JP4538157B2 - 負帰還回路を備えた電力増幅回路及び位相制御方法 - Google Patents

負帰還回路を備えた電力増幅回路及び位相制御方法 Download PDF

Info

Publication number
JP4538157B2
JP4538157B2 JP2001018548A JP2001018548A JP4538157B2 JP 4538157 B2 JP4538157 B2 JP 4538157B2 JP 2001018548 A JP2001018548 A JP 2001018548A JP 2001018548 A JP2001018548 A JP 2001018548A JP 4538157 B2 JP4538157 B2 JP 4538157B2
Authority
JP
Japan
Prior art keywords
phase
signal
component
negative feedback
power amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001018548A
Other languages
English (en)
Other versions
JP2001285387A (ja
Inventor
裕之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001018548A priority Critical patent/JP4538157B2/ja
Publication of JP2001285387A publication Critical patent/JP2001285387A/ja
Application granted granted Critical
Publication of JP4538157B2 publication Critical patent/JP4538157B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、送信機に関り、特にディジタル変調方式の送信機で使用される非線形歪み補償を行う負帰還回路を備えた電力増幅回路とその位相制御方法とに関わる。
【0002】
【従来の技術】
線形ディジタル変調方式、例えば16QAM(Quadrature Amplitude Modulation)やπ/4シフトQPSK(Quadrature Phase Shift Keying)等を利用した無線システムにおいては電力増幅器の非線形歪み補償が必須であり各種の非線形歪み補償方式(リニアライザ)が用いられている。その中でもカーテシアンループの負帰還方式のリニアライザは古くから利用されている方式である。従来の負帰還回路を備えた電力増幅回路である線形帰還増幅器を図2によって説明する。図2はカーテシアン方式の負帰還リニアライザ方式を使ったディジタル無線機の送信部の構成を示すブロック図である。
【0003】
ベースバンド信号発生器1は、ベースバンド信号の同相成分(以降、I成分と称する)と直交成分(以降、Q成分と称する)を出力する。そしてI成分は、加算器2-1で帰還信号(i)と加算されて出力され、ループフィルタ3-1に入力する。また同様にQ成分は、加算器2-2で帰還信号(q)と加算されて出力され、ループフィルタ3-2に入力する。ループフィルタ3-1と3-2は、入力したI成分とQ成分とをそれぞれ帯域制限して、直交変調器4に入力する。
【0004】
基準信号発生器11は基準周波数信号を発生し、PLL周波数シンセサイザ12とPLL周波数シンセサイザ13に基準周波数信号を入力する。PLL周波数シンセサイザ12は基準信号を元に第1の局部発振信号(以下、LO1信号と称する)を発生させ、直交変調器4と移相器18にそのLO1を与える。また、PLL周波数シンセサイザ13は基準信号を元に第2の局部発振信号((以下、LO2信号と称する)を発生させ、ミキサ6とミキサ15にそのLO2信号を与える。移相器18はLO2信号を位相制御器19から入力する制御信号によって、位相を制御して、位相制御されたLO1信号を直交復調器16に与える。
【0005】
直交変調器4は入力するベースバンド信号のI成分(I′)とQ成分(Q′)で、LO1信号を、中間周波数帯(以降、IF周波数帯と称する)の信号に変調する。変調された被変調波信号は、バンドパスフィルタ(BPF)5に与えられる。バンドパスフィルタ5では入力した被変調波信号からの不要成分を取り除いた信号をミキサ6に与える。ミキサ6は、入力した被変調波信号をPLL周波数シンセサイザ13から出力されるLO2信号によって所望の周波数に変換しバンドパスフィルタ(BPF)7に与える。バンドパスフィルタ7は、入力した信号から不要なスプリアス成分を取り除き電力増幅器(PA)8に与える。電力増幅器8は入力した信号を規定された出力レベルまで増幅し、アンテナ9を介して送信する。
【0006】
この送信部(負帰還回路を備えた電力増幅回路)は、カーテシアンループによる負帰還リニアライザの構成をとっているために、電力増幅器8の出力信号の一部は、方向性結合器10で入力側に帰還してアッテネータ(ATT)14に与えられる。アッテネータ14は、入力した信号の電力レベルを適正な値に調整し、ミキサ15に与える。ミキサ15は、アッテネータ14から入力した信号を、LO2信号によってIF周波数に周波数変換し、直交復調器16にIF信号として与える。
【0007】
直交復調器16は、入力されたIF信号を分配し、分配されたそれぞれの信号を、移相器18から入力した、位相制御されたLO1信号によって周波数変換し、I成分とQ成分のベースバンド信号を出力する。I成分はスイッチ20-1を介して加算器2-1の減算入力側に帰還信号のI成分(i)として入力し、Q成分はスイッチ20-2を介して加算器2-2の減算入力側に帰還信号のQ成分(q)として入力することにより、I成分,Q成分それぞれに負帰還がかけられる。このとき、スイッチ20-1と20-2の出力側a,bは、それぞれ、加算器2-1と2-2側に接続されている。
【0008】
このような負帰還回路においては、系を安定させるために、加算器2-1と2-2の入力側で、入力信号I,Qと帰還信号i,qの位相差が同位相(位相差=0°)となっている必要がある。即ち、入力信号と帰還信号とで位相差が生じた時、加算器2-1と2-2で入力信号と帰還信号との位相を合せるために、移相器18で直交復調器16に入力するLO1信号の位相を最大で180°(πラジアン)の位相調整が可能なように制御できる必要がある。
【0009】
次に位相を制御する方法について説明する。まず、図2のスイッチ20-1と20-2の出力側a,bを切り替えて位相制御器19側に接続し、帰還ループを開ループ状態にする。
ベースバンド信号発生器1からI成分のみに、位相調整のため、所定のDC電圧を与え、Q成分は0(Q=0)とし、そのまま、前述の動作に従って直交変調を行い、アンテナ9から出力する。このときの電力増幅器8の出力波形は無変調キャリアとなる。電力増幅器8の出力を、方向性結合器10によって一部帰還し、前述の動作に従って、直交復調器16の帰還信号の出力を見ると、位相が合っている場合は、I成分側にのみDC電圧が表れ、Q成分側には信号(DC)が出力されない。また、位相が合っていない場合にはQ成分側の出力にその位相ずれ分のDC電圧が表れる。従って、このI成分とQ成分のDC電圧から位相ずれの回転角を求めることができる。
位相制御器19では、この求められた回転角分の位相を、移相器18を制御して、位相ずれの方向と逆に回転させ、LO1信号の位相を調整することによって、直交復調器16の帰還信号の出力位相を入力信号と合せることで負帰還ループを安定させる。入力信号と帰還信号との位相が合うと、Q成分側の出力が0になるので、その時にスイッチ20-1と20-2のa,bを加算器2-1と2-2側に切り替え、閉ループ状態で動作させる。
【0010】
【発明が解決しようとする課題】
前述の従来技術では、位相を調整する動作のたびに、帰還ループを開く必要がある。しかし、送信部が連続動作中は、帰還ループを閉じた状態のため、送信動作中の位相変化に対しては位相調整することができない。また、帰還ループを開閉するためにスイッチ等の切り替え手段を介しており、この位相調整の際には、切り替え手段の入力側の帰還信号のDC電圧によって位相を制御しているので、切り替え手段の入力側でのオフセット調整を必要とする。しかしスイッチ20-1と20-2とにより開ループの状態でオフセット電圧を調整しても、オフセット調整後に閉ループ状態にすると、切り替え手段それぞれのオン抵抗により電圧降下があるため、閉ループ状態にすることによって、オフセット電圧がずれることになる。従って正確なオフセット調整ができないため、正確な位相制御を行うことができなかった。
【0011】
そして、オフセットがずれたまま送信を行っていると、送信性能の1つであるDCオフセットが劣化する。また、その過程で、オフセットがずれたまま初期位相を合せると、位相がずれたまま動作させることとなる。この結果、位相余裕がなくなり、スプリアスの発生の原因となり、送信特性を劣化させる要因となる。
Gailus et al.に与えられたU.S.Patent No.5,066,923 issued on November 19,1991には、図2に示したような帰還ループを開ループ状態に切替えて位相調整を行う方法が開示されている。また、特許登録番号 第2746133号公報の明細書には、閉ループ状態のままで位相調整する発明が開示されている。しかし、後者の発明は、位相調整のために、帰還信号としてI成分とQ成分の両方を必ず必要とし、入力ベースバンド信号のI成分と帰還信号のI成分との位相比較と、入力ベースバンド信号のQ成分と帰還信号のQ成分との位相比較とを、それぞれ行うために、回路が複雑となる。
本発明はこれらの欠点を除去し、位相調整の際に、帰還ループを開ループ状態にすることなく、簡単な回路構成で、出力動作特性が常に安定した送信機のための負帰還回路を備えた増幅器とその位相制御方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の問題を達成するために、本発明の送信機のための負帰還回路を備えた増幅器とその位相制御方法は、以下の通りである。
ベースバンド信号のI成分用のI成分テスト信号と、ベースバンド信号のQ成分用のQ成分テスト信号とを、帰還ループの入力側に与える。加算器は、I成分テスト信号と帰還信号のI成分とを加算してI成分加算信号を発生し、Q成分テスト信号と帰還信号のQ成分とを加算してQ成分加算信号を発生する。直交変調器は、発振器からの搬送波信号を加算信号のI成分とQ成分とで直交変調する。電力増幅器は、直交変調された信号を増幅する。直交復調器は、増幅した信号の一部と搬送波信号とにより、直交変調された信号を復調して、帰還信号のI成分とQ成分とを出力する。また、直交復調器は、発振器からの搬送波信号の位相を位相制御信号に応じて変化させる。位相制御器は、加算信号のI成分とQ成分のうち、選択されたいずれか一方の信号成分と所定の基準信号とを比較し、比較結果を表す信号を出力する。位相制御器は、搬送波信号の位相を所定の方向にシーケンシャルに変化させるための位相制御信号を発生し、比較器の出力信号が所定条件になったときに搬送波信号の位相を固定する。
【0013】
即ち、帰還ループを動作状態とし、増幅器にベースバンド信号のテスト信号を入力した状態で、搬送波信号の位相を徐々に変化させてゆく間に、直交変調器の入力信号のI成分とQ成分のうち選択されたいずれか一方の信号成分をモニタしていると、入力ベースバンド信号と帰還信号の位相が一致する動作条件が検出される。その動作条件の時の位相値に搬送波信号の位相値を固定の初期値とする。以後、この初期値の位相で通常の送信動作を行う。
【0014】
本発明の位相制御方法の実施例においては、I成分テスト信号とQ成分テスト信号として、互いに独立の直流電圧を使用する。例えば、I-Q直交座標上で、I=1,Q=0の条件が得られる直流電圧値を入力ベースバンド信号として与える。搬送波信号の位相をI-Q直交座標上で時計回りまたは反時計回りで順次(所定の角度刻みで)回転させながら,直交変調器に入力されるI成分とQ成分のいずれか一方の信号の電圧値を所定の基準電圧値(I=0、Q=0の条件)と比較し、比較結果に応じて正あるいは負の極性信号を得る。極性信号が、正から負、あるいは、負から正へと変化した時点(I=1、Q=0の条件)を検出することにより、I成分とQ成分それぞれの、入力信号と帰還信号との位相が一致するポイント(位相値)が検出できる。
【0015】
これによって、帰還ループを開ループとすることなく、常に閉ループのままで位相の状態を判定することができるため、スイッチによるオフセットずれ等を無くし送信特性を安定に動作させることを実現したものである。また、常に閉ループのままで、出力動作特性を安定に動作させる負帰還回路を備えた増幅器を実現したものである。
【0016】
【発明の実施の形態】
本発明の一実施例を図1によって説明する。図1は本発明を用いた負帰還回路を備えた電力増幅回路で、カーテシアン方式の負帰還リニアライザ方式を使ったディジタル無線機の送信部の構成を示すブロック図である。図2で説明した構成要素と同一の機能の構成要素には同一の番号を付した。その他、17は位相制御器、18′は移相器、20はスイッチ、21は終端器である。
ベースバンド信号発生器1は、ベースバンド信号のI成分とQ成分とを出力する。そしてI成分は、加算器2-1において帰還信号(i)と加算されてから、ループフィルタ3-1に入力する。また同様にQ成分は、加算器2-2において帰還信号(q)と加算されてから、ループフィルタ3-2に入力する。ループフィルタ3-1は、入力したI成分を帯域制限して、帯域制限されたI成分信号(I′)を直交変調器4に与える。同様にループフィルタ3-2もまた、入力したQ成分信号を帯域制限して、帯域制限されたQ成分(Q′)を直交変調器4に与える。
【0017】
基準信号発生器11は基準周波数信号を発生し、PLL周波数シンセサイザ12とPLL周波数シンセサイザ13に基準周波数信号を入力する。PLL周波数シンセサイザ12は基準信号を元にLO1信号を発生させ、直交変調器4と移相器18′にLO1信号を与える。また、PLL周波数シンセサイザ13は基準信号を元にLO2信号を発生させ、ミキサ6とミキサ15にLO2信号を与える。移相器18′は、LO1信号を、位相制御器17から入力する制御信号(位相差情報と位相の遅れ・進み情報)によって、PLL周波数シンセサイザ12から入力するLO1信号の位相を制御して直交復調器16に与える。
【0018】
直交変調器4は入力するベースバンド信号のI成分信号(I′)とQ成分信号(Q′)とを、LO1信号の周波数を元に、IF周波数帯に変調した被変調波信号に変換し、バンドパスフィルタ5に与える。バンドパスフィルタ5は、入力した被変調波信号から不要成分を取り除いた信号をミキサ6に与える。ミキサ6は、入力した被変調波信号をPLL周波数シンセサイザ13から出力されるLO2信号によって所望の周波数に変換しバンドパスフィルタ7に与える。バンドパスフィルタ7は、入力した信号から不要なスプリアス成分を取り除いた信号を電力増幅器8に与える。電力増幅器8は入力した信号を規定された出力レベルまで増幅し、アンテナ9を介して出力する。
【0019】
この送信部の増幅回路、即ち、負帰還回路を備えた電力増幅回路は、カーテシアンループによる負帰還リニアライザの構成をとっているために、電力増幅器8の出力信号の一部は、方向性結合器10で帰還してアッテネータ14に与えられる。アッテネータ14は、入力した信号の電力レベルを適正な値に調整し、ミキサ15に与える。ミキサ15は、アッテネータ14から入力した信号を、LO2信号によってIF周波数に周波数変換し、直交復調器16に与える。
【0020】
直交復調器16は、移相器18′から入力した位相制御されたLO1信号によってI成分信号(i)とQ成分信号(q)のベースバンド信号を出力し、I成分信号(i)は加算器2-1の減算入力側に帰還信号のI成分として入力し、Q成分信号(q)は加算器2-2の減算入力側に帰還信号のQ成分として入力する。これによって、加算記2-1と2-2とによって、I成分とQ成分とにそれぞれ負帰還がかけられる。
【0021】
次にループ位相調整の方法について図1、図3〜図5を用いて説明する。図3は、本発明の位相制御方式の一実施例を説明するための図である。横軸がI成分、縦軸がQ成分のI-Q平面である。
移相器18′は、PLLシンセサイザ12から入力されるLO1の位相を、位相制御器17から与えられる位相制御信号に応じて調整し、位相調整されたLO1を直交復調器16に与える。位相制御器17から与えられる位相制御信号は、所望の位相値にするためのI成分とQ成分の各DC電圧である。
移相器18′の回路動作で使用する電源は、例えば、+5 V単一電源とする。その場合、信号の動作可能範囲は、0 V〜5 Vとなる。最大の信号ダイナミックレンジを得るためには、2.5 V中心で信号を動作させればよい。この時、2.5 Vは基準電圧となり、2.5 Vを基準として信号動作を行う。以下に説明する実施例の動作は、2.5 Vを基準電圧とした場合の説明である。また、移相器18′に与えられるDC電圧(位相制御信号)は、基準電圧±5 Vとして、2 V〜3 Vの範囲で与えられる。
【0022】
例えば、図3に示すI-Q座標上において、I-Q座標図上のI=1、Q=0(図3中の(1))の場合、図11〜図17で示すように、位相制御信号のDC電圧では、I=3 V、Q=2.5 Vに相当する。そのようなDC電圧を移相器18′に与えると、初期位相角0°のLO1が得られる。同様に、I=i1=0.866、Q=q1=0.5(図3中の(2))の場合は、位相制御信号のDC電圧が、I=2.933 V、Q=2.75 Vになり、その場合、初期位相角30°のLO1が得られる。更に、I=i2=0.500、Q=q2=0.866(図3中の(3))の場合は、位相制御信号のDC電圧が、I=2.75 V、Q=2.933 Vになり、その場合、初期位相角60°のLO1が得られる。また更に、I=i1=0.866、Q=q3=-0.5(図3中の(4))の場合は、位相制御信号のDC電圧が、I=2.933 V、Q=2.25 Vになり、その場合、初期位相角330°のLO1が得られる。
本発明の実施例では、LO1を30°おきの初期位相が得られるように、位相制御器17から位相制御信号のI成分とQ成分のDC電圧を移相器18′に与えることによって、直交復調器16に入力されるLO1の位相を段階的に順次変化させ、その時の直交変調器4への入力Q成分信号(Q′)の電圧が、基準信号に対してどのように変化するかを判定する。
【0023】
LO1の位相をI-Q直交座標上で、時計回りあるいは反時計回りで、30°ごとに順次回転させながら、直交変調器4に入力されるI成分信号(I′)かQ成分信号(Q′)のいずれか一方の電圧値を2.5 Vの基準電圧(I=1、Q=0の条件)と比較器(後述する)で比較し、比較結果に応じて正、あるいは負の極性情報を示す信号(極性信号)を得る。極性信号の示す極性が、正から負、あるいは負から正へと変化した時点、即ち、I=1、Q=0の条件を検出することにより、I成分とQ成分の入力信号と帰還信号との位相が一致する点(直交復調器16に入力されるLO1の位相)を検出することができる。
【0024】
図4と図5は、位相制御動作の一実施例を説明するための図で、図4は30°おきに位相を変化させるときの制御動作例で、図5は1°おきに位相を変化させるときの制御動作例である。
まず、送信部をテストモードにする。即ち、図1において、スイッチ20を切替えて、電力増幅器8の出力を終端器21側に接続し、アンテナ9から信号が出力されない状態とする。次に、ベースバンド信号発生器1から、I=1 V(ボルト)、Q=0 V(ボルト)のDC電圧を出力する。更に位相制御器17は、移相器18′に位相制御信号を与えて、移相器18′がLO1の移相量を変えるように制御して直交復調器16に入力されるLO1の位相を変更する。
【0025】
例えば、図3に示すように、0°から360°まで、30°刻みに位相を変化させ、位相器18′の移相量を変える制御をする。この時、直交変調器4のQ成分の入力端子の信号(Q′)を見る。即ち、ループフィルタ3-2の出力を位相制御器17で観察し、DC電圧が正(+)または負(−)の値のどちらの状態であるかを確認する。そして、Q成分(Q′)が、−から+に変化したポイントの中に位相が合う点(一致する点)がある。
【0026】
つまり、I=3 V、Q=2.5 Vのテスト信号を帰還ループに与えると、もし帰還信号の位相ずれが生じていなければ、図3の(1)で示すI-Q座標図上のI=1、Q=0の場合に対応する。直交復調器16に入力するLO1の位相をI-Q直交座標上で反時計回りで30°間隔で順次回転させながら、直交変調器4に入力されるQ成分信号(Q′)の電圧値を2.5 Vの基準電圧値(I=1、Q=0の条件)と比較し、Q′の電圧値が2.5 Vより高ければ+(正)、低ければ-(負)の極性信号を得る。本実施例で、負から正へと変化した場合は、I=1、Q=0の点を通った点を表す。この点を位相制御器17で検出したならば、その間にI成分とQ成分の入力信号と帰還信号との位相が一致した点が存在することになる。
【0027】
次に、上記実施例での移相器18′と位相制御器17の、具体的な回路構成とその動作について図6、図7、及び、図8を用いて詳しく説明する。
移相器18′は、図6に示したブロック構成図のように、2つのミキサ51-1と51-2、加算器52、及び移相器53とからなる、いわゆる直交変調器の構成で実現できる。今、図6において、i入力A(DC電圧)、q入力B(DC電圧)、及びI側のミキサ51-1への周波数シンセサイザ12からの入力をcos(ωt)とし、q側のミキサ51-2への90°移相器53からの入力を-sin(ωt)とすると、移相器18′の出力は、次の式(1)で表すことができる。
【数1】
Figure 0004538157
この式(1)を、よく知られている三角関数の合成公式を用いると、次の式(2)のようになる。
【数2】
Figure 0004538157
従って、DC電圧レベルによりLO1の初期位相βを任意に設定でき、位相を可変できることが容易に理解できる。
例えば、図7のI-Q直交座標で示すように、I=0.71、Q=0.71とすると、初期位相45°のLO1が得られる。これは、DC電圧で、例えば、I=3 V、Q=3 Vに対応する。
【0028】
次に、図8のブロック構成図を用いて、位相制御器17の具体的な回路構成の一例を説明する。
位相制御器17は、制御回路54、D/A変換器55-1と55-2、A/D変換器56、及びコンパレータ57とで構成される。
制御回路54は、一般的なマイクロコンピュータ、あるいはDSP(Digital Signal Processor)、あるいはプログラマブル論理回路で実現できる。
【0029】
テストモードにおいて、ループフィルタ3-2の出力Q′は、コンパレータ57で基準電圧と比較される。コンパレータ57は、Q′が基準電圧より高い電圧値の場合には“High”(+)を出力し、低い場合には“Low”(-)を出力する。また、ループフィルタ3-2からの出力の一部は、A/D変換器56に入力される。
DC電圧と位相角の関係は、図11〜図17に示すデータテーブルの形式で、例えば、制御回路に含まれるメモリ(図示しない)に格納されている。
【0030】
位相制御器17は、移相器18′に与える位相制御信号であるI成分用とQ成分用の電圧を発生する。制御回路54は、図11〜図17のデータテーブルに基づいて位相角を変化させる(ここでは、30°刻み、即ち粗い位相角間隔)ためのディジタル信号を生成する。D/A変換器55-1と55-2により、初期位相が制御信号で指示された位相角となるようにDCアナログ電圧を設定する。
位相制御器17は更に、コンパレータ57からの出力値が、“Low”から“High”になった時点での制御位相角の値を記憶する。そして、その記憶された位相角の変化範囲内で、更に細かな位相角(例えば、1°刻み、即ち密な位相角間隔)で同様に図11〜図17のデータテーブルに基づいて位相角を変化させ、コンパレータ57の出力値が“Low”から“High”になった時点での制御位相角の値を初期設定値として記憶する。
この初期設定値は、テストモード終了後も制御回路54で記憶され、通常の送信動作時には、この記憶された初期設定値の位相で送信モードに入る。記憶された初期設定値は、帰還ループが最も安定となる位相となっているため、常に送信性能の劣化なしで出力が可能となる。
【0031】
帰還ループを、閉ループ状態で動作中に位相回転すると、帰還ループの動作が不安定になり、発振状態になる場合がある。発振状態では、ループフィルタ3-2の出力信号Q′(ここでは、DC電圧)が規定範囲(2 V〜3 V)を外れ、この結果を使用して位相制御の初期設定を行うと、位相制御が正しできなくなる。
これを防ぐために、制御回路54では、A/D変換器56により信号Q′のDC電圧値をモニタし、信号Q′のDC電圧が規定範囲内にある場合には帰還ループが正常状態であると判定して、コンパレータ57での検出結果を取り込んで位相制御を行う。
また、信号Q′のDC電圧が規定範囲を外れた場合には帰還ループが発振状態であると判定して、その時の位相でのコンパレータ57での検出結果を無視して次の位相値に変える。
【0032】
制御回路54を、マイクロコンピュータとその制御ソフトウエアで実現した場合の実施例を図9と図10のフローチャートで示す。図9のフローチャートは、位相回転を0〜360°全て行う場合で、図10のフローチャートは、コンパレータ57の出力値が“Low”(-)から“High”(+)になった時点で、それ以上位相角の回転を行わない場合である。
【0033】
図9のステップ100において、i=0、j=0、及びISO=0の初期設定を行う。ここで、i は、移相動作の回数を示すカウンタ値である。従って、0°〜360°まで30°毎に移相する場合について、0°回転するとi=1、30°回転するとi=2、‥‥‥、360°回転するとi=13を示す。FLG は、コンパレータ57の出力が、“Low”から“High”に変化した時に“1”をセットするフラグである。ISO は、位相を30°ずつ変化させるための変数で、位相値そのものを表す。i 、j 、FLG 、ISO は、レジスタのようなメモリ手段で実現できる。
【0034】
ステップ101で、i ≦13かどうかを判定する。ステップ101の結果がYES(Y)、即ち、30°毎の360°の位相回転が終了していないのであれば、ステップ102でi の値を1だけ増加する。ステップ103では、図11〜図17のテーブルを参照して、移相器18′に与えるISO値に相当するDC電圧を設定する。ステップ104では、ステップ103で設定したISO値に30を加えた値を求める。ステップ105では、A/D変換器56の出力を取り込む。ステップ106では、A/D変換器56の出力が、2〜3 Vの正常範囲内にあるか否かを判定する。正常範囲を超えている場合には、発振状態であると判断してステップ101に戻り、正常範囲内であれば、ステップ107に移る。
ステップ107では、コンパレータ57の出力を取り込む。ステップ108では、コンパレータ57の出力が“High”(正)かどうか判定する。“High”でない場合は、ステップ109でFLG=1のままとしてステップ101に戻り、“High”であれば、ステップ110でFLG=1かどうかを判断する。
FLG=1であれば、ステップ111でθの値をISO-30とする(これまでのISO値から、30を減じた値を新たなISO値とする)。
FLG=0であれば、ステップ101に戻る。この処理は、コンパレータ57が最初から“High”の時に行う処理で、まず、コンパレータ57が“Low”出力の時、FLG=1とするように動作する。尚、θとは、コンパレータ57の出力が“Low”(負)から“High”(正)に変化した時の、そのLow出力時点でのISO値であり、レジスタ等のメモリ手段に記録される。例えば、位相0°から60°に変化させたときに、コンパレータ57の出力が“Low”から“High”に変化した場合には、位相が30°のときのISO値が記録される。
ステップ112で、フラグFLGが0にリセットされる。
【0035】
ステップ101で、i≦13ではない(360°位相回転が終了した)と判定されると、ステップ113で、j≦31であるか否かが判定される。ステップ113の判定結果がYES(Y)、即ち、1°毎の位相回転が全部終了していないのであれば、ステップ114で、j の値を1だけ増加させる。
ステップ115では、図11〜図17のテーブルを参照して、移相器18′に与えるθ値に相当するDC電圧を設定する。ステップ116では、ステップ115で設定したθ値に1を加えて新しいθ値とする。
ステップ117では、コンパレータ57の出力を取り込む。ステップ118では、コンパレータ57の出力が“High”(正)か否かを判定する。“High”でない場合は、ステップ119でFLG=1としてステップ101に戻り、“High”である場合には、ステップ120でFLG=1か否かを判定する。
FLG=1の場合は、ステップ121でφの値をθ-1とする。FLG=0の場合には、ステップ113に戻る。尚、φとは、位相値θが、“Low”(負)から“High”(正)に変化したときに、その“Low”時点のθ値であり、例えば、レジスタに記録される。
更に、ステップ122で、フラグFLGが0にリセットされる。また、ステップ113で、j が31を超えたと判定されたならば、ステップ123でφの値をレジスタに記録し、終了する。
【0036】
次に、図10のフローチャートを用いて、コンパレータ57の出力値が“Low”(負)から“High”(正)になった時点で、それ以上位相角の回転を行なわない位相制御の例を説明する。
ステップ200において、k=0、FLG=0、ISO=0の初期設定を行なう。k は、1°毎に位相を変化させているときの誤動作防止のためのカウンタのカウント値である。
図10の実施例では、正しい位相を見つけるまでは移相動作が終わらないために、誤動作が途中で起きた場合の対処として、k の値が所定値に達した場合には強制的に移相動作を終了させる。この例では、K が31を超えたら移相動作を最初に戻している。
【0037】
ステップ201では、図11〜図17のテーブルを参照して、移相器18′に与えるISO値に相当するDC電圧を設定する。ステップ202では、ステップ201で設定したISO値に30を加えた値を求め、新しいISO値とする(ISO=ISO+30)。
ステップ203では、A/D変換器56の出力を取り込む。ステップ204では、A/D変換器56の出力が、2〜3 Vの正常範囲内にあるか否かを判定する。正常範囲を超えている場合には、発振状態であると判断して、ステップ201に、戻り、正常範囲内であれば、ステップ205に移る。
ステップ205では、コンパレータ57の出力を取り込む。ステップ206では、コンパレータ57の出力が“High”(正)か否かを判定する。“High”でない場合には、ステップ207でFLG=1のままとしてステップ201に戻り、“High”である場合には、ステップ208でFLG=1であると判断する。FLG=1であれば、ステップ209でθの値をISO-30(θ=ISO-30)とする。
ステップ210で、ステップ209で求めたθ値に相当するDC電圧を設定する。ステップ211で、θ値に1を加える(θ=θ+1)。
ステップ212で、コンパレータ57の出力を取り込む。ステップ213で、k の値を1だけ増加する(k=k+1)。ステップ214で、k の値が31より大きいか否かを判定する。大きければ(k>31)、ステップ200に戻り、そうでなければ(k≦31)、ステップ215でコンパレータ57の出力が“High”(正)か否かを判定する。“High”であれば、ステップ216で、φの値をθ-1とする(φ=θ-1)。そして、ステップ217で、φの値を例えばレジスタに記録して終了する。
【0038】
上述の方法によって正しい位相を求め、位相器の18´が移相する値を設定して、通常の送信モードで送信を開始する。また送信を開始するときには、ベースバンド信号発生器1から、送信状態のI成分とQ成分の信号を供給し、スイッチ20の接続を終端器21からアンテナ9側に変更する。
【0039】
上記実施例で、例えば、位相を図4に示した表のようにI-Q座標上で、反時計方向に0°から360°まで、30°おきに回転させると、図4の例では、位相の変化が270°から300°の範囲内に位相が合う点があることになる。
次に、コンパレータ57の出力が、−(負)から+(正)に変化したところ(例えば、図4のように位相の変化が270°から300°の範囲内)において、図5に示すように、例えば1°おきに変化させ、Qの値を判定する。そして、直交変調器4のQ成分の入力端子(Q′)を検出する(ループフィルタ3-2の出力を位相制御器17で観する)。コンパレータ57の出力が−(負)から+(正)に変化した位相を帰還ループ内の正しい位相として、移相器18′での移相量を固定する。
【0040】
即ち、図4と図5の動作例では、位相を30°ずつずらした場合に、まず位相が270°と300°の間で、コンパレータ57の出力が−(負)から+(正)に変化しており、この間に正しい位相が存在する。次に、図5の動作で270°と300°の間を1°ずつずらすことでさらに詳細な位相値を特定することができる。
上述の方法によって、正しい位相を求め、移相器18′でLO1を移相する値を設定してから、スイッチ20を切り替えて、電力増幅器8の出力をアンテナ9に接続し、通常の送信モードで送信を開始する。
また、送信を開始するときには、ベースバンド信号発生器1から、送信情報のI成分とQ成分を供給する。
【0041】
上記のように、テストモードで求められた移相器18′での移相量は、例えば、移相器18′における設定値となってメモリ(図示しない)等に保存されているため、以降の送信開始時にはこの移相量で動作が行われる。また、このテストモードで求められた移相量は、位相制御器17で保存しておいて、移相器18′を制御する方法でもよい。
【0042】
送信モードとテストモードの切替えは、送信機あるいは無線システムの操作者が、必要に応じて任意に実行できるが、例えば、装置の立ち上げ時に自動的にテストモードを実行してから送信モードに移行する設定とする等、モード切替えの方法は、種々、多岐にわたって、任意に設定可能である。
更に、上述の実施例では、位相の変化の割合を30°ずつと1°の2回に分けて行ったが、1°ずつを1回実施するだけでもよいし、3回以上に分けて実施してもよい。また、30°や1°ではなく、任意の刻みでもよいことは自明である。また、実験等により、特定の位相角度範囲では粗い刻み、または細かい刻みの設定をすることでもよく、特定の位相角度だけをテストすることも可能である。
【0043】
更に、図1の実施例では、ベースバンド信号発生器1から、I=3.0 V(ボルト)、Q=2.5 V(ボルト)のDC電圧を出力し、位相制御器17では、ループフィルタ3-2の出力Q成分信号(Q′)を観察したが、逆にベースバンド信号発生器1から、I=2.5 V(ボルト)、Q=3.0 V(ボルト)のDC電圧を出力し、位相制御器17では、ループフィルタ3-1の出力I成分信号(I′)を観察するようにしても良い。また、位相の変化の割合を変更する毎に、Q成分信号(Q′)を観察するかI成分信号(I′)を観察するかを任意に選択してよいことは自明である。
【0044】
また更に、上記実施例では、位相回転を反時計回りとしたので、Q成分(Q′)の値がコンパレータ57の出力で、−(負)から+(正)に変化した位相をループ内の正しい位相としたが、位相回転を時計回りとして、+(正)から−(負)に変化する位相を正しい位相としても良い。
また、上記において、+(正)、−(負)の極性の変化を観察したが、その他に、信号のパターンや、所定の電圧範囲にあるか否かを判定基準としてもよい。
【0045】
本発明による電力増幅器と、位相制御方法は、それを備えた送信機の工場出荷の前の位相調整に好適である。また、本発明は、特願平11−288156号に開示された位相制御方法と組合わせて使用することもでき、その場合には、送信機の初期設定を本発明の位相制御方法で実施し、送信機としての使用期間中の位相ずれの補正には、特願平11−288156号に開示された位相制御方法で実施すると更に良い。
【0046】
【発明の効果】
以上のように、本発明によれば、カーテシアンループを閉ループのままで位相調整を行うことが可能となった。また、開ループに切替えるための構成要素が不要となった。これによって、オフセット電圧の変動を無くし、送信特性の安定化、回路規模の縮小化が実現できた
【図面の簡単な説明】
【図1】 本発明の電力増幅器の一実施例の構成を示すブロック図。
【図2】 従来の電力増幅器の構成を示すブロック図。
【図3】 本発明による位相制御方法の動作を説明する図。
【図4】 本発明の位相制御動作の一実施例を説明する図。
【図5】 本発明の位相制御動作の一実施例を説明する図。
【図6】 本発明による電力増幅器の移相器の具体例のブロック構成図。
【図7】 移相器によるLO1信号の位相制御の動作を説明するためのI-Q直交座標図。
【図8】 本発明による電力増幅器の位相制御器の具体例のブロック構成図。
【図9】 本発明の一実施例による位相制御の動作を説明するフローチャート。
【図10】 本発明の一実施例による位相制御の動作を説明するフローチャート。
【図11】 本発明による位相制御において使用される位相値対電圧値のデータテーブルの一例。
【図12】 本発明による位相制御において使用される位相値対電圧値のデータテーブルの一例。
【図13】 本発明による位相制御において使用される位相値対電圧値のデータテーブルの一例。
【図14】 本発明による位相制御において使用される位相値対電圧値のデータテーブルの一例。
【図15】 本発明による位相制御において使用される位相値対電圧値のデータテーブルの一例。
【図16】 本発明による位相制御において使用される位相値対電圧値のデータテーブルの一例。
【図17】 本発明による位相制御において使用される位相値対電圧値のデータテーブルの一例。
【符号の説明】
1:ベースバンド信号発生器、 2-1,2-2:加算器、 3-1,3-2:ループフィルタ、 4:直交変調器、 5,7:バンドパスフィルタ、 6,15:ミキサ、 8:電力増幅器、 9:アンテナ、 10:方向性結合器、 11:基準信号発生器、 12,13:PLL周波数シンセサイザ、 14:アッテネータ、 16:直交復調器、 17,19:位相制御器、 18,18′:移相器、 20-1,20-2,20:スイッチ、 21:終端器。

Claims (9)

  1. 負帰還回路を備えた電力増幅回路であって、
    同相成分テスト信号と直交成分テスト信号とを入力する信号入力部と、
    前記同相成分テスト信号と同相成分帰還信号と、及び、前記直交成分テスト信号と直交成分帰還信号とを加算し、加算同相成分信号と加算直交成分信号とをそれぞれ出力する加算部と、
    局部発振信号を生成する発振部と、
    前記加算同相成分信号と前記加算直交成分信号とによって、前記局部発振信号を直交変調する変調器と、
    該変調器によって直交変調された信号を増幅する増幅部と、
    該増幅部によって増幅された信号の一部を前記局部発振信号によって直交復調する復調器と、
    記加算同相成分信号または前記加算直交成分信号のいずれか1つの信号を入力し、位相制御信号を出力する位相制御器と、
    該位相制御信号に基づいて前記局部発振信号の位相を変えて前記復調器に与える移相器とを有し、
    前記位相制御器が、前記復調器に与えられる前記局部発振信号の位相を所定の条件と一致するように、前記移相器を制御するように構成され、
    前記位相制御器は、前記いずれか1つの信号と所定の基準信号とを比較するコンパレータを含み、前記比較結果に基づいて前記局部発振信号の位相を保持するとともに、
    前記位相制御器は、所定の位相角間隔で前記局部発振信号の位相を順次に変えるための位相制御信号を出力することを特徴とする負帰還回路を備えた電力増幅回路。
  2. 請求項記載の負帰還回路を備えた電力増幅回路において、
    前記位相制御器は、前記局部発振信号の位相を連続的に変えるために、粗い位相角間隔と密な位相角間隔のそれぞれで位相制御信号を出力することを特徴とする負帰還回路を備えた電力増幅回路。
  3. 請求項1記載の負帰還回路を備えた電力増幅回路において、
    前記位相制御器は、前記局部発振信号の位相角の値に対応する制御信号値を示すデータテーブルを有し、前記データテーブルを参照して前記局部発振信号の位相を順次変える位相制御信号を出力することを特徴とする負帰還回路を備えた電力増幅回路。
  4. 請求項1記載の負帰還回路を備えた電力増幅回路において、
    前記同相成分テスト信号と前記直交成分テスト信号は、互いに独立した任意の値の直流電圧信号であることを特徴とする負帰還回路を備えた電力増幅回路。
  5. 請求項記載の負帰還回路を備えた電力増幅回路において、
    前記位相制御器は、前記いずれか1つの信号が所定の電圧範囲を外れたか否かを判定する手段を有し、
    該判定する手段によって所定の電圧範囲を外れたと判定された場合には、前記コンパレータの出力信号の使用を禁止することを特徴とする負帰還回路を備えた電力増幅回路。
  6. 請求項記載の負帰還回路を備えた電力増幅回路において、
    前記位相制御器は、前記局部発振信号の位相を初期位相値から所定位相毎に360°回転させるように変える位相制御信号を出力することを特徴とする負帰還回路を備えた電力増幅回路。
  7. 請求項記載の負帰還回路を備えた電力増幅回路において、
    前記位相制御器は、I-Q信号直交座標上で反時計回りに、前記局部発振信号の位相を変えさせる位相制御信号を出力し、前記いずれか一方の加算信号が所定の基準信号よりも小さい状態から大きい状態に変化した時の前記局部発振信号の位相を保持することを特徴とする負帰還回路を備えた電力増幅回路。
  8. 請求項記載の負帰還回路を備えた電力増幅回路において、
    前記位相制御器は、I-Q信号直交座標上で時計回りに、前記局部発振信号の位相を変えさせる位相制御信号を出力し、前記いずれか一方の加算信号が所定の基準信号よりも大きい状態から小さい状態に変化した時の前記局部発振信号の位相を保持することを特徴とする負帰還回路を備えた電力増幅回路。
  9. ベースバンド信号の同相成分と直交成分をそれぞれ生成するベースバンド信号発生器と
    該ベースバンド信号発生器が出力する前記ベースバンド信号の同相成分と直交成分とから、帰還ベースバンド信号の同相成分または直交成分のそれぞれを減算した信号をそれぞれ出力する加算器と、
    該加算器によって得られた信号を、搬送波を用いて被変調波信号を出力する直交変調器と、
    前記被変調波信号を増幅し、負帰還増幅器の出力信号とする増幅部と、
    該増幅された信号の一部を分岐する分岐手段と、
    前記搬送波の位相を所定角度回転する位相器と、
    前記分岐手段が分岐した前記信号の一部を、前記位相器から入力する搬送波によって直交復調して同相成分と直交成分のベースバンド信号をそれぞれ出力する直交復調器と、
    前記位相器が前記搬送波の位相を回転するために、前記位相器を制御する位相制御器とを有し、
    前記ベースバンド信号発生部から、前記位相制御器が判定する同相成分または直交成分とは異なる成分の一定電圧信号を発生させ、
    前記位相制御器が、所定の位相回転角度ずつ前記位相器の位相を変化させ、前記直交変調器に入力する同相成分または直交成分のいずれか1つの電圧が正か負かを判定し、該電圧が負から正または正から負に変化する位相回転角度を算出し、該算出した位相回転角度によって、前記加算器に入力する前記帰還ベースバンド信号の同相成分及び直交成分の位相制御を行うことを特徴とする負帰還増幅器。
JP2001018548A 2000-01-28 2001-01-26 負帰還回路を備えた電力増幅回路及び位相制御方法 Expired - Fee Related JP4538157B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018548A JP4538157B2 (ja) 2000-01-28 2001-01-26 負帰還回路を備えた電力増幅回路及び位相制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-19878 2000-01-28
JP2000019878 2000-01-28
JP2001018548A JP4538157B2 (ja) 2000-01-28 2001-01-26 負帰還回路を備えた電力増幅回路及び位相制御方法

Publications (2)

Publication Number Publication Date
JP2001285387A JP2001285387A (ja) 2001-10-12
JP4538157B2 true JP4538157B2 (ja) 2010-09-08

Family

ID=26584362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018548A Expired - Fee Related JP4538157B2 (ja) 2000-01-28 2001-01-26 負帰還回路を備えた電力増幅回路及び位相制御方法

Country Status (1)

Country Link
JP (1) JP4538157B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137387A1 (ja) * 2005-06-21 2006-12-28 Nec Corporation 信号処理装置及び方法
EP1916773B1 (en) * 2005-08-19 2010-10-06 Fujitsu Limited DC offset correction device and its method
JP4798399B2 (ja) * 2006-04-21 2011-10-19 日本電気株式会社 直流オフセット補正装置および直流オフセット補正方法
KR102445565B1 (ko) * 2021-08-31 2022-09-21 엘아이지넥스원 주식회사 능동 위상 배열 안테나의 수신 패턴 분석 방법
CN113848380B (zh) * 2021-10-22 2023-10-20 深圳市兆驰数码科技股份有限公司 功率检测电路及方法、直流和相位的检测系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964932A (ja) * 1995-08-28 1997-03-07 Hitachi Denshi Ltd 電力増幅器の非線形補償回路
JPH09233145A (ja) * 1996-02-21 1997-09-05 Fujitsu Ltd 無線装置
JPH10136048A (ja) * 1996-10-29 1998-05-22 Hitachi Denshi Ltd 負帰還増幅器
JPH118660A (ja) * 1997-06-19 1999-01-12 Nippon Denki Ido Tsushin Kk 歪み補償回路
JPH11196140A (ja) * 1998-01-05 1999-07-21 Hitachi Denshi Ltd 電力増幅器
JP2000013455A (ja) * 1998-06-19 2000-01-14 Nec Mobile Commun Ltd 直交変調器の歪み補償回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964932A (ja) * 1995-08-28 1997-03-07 Hitachi Denshi Ltd 電力増幅器の非線形補償回路
JPH09233145A (ja) * 1996-02-21 1997-09-05 Fujitsu Ltd 無線装置
JPH10136048A (ja) * 1996-10-29 1998-05-22 Hitachi Denshi Ltd 負帰還増幅器
JPH118660A (ja) * 1997-06-19 1999-01-12 Nippon Denki Ido Tsushin Kk 歪み補償回路
JPH11196140A (ja) * 1998-01-05 1999-07-21 Hitachi Denshi Ltd 電力増幅器
JP2000013455A (ja) * 1998-06-19 2000-01-14 Nec Mobile Commun Ltd 直交変調器の歪み補償回路

Also Published As

Publication number Publication date
JP2001285387A (ja) 2001-10-12

Similar Documents

Publication Publication Date Title
US6384677B2 (en) Power amplifier having negative feedback circuit for transmitter
JP4637850B2 (ja) 送信装置、通信機器、及び移動無線機
EP1923991B1 (en) Transmitter arrangement and signal processing method
JP2000286915A (ja) 信号変調回路及び信号変調方法
US8077799B2 (en) Apparatus and method to adjust a phase and frequency of a digital signal
JP4437097B2 (ja) 2点変調型周波数変調装置及び無線送信装置
JP3934585B2 (ja) 広帯域変調pll、広帯域変調pllのタイミング誤差補正システム、変調タイミング誤差補正方法および広帯域変調pllを備えた無線通信装置の調整方法
JP2007104007A (ja) 直交変調器及び直交変調器におけるベクトル補正方法
WO2007100114A1 (ja) 送信機及びキャリアリーク検出方法
JP4634428B2 (ja) Iq変調システム並びに個別的な位相パス及び信号パスを使用する方法
JP4584336B2 (ja) Fm変調を用いたポーラ変調装置および方法
JP4538157B2 (ja) 負帰還回路を備えた電力増幅回路及び位相制御方法
US6693956B1 (en) Power amplifier having negative feedback circuit for transmitter
JP5281979B2 (ja) 受信機
EP0570979A1 (en) Quadrature modulation circuit
JPH05175743A (ja) 電力増幅器
JP3725016B2 (ja) 負帰還方式による非線形歪み補償回路を用いた送信機
JP3532908B2 (ja) 周波数制御装置
JP4490349B2 (ja) 負帰還方式による非線形歪み補償回路を用いた送信機
JP3999640B2 (ja) 周波数制御装置
JP3301287B2 (ja) 線形補償回路
JPH09130361A (ja) 周波数変換装置
JP3984377B2 (ja) ディジタル変調装置
JP2001103104A (ja) ディジタル無線装置
JPH07123123A (ja) 4相位相変調回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees