JP4518661B2 - Manufacturing method of image display device - Google Patents

Manufacturing method of image display device Download PDF

Info

Publication number
JP4518661B2
JP4518661B2 JP2000363707A JP2000363707A JP4518661B2 JP 4518661 B2 JP4518661 B2 JP 4518661B2 JP 2000363707 A JP2000363707 A JP 2000363707A JP 2000363707 A JP2000363707 A JP 2000363707A JP 4518661 B2 JP4518661 B2 JP 4518661B2
Authority
JP
Japan
Prior art keywords
protruding member
support substrate
front plate
back plate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000363707A
Other languages
Japanese (ja)
Other versions
JP2002170507A (en
Inventor
康人 村元
雅史 加藤
尉彦 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000363707A priority Critical patent/JP4518661B2/en
Publication of JP2002170507A publication Critical patent/JP2002170507A/en
Application granted granted Critical
Publication of JP4518661B2 publication Critical patent/JP4518661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、プラズマディスプレイ、電界放出型ディスプレイ等の画像表示装置の製造方法に関する。
【0002】
【従来技術】
近年、プラズマディスプレイパネル(Plasma Display Panel、PDP)や、プラズマアドレス液晶パネル(Plasma Address iquid Crystal、PALC)、電界放出型ディスプレイ(Field Emission Display、以下FEDという)等の、平面型画像表示装置が開発されている。
【0003】
かかる画像表示装置は、表面に蛍光体や放電用の電極等が形成された正面板と背面板との間で、蛍光体にプラズマや電子ビームを照射して該蛍光体を発光させることによって画像を形成するものであり、パネル内部を真空状態または減圧状態にする必要があるために前記正面板と背面板間の周縁部を枠体によって封止してパネルを構成するが、外部の大気圧によりパネルが撓んで画像に歪みが生じることを防止するために、正面板と背面板の間を所定間隔に保つための突起部材(スペーサ)を複数本形成することが知られている。
【0004】
上記突起部材(スペーサ)を正面板または背面板の基板表面に形成する方法としては、基板表面に突起部材用のペースト層を被着形成し硬化した後サンドブラスト法等により不要な部分を取り除く方法や、基板表面にスクリーン印刷法等の印刷法等を繰り返す方法、塑性変形可能な柔らかさのペースト層に突起部材形状の凹部を形成した平板状またはロール状の成形型を押圧(型押し)する方法、突起部材形状の凹部を有する成形型の凹部内にペーストを充填し、該ペーストを硬化した後基板表面に転写する方法、硬化したペースト層の表面からマスクパターンを用いたエッチング処理を行う方法等によって、正面板または背面板の表面に突起部材用成形体を作製した後、焼成する方法等が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の正面板または背面板表面に直接スペーサを形成する方法では、正面板または背面板のスペーサを形成する表面に存在する蛍光体や電極等を傷つけてしまう恐れがあり、傷つきやすい電極や素子等を有する背面板や蛍光体を形成した正面板にはスペーサを形成できないものであった。
【0006】
また、ガラス板等から切り出したスペーサを正面板または背面板表面に一本ずつ貼り合わせる方法もあるが、正面板および背面板表面に存在する蛍光体や電極等を傷つけないように注意する必要があるために、生産性が低く、微細形状、微細間隔のスペーサを形成できないばかりか、スペーサの貼り合わせ角度に誤差が生じやすく、パネルに表示ムラが発生してしまう恐れがあった。
【0007】
さらに、上述したスペーサの形成方法では、スペーサの形成時に不具合が生じた場合、高価な正面板または背面板ごと廃棄せざるをえず、コストがかさむという問題があった。
【0008】
本発明は前記課題を解決するためになされたもので、その目的は、正面板や背面板表面に存在する蛍光体や電極等を傷つけることなく、寸法精度よく、容易に低コストで正面板または背面板表面へ突起部材(スペーサ)を形成できる画像形成装置の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、所定の間隔で離間して平行に配設された正面板と背面板の両基板間に複数の突起部材が配設されてなる画像表示装置の製造方法であって、透光性の支持基板と、光によって接着力が低下する接着剤を介して前記支持基板の一方の表面に固定された、同じ高さからなる複数の突起部材と、前記突起部材の頂部に被着形成された熱硬化性の固着剤と、を備えて構成された突起部材付き支持基板を用意し、前記正面板または背面板の表面に、前記突起部材付き支持基板に被着された前記固着剤を当接させて前記突起部材付き支持基板を貼り付けた後、前記支持基板を介して前記接着剤に光を照射して前記接着剤の接着力を低下させて、前記突起部材から前記支持基板を取り除くことを特徴とする画像表示装置の製造方法を提供する。
【0010】
また、隣接する前記突起部材間が、前記支持基板表面に形成され、かつ前記突起部材と同じ成分からなる連結部によって連結されてなることが好ましい。
【0016】
【発明の実施の形態】
本発明の突起部材付き支持基板の第1の実施態様について、その概略斜視図である図1を基に説明する。
図1によれば、突起部材付き支持基板1は、支持基板2の表面に接着剤層3が被着形成され、該接着剤層3の表面に突起部材4が複数本形成されている。
【0017】
支持基板2は、ガラス、セラミックス、プラスチック、金属のうちのいずれか1種からなることが望ましい。このうち、ガラスとしては、石英ガラス、ソーダライムガラス、低ソーダガラス、鉛アルカリケイ酸ガラス、ホウケイ酸ガラスの群から選ばれる少なくとも1種が使用可能である。プラスチックとしては、アクリル樹脂、エポキシ樹脂、フェノール樹脂、セルロース樹脂、ポリエチレン、ポリプロピレン、ポリスチレン等の有機樹脂が使用可能であり、中でも焼成除去が容易なアクリル樹脂からなることが望ましい。また、支持基板中には強度向上等、特性を改善するために無機質フィラーが添加されていてもよい。金属としてはAl、Fe、Cu等が使用可能であり、中でも軽量で、安価である点から、Al、もしくはAl合金であることが望ましい。セラミックスとしてはアルミナ、ジルコニア、窒化珪素、窒化アルミ、炭化珪素、ムライト、コージェライト、ガラスセラミックスなどが使用可能であるが、中でも、機械的信頼性および熱膨張率の点でアルミナ、ムライト、コーディエライトの群から選ばれる少なくとも1種を主成分とすることが望ましく、軽量で、安価である点から、アルミナが最適である。
【0018】
上記支持基板としては、軽量化、機械的信頼性の点でセラミックスまたはプラスチックが望ましく、温度変化に伴う熱膨張の小さいセラミックスが最も望ましい。
【0019】
また、支持基板2が単独で突起部材4を支持でき突起部材4の形成精度を高めるためには、支持基板2のヤング率が50GPa以上、特に100GPa以上であることが望ましく、支持基板2のヤング率が低い場合には支持基板2表面に突起部材4を形成する際、および突起部材4を正面板または背面板に当接する際に突起部材4の形成精度を高めるために支持基板2のヤング率の高い他の支持基体にて支持した状態で行うことが望ましい。
【0020】
一方、接着剤層3は、熱または光によって接着力が低下するものからなり、具体的には、アクリル樹脂、ブチラール樹脂、ポリビニルアルコール、セルロース樹脂、エポキシ樹脂、ポリオレフィン樹脂、シリコーン樹脂等の熱可塑性樹脂や、耐熱温度が400℃以下でそれ以上の温度にて炭化消失する樹脂、ポリマーと光カチオン重合開始剤の混合物等からなる光硬化性樹脂接着剤等が好適に使用可能である。また、図1によれば、接着剤層3は支持基板2表面を覆うように形成されているが、本発明によればこれに限定されるものではなく、接着剤層3は少なくとも突起部材4を支持基板2に接着固定するものであればよい。
【0021】
本発明によれば、上記接着力が低下する接着剤を用いて複数の突起部材4から支持基板2を剥離して取り除くことによって複数の突起部材4を背面板または正面板に精度よく貼り合わせて形成することができる。
【0022】
他方、突起部材4は、セラミックス、ガラス、金属またはそれらの複合部材によって形成されるが、特に絶縁性および正面板や背面板との焼結温度の整合性の点でガラスまたはガラスセラミックスであることが望ましい。石英ガラス、ソーダライムガラス、低ソーダガラス、鉛アルカリ珪酸ガラス、硼珪酸ガラス、ビスマス系ガラス等が使用でき、所望により、磁器強度を高めるため、熱膨張率を制御するため、着色のため、誘電率の制御のためおよび導電率の制御のために、上記ガラス中にTiO2、ZrO2、ZnO、SnO2、Si34、AlN、Fe23、NiO、CuO、MnO2、SiO2、BN、Al23等のセラミックス粉末、上記ガラスよりもガラス転移点の高いガラス(例えば、珪酸アルミニウム系ガラス(ガラス転移点650℃以上))粉末等の無機質フィラーおよびSi、Zn、Al、Sn、Cu、Mg、Ag、AuおよびPt等の金属粉末を分散せしめたものが好適に使用される。なお、上記金属のうち、Si、Zn、Al、Sn、CuおよびMgを突起部材用の成形体中に含有せしめることにより、これを酸化性雰囲気中にて焼成させて体積膨張し突起部材4が焼成により収縮して支持基板や正面板または背面板から剥離等が発生することを防止する。
【0023】
なお、本発明によれば、突起部材4は上記ガラスが焼結した焼結体であってもよく、または上記ガラスが未焼結の粉末状態で存在する成形体であってもよい。突起部材4が成形体である場合には、機械的信頼性の点で正面板または背面板表面に突起部材4を接着形成した後突起部材4を焼結させることが望ましいが、正面板または背面板の耐熱温度を考慮すると、突起部材4成形体の焼成温度は600℃以下、特に550℃以下、さらに500℃以下であることが望ましい。
【0024】
また、突起部材4は、リブ状(長尺壁体状)、短冊状、格子状または柱状のいずれの形状であってもよいが、特に後述する正面板と背面板との間隔を精度よく保持でき、かつディスプレイ内の真空減圧が容易な点でリブ状であることが望ましい。さらに、突起部材4の寸法は、リブ状にて形成される場合、例えば、厚み200μm以下、特に50〜200μm、ピッチ10mm以下、特に1000μm以下、さらに50〜750μm、さらには100〜300μmにて形成され、また、突起部材4の高さは100μm以上、特に150μm以上、さらに500μm以上にて形成される。
【0025】
さらに、図1によれば、それぞれの突起部材4の頂部には固着剤5が被着形成されている。固着剤5としては、例えばガラス歪み点が450℃以下の低融点ガラスを含むことが望ましく、固着剤5によって正面板または背面板と突起部材4とを接着する。
【0026】
また、図2に示すように、隣接する突起部材4、4間は、突起部材4と同じ成分からなり、突起部材4、4と一体的に、かつ支持基板2表面に形成される連結部6によって連結されていてもよく、この連結部6によって突起部材4を焼成しても寸法精度を高めることができる。なお、連結部6の厚みは突起部材の形成精度を高め容易に取り除くために、50μm以下、特に1〜30μm、さらに5〜20μmであることが望ましい。
【0027】
また、その形状は、図2(a)に示すようにストライプ状に形成されていてもよいが、製造の容易性の点では図2(b)に示すように全面に形成することが望ましい。さらに、例えば、PDPの製造の際に図2(a)のように形成して連結部6が背面板表面側になるようにすれば背面板およびスペーサ表面に被着形成される蛍光体の比表面積を増して蛍光体の発光輝度を向上させることができる。なお、連結部6は所望により研削加工等により容易に除去することもできる。
【0028】
(支持基板の製造方法)
また、上記突起部材付き支持基板を作製するには、まず、所定形状の支持基板の一方の表面に接着剤層を印刷法またはスピンコータ法により塗布または貼り付けによって被着形成する。そして、(a)該接着剤層表面に突起部材用のペースト層を被着形成して硬化した後、サンドブラスト法等により不要な部分を取り除く方法、(b)基板表面にスクリーン印刷法等の印刷法等を繰り返すことにより突起部材用の成形体を作製する方法、(c)塑性変形可能な柔らかさのペースト層に突起部材形状の凹部を形成した平板状またはロール状の剛性の高い成形型を押圧(型押し)して突起部材用の成形体を作製する方法、(d)突起部材形状の凹部を有する成形型の凹部内にペーストを充填し、所望により該ペーストを硬化した後基板表面に転写する方法、(e)硬化したペースト層の表面からマスクパターンを用いたエッチング処理を行い突起部材用成形体を作製する方法、(f)接着剤層表面に塑性変形可能な柔らかさの樹脂層を形成し、突起部材形状の凸部を形成した平板状またはロール状の剛性の高い成形型を押圧(型押し)して樹脂層内に形成された凹部内に突起部材用のペーストを充填して硬化した後、前記樹脂層を除去する方法等によって所定形状の成形体状の突起部材を作製することができる。
【0029】
また、上記方法以外にも、(g)所定形状に加工した突起部材を支持基板表面に貼り合わせることも可能であるが、この場合には突起部材を精度よく形成するため、突起部材形成部に位置する支持基板表面に凹部を形成してもよく、あるいは、突起部材形成部が穿孔(開孔)された所定の厚みを有するガイド板を載置した状態で突起部材を貼り合わせることが望ましい。さらに、突起部材4を成形体の状態で正面板または背面板表面に貼り合わせる場合には、機械的信頼性の向上の点で、突起部材4を貼り合わせた後正面板または背面板ごと加熱して前記成形体を焼結させることが望ましい。
【0030】
上記方法の中でも、PDP、PALC向けの微細な突起部材を精度よく形成できる点で方法(c)を、FED向けの高い突起部材を精度良く形成できる点では(d)(f)(g)を用いることが望ましい。また、所望により、支持基板表面に形成した突起部材の頂部に、印刷法等によって固着剤を被着形成することが望ましい。固着剤は、熱硬化性樹脂等からなる有機樹脂に低融点ガラス、溶剤を加えたものが望ましく、また所望により少量の分散剤、レベリング剤、消泡剤等の添加剤が入ったペーストからなるものが望ましい。これをスクリーン印刷法、ディッピング法等で、突起部材の頂部(先端部)に被着形成する。
【0031】
さらに、隣接する突起部材間には強度向上の点、突起部材の寸法精度を高める点で突起部材と同じ材質からなり、特に5〜200μm程度の連結部を形成することが望ましい。なお、連結部は後で研削加工等により容易に除去することができる。連結部の形状としては、図4に示すように、(a)突起部材の長手方向と直交するように突起部材間にライン状に形成する方法、(b)支持基板または接着剤層と突起部材との間に層状(全面)に形成する方法が挙げられる。
【0032】
また、焼成によって形成した突起部材を、焼成後、別の支持基板と接着することもできる。なお、この場合、突起部材の別の支持基板との接着面は先の支持基板との接着面でもいいし、反対側の面であってもよい。接着剤層は、突起部材の先端面に接着剤を塗布してもよいが、製造の容易性の点で別の支持基板にドクターブレード法、スプレー法、スピンコート法、ローコーター法等を用いて形成することが望ましい。
【0033】
(突起部材を背面板または正面板に貼り合わせる方法)さらに、上記突起部材付き支持基板を用いて、画像表示装置の正面板または背面板の表面に突起部材(スペーサ)を形成する方法について説明する。まず、表面の所定の位置に蛍光体、電極、電子放出素子等を形成した正面板および背面板を作製し、該正面板または背面板表面の所定位置に前記突起部材付き支持基板の突起部材の頂部を当接する。そして、支持基板と突起部材との間に接着剤層を加熱するか、または紫外線等の光を照射することによって接着剤層の接着力を低下させ、支持基板を取り外す。
【0034】
次に、突起部材と正面板または背面板との間を、例えば600℃以下、特に420〜500℃に加熱して固着剤を固化させることによって接着する。なお、この加熱によって突起部材が成形体である場合には突起部材を焼結させることも可能である。これによって、正面板または背面板表面に突起部材を被着形成することができる。
【0035】
(第2の実施態様)
また、図1では、支持基板2と突起部材4とを接着剤層3にて接着したものであったが、本発明はこれに限定されるものではなく、支持基板2と突起部材4とを直接接着したものであってもよい。なお、この際、支持基板と突起部材とは焼結等によって接合、一体化していることが望ましい。
【0036】
そこで、図3に支持基板2と突起部材4とを直接接着した突起付き支持基板を図3の概略斜視図に示す。
図3の突起部材付き支持基板7によれば、支持基板8は加工や加熱等により容易に除去できる強度100MPa以下、特に60MPa以下の快削性の材料にて形成されている。支持基板8を構成する材料としては、例えば、アクリル樹脂、テフロン等の樹脂や、気孔率が10〜70%、特に40〜70%の多孔質セラミックス等からなる。また、多孔質セラミックスとしては、突起部材4の形成精度を高めるために、アルミナ、ムライト、コーディライト等の高強度、低熱膨張材料が使用可能である。さらには、製造の容易性の点で支持基板8が突起部材4と同じ材料によって形成されていてもよい。また、支持基板7(多孔質セラミックス)と突起部材4との接着性を高め、突起部材の形成精度を向上させるために、支持基板(多孔質セラミックス)7と突起部材4との間にガラス層を形成することもできる。
【0037】
一方、突起部材4は上述したものと同じものにて形成されるが、図3によれば、後述するように、支持基板を加工により除去する必要があるために突起部材4がある程度の強度を有することが望ましく、かかる観点から突起部材4は成形体であってもよいが、特に焼結体であることが望ましい。
【0038】
(突起部材の作製方法)
かかる突起部材付き支持基板7を作製するには、所定形状の支持基板8の表面に上述した方法により突起部材4(用成形体)を作製し、所望により、該成形体を支持基板ごと加熱して突起部材を焼結させる。さらに、所望によって、上述と同様に突起部材の頂部に固着剤を被着形成することが望ましい。
【0039】
(突起部材を背面板または正面板に貼り合わせる方法)
また、突起部材付き支持基板7を用いて正面板または背面板表面に突起部材を形成するには、上述した蛍光体や電極等を形成した正面板または背面板の所定位置に突起部材付き支持基板7の突起部材4の頂部を当接して、正面板または背面板と突起部材4とを固着剤により接着した後、支持基板を研削加工や薬品処理等により除去することにより形成可能である。
【0040】
(FEDの構造)次に、本発明の画像表示装置の好適な応用例であるFED(Field Emission Display)について、その概略断面図である図4を基に説明する。図4において、FED11は、所定間隔離間して平行に形成された背面板12と正面板13との2枚の基板間の所定位置に突起部材(スペーサ)14が配設されている。
【0041】
背面板12および正面板13の基板は、石英ガラス、ソーダライムガラス、低ソーダガラス、鉛アルカリケイ酸ガラス、ホウケイ酸ガラス等のガラス基板、サファイア、クォーツ、単結晶ジルコニア、ダイヤモンド等の単結晶基板、アルミナ、シリカ等の多結晶セラミック基板、前記ガラス中に前記セラミックが含有、分散したガラスセラミック基板、Si基板等が使用可能であるが、特にナトリウムおよび鉛成分の少ない高歪点の低ソーダガラスが望ましく、特に、正面板13は透明な材料にて形成される。
【0042】
一方、背面板12表面には、複数の電子放出素子16が形成されている。電子放出素子16の具体的な構造は、例えば、所定間隔離間して平行に配設された複数本のライン状の正電極および負電極が交差するように形成され、正電極および負電極の交点に絶縁体を介装するMIM構造や、正電極と負電極とを絶縁層を介在させて所定間隔並列に離間させる表面伝導型、正電極と負電極との間に絶縁体を介装し正電極および絶縁体を所定の位置にて一部切り欠くとともに、該切り欠き部にて先端が鋭角をなすコーン状の突起を配設した電界放出型等が好適に使用できる。
【0043】
電子放出素子16を形成する前記正電極および負電極用の導体層は、銀(Ag)、アルミニウム(Al)、ニッケル(Ni)、白金(Pt)、金(Au)、パラジウム(Pd)等の金属またはそれぞれを主成分とする合金、及び、アモルファスシリコン、ポリシリコン、グラファイト等を用いることができる。また、正電極用導体層と負電極用導体層との交差点にはSi、Ti、Ga、W、Al、Pd等の酸化物や窒化物から選ばれる少なくとも1種からなる絶縁体が介層される。
【0044】
また、所望により電子放出素子16への不純物の拡散防止のために背面板12と電子放出素子16との間にシリカ、窒化ケイ素等のセラミックス薄膜等からなる拡散防止層18が介在することが望ましい。
【0045】
一方、正面板のパネル内面をなす表面には、蛍光体17が形成されている。蛍光体17はR(赤)、G(緑)、B(青)の3色に発色する蛍光体17の3つを1画素として、これを行方向および列方向にマトリックス状に規則的に配列してなる。
【0046】
さらに、正面板13表面の蛍光体17形成部以外の特定の位置には、FED11おける色のにじみを防止して表示画面のコントラストを高めシャープな画像を得るためにブラックマトリックス19が配置されることが望ましい。ブラックマトリックス19は黒色または暗色となる材料からなり、例えば、Fe、Ni、Cu、Mn等の酸化物粉末と低融点ガラスとの混合物や金属クロム、グラファイト等を用いることができる。
【0047】
また、図4によれば、正面板13と蛍光体17との間には、電子放出素子16から蛍光体17に向かって放出される電子を加速するために、透明なITO(インジウム−錫酸化物)膜20が形成されているが、本発明はこれに限られるものではなく、前記電子ビームを加速するため、および蛍光体17の散乱した発光を反射して発光輝度を高めるために、ITO膜20に代えて正面板13の蛍光体17表面に、例えば50〜300nmのアルミニウム(Al)、銀(Ag)、ニッケル(Ni)、白金(Pt)等の金属箔からなるメタルバック(図示せず。)を形成してもよい。
【0048】
さらに、図4に示すように、正面板13と背面板12の周縁部間に枠体21を配設し、正面板13、背面板12および枠体21を接着して、内部が封止されたパネルを形成する。
【0049】
なお、図4ではFEDの構造について説明したが、本発明はこれに限定されるものではなく、例えば、PDPやPALC等の他の画像表示装置やプリンタ等にも適応可能である。
【0050】
(FEDの製造方法)次に、本発明の画像表示装置の製造方法について、その一例であるFEDの製造方法を基に説明する。まず、上述した材料からなる正面板13を作製し、所定形状にカットした後、格子状のブラックマトリックス19をフォトリソグラフィ法、印刷法等により形成し、該ブラックマトリックス19によって囲まれた領域の所定の位置に、フォトリソグラフィ法、印刷法、インクジェット法等の公知の方法により蛍光体17を形成する。なお、スペーサ14の正面板13への接合強度向上の点で、蛍光体17は正面板13のスペーサ14形成部にはマスク等を用いて形成しないことが望ましい。
【0051】
また、蛍光体17に蓄積される電荷を逃がすため、正面板13と蛍光体17との間にペースト塗布法、蒸着法等によりITO膜20を形成するか、またはアルミニウム(Al)、銀(Ag)、ニッケル(Ni)、白金(Pt)、等からなり50〜200nm程度の厚みを有する箔からなるメタルバック(図示せず。)を蛍光体17表面に蒸着法などによって形成することが望ましく、さらに、蛍光体17の損傷を防ぐため、また前記メタルバックを薄くかつ均一な厚みに形成するために樹脂からなる保護層(図示せず)を蛍光体17表面に形成することが望ましい。
【0052】
なお、この保護層は後述のバインダ、溶剤の他、消泡材やレベリング材等を添加した樹脂ペーストをフォトリソグラフィー法、印刷法、インクジェット法等にて形成でき、後述の熱処理により消失することが望ましい。
【0053】
他方、上述した材料からなる背面板12表面に、フォトリソグラフィ法等により上述した材料からなる導体層を正電極用導体層と負電極用導体層とが所定の位置で交差するように被着形成し、かつその交差点にはスパッタリング法、蒸着法、イオンビームスパッタリング法、CVD法、MBE法等により上述した材料からなる絶縁体を介装することによって電子放出素子16を形成する。
【0054】
次に、上述した方法によって、正面板13または背面板12のいずれかの表面にスペーサ(突起部材)14を形成する。
【0055】
そして、背面板12と正面板13間の周縁部に枠体21を配置するとともに、フリットガラス等の接着剤を印刷法により正面板の突起と枠体21を固着する部分、および/またはスペーサおよび突起と枠体21の先端面に塗布し、上述した背面板12表面に形成された突起の先端面を正面板13の所定の位置に位置合わせして400〜500℃で熱処理することによって枠体21および突起を貼り合わせた後、パネルの一端に真空ポンプを配設してパネル内を10-3Pa程度まで真空減圧して封止することにより、FED(画像表示装置)11を作製することができる。
【0056】
【実施例】
(実施例1)
平均粒径0.5μmのPbO−SiO2−ZnO−B23ガラス粉末に対して、ZnO粉末、TiO2粉末、Si粉末、Cu粉末、アクリル系紫外線硬化樹脂、溶剤、分散剤を添加、混練してペーストを作製した。また、突起部材成形体を形成するための溝部を有するウレタンゴムからなる成形型を準備し、該溝部内に前記突起部材形成用のペーストを充填して脱泡後、100mm×80mm×1mmで、表面にポリオレフィン樹脂を塗布したガラス基板を支持基板として上記溝部に押し当て、ガラス基板を通して紫外線を照射することでペーストを硬化させ、成形型を離型することで突起部材成形体を表面に転写した支持基板を得た。なお、成形型の溝は垂直形状で深さ190μm、幅100μmのリブ状の配列でそのピッチを360μmとした。
【0057】
他方、250mm×200mm×2mmのソーダライムガラス基板上に、銀ペーストをスクリーン印刷する手法で塗布し焼き付けを行い電極を形成した。この上に、スリットコーター法を用いて低融点ガラスからなる絶縁層を塗布し、590℃で焼成を行い背面板とした。また、250mm×200mm×2mmのソーダライムガラス基板上に、アルミニウムからなるバス電極、ITO膜からなる透明電極をフォトリソグラフィー法で形成し、透明度の高い低融点ガラスからなる誘電体層をラミネート法で、MgOからなる保護層をスパッタ法で順次形成して、正面板とした。
【0058】
次に、印刷法を用いて突起部材成形体の上端面上への低融点ガラスと熱硬化性アクリル樹脂からなるペーストの戴置を行った後に、該突起部材成形体の間に背面板上に形成した電極が配されるように位置あわせして背面板上に該突起部材付き支持基板4枚を所定位置に戴置した。さらにこれを130℃にて加熱し、突起部材成形体と背面板を固着した後、前記接着剤に紫外線を照射して支持部材を取り除いた後、550℃まで加熱し、突起部材と背面板を一体化させた。目視および顕微鏡にて突起部材の形成状況を確認したところ、クラックや剥離が発生することなく良好に形成されていた。
【0059】
一方、正面板の放電表示セル内面をなす表面に、マスクパターンを介して蛍光体を塗布し、該蛍光体を550℃で焼き付けた後、背面板のスペーサおよび枠体と正面板とを封着剤にて接着してパネル内を封止し、該パネル内にNe−Xeを主成分とする放電ガスを400〜550hPaで気密封入してPDPを作製した。
【0060】
前記PDPを用いて、正面板の放電電極間に250Vの電圧を印加することで、放電表示セルが発光させた。さらに背面板のアドレス電極と正面板の放電電極に画像情報を持った電圧パルスを印加したところ、良好な画像を表示することができた。
【0061】
(実施例2)
平均粒径1.0μmのPbO−SiO2−B23ガラス粉末に対して、Zn金属粉末、Al金属粉末、SnO粉末、ZnO粉末、アクリル樹脂、溶剤、分散剤、可塑剤を添加、混練してペーストを作製した。
【0062】
他方、突起部材成形体を形成するための溝部を有する金属からなるロール形状の成形型を準備し、上記の突起部材形成用のペーストを塗布した塗布した250mm×200mm×0.5mmのアクリル基板を用意し、上記成形型により該ペースト層を押圧しながら成形型を回転移動させることで突起部材成形体を表面に形成した支持基板を得た。なお、該溝は垂直形状で深さ300μm、幅100μmのストライプ状の配列でそのピッチを840μmとした。なお、突起部材間には厚み20μmの連結部が形成されていた。さらに、印刷法を用いて突起部材成形体の上端面上への低融点ガラスとポリオレフィン樹脂からなる接着剤を被着形成した。
【0063】
一方、実施例1と同じソーダライムガラス基板上に、ニッケルペーストをスクリーン印刷法で塗布して焼き付けを行い、放電電極を形成し背面板とし、他方、突起部材間に2本の電極が入るように位置あわせをして突起部材付き支持基板と背面板を貼り合わせ、100℃に加熱して接着した後、560℃まで加熱し、突起部材と背面板を一体化し、支持基板を焼却した。さらに突起部材の頂部に形成された連結部を除去するとともに頂部の凹凸を5μm以下とした。
【0064】
得られた突起部材(スペーサ)付き基板(背面板)のスペーサの頂部に厚さ50μmの250mm×200mmのガラスからなる誘電体基板を貼り合わせた。また、背面板と正面板との周縁部は低融点ガラスからなるフリットシール剤により封止してパネルを形成した。そして、該パネル内にNe−Xeを主成分とする放電ガスを気密封入し、誘電体基板上に液晶層を介して背面板の電極と略直交する電極を有する正面板を貼り合わせた。なお、パネルの封止およびガス封入工程においても前記誘電体基板に割れやクラック等が発生しないことを確認した。
【0065】
得られたPALCパネルに、放電電圧350Vと、データ電圧を印加することにより液晶を駆動させることができた。
【0066】
(実施例3)
平均粒径0.8μmのSiO2−B23−ZnOガラス粉末に対して、Si金属、SnO粉末、エポキシ樹脂、溶剤、分散剤、を添加、混練してペーストを作製した。また、突起部材成形体と連結部を形成するための溝部とを有するシリコーンゴムからなる成形型を準備し、該溝部内に上記の突起部材形成用のペーストを充填して脱泡後、120mm×100mm×0.5mmのアクリル基板を上記溝部に押し当て、130℃に加熱することで、突起部材成形体を表面に形成したアクリル基板を得た。なお、該突起部材の溝は垂直形状で深さ1500μm、幅150μmのストライプ状の配列でそのピッチを6000μmとした。連結部の溝はストライプとは略直交する方向に設けられ、深さ50μm、幅300μm、ピッチ600μmとし、突起部材間に厚み50μmの連結部を形成した。
【0067】
次に、該アクリル基板を500℃で消失させ、突起部材および連結部からなる部材を得た。なお、後工程に耐えうる強度を得るために、この部材の連結部の突起部材形成面とは反対の表面にブチラール樹脂を塗布してアルミ基板を接着した。
【0068】
一方、実施例1と同じガラス基板上に電極および絶縁層を形成して電界放出素子を形成し、背面板とした。また、同じ形状のガラス基板表面にブラックマトリックスおよび蛍光体を順次形成した。さらにアクリル樹脂からなるフィルミング層を形成した後に蒸着法を用いてアルミニウムを100nm厚で蒸着した。これを400℃で熱処理して正面板を得た。
【0069】
次に、印刷法を用いて突起部材付き支持基板の上端面上へ低融点ガラスとエポキシ樹脂からなるペーストの戴置を行った後に、ブラックマトリックスと突起が接触するように位置あわせして正面板上に該突起部材付き支持基板を4枚戴置した。さらにこれを120℃に加熱し、突起部材成形体と正面板を固着した後に離型し、さらに420℃まで加熱し、突起部材と正面板を一体化させるとともに、支持基板を突起部材から分離した。さらに枠体を突起の周囲に配置してから背面板と正面板とを封着し、パネル内部を10-3Pa以下の真空に排気した後に封止し、FEDパネルを得た。
【0070】
電子放出素子に50V、正面板と背面板間に7kVの電圧を印加することで、電子が放出され、蛍光体が発光し、画像を良好に表示できることを確認した。
【0071】
(実施例4)
平均粒径1.0μmのNa2O−B23−SiO2ガラス粉末に対して、Mg金属、Si金属、ブチラール樹脂、溶剤、分散剤を添加、混練してペーストを作製した。
【0072】
他方、突起部材成形体を形成するための溝部を有する金属からなるロール形状の成形型を準備し、該溝部内に上記の突起部材形成用のペーストを充填して乾燥後、表面にシリコーン系接着剤と低融点ガラスからなる接着層を有する250mm×200mm×0.5mmの多孔質基板を支持基板として上記溝部に押し当て、成形型を回転移動させることで突起部材成形体を表面に形成した支持基板を得た。なお、該溝は垂直形状で深さ1200μm、幅120μmのストライプ状の配列でそのピッチを2000μmとした。多孔質基板は気孔率40%、JISR1601に基づく3点曲げ強度が50MPaのアルミナ基板とした。そして、該突起部材付き支持基板を650℃で焼成し、ガラスセラミックスからなる突起部材付き支持基板を得た。さらに、突起部材の頂部に印刷法を用いて低融点ガラスとエポキシ樹脂の混合物からなるペーストを被着形成した。
【0073】
一方、実施例3と同様に背面板および正面板を形成し、該正面板のブラックマトリックス形成位置に突起部材が載置されるように位置合わせして、正面板表面に突起部材付き支持基板を戴置した。そして、これを130℃に加熱し、突起部材成形体と背面板を固着した後に420℃まで加熱し、突起部材と背面板を一体化させた。その後、支持基板を研削加工によって除去した。
【0074】
そして、正面板と背面板との周縁部に枠体を載置し接着封止するとともに、背面板と正面板のスペーサの頂部とを接着してパネルを形成した。さらに、パネル内部を10-3Pa以下の真空に排気した後に封止し、FEDパネルを得た。
【0075】
得られたFEDパネルに対して、電子放出素子に50V、正面板と背面板間に3kVの電圧を印加することで、電子が放出され、蛍光体が発光し良好な画像が表示されることを確認した。
【0076】
(比較例)
実施例4の突起部材付き支持基板に対して、支持基板を気孔率3%以下、強度250MPaのアルミナ質セラミックスに代える以外は、実施例4と同様に突起部材付き支持基板を作製し、実施例4と同様にこの突起部材の頂部を正面板の所定位置に貼り合わせた後支持部材を研削加工したところ、支持部材を研削した際にスペーサに欠けやクラックの発生が見られた。
【0077】
【発明の効果】
以上、詳述したとおり、本発明によれば、正面板や背面板表面に存在する蛍光体や電極等を傷つけることなく、寸法精度よく、容易に低コストで正面板または背面板表面へ突起部材(スペーサ)を形成できる突起部材付き支持基板を作製できる。
【図面の簡単な説明】
【図1】 本発明の突起部材付き支持基板を示す概略斜図である。
【図2】 本発明の突起部材付き支持基板の連結部材の形状を示す概略斜視図である。
【図3】 本発明の他の突起部材付き支持基板を示す概略斜視図である。
【図4】 本発明の突起部材付き支持基板の好適な応用例である画像表示装置の一例であるFEDを示す概略断面図である
【符号の説明】
1、7・・突起部材付き支持部材
2、8・・支持基板
3・・・・接着剤層
4・・・・突起部材
5・・・・固着剤
6・・・・連結部
11・・・画像表示装置(FED)
12・・・背面板
13・・・正面板
14・・・突起部材(スペーサ)
16・・・電子放出素子
17・・・蛍光体
18・・・拡散防止層
19・・・ブラックマトリックス
20・・・ITO膜
21・・・枠体
[0001]
BACKGROUND OF THE INVENTION
  The present invention provides, for example, images of plasma displays, field emission displays, etc.The present invention relates to a method for manufacturing a display device.
[0002]
[Prior art]
In recent years, flat image display devices such as plasma display panels (PDP), plasma address liquid crystal panels (PALC), and field emission displays (hereinafter referred to as FED) have been developed. Has been.
[0003]
Such an image display device irradiates a phosphor with plasma or an electron beam between a front plate and a back plate having phosphors and discharge electrodes formed on the surface, thereby causing the phosphor to emit light. Since the inside of the panel needs to be in a vacuum state or a reduced pressure state, the peripheral portion between the front plate and the back plate is sealed with a frame to constitute the panel. It is known to form a plurality of protrusion members (spacers) for maintaining a predetermined distance between the front plate and the back plate in order to prevent the panel from being bent by this and causing distortion in the image.
[0004]
As a method of forming the protruding member (spacer) on the substrate surface of the front plate or the back plate, a paste layer for the protruding member is formed on the substrate surface and cured, and then unnecessary portions are removed by sandblasting or the like. , A method of repeating a printing method such as a screen printing method on the surface of the substrate, a method of pressing (pressing) a flat plate-shaped or roll-shaped mold in which a protruding member-shaped concave portion is formed in a soft paste layer capable of plastic deformation , A method in which a paste is filled in a concave portion of a mold having a convex member-shaped concave portion, the paste is cured and then transferred to the surface of the substrate, a method of performing an etching process using a mask pattern from the surface of the cured paste layer, etc. Thus, there is known a method of firing a projection member molded body on the surface of a front plate or a back plate and then firing it.
[0005]
[Problems to be solved by the invention]
However, in the conventional method of directly forming a spacer on the surface of the front plate or the back plate, there is a risk of damaging the phosphor or the electrode existing on the surface of the front plate or the back plate forming the spacer, and the electrode is easily damaged. In addition, the spacer cannot be formed on the back plate having phosphors and elements or on the front plate on which the phosphor is formed.
[0006]
In addition, there is a method of sticking spacers cut out from glass plates etc. one by one on the front plate or back plate surface, but care must be taken not to damage the phosphors or electrodes present on the front plate and back plate surfaces. For this reason, the productivity is low, and not only spacers with fine shapes and fine intervals cannot be formed, but errors in the spacer bonding angle are likely to occur, and display unevenness may occur on the panel.
[0007]
Further, the above-described spacer forming method has a problem that if a problem occurs during the formation of the spacer, the expensive front plate or the back plate must be discarded, and the cost is increased.
[0008]
  The present invention has been made to solve the above-mentioned problems, and its purpose is to easily and inexpensively reduce the size of the front plate or the front plate without damaging phosphors or electrodes existing on the front plate or the back plate surface. Protruding members (spacers) can be formed on the back plate surfacePaintingAn object of the present invention is to provide a method for manufacturing an image forming apparatus.
[0009]
[Means for Solving the Problems]
  The present invention relates to a method of manufacturing an image display device in which a plurality of protruding members are disposed between both a front plate and a back plate that are spaced apart and arranged in parallel at a predetermined interval. A plurality of projecting members having the same height fixed to one surface of the support substrate via an adhesive whose adhesive strength is reduced by light, and a top portion of the projecting member. And a thermosetting fixing agent, and a support substrate with a protruding member is prepared, and the fixing agent attached to the supporting substrate with the protruding member is applied to the surface of the front plate or the back plate. After attaching the support substrate with the protruding member in contact, the adhesive is irradiated with light through the support substrate to reduce the adhesive force of the adhesive, and the support substrate is removed from the protruding member. An image display device manufacturing method is provided.
[0010]
In addition, it is preferable that adjacent projecting members are connected by a connecting portion formed on the surface of the support substrate and made of the same component as the projecting member.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The first embodiment of the support substrate with protruding members of the present invention will be described with reference to FIG. 1 which is a schematic perspective view thereof.
According to FIG. 1, the supporting substrate 1 with the protruding member has an adhesive layer 3 deposited on the surface of the supporting substrate 2, and a plurality of protruding members 4 are formed on the surface of the adhesive layer 3.
[0017]
The support substrate 2 is preferably made of any one of glass, ceramics, plastic, and metal. Among these, as glass, at least 1 sort (s) chosen from the group of quartz glass, soda-lime glass, low soda glass, lead alkali silicate glass, and borosilicate glass can be used. As the plastic, an organic resin such as an acrylic resin, an epoxy resin, a phenol resin, a cellulose resin, polyethylene, polypropylene, or polystyrene can be used, and among these, it is desirable that the plastic is made of an acrylic resin that can be easily removed by baking. In addition, an inorganic filler may be added to the support substrate in order to improve characteristics such as strength improvement. As the metal, Al, Fe, Cu, etc. can be used. Among them, Al or an Al alloy is desirable because it is light and inexpensive. As ceramics, alumina, zirconia, silicon nitride, aluminum nitride, silicon carbide, mullite, cordierite, glass ceramics, etc. can be used, and among them, alumina, mullite, cordier in terms of mechanical reliability and thermal expansion coefficient. It is desirable that at least one selected from the group of lights is a main component, and alumina is most suitable because it is lightweight and inexpensive.
[0018]
As the support substrate, ceramics or plastics are desirable in terms of weight reduction and mechanical reliability, and ceramics having a small thermal expansion accompanying a temperature change is most desirable.
[0019]
Further, in order for the supporting substrate 2 to support the protruding member 4 independently and to increase the formation accuracy of the protruding member 4, it is desirable that the Young's modulus of the supporting substrate 2 is 50 GPa or more, particularly 100 GPa or more. When the rate is low, the Young's modulus of the support substrate 2 is used to increase the formation accuracy of the projection member 4 when the projection member 4 is formed on the surface of the support substrate 2 and when the projection member 4 is brought into contact with the front plate or the back plate. It is desirable to carry out in a state where it is supported by another supporting substrate having a high height.
[0020]
On the other hand, the adhesive layer 3 is made of a material whose adhesive strength is reduced by heat or light, and specifically, thermoplastics such as acrylic resin, butyral resin, polyvinyl alcohol, cellulose resin, epoxy resin, polyolefin resin, silicone resin, and the like. A resin, a resin that has a heat-resistant temperature of 400 ° C. or lower and carbonized and disappears at a higher temperature, a photocurable resin adhesive made of a mixture of a polymer and a photocationic polymerization initiator, and the like can be suitably used. Further, according to FIG. 1, the adhesive layer 3 is formed so as to cover the surface of the support substrate 2, but according to the present invention, the adhesive layer 3 is not limited to this, and the adhesive layer 3 is at least the protruding member 4. As long as it is adhesively fixed to the support substrate 2.
[0021]
According to the present invention, the plurality of projecting members 4 are bonded to the back plate or the front plate with high accuracy by peeling and removing the support substrate 2 from the plurality of projecting members 4 using the adhesive that reduces the adhesive force. Can be formed.
[0022]
On the other hand, the protruding member 4 is formed of ceramics, glass, metal or a composite member thereof, and is made of glass or glass ceramics particularly in terms of insulation and consistency of sintering temperature with the front plate and the back plate. Is desirable. Quartz glass, soda lime glass, low soda glass, lead alkali silicate glass, borosilicate glass, bismuth glass, etc. can be used, if desired, to increase the porcelain strength, to control the coefficient of thermal expansion, to color, dielectric TiO in the glass for rate control and conductivity control2, ZrO2ZnO, SnO2, SiThreeNFour, AlN, Fe2OThree, NiO, CuO, MnO2, SiO2, BN, Al2OThreeCeramic fillers, inorganic fillers such as glass powders having a glass transition point higher than that of the glass (for example, aluminum silicate glass (glass transition point 650 ° C. or higher)), and Si, Zn, Al, Sn, Cu, Mg, Ag A material in which metal powder such as Au and Pt is dispersed is preferably used. Of the above metals, Si, Zn, Al, Sn, Cu, and Mg are included in the molded body for the projecting member, so that the projecting member 4 is expanded in volume by firing in an oxidizing atmosphere. It prevents shrinkage due to firing and peeling or the like from the support substrate, the front plate or the back plate.
[0023]
According to the present invention, the protruding member 4 may be a sintered body obtained by sintering the glass, or may be a molded body in which the glass exists in an unsintered powder state. When the protruding member 4 is a molded body, it is desirable to sinter the protruding member 4 after bonding the protruding member 4 to the surface of the front plate or the back plate from the viewpoint of mechanical reliability. Considering the heat-resistant temperature of the face plate, the firing temperature of the protrusion 4 molded body is preferably 600 ° C. or less, particularly 550 ° C. or less, and more preferably 500 ° C. or less.
[0024]
In addition, the protruding member 4 may have any of a rib shape (long wall shape), a strip shape, a lattice shape, or a column shape, but particularly accurately maintains a distance between a front plate and a back plate, which will be described later. The rib shape is desirable because it can be easily reduced in vacuum in the display. Further, when the protrusion member 4 is formed in a rib shape, for example, it is formed with a thickness of 200 μm or less, particularly 50 to 200 μm, a pitch of 10 mm or less, particularly 1000 μm or less, further 50 to 750 μm, or even 100 to 300 μm. In addition, the height of the protruding member 4 is 100 μm or more, particularly 150 μm or more, and further 500 μm or more.
[0025]
Further, according to FIG. 1, a sticking agent 5 is formed on the top of each protruding member 4. As the fixing agent 5, for example, it is desirable to include a low melting point glass having a glass strain point of 450 ° C. or less, and the front plate or the back plate and the protruding member 4 are bonded by the fixing agent 5.
[0026]
Further, as shown in FIG. 2, the adjacent projecting members 4, 4 are composed of the same components as the projecting member 4, and are integrally formed with the projecting members 4, 4 and are formed on the surface of the support substrate 2. Even if the protruding member 4 is baked by the connecting portion 6, the dimensional accuracy can be increased. The thickness of the connecting portion 6 is preferably 50 μm or less, particularly 1 to 30 μm, and more preferably 5 to 20 μm in order to increase the formation accuracy of the protruding member and easily remove it.
[0027]
Further, the shape may be formed in a stripe shape as shown in FIG. 2A, but it is desirable to form the entire surface as shown in FIG. Further, for example, if the PDP is formed as shown in FIG. 2A so that the connecting portion 6 is on the back plate surface side, the ratio of phosphors deposited on the back plate and spacer surfaces The surface area can be increased and the emission luminance of the phosphor can be improved. The connecting portion 6 can be easily removed by grinding or the like as desired.
[0028]
(Manufacturing method of support substrate)
In order to produce the above-mentioned supporting substrate with a protruding member, first, an adhesive layer is deposited on one surface of a supporting substrate having a predetermined shape by applying or pasting it by a printing method or a spin coater method. (A) A paste layer for a protruding member is deposited on the surface of the adhesive layer and cured, and then an unnecessary portion is removed by a sand blast method or the like. (B) A screen printing method or the like is printed on the substrate surface. A method of producing a molded body for a protruding member by repeating the method, etc., (c) a flat plate-shaped or roll-shaped highly rigid mold in which a protruding member-shaped recess is formed in a soft paste layer capable of plastic deformation A method of producing a molded body for a protruding member by pressing (embossing), (d) filling the paste into a concave portion of a molding die having a concave portion in the shape of a protruding member, and curing the paste if desired, on the surface of the substrate A method of transferring, (e) a method of producing a projection member molded body by performing an etching process using a mask pattern from the surface of the cured paste layer, and (f) a soft resin that can be plastically deformed on the surface of the adhesive layer. And press a flat or roll-shaped high-molding mold with protrusions in the shape of protruding members into the recesses formed in the resin layer to fill the protrusions with the paste for protruding members. After being cured, a projecting member in the form of a predetermined shape can be produced by a method such as removing the resin layer.
[0029]
In addition to the above method, (g) a protruding member processed into a predetermined shape can be bonded to the surface of the support substrate. In this case, the protruding member is formed on the protruding member forming portion in order to form the protruding member with high accuracy. A concave portion may be formed on the surface of the supporting substrate positioned, or it is desirable that the protruding member is bonded together in a state where a guide plate having a predetermined thickness in which the protruding member forming portion is perforated (opened) is placed. Further, when the protruding member 4 is bonded to the front plate or the back plate surface in the form of a molded body, the front plate or the back plate is heated after bonding the protruding member 4 to improve the mechanical reliability. It is desirable to sinter the molded body.
[0030]
Among the above methods, the method (c) is capable of accurately forming fine protrusion members for PDP and PALC, and (d), (f), and (g) are highly accurate in forming high protrusion members for FED. It is desirable to use it. If desired, it is desirable to adhere and form a fixing agent on the top of the protruding member formed on the surface of the support substrate by a printing method or the like. The fixing agent is preferably an organic resin made of a thermosetting resin or the like and a low-melting glass or a solvent added, and if desired, a paste containing a small amount of an additive such as a dispersant, a leveling agent, or an antifoaming agent. Things are desirable. This is deposited on the top (tip) of the protruding member by screen printing, dipping, or the like.
[0031]
Further, it is desirable that the adjacent projection members are made of the same material as the projection members in terms of improving strength and increasing the dimensional accuracy of the projection members, and in particular, connecting portions of about 5 to 200 μm are desirably formed. The connecting portion can be easily removed later by grinding or the like. As shown in FIG. 4, the shape of the connecting portion is as follows: (a) a method of forming a line between the protruding members so as to be orthogonal to the longitudinal direction of the protruding member; and (b) a support substrate or an adhesive layer and the protruding member. And a method of forming a layer (entire surface) between the two.
[0032]
Further, the projecting member formed by firing can be bonded to another support substrate after firing. In this case, the adhesion surface of the projecting member with another support substrate may be the adhesion surface with the previous support substrate, or the opposite surface. The adhesive layer may be applied to the tip surface of the projecting member, but in terms of ease of manufacture, a doctor blade method, a spray method, a spin coat method, a low coater method, etc. are used on another support substrate. It is desirable to form.
[0033]
  (Method of bonding the protruding member to the back plate or the front plate) Further, using the supporting substrate with the protruding member, an imagedisplayA method of forming a protruding member (spacer) on the surface of the front plate or the back plate of the apparatus will be described. First, a front plate and a back plate on which phosphors, electrodes, electron-emitting devices, etc. are formed at predetermined positions on the surface are prepared, and the protruding members of the support substrate with the protruding members are formed at predetermined positions on the front plate or the back plate surface. Abut the top. And the adhesive force of an adhesive bond layer is reduced by heating an adhesive bond layer between a support substrate and a projection member, or irradiating light, such as an ultraviolet-ray, and a support substrate is removed.
[0034]
Next, the protrusion member and the front plate or the back plate are bonded to each other by heating to, for example, 600 ° C. or less, particularly 420 to 500 ° C. to solidify the fixing agent. In addition, when a protrusion member is a molded object by this heating, it is also possible to sinter a protrusion member. As a result, the protruding member can be formed on the surface of the front plate or the back plate.
[0035]
(Second Embodiment)
Further, in FIG. 1, the support substrate 2 and the protruding member 4 are bonded with the adhesive layer 3, but the present invention is not limited to this, and the support substrate 2 and the protruding member 4 are bonded to each other. It may be directly bonded. At this time, it is desirable that the support substrate and the protruding member are joined and integrated by sintering or the like.
[0036]
FIG. 3 is a schematic perspective view of a support substrate with protrusions in which the support substrate 2 and the protrusion member 4 are directly bonded.
3, the support substrate 8 is formed of a free-cutting material having a strength of 100 MPa or less, particularly 60 MPa or less, which can be easily removed by processing or heating. The material constituting the support substrate 8 is made of, for example, a resin such as acrylic resin or Teflon, or a porous ceramic having a porosity of 10 to 70%, particularly 40 to 70%. Further, as the porous ceramic, in order to increase the formation accuracy of the protruding member 4, a high strength, low thermal expansion material such as alumina, mullite, cordierite, or the like can be used. Furthermore, the support substrate 8 may be formed of the same material as the protruding member 4 in terms of ease of manufacture. Further, in order to improve the adhesion between the support substrate 7 (porous ceramic) and the protruding member 4 and improve the formation accuracy of the protruding member, a glass layer is formed between the support substrate (porous ceramic) 7 and the protruding member 4. Can also be formed.
[0037]
On the other hand, the protruding member 4 is formed of the same material as described above. However, according to FIG. 3, the protruding member 4 has a certain degree of strength because it is necessary to remove the support substrate by processing as described later. From this viewpoint, the protruding member 4 may be a molded body, but is preferably a sintered body.
[0038]
(Producing method of protruding member)
In order to produce the support substrate 7 with the projection member, the projection member 4 (molded product) is produced on the surface of the support substrate 8 having a predetermined shape by the method described above, and the molded body is heated together with the support substrate if desired. To sinter the protruding member. Furthermore, if desired, it is desirable to form a sticking agent on the top of the protruding member in the same manner as described above.
[0039]
(Method of sticking protruding member to back plate or front plate)
Further, in order to form the protruding member on the front plate or the back plate surface using the supporting substrate 7 with the protruding member, the supporting substrate with the protruding member is provided at a predetermined position of the front plate or the back plate on which the phosphor or the electrode is formed. 7, the top plate of the projection member 4 is brought into contact with the front plate or the back plate and the projection member 4, and the support substrate is removed by grinding or chemical treatment.
[0040]
  (Structure of FED) Next, the image of the present inventiondisplayAn FED (Field Emission Display) which is a preferred application example of the apparatus will be described with reference to FIG. 4 which is a schematic sectional view thereof. In FIG. 4, the FED 11 is provided with a protruding member (spacer) 14 at a predetermined position between two substrates of a back plate 12 and a front plate 13 which are formed in parallel with a predetermined interval.
[0041]
The substrates of the back plate 12 and the front plate 13 are glass substrates such as quartz glass, soda lime glass, low soda glass, lead alkali silicate glass and borosilicate glass, single crystal substrates such as sapphire, quartz, single crystal zirconia and diamond. Polycrystalline ceramic substrates such as alumina, silica, etc., glass ceramic substrates in which the ceramic is contained and dispersed in the glass, Si substrates, etc. can be used, especially high strain point low soda glass with little sodium and lead components In particular, the front plate 13 is made of a transparent material.
[0042]
On the other hand, a plurality of electron-emitting devices 16 are formed on the surface of the back plate 12. The specific structure of the electron-emitting device 16 is, for example, formed such that a plurality of line-shaped positive electrodes and negative electrodes arranged in parallel with a predetermined distance therebetween intersect, and the intersection of the positive electrode and the negative electrode MIM structure with an insulator interposed between them, a surface conduction type in which a positive electrode and a negative electrode are spaced in parallel by a predetermined distance with an insulating layer interposed, and an insulator between a positive electrode and a negative electrode A field emission type or the like in which a part of the electrode and the insulator is cut out at a predetermined position and a cone-shaped protrusion having an acute angle at the notch is provided.
[0043]
The positive electrode and negative electrode conductor layers forming the electron-emitting device 16 are made of silver (Ag), aluminum (Al), nickel (Ni), platinum (Pt), gold (Au), palladium (Pd), or the like. A metal or an alloy containing each of them as a main component, amorphous silicon, polysilicon, graphite, or the like can be used. Further, at the intersection of the positive electrode conductor layer and the negative electrode conductor layer, an insulator made of at least one selected from oxides and nitrides of Si, Ti, Ga, W, Al, Pd and the like is interposed. The
[0044]
If desired, a diffusion prevention layer 18 made of a ceramic thin film such as silica or silicon nitride is preferably interposed between the back plate 12 and the electron emission element 16 in order to prevent impurities from diffusing into the electron emission element 16. .
[0045]
On the other hand, a phosphor 17 is formed on the surface forming the inner surface of the front plate. The phosphors 17 are arranged in a matrix in the row direction and the column direction, with three of the phosphors 17 that develop colors of three colors of R (red), G (green), and B (blue) as one pixel. Do it.
[0046]
Further, a black matrix 19 is arranged at a specific position on the surface of the front plate 13 other than the phosphor 17 forming portion in order to prevent color bleeding in the FED 11 and increase the contrast of the display screen to obtain a sharp image. Is desirable. The black matrix 19 is made of a black or dark material, and for example, a mixture of an oxide powder such as Fe, Ni, Cu, or Mn and low-melting glass, metallic chromium, graphite, or the like can be used.
[0047]
Further, according to FIG. 4, transparent ITO (indium-tin oxide oxide) is interposed between the front plate 13 and the phosphor 17 in order to accelerate electrons emitted from the electron-emitting device 16 toward the phosphor 17. The material) film 20 is formed, but the present invention is not limited to this, and in order to accelerate the electron beam and to reflect the scattered light emitted from the phosphor 17 to increase the light emission brightness, ITO Instead of the film 20, a metal back (not shown) made of a metal foil such as aluminum (Al), silver (Ag), nickel (Ni), platinum (Pt) of 50 to 300 nm is provided on the surface of the phosphor 17 of the front plate 13. May be formed.
[0048]
Further, as shown in FIG. 4, a frame body 21 is disposed between the peripheral portions of the front plate 13 and the back plate 12, and the front plate 13, the back plate 12 and the frame body 21 are bonded to seal the inside. Forming a panel.
[0049]
Although the structure of the FED has been described with reference to FIG. 4, the present invention is not limited to this, and can be applied to other image display devices such as PDP and PALC, printers, and the like.
[0050]
  (FED Manufacturing Method) Next, the image of the present inventiondisplayAn apparatus manufacturing method will be described based on an FED manufacturing method as an example. First, the front plate 13 made of the above-described material is manufactured and cut into a predetermined shape, and then a lattice-like black matrix 19 is formed by a photolithography method, a printing method, or the like, and a predetermined region in a region surrounded by the black matrix 19 is formed. In this position, the phosphor 17 is formed by a known method such as a photolithography method, a printing method, an ink jet method or the like. It should be noted that the phosphor 17 is desirably not formed on the spacer 14 forming portion of the front plate 13 using a mask or the like in terms of improving the bonding strength of the spacer 14 to the front plate 13.
[0051]
Further, in order to release charges accumulated in the phosphor 17, an ITO film 20 is formed between the front plate 13 and the phosphor 17 by a paste coating method, a vapor deposition method, or the like, or aluminum (Al), silver (Ag) ), Nickel (Ni), platinum (Pt), etc., and a metal back (not shown) made of a foil having a thickness of about 50 to 200 nm is preferably formed on the surface of the phosphor 17 by vapor deposition or the like. Further, it is desirable to form a protective layer (not shown) made of a resin on the surface of the phosphor 17 in order to prevent the phosphor 17 from being damaged and to form the metal back with a thin and uniform thickness.
[0052]
This protective layer can be formed by a photolithographic method, a printing method, an ink jet method, or the like, which can be lost by a heat treatment, which will be described later, in addition to a binder, a solvent, which will be described later, and a resin paste to which an antifoaming material or a leveling material is added desirable.
[0053]
On the other hand, the conductor layer made of the above-described material is formed on the surface of the back plate 12 made of the above-mentioned material so that the positive electrode conductor layer and the negative electrode conductor layer intersect at a predetermined position by a photolithography method or the like. At the intersection, the electron-emitting device 16 is formed by interposing an insulator made of the above-described material by sputtering, vapor deposition, ion beam sputtering, CVD, MBE, or the like.
[0054]
Next, the spacer (projection member) 14 is formed on the surface of either the front plate 13 or the back plate 12 by the method described above.
[0055]
  Then, the frame body 21 is arranged at the peripheral edge between the back plate 12 and the front plate 13, and a part for fixing the projection of the front plate and the frame body 21 by an adhesive such as frit glass by a printing method, and / or a spacer and The frame body is applied by applying heat treatment at 400 to 500 ° C. by applying the protrusion and the tip surface of the frame body 21, aligning the tip surface of the protrusion formed on the surface of the back plate 12 with a predetermined position of the front plate 13. After the 21 and the protrusion are bonded together, a vacuum pump is disposed at one end of the panel to move the inside of the panel to 10-3FED (image) is achieved by sealing with a vacuum reduced to about Pa.displayDevice) 11 can be manufactured.
[0056]
【Example】
Example 1
PbO—SiO with an average particle size of 0.5 μm2-ZnO-B2OThreeFor glass powder, ZnO powder, TiO2Powder, Si powder, Cu powder, acrylic UV curable resin, solvent and dispersant were added and kneaded to prepare a paste. Moreover, after preparing a mold made of urethane rubber having a groove for forming a protrusion member molded body, filling the protrusion for forming the protrusion member in the groove and defoaming, 100 mm × 80 mm × 1 mm, A glass substrate coated with a polyolefin resin on the surface was pressed against the groove as a support substrate, the paste was cured by irradiating ultraviolet rays through the glass substrate, and the projection member molded body was transferred to the surface by releasing the mold. A support substrate was obtained. The grooves of the mold were formed in a vertical shape, a rib shape having a depth of 190 μm and a width of 100 μm, and the pitch was 360 μm.
[0057]
On the other hand, a silver paste was applied onto a 250 mm × 200 mm × 2 mm soda lime glass substrate by screen printing and baked to form an electrode. An insulating layer made of low-melting glass was applied thereon using a slit coater method, and baked at 590 ° C. to obtain a back plate. In addition, a bus electrode made of aluminum and a transparent electrode made of ITO film are formed on a 250 mm × 200 mm × 2 mm soda lime glass substrate by a photolithography method, and a dielectric layer made of low-melting glass having high transparency is laminated by a lamination method. A protective layer made of MgO was sequentially formed by a sputtering method to obtain a front plate.
[0058]
Next, after placing a paste composed of a low-melting glass and a thermosetting acrylic resin on the upper end surface of the protruding member molded body using a printing method, on the back plate between the protruding member molded bodies The alignment was performed so that the formed electrodes were arranged, and the four support substrates with protruding members were placed at predetermined positions on the back plate. Furthermore, after heating this at 130 degreeC and fixing a protrusion member molded object and a backplate, after irradiating an ultraviolet-ray to the said adhesive agent and removing a supporting member, it heats to 550 degreeC, and a protrusion member and a backplate are attached. Integrated. When the formation state of the protruding member was confirmed visually and with a microscope, it was satisfactorily formed without cracking or peeling.
[0059]
On the other hand, a phosphor is applied to the surface of the front plate that forms the inner surface of the discharge display cell via a mask pattern, and after the phosphor is baked at 550 ° C., the spacer and frame of the back plate and the front plate are sealed. The inside of the panel was sealed with an agent, and a discharge gas mainly composed of Ne—Xe was hermetically sealed at 400 to 550 hPa in the panel to produce a PDP.
[0060]
Using the PDP, a voltage of 250 V was applied between the discharge electrodes on the front plate to cause the discharge display cell to emit light. Furthermore, when a voltage pulse having image information was applied to the address electrode on the back plate and the discharge electrode on the front plate, a good image could be displayed.
[0061]
(Example 2)
PbO—SiO with an average particle size of 1.0 μm2-B2OThreeA paste was prepared by adding and kneading Zn metal powder, Al metal powder, SnO powder, ZnO powder, acrylic resin, solvent, dispersant, and plasticizer to the glass powder.
[0062]
On the other hand, a roll-shaped mold made of a metal having a groove for forming a protruding member molded body was prepared, and an applied 250 mm × 200 mm × 0.5 mm acrylic substrate coated with the protruding member forming paste was applied. The support substrate on which the protruding member molded body was formed was prepared by rotating the mold while pressing the paste layer with the mold. The grooves were arranged in a stripe shape having a vertical shape with a depth of 300 μm and a width of 100 μm and a pitch of 840 μm. A connecting portion having a thickness of 20 μm was formed between the protruding members. Further, an adhesive composed of a low melting point glass and a polyolefin resin was deposited on the upper end surface of the protruding member molded body by using a printing method.
[0063]
On the other hand, on the same soda lime glass substrate as in Example 1, a nickel paste is applied by screen printing and baked to form a discharge electrode to form a back plate, and on the other hand, two electrodes enter between the protruding members. The support substrate with the protruding member and the back plate were bonded together, heated to 100 ° C. and bonded, then heated to 560 ° C., the protruding member and the back plate were integrated, and the support substrate was incinerated. Further, the connecting portion formed on the top of the protruding member was removed and the top unevenness was set to 5 μm or less.
[0064]
A dielectric substrate made of 250 mm × 200 mm glass having a thickness of 50 μm was bonded to the top of the spacer of the obtained substrate (back plate) with a protruding member (spacer). Moreover, the peripheral part of the back plate and the front plate was sealed with a frit sealant made of low-melting glass to form a panel. And the discharge gas which has Ne-Xe as a main component was airtightly sealed in this panel, and the front board which has an electrode substantially orthogonal to the electrode of a backplate on the dielectric substrate through the liquid crystal layer was bonded together. In addition, it was confirmed that the dielectric substrate was not cracked or cracked in the panel sealing and gas sealing process.
[0065]
The liquid crystal could be driven by applying a discharge voltage of 350 V and a data voltage to the obtained PALC panel.
[0066]
(Example 3)
SiO with an average particle size of 0.8 μm2-B2OThreeA paste was prepared by adding and kneading Si metal, SnO powder, epoxy resin, solvent, and dispersant to the ZnO glass powder. In addition, a mold made of silicone rubber having a protruding member molded body and a groove for forming a connecting portion is prepared, and after filling the protruding portion forming paste into the groove and defoaming, 120 mm × A 100 mm × 0.5 mm acrylic substrate was pressed against the groove and heated to 130 ° C. to obtain an acrylic substrate having a projection member molded body formed on the surface. The grooves of the projecting members were arranged in a stripe shape having a vertical shape with a depth of 1500 μm and a width of 150 μm and a pitch of 6000 μm. The groove of the connecting portion was provided in a direction substantially perpendicular to the stripe, and had a depth of 50 μm, a width of 300 μm, and a pitch of 600 μm, and a connecting portion having a thickness of 50 μm was formed between the protruding members.
[0067]
Next, the acrylic substrate was eliminated at 500 ° C. to obtain a member composed of a protruding member and a connecting portion. In addition, in order to obtain the strength that can withstand the subsequent process, a butyral resin was applied to the surface opposite to the protruding member forming surface of the connecting portion of this member to adhere the aluminum substrate.
[0068]
On the other hand, an electrode and an insulating layer were formed on the same glass substrate as in Example 1 to form a field emission device, which was used as a back plate. Further, a black matrix and a phosphor were sequentially formed on the surface of a glass substrate having the same shape. Furthermore, after forming the filming layer which consists of acrylic resins, aluminum was vapor-deposited by thickness 100nm using the vapor deposition method. This was heat-treated at 400 ° C. to obtain a front plate.
[0069]
Next, after placing a paste made of low melting point glass and epoxy resin on the upper end surface of the support substrate with projection members using a printing method, the front plate is aligned so that the projections are in contact with the black matrix. Four supporting substrates with projecting members were placed thereon. Further, this was heated to 120 ° C., the mold was released after fixing the projection member molded body and the front plate, and further heated to 420 ° C. to integrate the projection member and the front plate, and the support substrate was separated from the projection member. . Further, after arranging the frame body around the protrusion, the back plate and the front plate are sealed, and the inside of the panel is 10%.-3After exhausting to a vacuum of Pa or less, sealing was performed to obtain an FED panel.
[0070]
By applying a voltage of 50 V to the electron-emitting device and a voltage of 7 kV between the front plate and the back plate, it was confirmed that electrons were emitted, the phosphor emitted light, and an image could be displayed satisfactorily.
[0071]
Example 4
Na with an average particle size of 1.0 μm2OB2OThree-SiO2A paste was prepared by adding and kneading Mg metal, Si metal, butyral resin, solvent, and dispersant to the glass powder.
[0072]
On the other hand, a roll-shaped molding die made of a metal having a groove part for forming a protruding member molded body is prepared, and the above-mentioned protruding member forming paste is filled in the groove part and dried, followed by silicone-based adhesion to the surface. Supporting a projecting member molded body formed on the surface by pressing a 250 mm × 200 mm × 0.5 mm porous substrate having an adhesive layer made of an agent and low melting point glass as a supporting substrate against the groove and rotating the mold A substrate was obtained. The grooves were arranged in a stripe shape having a vertical shape with a depth of 1200 μm and a width of 120 μm and a pitch of 2000 μm. The porous substrate was an alumina substrate having a porosity of 40% and a three-point bending strength of 50 MPa based on JIS R1601. And this support substrate with a protrusion member was baked at 650 degreeC, and the support substrate with a protrusion member which consists of glass ceramics was obtained. Further, a paste made of a mixture of low-melting glass and epoxy resin was deposited on the top of the protruding member using a printing method.
[0073]
On the other hand, a back plate and a front plate are formed in the same manner as in Example 3, and are aligned so that the projection member is placed at the black matrix formation position of the front plate, and the support substrate with the projection member is placed on the front plate surface Placed. And this was heated to 130 degreeC, and after fixing the protrusion member molded object and the backplate, it heated to 420 degreeC and integrated the protrusion member and the backplate. Thereafter, the support substrate was removed by grinding.
[0074]
Then, a frame was placed on the peripheral portion of the front plate and the back plate and bonded and sealed, and the back plate and the top of the spacer of the front plate were bonded to form a panel. Furthermore, the inside of the panel is 10-3After exhausting to a vacuum of Pa or less, sealing was performed to obtain an FED panel.
[0075]
By applying a voltage of 50 V to the electron-emitting device and 3 kV between the front plate and the back plate to the obtained FED panel, electrons are emitted, the phosphor emits light, and a good image is displayed. confirmed.
[0076]
(Comparative example)
A support substrate with a projection member was prepared in the same manner as in Example 4 except that the support substrate was replaced with alumina ceramics having a porosity of 3% or less and a strength of 250 MPa with respect to the support substrate with a projection member of Example 4. When the support member was ground after the top portion of the projecting member was bonded to a predetermined position of the front plate in the same manner as in No. 4, the spacers were chipped or cracked when the support member was ground.
[0077]
【The invention's effect】
As described above in detail, according to the present invention, a projection member can be easily and cost-effectively provided on the surface of the front plate or the back plate without damaging phosphors or electrodes existing on the surface of the front plate or the back plate. A support substrate with a protruding member capable of forming a (spacer) can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic oblique view showing a support substrate with a protruding member of the present invention.
FIG. 2 is a schematic perspective view showing the shape of a connecting member of a supporting substrate with a protruding member of the present invention.
FIG. 3 is a schematic perspective view showing another supporting substrate with a protruding member of the present invention.
FIG. 4 is an image showing a preferred application example of the support substrate with a protruding member of the present invention.displayIt is a schematic sectional drawing which shows FED which is an example of an apparatus.
[Explanation of symbols]
1, 7 .. Support member with protruding member
2,8 ... Support substrate
3. Adhesive layer
4 ... Projection member
5... Adhesive
6 ... Connection part
11 ... ImagedisplayEquipment (FED)
12 ... Back plate
13 ... Front plate
14 ... Projection member (spacer)
16 ... Electron emitting device
17 ... phosphor
18 ... Diffusion prevention layer
19 ... Black matrix
20 ... ITO film
21 ... Frame

Claims (2)

所定の間隔で離間して平行に配設された正面板と背面板の両基板間に複数の突起部材が配設されてなる画像表示装置の製造方法であって、  A method of manufacturing an image display device in which a plurality of projecting members are disposed between both a front plate and a back plate that are spaced apart at a predetermined interval and disposed in parallel.
透光性の支持基板と、光によって接着力が低下する接着剤を介して前記支持基板の一方の表面に固定された、同じ高さからなる複数の突起部材と、前記突起部材の頂部に被着形成された熱硬化性の固着剤と、を備えて構成された突起部材付き支持基板を用意し、  A translucent support substrate, a plurality of projecting members of the same height fixed to one surface of the support substrate via an adhesive whose adhesive strength is reduced by light, and a top of the projecting member A thermosetting fixing agent formed on the substrate, and preparing a support substrate with a protruding member,
前記正面板または背面板の表面に、前記突起部材付き支持基板に被着された前記固着剤を当接させて前記突起部材付き支持基板を貼り付けた後、前記支持基板を介して前記接着剤に光を照射して前記接着剤の接着力を低下させて、前記突起部材から前記支持基板を取り除くことを特徴とする画像表示装置の製造方法。  After adhering the fixing agent attached to the supporting substrate with the protruding member to the surface of the front plate or the back plate and attaching the supporting substrate with the protruding member, the adhesive is passed through the supporting substrate. A method of manufacturing an image display device, wherein the support substrate is removed from the projecting member by irradiating light on the adhesive member to reduce the adhesive force of the adhesive.
隣接する前記突起部材間が、前記支持基板表面に形成され、かつ前記突起部材と同じ成分からなる連結部によって連結されてなることを特徴とする請求項1記載の画像表示装置の製造方法。2. The method of manufacturing an image display device according to claim 1, wherein the adjacent projecting members are connected to each other by a connecting portion formed on the surface of the support substrate and made of the same component as the projecting member.
JP2000363707A 2000-11-29 2000-11-29 Manufacturing method of image display device Expired - Fee Related JP4518661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363707A JP4518661B2 (en) 2000-11-29 2000-11-29 Manufacturing method of image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363707A JP4518661B2 (en) 2000-11-29 2000-11-29 Manufacturing method of image display device

Publications (2)

Publication Number Publication Date
JP2002170507A JP2002170507A (en) 2002-06-14
JP4518661B2 true JP4518661B2 (en) 2010-08-04

Family

ID=18834774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363707A Expired - Fee Related JP4518661B2 (en) 2000-11-29 2000-11-29 Manufacturing method of image display device

Country Status (1)

Country Link
JP (1) JP4518661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1676442A2 (en) 2003-10-24 2006-07-05 Reactrix Systems, Inc. Method and system for managing an interactive video display system
US7928658B2 (en) 2005-04-15 2011-04-19 Panasonic Corporation Plasma display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11245497A (en) * 1998-02-27 1999-09-14 Toppan Printing Co Ltd Method for forming pattern and patterned substrate
JP2000246157A (en) * 1999-02-26 2000-09-12 Canon Inc Applying method of adhesive, device therefor and picture display device composed using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596308B2 (en) * 1993-04-26 1997-04-02 双葉電子工業株式会社 Image display device having field emission cathode and method of manufacturing the same
JPH09274863A (en) * 1996-04-05 1997-10-21 Dainippon Printing Co Ltd Barrier forming member and plasma display panel using this barrier forming member, and manufacture thereof
JP2000251800A (en) * 1999-02-26 2000-09-14 Canon Inc Spacer adhesion structure and its adhesive coating method in image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11245497A (en) * 1998-02-27 1999-09-14 Toppan Printing Co Ltd Method for forming pattern and patterned substrate
JP2000246157A (en) * 1999-02-26 2000-09-12 Canon Inc Applying method of adhesive, device therefor and picture display device composed using the same

Also Published As

Publication number Publication date
JP2002170507A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
JP4518661B2 (en) Manufacturing method of image display device
JP3860673B2 (en) Plasma display panel and manufacturing method thereof
JP2001338528A (en) Conductive frit for sealing and sealing member using the same as well as image forming device
JP3999942B2 (en) SUBSTRATE WITH PROJECT MEMBER, ITS MANUFACTURING METHOD, AND IMAGE FORMING APPARATUS
JP3999922B2 (en) Protruded substrate and flat display
JP3623648B2 (en) Plasma display device
JP2002075253A (en) Front plate for planar display and planar display using the same
EP1061546A2 (en) Spacers used for picture display devices and a method of producing the same
JP3898394B2 (en) Manufacturing method of substrate with spacer
JP2001135263A (en) Image-forming apparatus and manufacturing method therefor
JP3878790B2 (en) Protruded substrate and method for manufacturing the same, flat display and method for manufacturing the same
JP3878958B2 (en) Porcelain composition
JP2002110072A (en) Substrate with projection member, method of manufacturing the same, and image forming device using the same
JP4041271B2 (en) Protruded substrate and flat display using the same
JP3878792B2 (en) Protruded substrate, method of manufacturing the same, and flat display
JP3600721B2 (en) Method for manufacturing plasma display panel
JP3631594B2 (en) Method for manufacturing plasma display panel
JP4195538B2 (en) Method for manufacturing plasma display panel
JP4203186B2 (en) Field emission display panel
JP2002015685A (en) Image formation equipment
WO2005091325A1 (en) Electric field emission type image display unit and production method therefor
JPH11162362A (en) Manufacture of plasma display panel
JPH11283506A (en) Base board for plasma display device and its manufacture
JP2001185038A (en) Substrate for plasma display device
JP2002075252A (en) Coated particle and substrate having projection using the same and planar display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees