記載のイオン発生素子と、前記放電電極と前記誘導電極との間に交番電圧を印加する電源部とを備えることを特徴とする帯電装置。
  9. 請求項の帯電装置を、静電潜像担持体を帯電させる帯電装置として備えることを特徴とする画像形成装置。
  10. 請求項に記載の帯電装置を、担持体上に担持されたトナーに電荷を与える転写前帯電用の帯電装置として備えることを特徴とする画像形成装置。
JP2008146851A 2008-02-29 2008-06-04 イオン発生素子、帯電装置および画像形成装置 Active JP4538509B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008146851A JP4538509B2 (ja) 2008-02-29 2008-06-04 イオン発生素子、帯電装置および画像形成装置
US12/391,485 US8055157B2 (en) 2008-02-29 2009-02-24 Ion generating element, charging device and image forming apparatus
CN2009101180000A CN101520626B (zh) 2008-02-29 2009-02-27 离子发生元件、带电装置及图像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008050644 2008-02-29
JP2008146851A JP4538509B2 (ja) 2008-02-29 2008-06-04 イオン発生素子、帯電装置および画像形成装置

Publications (2)

Publication Number Publication Date
JP2009230093A JP2009230093A (ja) 2009-10-08
JP4538509B2 true JP4538509B2 (ja) 2010-09-08

Family

ID=41013287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146851A Active JP4538509B2 (ja) 2008-02-29 2008-06-04 イオン発生素子、帯電装置および画像形成装置

Country Status (3)

Country Link
US (1) US8055157B2 (ja)
JP (1) JP4538509B2 (ja)
CN (1) CN101520626B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545592B2 (ja) * 2009-09-24 2014-07-09 富士ゼロックス株式会社 帯電装置、画像形成装置用カートリッジ、及び画像形成装置
KR101533060B1 (ko) * 2009-10-15 2015-07-02 삼성전자 주식회사 이온 발생 장치
JP5834655B2 (ja) 2011-09-09 2015-12-24 ソニー株式会社 送信装置、送受信装置、及び集積回路
US20130223883A1 (en) * 2012-02-29 2013-08-29 Mark C. Zaretsky Output of a corona charger
US9339822B2 (en) * 2013-03-15 2016-05-17 Bruce Edward Scherer Electrostatic precipitator with adaptive discharge electrode
US10871670B2 (en) * 2017-02-15 2020-12-22 Sharp Kabushiki Kaisha Display device with position input function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194581A (ja) * 1997-12-26 1999-07-21 Toshiba Lighting & Technology Corp イオン発生装置および電子写真記録装置
JP2003249327A (ja) * 2002-02-26 2003-09-05 Okabe Mica Co Ltd イオン発生装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289365A (ja) 1985-06-17 1986-12-19 Ricoh Co Ltd 固体放電装置
US4783716A (en) * 1986-01-30 1988-11-08 Canon Kabushiki Kaisha Charging or discharging device
JPS63159883A (ja) 1986-12-24 1988-07-02 Canon Inc 放電装置
JPS647071A (en) 1987-06-30 1989-01-11 Canon Kk Discharging device
EP0810487B1 (en) 1992-06-04 2000-01-05 Sharp Kabushiki Kaisha Charger
JPH08160711A (ja) 1994-12-05 1996-06-21 Ricoh Co Ltd 帯電装置
JPH09305001A (ja) 1996-05-14 1997-11-28 Toshiba Corp 帯電装置及びこの帯電装置を備えた画像形成装置
US5983060A (en) 1997-03-31 1999-11-09 Ricoh Company, Ltd. Image forming apparatus which removes a surface potential of an intermediate transfer member
JPH10294163A (ja) 1997-04-17 1998-11-04 Toshiba Lighting & Technol Corp イオン発生装置および電子写真記録装置
JPH1172990A (ja) 1997-08-29 1999-03-16 Toshiba Lighting & Technol Corp イオン発生器および画像形成装置
JP2001093651A (ja) 1999-09-27 2001-04-06 Toshiba Lighting & Technology Corp イオン発生基板および電子式印刷装置
JP2002237368A (ja) 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd イオン発生装置とその製造方法
JP2004069860A (ja) 2002-08-02 2004-03-04 Canon Inc 画像形成装置
JP2004157447A (ja) 2002-11-08 2004-06-03 Matsushita Electric Ind Co Ltd 画像形成装置
JP2006022019A (ja) 2004-07-06 2006-01-26 Daiso Co Ltd スフィンゴミエリン類縁体とその製法
JP2006222019A (ja) 2005-02-14 2006-08-24 Sharp Corp イオン発生素子
JP4378398B2 (ja) * 2007-06-28 2009-12-02 シャープ株式会社 帯電装置および画像形成装置
JP4536087B2 (ja) * 2007-06-29 2010-09-01 シャープ株式会社 イオン発生素子、帯電装置および画像形成装置
JP4536093B2 (ja) * 2007-08-06 2010-09-01 シャープ株式会社 イオン発生素子、イオン発生素子の製造方法、帯電装置、および画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194581A (ja) * 1997-12-26 1999-07-21 Toshiba Lighting & Technology Corp イオン発生装置および電子写真記録装置
JP2003249327A (ja) * 2002-02-26 2003-09-05 Okabe Mica Co Ltd イオン発生装置

Also Published As

Publication number Publication date
US8055157B2 (en) 2011-11-08
CN101520626B (zh) 2011-05-11
JP2009230093A (ja) 2009-10-08
US20090220279A1 (en) 2009-09-03
CN101520626A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4536087B2 (ja) イオン発生素子、帯電装置および画像形成装置
JP4538509B2 (ja) イオン発生素子、帯電装置および画像形成装置
JP2009300597A (ja) イオン発生素子、帯電装置および画像形成装置
JP4536093B2 (ja) イオン発生素子、イオン発生素子の製造方法、帯電装置、および画像形成装置
KR101992768B1 (ko) 정착장치와 이를 가지는 화상형성장치
US8073365B2 (en) Ion generating device, charging device, and image forming apparatus
JP4378398B2 (ja) 帯電装置および画像形成装置
JP4399481B2 (ja) 帯電装置、画像形成装置、帯電装置の制御方法、制御プログラム、及び当該制御プログラムを記録したコンピュータ読み取り可能な記録媒体
JPH118042A (ja) イオン発生基板および電子写真記録装置
JP4926872B2 (ja) イオン発生素子の製造方法、イオン発生素子、帯電装置および画像形成装置
JP2009042317A (ja) イオン発生素子、イオン発生素子の製造方法、帯電装置、および画像形成装置
JP2000348847A (ja) イオン発生装置及び帯電装置及び転写装置及び除電装置及び画像形成装置
JP2009009862A (ja) イオン発生素子、帯電装置及び画像形成装置
JP2009276809A (ja) イオン発生素子、帯電装置、および画像形成装置
JP6759013B2 (ja) 転写装置及び画像形成装置
JP4885806B2 (ja) イオン発生素子の製造方法、イオン発生素子、帯電装置および画像形成装置
JP5314608B2 (ja) 帯電装置及び画像形成装置
JPH10294163A (ja) イオン発生装置および電子写真記録装置
JP6123251B2 (ja) 帯電装置および画像形成装置
JP2001110547A (ja) イオン発生器及びそのイオン発生器を備えた静電記録装置
JP2000113962A (ja) イオン発生装置および電子写真記録装置
JP2000043310A (ja) 静電記録ヘッドおよび静電記録装置
JP2010002624A (ja) 帯電装置、及び画像形成装置
JP2001230053A (ja) 帯電装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4538509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150