JP4515265B2 - 傾斜溶離に基づく分析プロセスにおける温度および流量プロフィールの使用法 - Google Patents

傾斜溶離に基づく分析プロセスにおける温度および流量プロフィールの使用法 Download PDF

Info

Publication number
JP4515265B2
JP4515265B2 JP2004550234A JP2004550234A JP4515265B2 JP 4515265 B2 JP4515265 B2 JP 4515265B2 JP 2004550234 A JP2004550234 A JP 2004550234A JP 2004550234 A JP2004550234 A JP 2004550234A JP 4515265 B2 JP4515265 B2 JP 4515265B2
Authority
JP
Japan
Prior art keywords
profile
gas
flow
solvent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004550234A
Other languages
English (en)
Other versions
JP2006504972A (ja
Inventor
シーハン,テリー,エル.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Inc
Original Assignee
Varian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Inc filed Critical Varian Inc
Publication of JP2006504972A publication Critical patent/JP2006504972A/ja
Application granted granted Critical
Publication of JP4515265B2 publication Critical patent/JP4515265B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/7273Desolvation chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

ここに開示する主題は、液体クロマトグラフィーと質量分析とに基づいて分離と検出とを行う分析的技術に関し、特に傾斜溶離を実施する技術に関する。さらには、ここに開示する主題は、クロマトグラフィーの溶離剤と相互に作用しあう乾燥ガスのパラメータを制御することによって本技術を最適化する方法に関する。
本出願は、2002年10月30日出願の米国仮特許出願番号60/422,465号の利益を請求し、その開示は、引用によってその全体をここに組み込むものとする。
液体クロマトグラフィー(LC)は、分析的な手法で分離を行なって、サンプルを構成成分、すなわち研究者が興味を有する被検体へ分離する一般的な技術である。当業者には容易に知られていることであるが、LC技術では、クロマトグラフ分離が実行されている間に、液体である移動相中でサンプルが輸送される。また、移動相を、その移動相に対して混和性を有さない固定相を通過させる。通常は、該固定相は、サンプルと移動相とがその中を通過して流れるカラムまたはカートリッジの中に支持されている。移動相および固定相のそれぞれの組成は、サンプルの被検体が該移動相と固定相との間で分配され、それぞれの被検体の性質に依存してその程度が変動するように選択される。一方で固定相によって強く保持される被検体は、移動相でゆっくり移動し、他方で固定相によって弱く保持される被検体は、より急速に移動することになる。その結果、組成が異なる被検体は、移動相がカラムを流れるにつれて、互いに分離されるようになる。このようにして、溶離液がカラムから流出するにつれて被検体は効果的に連続して選別され、適切な分析機器によってこれらを容易に分析できるようになる。
分離されたサンプルの成分を分析する特に有用な1つの手段は、質量分析計である。様々な形式の質量分析計が商業的に利用可能であり、当業者に知られている。
サンプルインプットと、質量分析計の質量解析および検知部分の中へのインプットとの間で、大気圧イオン化(API)インターフェースを利用する質量分析計が使用できるようになり、これにはエレクトロスプレーイオン化(ESI)源または大気圧化学イオン化(APCI)源等があり、LCカラムからの溶離液が質量分析計に連続的に接続することができるようになった。このシステムは、一般に液体クロマトグラフィー/質量分析(LC/MS)システムと称される。
通常、質量分析計のAPIインターフェースは、カラム溶離液、すなわち被検体/移動相のマトリックスを液滴に転換して、次いで質量分析計の空間部の中での処理に備えて、その液滴を被検体がイオン化できるように気化するかまたは脱溶媒する。通常は、2原子の窒素等の不活性な乾燥ガスの流れをAPIインターフェースへ送り、液滴の蒸発を促進する。また、窒素等の噴霧用ガスをAPIインターフェースへ分流して、被検体/移動相マトリックスを噴霧するのを支援することも行われる。APIインターフェース中への導入に先立って、乾燥用ガス、および、噴霧用ガスもまた加熱することができる。これまでは、これらのAPIガスは双方とも一定の温度および流量の状態で流していた。
LC/MSシステムの操作中には、異なる被検体が適切なランタイム内で適切に分離されるように、LCカラムによって達成される分離の効率を最適化することと、かつその結果としてもたらされたマススペクトルによって信号対雑音比(S/N)およびクロマトグラフィーのピークの解像度を最大化するように質量分析計の効率を最適化することとの双方が重要である。APIインターフェース中の被検体/移動相マトリックスを気化させるプロセスは、質量分析計の性能、およびその結果としてもたらされるマススペクトルの分析値に影響する場合がある。
従来は、クロマトグラフ分離は定組成溶離に限定されており、その移動相は一定の組成の単一の溶媒を含んでいた。また、前述のAPIインターフェースが一定の温度および流量のAPIガスによって作動する場合、液体クロマトグラフィーの溶媒が単一組成の場合にのみ、液滴蒸発の最適の効率が達成される。一定組成の分離については、ほとんどの場合これらの一定条件が満たされる。
しかしながら、傾斜溶離を必要とするクロマトグラフ分離を行なうことがますます求められるようになった。傾斜溶離においては、移動相は、多重溶剤系(一般的には、極性と揮発性とが著しく異なる2つまたは3つの溶剤)を含んでおり、移動相の組成中のそれぞれの溶媒の比率は、プログラムするか、または少なくとも前もって定義したある方法で、連続的にまたは段階的かつ経時的に変動させる。たとえば、逆相液体クロマトグラフィーにおいては、傾斜プロフィールによって、一方では移動相中の有機溶媒の割合を間断なく増加させ、他方では水等の揮発性の低い溶剤の割合を減少させることができる。傾斜溶離は、分離効率を著しく向上させることができ、移動相の保持因子を変化させるためにこの方法を使用して、2つ以上の種のクロマトグラフ分離を改良することができる。
あいにく、傾斜溶離を行なう場合、分析条件を設定するために使用した本質的に単一の溶媒組成から、移動相の条件が乖離するため、APIガスに対して一定条件を採ったのではAPIインターフェース中で最適効率が達成できない。移動相の組成が傾斜プロフィールによって変動するので、液滴の表面張力、移動相の粘性および移動相の揮発性の特性は、同じよう変動することになる。本明細書に開示する主題に先立って、特にある1つの傾斜または別の極端な領域の傾斜において、移動相の組成を変動させる影響を十分に補償する手段は開示されていなかったと考えられる。その結果、液滴の蒸発や質量分析計によって検知された信号が、傾斜分離を介してすべての被検体にとって最適化されていたとはいえない。さらに、ある実例では、ある被検体用の移動相組成に対してガス条件が厳しすぎ、所与の被検体の熱劣化が起こったが、これは受け入れがたいことであった。
前述の事実を考慮してみると、変動する移動相組成に応じてAPIインターフェース中の液滴の蒸発を最適化し、その結果として信号の検出を改善し、熱劣化の危険を減らすようにして、傾斜溶離用にLC/MSシステムを設定し操作することが有利であろう。ここに開示する主題は、全体としてまたは一部分として、傾斜溶離に関する分析技術に関連する前述の問題および他の問題を扱うものとする。
米国特許第6,207,955号明細書
ここでは、傾斜溶離用のLC/MSシステムを最適化するための方法を提供する。
本方法によれば、ある温度プロフィールを決定し、それに従ってガスをAPIインターフェースへ流入させて、そのAPIインターフェースに流入するマトリックスを気化させる。このマトリックスには、移動相、および分離のためにカラム中で移動相で輸送される複数の被検体が含まれる。該移動相は、組成傾斜プロフィールに従ってカラムを介して流入される少なくとも2つの溶媒を含む。傾斜プロフィールに従って移動相の気化を最適化するために、前記移動相の組成が変動するにつれて、前記温度プロフィールによってガスの温度が変動する。
傾斜溶離用LC/MSシステムを最適化する他の方法においては、ある溶出時間を決定し、その温度でLCカラムから溶出するマトリックスが、質量分析計によって検出する被検体を含むようにする。この場合、このマトリックスは、質量分析計のAPIインターフェース中へカラムから溶出される複数の被検体および移動相を含む。この移動相は、組成傾斜プロフィールに従ってカラムを介して流れる少なくとも2つの溶剤を含む。溶出時間に基づいて流量プロフィールを決定し、それに従ってガスを前記APIインターフェースへ流入させる。該流量プロフィールはガス流量を変動させて、一方ではマトリックスが所望される被検体を含む場合には、流れを十分に低速にしてマトリックスが質量分析計の真空領域に入ることができるようにし、また他方ではマトリックスが所望される被検体を含まない場合には、流れを十分に高速にしてマトリックスが真空領域に入るのを防ぐようにする。
傾斜溶離用のLC/MSシステムを最適化するさらなる別の方法においては、ガスをAPIインターフェースへ流入させ、移動相の溶剤の気化を最小にするために熱を加えるように第1の温度を決定し、ガスが溶媒の気化を最大にするために熱を加えるように第2の温度を決定する。第1および第2の温度の決定は、異なる揮発性の少なくとも2つの溶媒を含む移動相が、LCカラムを介し次いでAPIインターフェースへ流入する組成傾斜プロフィールに基づいて行い、かつAPIインターフェースの中への移動相の流量に基づいて行う。第1および第2の温度に基づいて、ガスがAPIインターフェースへ流入することになる温度プロフィールの変動する部分を決定する。サンプルを第1および第2の被検体を含むカラム中で分離して複数の被検体にするために、第1の溶出時間(時刻)および第2の溶出時間(時刻)を決定する。第1の溶出時間は、第1の被検体がカラムから溶出される時間であり、また、第2の溶出時間は、最後の被検体がカラムから溶出される時間とする。第1および第2の溶出時間に基づいて、流量プロフィールの少なくとも1つの部分を決定し、それに従って、通常は第1の溶出時間から第2の溶出時間までの期間にわたって、ガスがAPIインターフェースへ流入する。
傾斜溶離に適合したLC/MSシステムを操作するための方法も提供する。該方法によれば、溶離液は、LCカラムからAPIインターフェース中へ流入する。該溶離液は、移動相と、移動相中で輸送されてかつカラムによって分離される被検体とを含む。該移動相は、少なくとも2つの溶媒を含み、溶離液の組成を変動させるための傾斜プロフィールに従ってカラムを通って流れる。ガスは、溶離液と相互作用を起こすAPIインターフェースへ流入する。APIインターフェース中へのガスの流れは、ガスパラメータプロフィールに従って制御される。このガスパラメータプロフィールは、溶離液の変動する組成に従って、温度および/または流量等のガスのパラメータを変動させる。
一実施形態においては、傾斜溶離用クロマトグラフィープロセスを最適化するための装置を提供する。本発明の装置は、中を流れる組成が変動するクロマトグラフィー溶離液をイオン化するためのAPIインターフェースと、溶離液との相互作用を起こすためにAPIインターフェースへガスを流すためのガス導管と、温度プロフィールに従って前記ガス導管を介して流れるガスの温度を制御するための加熱制御装置とを含む。この温度プロフィールは、溶離液の変動する組成に基づいてガス温度を変動させる。
他の実施形態によれば、本装置は、流量プロフィールに従ってAPIインターフェース中へ入るガスの流量を制御するための流量調整装置を含み、該装置では流量プロフィールが、溶離液の変動する組成に基づいてガスの流量を変動させる。
さらに別の実施形態によれば、本装置は、加熱制御装置を制御するための電子コントローラーと、温度プロフィールおよび流量プロフィールのそれぞれに合わせた流量調整装置とを含む。
さらに別の実施形態においては、本装置は、温度プロフィールおよび流量プロフィールのそれぞれに合わせた加熱制御装置と流量調整装置とを制御するための、コンピュータで読取り可能なメディアに収録されているコンピュータで実行可能な命令を含むコンピュータプログラム製品を含む。
図1は、全体として10で示す典型的な液体クロマトグラフィー/質量分析(LC/MS)システムを示す。LC/MSシステム10は、特に溶媒組成傾斜プロフィールを作りだすのに適切な全体として20で示す溶媒/被検体輸送システムと、液体クロマトグラフィーカラムまたはカートリッジLCであることが好都合であり、特に高性能液体クロマトグラフィー(HPLC)に適切なカラムまたはカートリッジのクロマトグラフ分離器具と、全体としてESIで示す電気スプレーイオン化源等の適切なAPIインターフェースを含む全体としてMSで示す質量分析計と、PCワークステーション中等で作動する適切な電子マイクロプロセッサーまたはマイクロコントローラECとを含んでいる。
溶媒輸送システム20は、溶媒の流れを設定するのに必要なポンプ等の1つまたはそれ以上の液体輸送装置を含む。本実例では、第1のポンプPAおよび第2のポンプPBが、溶媒の最初は独立している2つの流れを作り出すためにあり、これらの溶媒は、異なる組成を有し、したがって異なる揮発性を有するのが通常である。逆相液体クロマトグラフィーの場合の一例では、1つの溶媒は、アセトニトリル、メタノール、テトラヒドロフラン等の有機組成物であり、別の溶媒は、水等の無機組成物である。有機溶媒は、無機溶媒より揮発性が高く、蒸発に要する熱エネルギーはより少ないのが通常である。選択するポンプ設計の形式によっては、内部または外部のリザーバ(図示せず)から第1および第2ポンプすなわちPAおよびPBに溶媒を供給することができる。
第1および第2ポンプすなわちPAおよびPBは、変動しかつ制御可能な流量に従って、それぞれの溶媒を傾斜プロフィールを形成するために輸送することができるあらゆる形式であってもよい。傾斜プロフィールは、溶媒が合流すなわち組み合わされた後に、それぞれの組成が経時的に変動するものである。一例としては、第1および第2ポンプすなわちPAおよびPBは、注射器形式すなわち往復ポンプ等の線形可変容量型ポンプであってもよい。当業者にはよく理解できることであるが、線形可変容量型ポンプは、一般的に、溶媒を供給するバレルと、このバレルの長さに応じて平行移動でき、それによってそこから溶媒を押し出すピストン等の移動可能な境界部とを含む。このピストンは、通常は、モーターを動力源としており、この動力源としては、たとえば線形ステージに結合されている回転する主ネジ等のカップリングを介する適当なマイクロステッピングモーター等が挙げられる。この主ネジはモーターから延びており、この線形ステージは、ピストンに結合されており、該主ネジの円運動が線形ステージとピストンとの直線運動に変換されるようになっている。
しかしながら、ここに開示する実施形態は、溶媒、ポンプの数または使用するポンプの形式に限定されるものではないことを理解されたい。他の実施形態では、溶媒リザーバと単一ポンプとの間に直列に配置されている溶媒プロポーショニングバルブによって傾斜プロフィールを確立することもでき、この場合には、該ポンプは、それぞれのリザーバからプロポーショニングバルブまで、プロポーショニングバルブによって制御された変動流量で溶媒を吸引する。さらに、移動相は他の構成成分または添加物を含むことができ、その例としては、実行している特定のLC手順のために必要とされる適当な酸類(たとえばギ酸、トリフルオロ酢酸(TFA)等)が挙げられる。移動相のための溶媒および他の構成部分は多くの要因に依存して選択されるが、これら要因の例としては、実行中のクロマトグラフィーの形式(たとえば、イオン交換、イオン対、順相、逆相、液−液、サイズ排除等)、使用している固定相の形式、検知すべき被検体の分子構造等が挙げられる。
第1および第2のポンプすなわちPAおよびPBによって押し出された溶媒は、それぞれのポンプ出力ライン22Aおよび22Bを通って流出する。これらの溶媒間の傾斜プロフィールを形成するために、溶媒は、任意の既知の技術に従って合流点MPで合流すなわち組み合わせられる。図1では、ポンプ出力ライン22Aおよび22Bを通って流れた後の溶媒の流れの合流点MPを表わすために、概略的にT字接続で描いてある。T字接続以外に、溶媒流を合流させるに適しているいかなる方法をも使用することができ、他の例では、マニホールド、混合室または混合弁を使用する。
溶媒供給システム20は、合流点MPの下流にサンプルインジェクターSIを備えており、これによって移動相流へサンプルを導入して流動可能なサンプル/移動相マトリックスを形成する。このサンプルは、カラムLCによってクロマトグラフィー分離し、かつ質量分析計MSによって検知することになる対象の被検体すなわち構成成分を含んでいる。サンプル注射器SIは適切なものであれば、いかなるものでも使用することができる。当業者はよく理解できるであろうが、通常のサンプル注射器SIとしてはマルチポートバルブが挙げられる。ある位置で、このマルチポートバルブによってサンプルループを、手動の注射器か適切な自動サンプラーからの前記サンプルで満すことができ、他方で移動相は、トランスファーライン24を介して合流点MPからカラムLCまでの入力ライン26へ流れる。別の位置では、このマルチポートバルブは、流れの向きをトランスファーライン24から変えて、カラムLCの中へ移動相を伴って輸送するために入力ライン26へサンプルループ中のサンプルを洗い出す。
溶媒供給システム20が、カラムLCに移動相とサンプルとを供給するために必要であるかまたは望ましいと思われる他の追加の構成部品をも含むことができることは理解されよう。この例としては、脱泡、フィルタ濾過、パルスダンプニング部品等がある。カラムLCは任意の市販のカラムであってもよい。一般には、カラムLCに固定相用の耐久性の担体が充填されており、これにより移動相で輸送されたサンプルの被検体は、保持時間の差に従って相互に作用を及ぼしあい分離される。固定相構成成分用の担体の最も通常の形は、特に分配クロマトグラフィーの場合には固体である。したがって、典型的な耐久性の担体は、カラムLCの内で保持されているビーズまたは他の粒子の充填物である。この充填物の材料としては、通常はシリカまたはアルミナ等の無機のセラミック組成物を有する粒子が挙げられるが、またポリスチレンジビニルベンゼン等の有機的重合体の粒子であることもできる。逆相クロマトグラフィーの場合には、固定相は、通常オクチルデシル(C18)等のアルキル鎖が結合しているシリカビーズ(たとえばオクチルデシルシランすなわちODS)から形成される。
また図1には、全体として30で表す移動相分流システムを示すが、これはカラムLCとエレクトロスプレーイオン化源ESIとの間に直列に配置されている。移動相分流システム30は、通常はマルチポートバルブ等の分流バルブ32と、補助ポンプ34と、廃棄ラインWとを含む。当業者には理解されることであるが、移動相分流システム30は、溶離液が重要な分析値を有する構成成分を含むとは予想されない段階では、カラムLCからの溶離液を質量分析計MSから外して分流するために使用されることが多い。たとえば、カラムLCの中の固定相上にいかなる重要な被検体が保持されていたとしても、その前の段階では、溶離液は本質的にカラムLCの空隙容量中に含まれていた移動相である。さらに、分離工程後においては、次のクロマトグラフィーの実行に備えて、カラムLCを洗浄するために、カラムLCを通して洗浄用溶媒を送る。このような段階中では、溶離液を分流して廃棄Wすることにより、カラムLCからの溶離液のこれらの部分の検出は行わなくとも済むようになる。ここに開示する方法、および特にエレクトロスプレーイオン化源ESIへ導入するAPIガスのための流量プロフィールを確立することによって、LC/MSシステム10の一部分としての移動相分流システム30の必要性がなくなる方法を以下の記述で明らかにする。
カラムLCからの溶離液、すなわち被検体/移動相マトリックスを、トランスファーライン42を介してカラムLCからエレクトロスプレーイオン化源ESIまで流す。エレクトロスプレーイオン化源ESIは、大気圧または実質的に大気圧に維持されたチャンバ54へ延びているエレクトロスプレー装置52を含んでいる。エレクトロスプレー装置52は、トランスファーライン42と流通している金属または金属被覆された毛細管56を含んでいる。毛細管56は、スプレーシールド等の別の導電性部品に対してある電圧レベルに維持されており、その結果、被検体/移動相マトリックスは、エレクトロスプレーの形態となって、毛細管の56の先端(チップ)からチャンバ54へ放出される。帯電した液滴を脱溶媒しやすくするために、適切な気体供給源および供給システム(図示せず)からのガス管線58経由で、窒素等の不活性乾燥ガスを、チャンバ54へ流入させる。この乾燥ガスは、直列配置のヒーター60を介して乾燥ガスを流す等によってチャンバ54へ導入する前に加熱する。以下に詳述するが、この乾燥ガスは、時間変動温度プロフィールおよび/または時間変動容積流量プロフィールに従って制御する。
トランスファーライン42および/またはトランスファーライン42の内容積部を介するマトリックスの流量に依存するものの、多くの場合マトリックスがトランスファーライン42を流れる時間は無視することができる。したがって、本発明の目的にとっては、マトリックスがカラムLCの出口から溶出する時間は、マトリックスがエレクトロスプレー装置52からチャンバ54へ流入する時間と同じかまたはほぼ同じと考えることができる。
当業者には理解されることであるが、エレクトロスプレーイオン化源ESIはまた、液滴形成を促進するためにチャンバ54の中へ窒素等の不活性な噴霧ガスを流し、特におよそ0.02ml/min以上の流量を実現するための手段(図示せず)を含むことができる。例として、エレクトロスプレー装置52の毛細管56の周囲に環状に補助導管を配置することができ、この補助導管と毛細管56との間で規定される環状空隙を介して噴霧ガスを導く。しばしば空圧補助エレクトロスプレーイオン化と称されるこの機構では、噴霧ガスおよびマトリックスの双方は、エレクトロスプレー装置52の先端からチャンバ54に入る。エレクトロスプレーイオン化における噴霧ガスの使用の例としては、ウェルズらに対して付与され本発明と同一の譲受人に譲渡されている特許に係る前記特許文献1に開示されているものがあり、その内容は、全体をここに組み込むものとする。ここに開示する主題のいくつかの実施形態によれば、エレクトロスプレーイオン化源ESIは、チャンバ54へ噴霧ガスを流すための手段を含んでいる。さらなる実施形態によれば、この噴霧ガスは加熱されて、気化を最適化する目的でマトリックスに熱を加えるため付加的な手段となる。
既知の手段によってチャンバ54内で電場勾配を形成し、帯電した被検体を含んでいる液滴を質量分析計MSの入口62へ引きつける。通常は、質量分析計MSの第1の真空ステージ中の毛細管64を介して、このイオンが移動する。次いで、このイオンはスキマープレート66を通り抜けて、マルチポール構造、または他の適切なイオンガイドすなわちピント合わせ装置68を含むことができる質量分析計MSの第2の真空ステージに達し、次いで検知が行われて、分析用サンプルの質量スペクトルを生成する。
図1には、質量分析計MSのある構成部品の一例を示しており、質量分析計の他の多くの知られている設計を代わりに使用することができることは理解されよう。
ここに開示する主題によれば、LC/MSシステム10は、さらにそれぞれ温度プロフィールおよび容積流量プロフィールに従って、乾燥ガスの入力を制御するためのヒーター制御装置HCおよび流量調整装置FCを含んでいる。このヒーター制御装置HCは、電気的にヒーター60と通信し、任意のハードウェアおよび/または回路類を含むが、これらは、前もって定義されているか、または事前にプログラムされた温度プロフィールに従って、ヒーター60から乾燥ガスまでの伝熱を可変的に制御し、その結果乾燥ガスの温度を制御するように適合されている。また、流量調整装置FCは、ガス管ライン58と通信し、任意のハードウェアおよび/または回路類を含むが、これらは、前もって定義されているか事前にプログラムされた流量プロフィールに従って、チャンバ54への乾燥ガスの体積流量を可変的に制御するように適合されている。適切なものであればいかなる流量調整装置FCも使用することができ、例としてはガスライン58内の圧力を制御することにより流れを制御する装置(すなわち圧力コントロール装置)が挙げられる。
好適な実施形態においては、電子コントローラーECは、溶媒供給システム20(たとえば第1および第2ポンプすなわちPAおよびPB)、ヒーター制御装置HCおよび/または流量調整装置FCと通信して電子的にこれらの構成部品を制御する。このようにして、電子コントローラーECを使用して、傾斜プロフィール、温度プロフィールおよび/または流量プロフィールをLC/MSシステム10の操作中に制御する。本発明の一局面によれば、LC/MSシステム10のユーザは、最初に適切な傾斜プロフィール、温度プロフィールおよび流量プロフィールを決定し、電子コントローラーECへプロフィールをプログラムするのに必要なデータを電子コントローラーEC中へ入力する。当業者にはよく理解されることであるが、電子コントローラーECをプログラムするために、適切なコンピュータプログラムを作成し、ユーザと電子コントローラーECとの間にインターフェース設けることができる。一実施形態によれば、ここに開示する装置は、コンピュータプログラム製品を含み、このプログラム製品はコンピュータで読み取り可能なメディア内に収録されており、電子コントローラーECがヒーター制御装置HCおよび流量調整装置FCを制御できるようにして、温度プロフィールと流量プロフィールとを実行する。
LC/MSシステム10の操作において、電子コントローラーECは、溶媒供給システム20、ヒーター制御装置HCおよび/または流量調整装置FCに適切な信号をダウンロードして、これらのプログラムを実行し、傾斜プロフィールならびに温度プロフィールおよび/または流量プロフィールをそれぞれ実現する。LC/MSシステム10の操作中に、これらのプロフィールを適切に、かつ確実に維持するために、適切なセンサーすなわちトランスデューサを設けて、電子コントローラーEC、ヒーター制御装置HCおよび/または流量調整装置FCのためのフィードバック信号を生成し、正確なプロフィールからの偏差を検知して、その偏差に呼応して調節を行うことができるようにする。たとえば、センサーすなわちトランスデューサとしては、通常は線形可変容量型ポンプであるそれぞれ第1および第2ポンプすなわちPAおよびPBに取り付けたエンコーダ72Aおよび72Bと、適切にヒーター60に取り付けた熱電対74と、ガス管線58と連動して適切に取り付けた圧力トランスデューサまたは他の流量測定装置76とが挙げられる。
以下に、傾斜溶離用のLC/MSシステム10を最適化する方法について、図2〜図4の例を使用して、図1および図示したプロフィールを参照して説明する。本方法によれば、傾斜プロフィールは、ある所定の移動相、固定相および被検体を含むサンプルに対して最初に決定される。図2は、2溶剤系を含む移動相用の傾斜プロフィールの例である。より具体的にいえば、図2は、2つの溶媒である溶媒Aおよび溶媒Bの流量プロフィールから作図した時間の関数としての移動相組成のプロットである。本例においては、溶媒Aは水等の無機の溶媒であり、溶媒Bは有機溶媒であって溶媒Aより揮発性が高い。サンプルの注入に先立って移動相が他の構成成分を含まないと仮定すれば、任意の時における移動相の合計の組成は100%となる。本例において、時間t=0で、移動相中の溶媒Aの組成は100%であり、移動相中の溶媒Bの組成は0%である。カラムLCを通った傾斜溶離の終点(t=Xf)では、溶媒Aの組成は0%であり、溶媒Bの組成は100%である。したがって、典型的な傾斜プロフィールは、溶媒Bの組成が増加し、したがって移動相の揮発性が経時的に増加するにつれて溶媒Aの組成が減少するという特徴を有することになる。開始点と終点時との間の中間のある時間(t=xi)においては、溶媒Aの流量曲線は、溶媒Bの流量曲線と交差し、この時点で、移動相は、溶媒A50%/溶媒B50%という組成を有する。溶媒の流量曲線は、図2に示すように線形、非線形(たとえば指数関数的)、もしくは階段状であることがあり、または、線形、非線形、および/もしくは階段状部の組み合わせであることもある。
クロマトグラフ分離技術の実施に先だって、LC/MSシステム10のユーザは、経験に基づいて傾斜プロフィールを決定する。所与のサンプルおよび分離技術用の傾斜プロフィールの決定は、当該技術においてよく知られており、詳細な記述はここでは行わないものとする。実例として、水等の無機溶媒と有機溶媒とを含む2相の移動相用の技術によれば、ユーザは、このサンプルの第1の被検体の適切な保持力を実現するためには、移動相中の有機溶媒の初期の組成をどの程度薄くする必要があるかを決定する。この組成の初期的な濃度が高すぎる場合には、第1の被検体は保持されないか、またはかろうじて保持される程度であり、その結果、この第1の被検体は、空隙容量にきわめて近い状態でカラムLCから溶出するであろう。そこで、ユーザは、どの程度の速度で組成の傾斜度を増加させる必要があるかを決めて、サンプルの最後の被検体が好ましい溶出時間で溶出されるようにする。結果として得られる傾斜プロフィールによって、溶出中の時間のいかなる瞬間の傾斜においても揮発性の限度および移動相の組成に関する情報を得ることができるようになる。
傾斜プロフィールが決定されたら、乾燥ガス用の温度プロフィールが決定される。図3は温度プロフィールの例である。具体的には、図3は、時間の関数としての乾燥ガス温度のプロットである。この好適な実施形態では、この温度プロフィールは、t=0とt=X4との間の一定の部分を含み、かつt=X4の後には変動すなわち傾斜部分を含む。好適な実施形態では、最初にLC/MSシステム10の遅延容量を測定して、傾斜遅延時間を決定する。一般に、遅延容量すなわち傾斜遅延時間は、質量分析計MSのAPIインターフェースに到着するまでの、傾斜組成(すなわち傾斜に沿ったある点の移動相)の変化に必要な時間を表わす。図1に図示したLC/MSシステム10の特定の例では、混合に先立って個別の溶媒のそれぞれの流量を変動させることにより、傾斜が決定されるが、遅延容量は、合流点MPまたはその近傍からチャンバ54のエレクトロスプレー毛細管56の先端まで移動相が移動するに必要な時間に相当する。温度カーブ(t=0からt=X4まで)の水平の(一定)部分は、一般に組成の傾斜の遅延容量を表わす。水平部分がその傾斜した部分に出会う曲線上の点(t=X4に対応する)は、一般に傾斜プロフィールの初期に作られた移動相が、図1に図示した典型的なシステムでのエレクトロスプレーイオン化源ESIに到達する時間を表わす。
この遅延時間中には、毛細管の56の湿潤状態を維持し、かつ塩の付着を防ぐために、エレクトロスプレー毛細管56を介して移動相をチャンバ54の中へ流入させる。遅延時間中にチャンバ54に流れ込む移動相の部分は、傾斜プロフィールにまださらされていず、第1の被検体はカラムLCからまだ溶出されていない。したがって、移動相の組成および揮発性は、この遅延時間中において認めうるほどには変動しない。さらに、本例においては、この遅延容量中の移動相の揮発性は比較的低く、したがって気化のために必要とする熱エネルギーは比較的大きい。したがって、この遅延時間中における移動相の気化を最適化するために、乾燥ガスの温度は比較的高い一定温度に維持される。さらに、遅延容量中のカラムLCからの溶離液が対象の被検体を含んでいないので、この時間中に移動相の気化を最適化して、乾燥ガスによって移動相のこの部分を質量分析計MSの入り口62から洗い流すようにし、これによって移動相が質量分析計MSによって検知され、生成されたマススペクトルに悪影響を及ぼすのを防ぐ。また、この乾燥ガスは、移動相が遅延時間中に質量分析計MSの真空領域を汚染するのを防ぐ。
遅延容量の決定に加えて、エレクトロスプレー装置52から放出されて行くにつれて傾斜溶離によって被検体/移動相マトリックスの揮発性が効果的に変動する間に、乾燥ガス用の温度プロフィールを決定する。図1の中の例に示す傾斜プロフィールにおいては、揮発性は、最小値から最大値まで増加し、したがって、移動相の組成が変動するにつれて、移動相を気化させるのに必要な熱量が変動する。したがって、遅延容量がLC/MSシステム10を通過した後において、特に被検体/移動相マトリックスの液滴中に熱に対して応答性を有する構成成分がある場合には、チャンバ54のエレクトロスプレーの液滴を気化するに必要な熱エネルギーの量は経時的に減少し始める。したがって、乾燥ガスの温度は、時間の関数として調節されて、成分が傾斜的に変化する間に、移動相の組成と乾燥ガス温度とが最良に調和するようになる。
温度プロフィールの可変部分は、移動相の溶出特性から決定する。具体的には、チャンバ54の中へ流入する被検体/移動相マトリックスの所与の流量に対して、最も揮発性の低い移動相の組成、および最も揮発性の高い移動相の組成のそれぞれに対応する最適の乾燥ガス温度を決定する。次いで、これらの2つの極限値(すなわち最高温度および最低温度)間の温度プロフィールの可変部分は、任意の適切な技術によって決定する。たとえば、傾斜プロフィールが線形の場合には、経験に基づいて図3に示すような2つの極限値間の直線補間を最適温度プロフィールに近似させることができる。本例では、最も揮発性の低い移動相の組成は、傾斜プロフィールの開始点に生じ、また、もっとも揮発性が高い移動相の組成は、傾斜プロフィールの終点に生じる。しかしながら、ここに開示する主題がこの種の傾斜プロフィールに限定されるものではないことは理解されるであろう。たとえば、温度プロフィールは非線形であることができる。さらに、傾斜プロフィールは階段状であることもあり(すなわち、1つ以上の変動する傾斜を有している)、このような場合には、1つ以上の中間状態のための最適の乾燥ガス温度(複数可)を決定することが望ましいかもしれない。
図4は、乾燥ガスの容積流量プロフィールの例である。具体的には、図4は、時間の関数としての乾燥ガス流量のプロットである。しかしながら、ガスライン58の圧力を調節することによって流量調整装置FCが作動する場合には、図4が圧力プロフィールと等価なものを表わすことができることは理解されよう。したがって、用語「流量プロフィール」はまた、そのような場合には「圧力プロフィール」を意味するとして理解できる。一実施形態においては、流量プロフィールの決定は、カラムLCから溶出するマトリックスが、イオン化され輸送されて検出用吸入口62を介して質量分析計MSへ入る被検体を含んでいる溶出時間に基づいて行われる。好適な実施形態では、流量プロフィールは、LC/MSシステム10の溶出特性を算入するが、これは第1の被検体がカラムLCから溶出される直前の期間中、最後の被検体が溶出されてしまうまでの時間であって第1の被検体が溶出されてしまった後の期間、および最後の被検体が溶出されてしまった後の期間中に行われる。
第1の被検体が溶出される前の期間中においては、溶離液は、空隙容量中の移動相と、空隙容量中またはその後に溶出する保持性が弱くて高度に濃縮された化合物とを含む。溶離液のこの部分の組成は、分析値を有していないのが普通であり、したがって、この部分が質量分析計MSに入力されるのを防ぐことが望ましい。したがって、図4に示した典型的な流量プロフィールの第1の部分は、吸入口62から溶離液を除くのに十分な乾燥ガス用の比較的高い容積流量に相当する。このように流量プロフィールを実現することにより、移動相分流システム30を必要とせず、その付随するコストおよび整備も必要としなくなることがわかるであろう。さらに、前述したように、乾燥ガスが加熱されるので、この期間中に流量が増加した分だけ溶離液に熱エネルギーの増化分を伝導することができ、これによってさらに溶離液の気化が最適化され、その流れを容易に吸入口62から遠ざけることができる。
当業者には理解されることであるが、サンプルと移動相とがカラムLCを通って流れるとともに、サンプルの被検体は、移動相と固定相との間でそれらの保持時間に従って分離される。通常は、異なる被検体は、連続するバンドすなわち帯になってカラムLCから移動相と共に溶出され、次いで、結果として得られた被検体/移動相マトリックスはエレクトロスプレー装置52に入り、エレクトロスプレー毛細管56からチャンバ54へエレクトロスプレーの形で放出される。ここに開示する方法では、ユーザは、第1の被検体がカラムLCから溶出される時間(時刻)、および最後の被検体がカラムLCから溶出される時間(時刻)を決定する。この期間内に、質量分析計MSが好適に処理できるサイズの高度に帯電した被検体を含んでいる液滴が、電場の影響下で質量分析計MSへの吸入口62の方へチャンバ54を介して移動する。さらに、液滴の中には、大きすぎて吸入口62へ入るに当たって十分に脱溶媒されることができないものもあろう。これらの大きな液滴は、マススペクトルに応答して大きなピークを生じたり、かつ/または質量分析計MSの第1および第2段階を急速に汚染する構成成分を持ち込んだりするかもしれない。この期間中は、望ましい小さな液滴を脱溶媒するために、また望まない大きな液滴を押し流すために、乾燥ガスの流量は十分に高く、しかしより小さな液滴を押し流すことのないように十分低くあるべきである。図4に図示するように、この期間中の流量は、第1の被検体の溶出に先立つそれ以前の期間と比較してより低くする。
通常は、クロマトグラフィーの実行の後に、LC/MSシステム10の中のカラムLCおよび関連する流体ライン、バルブ等を洗浄して、いかなる残余のマトリックスおよび他の汚染物をも除去することが望ましい。ある実施形態では、カラムLCおよびエレクトロスプレー装置52を通して洗浄溶媒を流して洗浄工程を行う。図4に図示すように、この期間中の乾燥ガスの流量は、洗浄溶媒を吸入口62から遠ざけるために再度増加させてもよい。
図4に例示するこの流量プロフィールは階段状のプロフィールであるが、高低双方の流量間を移行するときには、ユーザの経験に基づいて、直線的または非直線的に傾斜させてもよいことは理解されよう。さらに、サンプル、移動相に含まれる溶媒および傾斜プロフィールの形式等の要因に依存することであるが、分析値がほとんどないかまたは全くない大量の構成成分(複数可)がエレクトロスプレーイオン化源ESIへ放出されると予想することができる場合、1つ以上の中間的な時間を、第1の被検体の溶出と最後の被検体の溶出との間に設けてもよい。したがって、ここに開示する本方法においては、このような望ましくない構成成分が吸入口62に流入するのを防ぐために、乾燥ガス流れが十分に増量される中間の時間が包含されることは理解されよう。
前述のように、一旦、LC/MSシステム10のユーザが適切な傾斜プロフィール、温度プロフィールおよび流量プロフィールを決定してしまえば、電子コントローラーECへプロフィールをプログラムして、クロマトグラフィーの実行の間に、溶媒供給システム20、ヒーター制御装置HCおよび流量制御FC装置を制御することができる。前記プロフィールを決めるこのプログラムは、ハードウェア、ファームウェアまたはソフトウェアによって実行することができる。ソフトウェアの場合には、ユーザが望むプロフィールを決定するために必要となる、ソフトウェアによる読み取りのためのデータをユーザが入力することができ、また、このソフトウェアには、命令が適切に実行できるように、溶媒供給システム20、ヒーター制御装置HCおよび流量制御FC装置へ、電子コントローラーEC(たとえばコンピュータ)から信号を送信させることによってプロフィールを実行するために必要な命令を含ませることができる。他の実施形態では、ヒーター制御装置HC、および流量制御FC装置は、消去可能な記憶装置を備えた直接プログラム可能なタイプであることができ、この場合ユーザは、直接これらの制御装置をプログラムすることができる。
エレクトロスプレーイオン化源ESI等のAPIインターフェースが、チャンバ54の中への噴霧ガスの流れを供給する形式である場合には、ここまで記述してきた内容は、乾燥ガスに加えて、またはその代わりに、噴霧ガスおよび関連する構成部品に当てはめることができることは理解できよう。すなわち、噴霧ガス流は、この乾燥ガスに関してあらかじめ知られている方法とほぼ類似した方法で、温度および/または流量プロフィールに従って制御し、マトリックスとの相互作用をさせることができる。乾燥ガスと噴霧ガスとの双方が制御されている場合には、各ガスによって加えられた熱エネルギーの量と、各ガスの流量と、他の関連する熱力学的および流体力学ファクターとの形でガスの組み合わせ効果を考慮に入れることにより、各ガス用のそれぞれの温度、および/または流量プロフィールが決定されるが、この場合には、質量分析計MSによって処理するためのイオン調製において、特にAPIインターフェースの通常動作および機能を害さないようにする。
ここに開示する方法と装置とは、APIインターフェースとしてエレクトロスプレーイオン化源ESIを使用するという状況で記述してきた。しかしながら、一般的な問題として、APCI源は、通常は熱的に不安定であったり高分子であったりする化合物に使用するには推奨されないものであるが、同様の有益性をもたらすために、エレクトロスプレーイオン化源ESIの代わりに、APCI源を使用することができるかもしれないということは、当業者には理解されよう。APCI源の基本設計および操作の原理はよく知られているものであり、ここで詳細に記述する必要はない。簡潔に言えば、APCI源では、インターフェースへ溶離液を輸送するために使用された毛細管は、エレクトロスプレー装置を含んでいない。その代わりに毛細管が溶離液を気化室へ導く。この気化室は、通常はチューブであり、石英等の不活性な材料で作られているか、またはその内面が石英等の不活性な材料で作られている。この毛細管は、溶離液と共に気化室へ噴霧ガスを輸送する環状のチューブに囲まれていて、それによってこの溶離液は気化室に入るとともに霧状化する。霧状化された溶離液は、気化室内部の軸方向の長さに沿って移動するにつれて気化する。このために、気化室の壁は適切なヒーター装置によって加熱し、および/または補助の乾燥用(もしくは気化用)ガスを気化室に流すことができる。次いで、この気化した溶離液は、気化室からコロナ針電極等の電極が延びているイオン化チャンバの中へ流入する。この電極は通常は、図1に図示したエレクトロスプレー装置52に類似の様式で配置されており、市販の質量分析計は、通常はESIとAPCIとのモード間で容易に適合できるようになっていることに留意されたい。この電極は、別の導電面との間においてコロナ放電を起こし、溶離液をイオン化するためにエネルギーを供給し、その結果として得られるイオンが、吸入口62を介して質量分析計MSに入る。APCIインターフェースの一例は、本願と同一譲受人に譲渡されている特許に係る米国特許出願番号第10/115,684号の中に示されており、この内容は全体をここに組み入れるものとする。現在ここに開示した内容においては、乾燥ガスおよび/または補助の気化ガスがこのAPCIインターフェースに流入するに場合にこれを制御するために、この温度および/または流量プロフィールを使用することができる可能性がある。
本発明の様々な詳細については、本発明の範囲を逸脱することなしに変更してもよいことが理解されよう。さらに、本発明は以下に述べる特許請求の範囲で定義するが、前述の記述は例示のみのためにあり、限定を意図していないものとする。
ここに開示する本発明の主題に従ってガス用のプログラム可能な温度および流量プロフィールが実行できる典型的な液体クロマトグラフィー/質量分析(LC/MS)システムについての概略図である。 典型的な移動相組成傾斜プロフィールのプロットであり、これに従って、LC/MSシステムが作動できるプロットである。 典型的なガス温度プロフィールのプロットであり、これに従ってLC/MSシステムが作動できるプロットである。 典型的なガス流量プロフィールのプロットであり、これに従ってLC/MSシステムが作動できるプロットである。

Claims (11)

  1. 組成傾斜プロフィールに従ってマトリックスを流入させるAPIインターフェースを含むLC/MSシステムを最適化する方法であって、
    (a)温度プロフィールを決定し、この温度プロフィールに従って、前記APIインターフェースへガスを流入させることであって、前記マトリックスは、第1の組成を有する第1の溶剤と、前記第1の組成とは異なる第2の組成を有する第2の溶剤とを含み、前記温度プロフィールが、前記マトリックスの気化を最適化するための傾斜プロフィールに従って、当該マトリックスの組成が変動するにつれて、当該ガスの温度を変動させ、当該温度プロフィールを決定することは、前記第1の溶剤を蒸発させるために前記第1の溶剤に熱を与えるための、前記ガスの第1の温度と、前記第2の溶剤を蒸発させるために前記第2の溶剤に熱を与えるための、前記ガスの第2の温度とを決定することを含むものであることと、
    (b)流量プロフィールを決定し、この流量プロフィールに従ってガスを前記APIインターフェースへ流入させることを含み、前記流量プロフィールを決定することが、第1の被検体がLCカラムから溶出して前記APIインターフェース中に導入される第1の溶出時刻を決定することと、最後の被検体が前記カラムから溶出して前記APIインターフェース中に導入される第2の溶出時刻を決定することとを含み、前記流量プロフィールの少なくとも一部分が、全体として前記第1の溶出時刻から前記第2の溶出時刻までの期間に相当するものであり、前記流量プロフィールが、前記ガスの流れを変動させて、前記マトリックスが質量分析計による検出目的の被検体を含む場合には、前記マトリックスが前記APIインターフェースと連通する前記質量分析計の真空部分に流入できるようにするのに十分に低い流れを与え、かつ前記マトリックスが検出目的の被検体を含まない場合には、前記マトリックスが前記真空部分に流入するのを防ぐのに十分に高い流れを与えるものであることと、
    (c)前記温度プロフィールと前記流量プロフィールとに従って前記APIインターフェース中への前記ガスの流量を制御する電子プロセッサー搭載の装置をプログラムすることであって、前記温度プロフィールが、前記第1の溶出時刻より前に前記ガスが加熱されているものであり、前記流量プロフィールが、前記第1の溶出時刻と前記第2の溶出時刻との間に比して、前記第1の溶出時刻より前において、前記ガスの流量が大きくされるものであることと、
    (d)前記マトリックスとの相互作用のために、前記APIインターフェース中へ前記ガスを流すこととを含む方法。
  2. 前記第1の溶剤が、前記APIインターフェースに流入する最も揮発性が低い溶媒であり、前記第2の溶剤が、前記APIインターフェースに流入する最も揮発性が高い溶媒である請求項1に記載の方法。
  3. 前記温度プロフィールを決定することが、前記LC/MSシステム用の傾斜遅延時間を決定することを含む請求項1に記載の方法。
  4. 前記傾斜遅延時間を決定することが、前記マトリックス内の前記傾斜組成の変化が前記APIインターフェースに達するのに必要な期間を測定することを含む請求項3に記載の方法。
  5. 前記温度プロフィールが前記傾斜遅延時間に対応する部分を含み、この部分が実質的に一定の温度値を有している請求項3に記載の方法。
  6. 前記マトリックスが前記カラムを介して全体として前記第1の溶出時刻までに流れる初期の溶出期間を決定することと、前記初期の溶出期間に基づいた前記流量プロフィールの別の部分を決定することとを含む請求項1に記載の方法。
  7. 前記初期の流量期間に相当する前記流量プロフィールの部分が、前記第1の溶出時刻から前記第2の溶出時刻までの前記流量プロフィールの部分中の流量値より高い流量値を有している請求項6に記載の方法。
  8. 前記第2の溶出時刻の後に続く前記流量プロフィールの付加的な部分を決定し、その期間中に、前記カラムを洗浄するために前記カラムを介してかつ前記APIインターフェース中へ洗浄溶媒を流入させることを含む請求項1に記載の方法。
  9. 前記ガスに熱を伝導するように配置されている加熱装置を制御することによる前記温度プロフィールに従って、前記APIインターフェースへの前記ガスの流量を制御することをさらに含む請求項1に記載の方法。
  10. 傾斜溶離用LC/MSのプロセスを最適化するための装置であって、
    (a)内部を流れるクロマトグラフィーの溶離液をイオン化するためのAPIインターフェースであって、前記溶離液が、第1の組成を有する第1の溶剤と、前記第1の組成とは異なる第2の組成を有する第2の溶剤とを含み、前記溶離液の組成は時間とともに変化するものであるAPIインターフェースと、
    (b)前記溶離液との相互作用のために、前記APIインターフェースへガスを流すためのガス導管と、
    (c)前記ガス導管を介して流れる前記ガスの温度を、プログラムされた温度プロフィールに従って制御するための加熱制御装置であって、前記温度プロフィールが変動する前記溶離液の前記組成に基づいて前記ガス温度を変動させ、前記温度プロフィールは、前記第1の溶剤を蒸発させるために前記第1の溶剤に熱を与えるための、前記ガスの第1の温度と、前記第2の溶剤を蒸発させるために前記第2の溶剤に熱を与えるための、前記ガスの第2の温度とを決定することに基づいてプログラムされたものである加熱制御装置と、
    (d)前記APIインターフェース中への前記ガスの流量を、プログラムされた流量プロフィールに従って制御するための流量調整装置であって、前記流量プロフィールは、第1の被検体がLCカラムから溶出され前記APIインターフェース中に導入される第1の溶出時刻と、最後の被検体が前記カラムから溶出され前記APIインターフェース中に導入される第2の溶出時刻とを決定することに基づいてプログラムされたものであり、前記流量プロフィールの少なくとも一部分が、全体として前記第1の溶出時刻から前記第2の溶出時刻までの期間に相当するものであり、前記流量プロフィールは、前記ガスの流れを変動させて、前記溶離液が質量分析計による検出目的の被検体を含む場合には、前記溶離液が前記APIインターフェースと連通する前記質量分析計の真空部分に流入できるようにするのに十分に低い流れを与え、かつ前記溶離液が検出目的の被検体を含まない場合には、前記溶離液が前記真空部分に流入するのを防ぐのに十分に高い流れを与えるものである流量調整装置と、
    (e)前記温度プロフィールおよび前記流量プロフィールのそれぞれに従って、前記加熱制御装置と前記流量調整装置とを制御するための、電子プロセッサー搭載の装置であって、前記温度プロフィールが、前記第1の溶出時刻より前に前記ガスが加熱されているものであり、前記流量プロフィールが、前記第1の溶出時刻と前記第2の溶出時刻との間に比して、前記第1の溶出時刻より前において、前記ガスの流量が大きくされるものである電子プロセッサー搭載の装置とを含む装置。
  11. 前記電子プロセッサー搭載の装置が、前記温度プロフィールおよび前記流量プロフィールのそれぞれに従って、前記加熱制御装置と前記流量調整装置とを制御するためのコンピュータで読取り可能なメディアに収録され、コンピュータで実行可能な命令を含むコンピュータプログラム製品を実行するように構成されている請求項10に記載の装置。
JP2004550234A 2002-10-30 2003-10-29 傾斜溶離に基づく分析プロセスにおける温度および流量プロフィールの使用法 Expired - Fee Related JP4515265B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42246502P 2002-10-30 2002-10-30
PCT/US2003/034442 WO2004042384A1 (en) 2002-10-30 2003-10-29 Use of temperature and flow profiles in gradient elution based analytical process

Publications (2)

Publication Number Publication Date
JP2006504972A JP2006504972A (ja) 2006-02-09
JP4515265B2 true JP4515265B2 (ja) 2010-07-28

Family

ID=32312512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004550234A Expired - Fee Related JP4515265B2 (ja) 2002-10-30 2003-10-29 傾斜溶離に基づく分析プロセスにおける温度および流量プロフィールの使用法

Country Status (8)

Country Link
US (1) US7547555B2 (ja)
EP (1) EP1561102B1 (ja)
JP (1) JP4515265B2 (ja)
AT (1) ATE437359T1 (ja)
AU (1) AU2003286782A1 (ja)
CA (1) CA2503069A1 (ja)
DE (1) DE60328511D1 (ja)
WO (1) WO2004042384A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001645B4 (de) * 2005-06-24 2017-03-09 Waters Technologies Corp. (N.D.Ges.D. Staates Delaware) Massenspektrometerinterfacegehäuse
JP2010537197A (ja) * 2007-08-24 2010-12-02 ミリポア・コーポレーション 液体クロマトグラフィー溶離液を排流するためのシステム及び方法
JP2010537196A (ja) 2007-08-24 2010-12-02 ミリポア・コーポレーション バイオ医薬生成物中の抽出性物質を検出する方法
CN102279236A (zh) * 2010-06-08 2011-12-14 江苏天瑞仪器股份有限公司 色谱质谱联用仪
US20140166875A1 (en) 2010-09-02 2014-06-19 Wayne State University Systems and methods for high throughput solvent assisted ionization inlet for mass spectrometry
WO2012031082A2 (en) * 2010-09-02 2012-03-08 University Of The Sciences In Philadelphia System and method for ionization of molecules for mass spectrometry and ion mobility spectrometry
WO2012058248A2 (en) * 2010-10-25 2012-05-03 Wayne State University Systems and methods extending the laserspray ionization mass spectrometry concept from atmospheric pressure to vacuum
US8410434B1 (en) * 2011-09-16 2013-04-02 Science & Engineering Services, Inc. Thermo-stabilized nano- and micro- flow LC/ESI-MS interface and a method thereof
US10287180B1 (en) * 2015-01-05 2019-05-14 Sutro Connect Inc. Water monitoring device with replaceable reagent cartridge
CN110446921A (zh) * 2017-03-16 2019-11-12 株式会社岛津制作所 带电粒子的供给控制方法和装置
US11764049B2 (en) * 2020-04-14 2023-09-19 Waters Technologies Corporation Coaxial introduction of calibrant in a flow path with analyte to an ion source
US20230015697A1 (en) * 2021-07-13 2023-01-19 Citrix Systems, Inc. Application programming interface (api) authorization

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135467U (ja) * 1983-02-28 1984-09-10 日本電子株式会社 液体クロマトグラフ質量分析装置
US4814612A (en) * 1983-08-30 1989-03-21 Research Corporation Method and means for vaporizing liquids for detection or analysis
US4958529A (en) * 1989-11-22 1990-09-25 Vestec Corporation Interface for coupling liquid chromatography to solid or gas phase detectors
JPH0712797A (ja) * 1993-06-24 1995-01-17 Hitachi Ltd 質量分析装置
JP3379510B2 (ja) * 1993-12-09 2003-02-24 株式会社日立製作所 液体クロマトグラフ結合型質量分析装置
JP3087548B2 (ja) * 1993-12-09 2000-09-11 株式会社日立製作所 液体クロマトグラフ結合型質量分析装置
US5412208A (en) * 1994-01-13 1995-05-02 Mds Health Group Limited Ion spray with intersecting flow
JPH0943202A (ja) * 1995-07-27 1997-02-14 Shimadzu Corp 液体クロマトグラフ質量分析装置
JPH1078421A (ja) * 1996-09-03 1998-03-24 Hitachi Ltd 液体クロマトグラフ質量分析計
JPH11326302A (ja) * 1998-05-13 1999-11-26 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2000055880A (ja) * 1998-08-06 2000-02-25 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP4023056B2 (ja) * 1999-12-22 2007-12-19 株式会社島津製作所 液体クロマトグラフ質量分析計
CA2400460C (en) * 2000-02-08 2009-01-06 The Regents Of The University Of Michigan Mapping of differential display of proteins
WO2001090739A1 (en) * 2000-05-23 2001-11-29 Discovery Partners International, Inc. High-throughput purification process
JP2002015697A (ja) * 2000-06-30 2002-01-18 Jeol Ltd エレクトロスプレー・イオン源
US6484560B1 (en) * 2000-11-07 2002-11-26 Agilent Technologies, Inc. In Situ concentration of an analyte
JP3422992B2 (ja) * 2001-07-23 2003-07-07 株式会社日立製作所 質量分析計

Also Published As

Publication number Publication date
US20070048187A1 (en) 2007-03-01
ATE437359T1 (de) 2009-08-15
JP2006504972A (ja) 2006-02-09
DE60328511D1 (de) 2009-09-03
US7547555B2 (en) 2009-06-16
EP1561102B1 (en) 2009-07-22
AU2003286782A1 (en) 2004-06-07
EP1561102A1 (en) 2005-08-10
CA2503069A1 (en) 2004-05-21
WO2004042384A1 (en) 2004-05-21

Similar Documents

Publication Publication Date Title
JP4515265B2 (ja) 傾斜溶離に基づく分析プロセスにおける温度および流量プロフィールの使用法
US9768004B2 (en) Systems, devices, and methods for connecting a chromatography system to a mass spectrometer
JP6667248B2 (ja) ポストカラム調節剤およびマイクロ流体デバイスを使用したエレクトロスプレーイオン化質量分析における検出の感度強化
US20150265944A1 (en) Method for adjusting a gradient delay volume
US20070183928A1 (en) Variable flow rate system for column chromatography
US8992778B2 (en) Methods and apparatus for generating solvent gradients in liquid chromatography
US8613216B2 (en) Dynamic thermal focusing of chromatographic separations
JP2018189607A (ja) 液体クロマトグラフ質量分析方法及び液体クロマトグラフ質量分析装置
US20230037141A1 (en) Analytical system and method including switching between liquid chromatography fluidic streams
US10497548B1 (en) Method and apparatus for electron ionization liquid chromatography mass spectrometry
GB2523873A (en) Systems, devices and methods for connecting a chromatography system to a mass spectrometer
Ashcroft et al. Continuous-flow fast atom bombardment mass spectrometry
Taylor et al. Managing sample introduction problems in hydrophilic interaction liquid chromatography
US20140264003A1 (en) Method for Cleaning an Atmospheric Pressure Chemical Ionization Source
US11152200B2 (en) Interface device between sample separation device and mass spectrometer having multiple sample capillaries
Jung et al. Microchip electrospray: improvements in spray and signal stability during gradient elution by an inverted postcolumn makeup flow
Tong et al. Principles and applications of unified chromatography
JP4569160B2 (ja) クロマトグラフ質量分析装置
JP2004198123A (ja) 分取液体クロマトグラフ質量分析装置
JP2006292542A (ja) 液体クロマトグラフ質量分析装置
Schultz et al. Fundamentals of LC-MS/MS for regulated bioanalysis
JP7120457B2 (ja) 液体クロマトグラフ及び液体クロマトグラフ制御方法
JP2007085776A (ja) 液体クロマトグラフ分析装置及び液体クロマトグラフ分析方法
RU2076319C1 (ru) Способ ввода в масс-спектрометр веществ, элюируемых из колонки жидкостного хроматографа
Carrier et al. Development of an “in-source” thermospray-type interface for on-line capillary liquid chromatography-mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees