JP4514852B2 - 画像送信装置及び画像伝送システム - Google Patents

画像送信装置及び画像伝送システム Download PDF

Info

Publication number
JP4514852B2
JP4514852B2 JP20255999A JP20255999A JP4514852B2 JP 4514852 B2 JP4514852 B2 JP 4514852B2 JP 20255999 A JP20255999 A JP 20255999A JP 20255999 A JP20255999 A JP 20255999A JP 4514852 B2 JP4514852 B2 JP 4514852B2
Authority
JP
Japan
Prior art keywords
signal
circuit
input
memory
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20255999A
Other languages
English (en)
Other versions
JP2001036925A (ja
Inventor
功 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20255999A priority Critical patent/JP4514852B2/ja
Publication of JP2001036925A publication Critical patent/JP2001036925A/ja
Application granted granted Critical
Publication of JP4514852B2 publication Critical patent/JP4514852B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Television Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Color Television Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は例えばコンピュータ等の機器の画像信号を伝送する装置、システムに関するものである。
【0002】
【従来の技術】
図85に特開昭63−059295に示される従来の画像伝送システムを示す。図85において、91はカラーテレビカメラ、92は第一の切替器、93は符号器、94は電話器、95は伝送制御器、96は伝送路入出力端、97は復号器、98は第二の切替器、99はカラーテレビディスプレイである。
【0003】
次に動作について説明する。カラーテレビカメラ1からのR・G・B三原色コンポーネント信号は、第一の切替器2で切り替えて、1走査線につき1コンポーネント信号を線順次に時分割化する。
図86はカラーテレビカメラ1からのR・G・Bコンポーネント信号の出力波形例を示し、(イ)はR(赤)出力波形、(ロ)はG(緑)出力波形、(ハ)はB(青)出力波形である。また、図87は第一切替器2で時分割化されたR・G・B線順次コンポーネント信号の波形例を示し、丸1、丸2、丸3、…は図86の丸1、丸2、丸3、…の部分に相当する。
【0004】
図87で示すようなR・G・B線順次コンポーネント信号は、白黒テレビ信号符号化するのと同等の符号器で符号化できる。図85の符号器93からの画像信号は、電話機94からの音声信号等と共に伝送制御器95に入力されて、伝送路に出力できる信号形式に変換、伝送路入出力端96に出力される。
相手方からの画像信号と音声信号は、伝送路入出力端96から伝送制御器95に入力され、この伝送制御器95から音声信号は電話機94に、画像信号は復号器97に入力される。複合器97で復号される信号は、図87に示すようなR・G・B線順次コンポーネント信号で、白黒テレビ信号を復号するのと同等の復号器で復号することができる。
【0005】
復号された信号は、第2の切替器98によって、1走査線につき1コンポーネント信号をカラーテレビディスプレイ99の該当する色入力端に、線順次に分配される。
図88はカラーテレビディスプレイ99に入力されるR・G・B三原色コンポーネント信号の波形例を示し、(イ)はR入力波形、(ロ)はG入力波形、(ハ)はB入力波形である。図88のように、第2の切替器8から分配されたコンポーネント信号の走査期間以外の他の走査期間は、黒レベルに置き換えられて、カラーテレビディスプレイ9のR・G・B各入力端に入力され、カラー画像が表示される。
【0006】
【発明が解決しようとする課題】
従来の例では、R・G・B三原色コンポーネント信号の伝送を時分割化することにより、情報量を1/3にすることができる。しかしながら、走査線を1/3に間引いているので、垂直解像度の低下は免れない。また、カラーテレビディスプレイへの入力信号の間引かれた部分は黒レベルになっており、明るさも1/3になるという課題があった。
【0007】
この発明は、以上の課題を解決するためになされたもので、R・G・B三原色コンポーネント信号を垂直走査周期に順次送って伝送量は減らすが、受像側で、メモリを使用して、間引かれた部分も前フレームから得られる信号があるようにして、伝送帯域を低減し、情報量の削減を図りつつ、解像度、明るさ両方の低下のない画像伝送装置、システムを得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る画像受信装置は、分離後のR・G・B各色の前フレームの色信号を記憶し、再生用に読み出す各色信号毎のメモリと、
送信されてくる複合同期信号から送信されたR・G・Bの少なくとも1つの現フレームの色信号を検出して対応スイッチを制御する同期分離回路とを備えて、送信された現フレームの色信号で、対応するメモリの色信号を更新し、かつその色の再生用出力を行うようにした。
【0009】
この発明に係る画像送信装置は、分離されたR・G・B各色信号の内から定められた数の色信号のみをフレーム毎に順次選択するスイッチと、送信信号中の1フレームの走査線数を計測する走査線計測回路を備えて、
フレーム毎の送信色信号として、選択された色信号のみを送信し、走査線数が所定値以上であれば広帯域伝送であるとして搬送周波数を選択するようにした。
【0010】
また更に、受信信号中の1フレームの走査線数を計測する走査線計測回路を備えて、走査線数が所定値以上であれば広帯域伝送であるとして搬送周波数を選択するようにした。
【0011】
また更に、送信信号中の1フレームの走査線数を計測した結果を走査線情報として符号化する符号化回路を備えて、
送信信号中に走査線情報を多重化して送信するようにした。
【0012】
また更に、受信信号中の1フレームの走査線数情報を復号する走査線情報復号回路を備えて、走査線数が所定値以上であるという復号結果を得ると、広帯域伝送であるとして搬送周波数を選択するようにした。
【0013】
また更に、分離されたR・G・B各色信号毎に送信用バッファメモリを備えて、
送信は、記憶された色信号を書き込み速度より低速で読み出して色信号を送信するようにした。
【0014】
また更に、各色信号毎のメモリの読み出しクロックを書き込みクロックとは異なる周期も設けて、指定により読み出しクロックを選択するようにした。
【0015】
この発明に係る画像伝送システムは、分離されたR・G・B各色信号の内から定められた数の色信号のみをフレーム毎に順次選択するスイッチを備えて、
フレーム毎の送信色信号として、選択された色信号のみを送信するようにした画像送信装置と、
分離後のR・G・B各色の前フレームの色信号を記憶して再生用に読み出す各色信号毎のメモリと、画像送信装置より送信されてくる複合同期信号から送信されたR・G・Bの少なくとも1つの現フレームの色信号を検出して対応スイッチを制御する同期分離回路とを備えて、
送信された現フレームの色信号で、対応するメモリの色信号を更新し、かつその色の再生用出力を行うようにした画像受信装置、とで構成する。
【0016】
【発明の実施の形態】
実施の形態1.
以下、本発明にかかわる画像伝送装置システムを液晶表示装置を例として、構成と動作を説明する。
図1(A)は、本実施の形態における受像装置と画像伝送システムの概念を示す図である。図において、101は送信装置、111は受像装置である。図1(B)は、その詳細構成図である。図において、1RはR(赤)信号の帰線期間を固定電圧にクランプするクランプ回路、1GはG(緑)信号のクランプ回路、1BはB(青)信号のクランプ回路、2は水平同期信号H、垂直同期信号Vを混合し、復号同期信号とする同期混合回路、3は垂直同期信号Vの周波数を計数し3垂直走査周期を1周期とする4つのタイミング信号を発生するカウンタ、4はカウンタ3の出力のタイミング信号により切り替えられる3入力のスイッチ、5はスイッチ4、同期混合回路2、カウンタ3の出力である4つのタイミング信号のうちのひとつID信号を加算する加算器である。以上が送信装置101側にある。6は伝送回路である。
以下の要素は受像装置111側にあり、7は復調された信号より加算器5で加算されたID信号および、復号同期信号を分離しかつ、水平、垂直の同期信号に分離し、ID信号、水平同期信号、垂直同期信号の3つを出力するする同期分離回路、8は水平同期信号に同期したクロック信号を発生するクロック発生回路、9はA/Dコンバータ、10はA/Dコンバータ9の出力を3つのメモリに分配する分配スイッチ、11は分配スイッチ10の制御およびメモリの書き込み/読み出しを制御するメモリ制御回路、12RはR用メモリ回路、12GはG用メモリ回路、12BはB用メモリ回路、13RはR用D/Aコンバータ、13GはG用D/Aコンバータ、13BはB用D/Aコンバータ、14RはR用増幅回路、14GはG用増幅回路、14BはB用増幅回路である。
【0017】
次に動作について説明する。
R、G、B、H、Vで示される入力端子にはパーソナルコンピュータなどのR、G、Bの三原色信号、H、Vの水平、垂直同期信号がそれぞれ供給される。R、G、Bの信号はそれぞれクランプ回路1R、1G、1Bに供給され、帰線期間の直流電位を固定電位にクランプする。クランプ回路1R、1G、1Bはたとえば、図2に示す回路構成である。図2において、1R01は抵抗、1R02はトランジスタ、1R03は抵抗、1R04はコンデンサ、1R05は抵抗、1R06は抵抗、1R07はトランジスタ、1R08はトランジスタ、1R09は抵抗、1R10はインバータである。抵抗1R01、トランジスタ1R02、抵抗1R03で構成されるエミッタフォロワ回路に供給された、R信号はコンデンサ1R04を介しトランジスタ1R08、抵抗1R09で構成されるエミッタフォロワ回路に供給される。トランジスタ1R08のベースにはエミッタが接地されたトランジスタ1R07のコレクタが接続される。トランジスタ1R07のベースには、水平同期信号Hをインバータ1R10で極性反転した信号が抵抗1R05、1R06で分圧され供給される。
これにより、トランジスタ1R07は水平同期信号期間ONとなり、トランジスタ1R08のベース電圧はこの期間略々0Vに固定される。この直流電位は次の水平同期信号期間まで、コンデンサ1R04にて保持されるので、トランジスタ1R08のエミッタにあらわれる出力は直流クランプされたものとなる。
【0018】
図1に戻り、水平同期信号Hはまた、垂直同期信号Vと共に同期混合回路2に供給される。同期混合回路2はたとえば、排他的論理和回路で構成され、出力は図3のSYNCに示される復号同期信号となる。
【0019】
水平同期信号H、垂直同期信号Vはまた、カウンタ3に供給される。カウンタ3は例えば図4に示す構成であり、図4において、301は4ビットの同期リセットのカウンタIC、302はインバータ、303は2入力NORゲート、304は抵抗、305はコンデンサ、306はインバータ、307は2入力ANDゲートである。垂直同期信号Vは、カウンタIC301のクロック入力に供給される。カウンタIC301のQB(21)出力は、インバータ302を介しリセット入力端子に供給される。これによりカウンタIC301は3進カウンタとして働き、各出力QA、QBは図5のGS、BSのようになる。2入力NORゲート303の入力にはカウンタIC301のQA、QB出力が供給されるので2入力NORゲート303の出力は図5のRSのようになる。2入力NORゲート303の出力はまた、抵抗304、コンデンサ305からなる積分回路にも供給される。積分回路の出力はインバータ306により波形整形、極性反転され2入力ANDゲート307の一方の入力に供給される。2入力ANDゲート307のもう一方の入力には、2入力NORゲート303の出力が供給されているので、2入力ANDゲート307の出力は、2入力NORゲート303の出力すなわちRSの立上りエッジ部分の図5のIDに示す信号となる。
【0020】
カウンタ3の出力RS、GS、BSはスイッチ4の切り替え制御信号として供給される。スイッチ4は切り替え制御信号がハイレベルの時対応する接点間がonとなる。従って図5に示すようにRSがハイレベルのときはクランプ回路1Rの出力が、GSがハイレベルのときはクランプ回路1Gの出力が、BSがハイレベルのときはクランプ回路1Bの出力がスイッチ4から出力される。これにより、R、G、Bの信号が時分割化されて一つの信号となる。
【0021】
この信号と、同期混合回路2の出力である復号同期信号と、カウンタ3のもう一つの出力ID信号が加算器5に供給され、あらかじめ定められた比で加算され、図6のSRGBに示す信号を得る。この信号が送信装置の出力となる。
この加算器5の出力SRGB、即ち送信装置の出力は、伝送回路6を介し伝送される。
【0022】
伝送回路6からの画像信号は、受像装置側ではA/Dコンバータ9に供給され、ディジタル信号に変換される。伝送回路6の出力SRGBはまた、同期分離回路7に供給される。同期分離回路7は図7のように構成され、701は同期信号分離用コンパレータ、702は同期信号分離用基準電圧源、703は抵抗、704はコンデンサ、705は垂直同期信号生成用コンパレータ、706は垂直同期信号生成用基準電圧源、、707はID信号分離用コンパレータ、708はID信号分離用基準電圧源、709は抵抗、710はコンデンサ、711はID信号波形整形用コンパレータ、712はインバータ、713は2入力NANDゲートである。
RGB信号は同期信号分離用コンパレータ701に供給され、図7及び図8丸1の電圧の同期信号分離用基準電圧源702と比較し、同期信号が分離され、図8のH(SYNC)に示すように出力され、水平同期信号Hとして出力される。また、このH(SYNC)を抵抗703、コンデンサ704により積分し(図8ニ)、垂直期信号生成用コンパレータ705により図7及び図8丸2の電圧の垂直期信号生成用基準電圧源706と比較し、図8のVに示すように波形整形し、垂直同期信号Vがえられる。SRGB信号はまた、ID分離用コンパレータ707に供給され、ID分離用基準電圧源708の電圧と比較される。図7及び図8丸3に示すID分離用基準電圧源707の電圧は、+入力端子に入力されたSRGB信号のIDの先頭値より低く、黒レベルより高く設定されている。従ってID信号や、映像信号がレベルの高い時ID分離用コンパレータ707の出力はハイレベルとなる(図8イ)。ID分離用コンパレータ707の出力は抵抗709、コンデンサ710からなる積分回路に供給され、ID波形整形用コンパレータ711により波形整形および、水平同期信号の影響が除去される(図8ハ)。この信号は、2入力NANDゲート713の一方の入力に供給され、もう一方には垂直同期信号をインバータ712で極性反転したものが供給される。従って、映像信号期間の影響がとり除かれ、2入力NANDゲート713の出力にはID信号が得られる(図8ID)。
【0023】
同期分離回路7の出力の垂直同期信号およびID信号はメモリ制御回路11に供給される。メモリ制御回路11は図9のように構成され、1101は4ビットのカウンタIC、1102は2入力NORゲートである。垂直同期信号はカウンタIC1101のクロック(CLK)入力に供給され計数される。カウンタIC1101のリセット(RST)入力にはID信号が供給されており、ID信号によりカウンタIC1101の計数結果はリセットされる。ID信号は、SRGB信号のR信号の先頭にあるので、R信号期間はカウンタIC1101の出力QA、QBともにローレベル、次に送られるG信号期間はQAがハイレベル、QBがローレベル、最後に送られるB信号期間はQAがローレベル、QBがハイレベルとなる3進カウンタとなる。これにより、QA、QBが入力される2入力NORゲート1102の出力はR信号期間ハイレベルとなり、図4に示すカウンタ3のRSと同じ信号となる。同様にQAはGS、QBはBSとなり、出力される。
【0024】
同期分離回路7の水平同期信号出力Hはクロック発生回路8に供給される。図10に詳細を示し、801は電圧制御発振器、802は電圧制御発振器801の出力を分周する分周器、803は分周器802の分周数を与える分周比設定回路、804は分周器802の出力と外部からの信号(ここでは水平同期信号H)との位相を比較し、位相差を電圧として電圧制御発振器801に出力する位相比較器である。以上のようにクロック発生回路8は入力された水平同期信号Hにロックしたクロック信号を発生するPLLを構成しており、出力クロックの周波数は水平同期信号Hの周波数のあらかじめ定められた、すなわち分周比設定回路803で設定された数の倍数となる。このクロックはA/Dコンバータ9、後段のメモリ回路12R、12G、12B、D/Aコンバータ13R、13G、13Bに供給される。
【0025】
A/Dコンバータ9の出力は分配スイッチ10に供給される。分配スイッ10の制御信号として、RS、GS、BSが供給されており、分配スイッチ10の出力はID信号が送られた直後はR信号がメモリ12Rに、次はG信号がメモリ12Gに、次はB信号がメモリ12Bにと接続される。
【0026】
メモリ回路12R、12G、12Bの構成はいずれも同じなので、ここでは12Rの詳細を図11にしめす。図11において、12R01はクロック、水平、垂直の同期信号をもとに計数しメモリの書き込み、読み出しアドレスを発生するアドレスカウンタ、12R02はメモリからの読み出しによる遅延時間分だけ、送られてきた信号を遅延する遅延回路、12R03はメモリから読み出された信号と送られてきた信号を切り換えるセレクタ、12R04はおくられてきた画像の1垂直走査周期分記憶するメモリである。このメモリ回路12Rは、実際に送られてきた信号はメモリに書き込むと同時に出力し、送られていない期間はメモリに記憶されたものを読み出すように働く。以下動作を示す。
【0027】
A/D変換されたSRGB信号はメモリ12R04と同時に遅延回路12R02を介しセレクタ12R03に供給される。遅延回路12R02は所定のクロック周期分の時間、入力を遅延させる。所定の時間とは、メモリ12R04の読み出しモード時の読み出しアドレスが与えられてから出力されるまでの遅延時間である。セレクタ12R02の選択制御入力はハイレベルの時A入力を選択、ローレベルの時B入力を選択し、Yに出力する。メモリ12R04の書き込み制御信号入力はW.E.でハイレベルの時書き込みモードとなる。ローレベルのときは読み出しモードとなり、書き込み時、読み出し時ともに、アドレス入力ADに供給されたアドレスをアクセスする。アドレスカウンタ12R01はCLKに供給されたクロック、Hに供給された水平同期信号を計数する。計数のリセットには、クロック計数用には水平同期信号、水平同期信号計数用にはVに供給される垂直同期信号が供給される。計数値はメモリ12R04のアドレス制御としてAD入力に供給される。セレクタ12R02の選択制御入力はメモリ回路12Rの入力Sに接続されたRSであるので、これがハイレベルとなるのは、R信号が送られている期間である。従ってセレクタ12R02はA入力である送られてきているR信号を遅延回路12R02で遅延させた信号を選択し出力する。W.E.にもSに加えられたRSが供給されているので、R信号が送られてきている期間メモリ12R04は書き込みモードとなり、送られたR信号はメモリ12R04に書き込まれる。
【0028】
R信号が送られていない期間すなわちRSが ローレベルのときは、メモリ12R04は読み出しモードとなり、直前に書き込まれたR信号が読み出される。セレクタ12R03はB入力であるこの読み出し出力を選択し出力する。
【0029】
以上により、メモリ回路12Rの出力は、SRGB信号がR信号のときはそのまま、G、B信号のときは直前に書き込まれたR信号を出力する。同様にメモリ12G、12Bも動作し、G、B信号を得る。
これにより、時分割されたR、G、B信号が3系統並列の連続した信号となる。
【0030】
メモリ回路12R、12G、12Bの出力はそれぞれD/Aコンバータ13R、13G、13Bに供給されアナログR、G、B信号を得る。
【0031】
D/Aコンバータ13R、13G、13Bの出力はR用増幅回路14R、G用増幅回路14G、B用増幅回路14Bにそれぞれ供給される。R用増幅回路14R、G用増幅回路14G、B用増幅回路14Bではモニター等の外部機器へのインターフェース用にバッファAMPの機能を果たす。同期分離回路7の出力である、水平、垂直同期信号もR、G、Bと同時にモニター等の外部機器へと出力される。
【0032】
以上により、伝送前にR、G、Bをそれぞれフレームを3つに一つに間引いて伝送するので情報量を大幅に削減できる。また、メモリにより、間引かれた2フレームを再生し、R、G、Bそれぞれ連続した信号を得ることができる。伝送する信号が静止画像の場合は、どのフレームも同一であるので、劣化がない。
【0033】
図12は本実施の形態における画像伝送システムの他の送信装置を示す構成図である。即ち、同期分離の他の例を説明するものである。
図12において、新たな要素として、15は復号同期信号が入力され、水平同期信号、垂直同期信号を分離、出力する同期分離回路である。図13は同期分離回路15の詳細構成を示し、1501は抵抗、1502はコンデンサ、1503は垂直同期信号生成用基準電圧源、1504はコンパレータである。
図12の例は、同期信号入力として、水平、垂直同期信号が復号化された、復号同期信号が入力された場合であり、垂直同期信号を得るために、抵抗1501、コンデンサ1502による積分回路、コンパレータ1504と垂直同期信号生成用基準電圧源1503により垂直同期信号を分離できる。この動作は、実施の形態1における、伝送後の垂直同期信号分離と同一である。入力された復号同期信号は分離された垂直同期信号と共に、そのまま水平同期信号として、使用可能である。
【0034】
図14は本実施の形態における画像伝送システムの他の送信装置を示す構成図である。即ち、同期信号が各色信号に重畳される場合を説明する。
図14において、新たな要素として、16は、G信号に重畳された復号同期信号から、水平、垂直同期信号を分離する同期分離回路である。図15は同期分離回路16の詳細構成を示し、1601は直流カット用コンデンサ、1602はダイオード、1603は直流クランプ用電圧源、1604は同期信号分離用基準電圧源、1605はコンパレータ、1606は抵抗、1607はコンデンサ、1608は垂直同期信号生成用基準電圧源、1609はコンパレータである。
図14は、RGBのどれか少なくとも1つに復号同期信号が重畳された入力の場合であり、例としてGに重畳された場合を示す。同期分離回路16に入力されたG信号は、コンデンサ1601、ダイオード1602、直流クランプ用電圧源1603からなるクランプ回路により、直流クランプされる。すなわち、同期信号の先端が、直流クランプ用電圧源1603の電圧より、ダイオード1602の順方向ドロップ電圧分低い電圧にクランプされる。この後同期信号分離用基準電圧源1604、コンパレータ1605からなる同期信号分離回路により、復号同期信号が抜き取られる。この動作は実施の形態1の同期信号分離用コンパレータ701、同期信号分離用基準電圧源702の動作と同一である。抜き取られた復号同期信号はそのまま水平同期信号として出力されるほか、抵抗1606、コンデンサ1607、垂直同期信号生成用基準電圧源1608、コンパレータ1609により垂直同期信号が生成される。この動作は実施の形態1の抵抗703、コンデンサ704、コンパレータ705、垂直同期信号生成用基準電圧源706の動作と同一である。
【0035】
図16は本実施の形態における画像伝送システムの他の送信装置と受像装置を示す構成図である。図16において、新たな要素として、17はFM変調回路、18は赤外発光ダイオード駆動回路、19は赤外発光ダイオード、20は受光ダイオード、21は受光したFM信号を増幅する増幅回路、22はFM復調回路、23は復調された信号を増幅する増幅器である。
【0036】
加算器5の出力SRGBはFM変調回路17に供給され、FM変調波を得る。FM変調回路17は図17に詳細に示す。図17において、1701は抵抗、1702は可変容量ダイオード、1703はコンデンサ、1704はコイル、1705はコンデンサ、1706は抵抗、1707は抵抗、1708はコンデンサ、1709は抵抗、1710はトランジスタ、1711はコンデンサ、1712はトランジスタ、1713は抵抗である。
RGB信号は抵抗1701を介して可変容量ダイオード1702のカソードに印加される。コイル1704、コンデンサ1705、抵抗1706、抵抗1707、コンデンサ1708、抵抗1709、トランジスタ1710、コンデンサ1711からなる回路は発振回路を形成しており、可変容量ダイオード1702はコンデンサ1703を介して発振回路の発振容量の一部として働く。従ってSRGB信号によって可変容量ダイオード1702の容量は変化するので発振回路の周波数はSRGB信号によりFM変調されることとなる。このFM変調波は、トランジスタ1712、抵抗1713からなるエミッタフォロワ回路をとおして出力される。
【0037】
FM変調波は赤外発光ダイオード駆動回路18へと供給され、赤外光の点滅を行なう。赤外発光ダイオード駆動回路18は図17のように構成され、図17において、1801は抵抗、1802は抵抗、1803はトランジスタ、1804は抵抗である。FM変調波は抵抗1801、抵抗1802、トランジスタ1803からなるパルスアンプで電流のON/OFF信号に変換される。この電流は、電流値設定用抵抗である抵抗1804、赤外発光ダイオード19を流れ、赤外発光ダイオード19よりFM変調光が放射される。
【0038】
受信側では、赤外発光ダイオード19より放射されたFM変調光は受光ダイオード20で受光され、電流に変換される。この電流は増幅回路21で電圧に変換され、増幅される。増幅回路21は図18に示し、図18において、2101は抵抗、2102は抵抗、2103は演算増幅器、2104は抵抗である。
受光ダイオード20で電流に変換された信号は抵抗2101を流れ、電圧に変換される。この信号電圧は抵抗2102、抵抗2104、演算増幅器2103で構成される増幅回路により、後段のFM復調回路22に必要なレベルまで増幅され、供給される。
【0039】
FM復調回路22は図19のように構成され、図19において、2201は波形整形用のインバータ、2202は所定の時間だけ遅延させる遅延回路、2203は排他的ORゲート、2204はローパスフィルターである。増幅回路21の出力はインバータ2201に供給され、図20のFM波に示す、矩形波にされる。インバータ2101の入力が所定のレベル以上あれば、出力は一定振幅の矩形波に変換され、リミッターとしても働く。インバータ2101の出力は遅延回路2102に供給され、一定の時間遅延され、図20のFM波(遅延)に示すように出力される。この遅延出力と、遅延前のインバータ2201の出力は排他的ORゲート2203に供給される。排他的OR2203の出力は図20に示すようにFM波がPWM波に変換される。このPWM波はローパスフィルター2204に供給される。PWM波をローパスフィルターを通すことにより、FM復調され、FM変調前の信号である図6のSRGBが得られる。
【0040】
FM復調されたSRGB信号は、増幅回路23に供給される。増幅回路23は図21に示し、2301はレベルシフト用電圧発生器、2302は抵抗、2302は演算増幅器、2304は抵抗である。SRGB信号は後段のA/Dコンバータ9の入力範囲にあうよう、増幅、直流電圧シフトが行われる。直流電圧シフト量はレベルシフト用電圧発生器2301により設定される。振幅は抵抗2301、2304の値により決定される増幅率で増幅され得られる。増幅回路23の出力以降は図1と同様に動作する。
【0041】
実施の形態2.
伝送帯域を切換えられるシステムを説明する。
図22は実施の形態2における画像伝送システムの送信装置と受像装置を示す構成図である。図22において、新たな要素として、送信側にある24はFM搬送周波数切換えスイッチ、受信側にある25は受信処理切換えスイッチである。その他の要素は既にこれまでのところで同番号のそれとして説明している。
FM搬送周波数切換えスイッチ24はFM変調回路17に接続され、FM変調波の搬送周波数を切換える。図23にその詳細構成をしめす。FM変調回路17Bの1714は抵抗、1715は所定の電圧を発生する直流電圧源である。FM搬送周波数切換えスイッチ24を閉じれば、直流電圧源1715から抵抗1714を介し直流電圧が変調波のSRGB信号に重畳される。これにより、可変容量ダイオード1702の直流バイアスが変化し、FM変調波の周波数帯域すなわち搬送周波数が変化する。
【0042】
受像装置側の受信処理切換えスイッチ25は、搬送周波数の変化に対して、FM復調回路22の復調処理を制御すると同時に、クロック発生回路8のクロック周波数も制御する。
図24にその詳細構成を示す。図24において2501はスイッチ、2502は抵抗、2503は抵抗、2504はトランジスタ、2505は抵抗、2506はトランジスタ、2507は抵抗である。また、FM復調回路22において、遅延回路2202は抵抗2202a、コンデンサ2202b、コンデンサ2202cから構成される。また、クロック発生回路8の分周比設定回路803の設定数が外部からの制御で変更できるようになっている。
受信処理切換えスイッチ25のスイッチ2501を閉じるとトランジスタ2504、2506のベース電圧は0Vになり、OFFとなる。従って、両トランジスタのコレクタ電圧はハイレベルとなり出力される。トランジスタ2504はオープンコレクタ形式でFM復調回路22のコンデンサ2202bに接続されており、抵抗2202a、コンデンサ2202b、2202cからなる積分回路の積分容量が2202cのみとなり、積分時定数が小さくなり、遅延量は減少する。また、分周比設定回路803へ加えられた制御入力ハイレベルに対し、分周比は大きい値に切換えられ、出力クロックの周波数と水平同期信号の周波数の比は大きくなる。
以上により、たとえば、パーソナルコンピュータ等の画像信号で画素周波数(ドットクロック)が異なる2種類の画像信号がシステムに入力された場合、本実施の形態では、それぞれの画素周波数にあわせ、FM搬送周波数切換えスイッチ24、受信処理切換えスイッチ25を切換えることにより、画素周波数に応じた最適な処理が行なえ、必要以上に高い周波数の搬送波を使用しないですむ。
【0043】
実施の形態3.
伝送帯域を自動的に切換えるシステムを説明する。
図25は実施の形態3における画像伝送システムの受像機を示す構成図である。図25において、新たな要素として、26は水平同期信号と垂直同期信号の周波数比すなわち、1フレームの走査線数を求める計測回路であり、詳細は図26に示す。図において、2601は水平同期信号をクロック入力、垂直同期信号をリセット入力に持つカウンタ、2602は固定値を生成する固定値発生回路、2603はカウンタ2601の計数結果と固定値発生回路2602の値との大小を比較するマグニチュードコンパレータである。その他の要素はこれまでに既に同番号のそれとして説明済である。以降の各実施の形態においても、新規要素の説明以外の既出符号については、既出の同番号要素と同等の要素を表す。
計測回路26のカウンタ2601により伝送されてきた画像の走査線数がわかり、また、マグニチュードコンパレータ2603により、固定値発生回路2602のあらかじめ定められた固定値と比較により、走査線数が所定の値より多いかすくないかの形で出力できる。一般的に走査線数が多いと画素周波数が高くなるので、先の実施の形態では受信処理切換えスイッチ25のスイッチ2501を手動で切換えていたのに対し、本実施の形態における切換えスイッチ25Bでは、自動的に計測結果に基づききりかえることができる。
【0044】
実施の形態4.
伝送帯域自動切換えの送信装置を説明する。
図27は実施の形態4における画像伝送システムの送信装置を示す構成図である。図27おいて、新たな要素として、27は水平同期信号と垂直同期信号の周波数比すなわち、1フレームの走査線数を求める計測回路である。図28はその詳細構成を示し、2701は水平同期信号をクロック入力、垂直同期信号をリセット入力に持つカウンタ、2702は固定値を生成する固定値発生回路、2703はカウンタ2701の計数結果と固定値発生回路の値の大小を比較するマグニチュードコンパレータ、2704は抵抗、2705はトランジスタである。抵抗2704、トランジスタ2705により、マグニチュードコンパレータ2703の出力はトランジスタ2705によるスイッチ形式で出力される。
以上の構成により、計測回路27は実施の形態3に示す受信側の計測回路26と同様な動作をする。この出力はFM変調回路17に接続され、トランジスタ2705は図22のFM搬送周波数切換えスイッチ24と同様の動作を行なう。従って本実施の形態では、伝送前に入力画像の画素クロックに応じた、FM搬送周波数の自動切換えが行なえる。
【0045】
図29は実施の形態4における画像伝送システムの他の送信装置と受信装置を示す構成図である。図29おいて、28は計測回路27Bのカウンタ2701の計数結果を水平同期信号、垂直同期信号のタイミングをもとに垂直帰線期間に符号化する符号化器であり図30に示すように接続され、その出力は加算器5にてSRGB信号に重畳される。29は復号器であり、増幅器23の出力からSRGB信号に重畳された符号を復号し、受信処理切換えスイッチ25、クロック発生器8を制御する。
【0046】
実施の形態5.
図31は実施の形態5における画像伝送システムの送信装置と受像装置を示す構成図である。図31おいて、30はR、G、B、H、Vとは別系統の例えばNTSC等の復号映像信号か、加算器5の出力である、時分割化された信号SRGBかを選択するNTSC/PC切換スイッチである。
本実施の形態では、R、G、B、H、Vのコンポーネント信号と、時分割伝送の必要のない1系統の復号映像信号とを時分割手段のあとで切り換えて伝送できるようにするものである。伝送手段を通ったあとはそのまま外部機器に出力される。
【0047】
実施の形態6.
次に図32は実施の形態6における画像伝送システムの送信装置と受像装置を示す構成図である。図32おいて、31はスイッチ4の時分割スイッチングを制御し、R、G、Bのうち特定の一つを常に選択するか、時分割スイッチングするかを制御する時分割制御回路である。本形態では上記特定入力をGとし、Gに対するスイッチ4の制御には、時分割制御回路31の内部としてORゲート、他には、NORゲートがあてられている。いずれのゲートにも共通入力として、外部より供給されるNTSCかR、G、Bコンポーネントかを切り換える信号が(NTSCの時ハイレベル)加えられる。これにより通常のコンポーネント信号伝送時はカウンタ3からの出力がそのままスイッチ4を制御することにより時分割動作を行い、G入力にNTSCが入力した時、Gに対するスイッチ4だけが閉路するように働く。
【0048】
次に図33は本実施の形態における画像伝送システムの他の送信装置と受信装置を示す構成図である。図33おいて、送信側の計測回路27は、G入力に接続された同期分離回路16の水平同期信号H、垂直同期信号Vの周波数比を計測し、図34に詳細構成を示すように、結果を直接トランジスタ2705の駆動用として出力し、所定の値より小さい時FM変調回路の搬送周波数を低く切り換え、時分割制御回路31をG入力に対し常に選択するように働く。
この構成により、NTSC信号をG入力に接続すれば、自動的に時分割動作は停止し、FM変調回路の搬送周波数を低く切り換えることができる。
【0049】
実施の形態7.
次に図35は実施の形態7における画像伝送システムの、送信側にある同期混合回路2の詳細を示す構成図である。図35おいて、201は垂直同期信号の極性を反転するインバータ、202は水平同期信号とインバータ202の出力の論理積をとる2入力ANDゲート、203は2入力ANDゲート203の出力と水平同期信号とを所定の比で加算する同期加算器である。
図37は受信側にある同期分離回路7Bを示し、図7に示す実施の形態1の同期分離回路7と同一部分は同一符号を付してその説明は省略する。714は垂直同期信号抜き取り用コンパレータ、715は垂直同期信号抜き取り用基準電圧源、716はインバータ、717は入力の立ち下がりエッジでトリガされるワンショットマルチバイブレータ、718は2入力アンドゲート、719はインバータである。
【0050】
図35において同期混合回路2の入力である垂直同期信号Vはインバータ201により極性反転された後、2入力ANDゲート202により、水平同期信号Hとの論理積をとられる(図36ア)。この信号は水平同期信号Hと同期加算器203にて加算され、復号同期信号(図36SYNC)となり、加算器5にてID信号、時分割化信号と加算される。同期加算器203、加算器5を通しての加算比は図37のSRGBに示すように垂直同期信号部分が画像信号部分より高くなるようにする。
【0051】
伝送後は、図37にその構成が示される同期分離回路7Bにおいて、コンパレータ714は入力されたSRGBと垂直同期信号抜き取り用基準電圧源715の電圧(図38の丸4)を比較することにより、垂直同期部分を抜き取る(図38V−SYNC)。抜き取られた垂直同期部分は抵抗703、コンデンサ704からなる積分回路により積分される(図38イ)。この後コンパレータ705、垂直同期信号生成用基準電圧源706により図38ウに示す正極性の垂直同期信号が得られる。SRGBはまた、コンパレータ707、ID分離用基準電圧源708により図38丸3に示す電圧以上の部分が抜き取られ、IDを含む垂直同期部分等が抜き取られる。(図38ア)この後、2入力ANDゲート718の一方の入力に供給される。
コンパレータ705の出力である、正極性の垂直同期信号はまた、ワンショットマルチバイブレータ717に供給される。ワンショットマルチバイブレータ717は入力の立ち上がりでトリガされ、図38エに示すパルスを出力する。このパルスは2入力ANDゲート718のもう一方の入力に供給され、2入力ANDゲート718の出力には、図38オにしめすID部分の信号が得られる。この信号は抵抗709、コンデンサ710により積分され(図38カ)、コンパレータ711により正極性のID(図38キ)が得られ、インバータ719により反転され、IDが出力される。
このようにして得られた水平同期信号は、実施の形態1と同様にしてコンパレータ701、同期信号分離用基準電圧源702により選らばれる。
以上によりデューティ比が常に一定の連続波である水平同期信号が選らばれる。
【0052】
図39は、本実施の形態における画像伝送システムの他の同期混合回路2Cを示す構成図である。図39において204は2入力NORゲート、205はワンショットマルチバイブレータ、206はインバータ、207は2入力ANDゲートである。また、図41は、本実施の形態における他の同期分離回路7Cを示し、720は、入力信号の立ち下がりエッジでトリガされるワンショットマルチバイブレータである。
【0053】
つぎに動作を説明する。入力である、水平同期信号と垂直同期信号は2入力NORゲート204に供給される。図40のアに示すように、2入力NORゲート204では垂直同期信号のローレベル期間の水平同期信号がぬきとられる。抜き取られた水平同期信号はワンショットマルチバイブレータ205に供給される。ワンショットマルチバイブレータ205では、入力信号である図40アの立ち上がりでトリガされ、設定された時間だけ出力がハイレベルになる、図40イに示すような信号となる。この信号はインバータ206で極性反転され、2入力ANDゲート207の一方の入力に供給される。2入力ANDゲート207のもう一方には、もとの水平同期信号が供給され、2入力ANDゲート207の出力は図40SYNCに示す複合同期信号となる。この複合同期信号は、実施の形態1で示した、水平同期信号と垂直同期信号の排他的論理和をとったものが、立ち下がりエッジが垂直同期信号部分で混合前の水平同期信号の立ち下がりエッジの位相とずれるのにたいし、常に同一位相となる。
【0054】
受信側では、コンパレータ701の出力(図40SYNCと同じ)をワンショットマルチバイブレータ720に供給する。ワンショットマルチバイブレータ720は入力信号の立ち下がりエッジでトリガされ、所定の時間ローレベルのワンショット動作を行ない水平同期信号として出力する(図40H)。この水平同期信号は、垂直帰線期間もデューティ比が常に一定の安定した連続波であり、クロック発生回路8で発生するクロックの垂直帰線期間における周波数、位相の乱れがない。
【0055】
実施の形態8.
次に図42は実施の形態における画像伝送システムの送信装置と受信装置を示す構成図である。図42おいて、32はFM変調波を2分周し、周波数を1/2におとす2分周器である。例えば図43に示すように、フリップフロップを使用し、構成される。FM変調回路17は実際の伝送周波数の2倍の搬送波で変調し、2分周器32により2分周され、本来伝送する周波数のFM変調波となる。2分周することにより、分周前の変調波のヂューティ比が50%でなくても、2分周によりヂューティ比50%となる。これによりFM復調回路22での遅延量を最大にすることができ、復調出力を最大とでき、S/N比を良好とすることができる。図44にデューティ比50%でない場合を示す。PWMとなった波形のデューティ比も小さく、LPFをとおしたFM復調出力は小さくなる。
【0056】
次に図45は本実施の形態における画像伝送システムの他の送信装置を示す構成図である。図45において33はスイッチであり、2分周器32の出力か、2分周前のものかを切り換え選択する。これによりFM変調波を2分周するかどうかをスイッチ33で切り換えることができ、変調信号すなわちSRGBの周波数、従って入力の画像の画素周波数が低い時は2分周を行い、FM変調波のヂューティを50%で伝送でき、高い時はそのまま出すことにより、FM変調回路17で搬送波の周波数を切り換える必要がない。
【0057】
実施の形態9.
図46は実施の形態における画像表示装置を示す構成図である。図46おいて、図1に示す実施の形態1における受信装置と同一要素は同一符号を付してその説明は省略する。図46において、47はPCなど外部RGB機器からのRGBHV信号を入力するRGB入力コネクタ、48は時分割信号SRGBを入力するSRGB入力コネクタ、49はRGB入力コネクタ47に入力されたRGB信号か、SRGB入力コネクタ48に入力され処理された、RGB信号かを選択するRGBスイッチ、50はRGBスイッチで選択したRGB信号を表示するための表示駆動回路および表示素子である。
【0058】
図46全体で表示装置を構成し、通常はRGB入力コネクタ47に入力された映像を表示するが、RGBスイッチ49を切換えることにより、時分割信号SRGBからのRGB映像を表示することができる。
【0059】
実施の形態10.
本実施の形態では、伝送帯域を更に圧縮して、例えば1/2帯域で色信号を伝送するシステムを説明する。
図47は実施の形態10における画像伝送システムの送信装置を示す構成図である。図47おいて、36RはR信号に同期混合回路2の出力である複合同期信号と、カウンタ3の出力であるIDを加算する加算器、36GはG信号に複合同期信号を加算する加算器、36BはB信号に複合同期信号を加算する加算器、37RはR回路用A/Dコンバータ、37GはG回路用A/Dコンバータ、37BはB回路用A/Dコンバータ、38RはR回路用メモリ、38GはG回路用メモリ、38BはB回路用メモリ、39は時分割スイッチ、40はD/Aコンバータ、41は時分割スイッチ制御回路、42はクロック発生回路、43はクロック発生回路42の出力のクロックを2分周する2分周回路、44は水平同期信号を2分周する2分周回路、45は垂直同期信号を2分周する2分周回路、46は、2分周回路43出力のクロックと、水平同期信号、垂直同期信号と、2分周回路44、45出力の2分周された水平、垂直同期信号とのそれぞれをもとに、アドレスを発生して、各メモリ38R、38G、38Bへアドレスを選択、供給するアドレス発生回路である。
【0060】
次に動作を説明する。R、G、Bに入力された信号はそれぞれクランプ回路1R、1G、1Bによりクランプされた後、加算器36R、36G、36Bにて同期混合回路2の出力である複合同期信号がおのおの加算される。R信号には、カウンタ3の出力である、ID信号も加算される。加算器36R、36G、36Bの出力はそれぞれ、A/Dコンバータ37R、37G、37Bに供給され、ディジタル信号となりメモリ38R、38G、38Bの入力であるDATA IN端子へ供給される。メモリ38R、38G、38Bでは、1フレーム分のデータを書込み、1/2の速度で2フレームの時間で読み出す動作をする。カウンタ3は、実施の形態1と同じ動作にて、図49に示す、RS、GS、BSを出力する。このRS、GS、BSはメモリ38R、38G、38Bの書き込み制御端子であるW.E.へ供給される。書き込み制御端子W.E.にハイレベルの信号供給すると、メモリは書き込み状態となり、図49のメモリR、メモリG、メモリBに示すようにRS、GS、BSがおのおのハイレベルのときDATA INに入力された信号が書き込まれる。書き込みアドレスは、クロック発生回路42で発生された、入力信号の画素クロック、水平同期信号、垂直同期信号、RS、GS、BSをもとに、アドレス発生回路46でつくられ、メモリ38R、38G、38Bのアドレス入力である、AD端子に供給される。
【0061】
メモリに書き込まれた後、2フレームの時間をかけて、1/2のクロックレートで読み出される。このおのおののメモリの読み出しタイミングは、RS、GS、BSのローレベル期間であり、この期間アドレス発生回路46は、クロック発生回路42の出力を2分周回路43で2分周したクロック、水平同期信号、垂直同期信号をおのおの2分周回路44,45で2分周したタイミングをもとにアドレス発生回路46で作られ、メモリに供給される。従ってクロックレートは1/2となっており、2フレームの期間で読み出される。
【0062】
メモリ38R、38G、38Bから読み出された信号は、時分割スイッチ39に供給される。時分割スイッチ39の制御は、時分割スイッチ制御回路41により行われる。時分割スイッチ制御回路41の詳細は図48に示し、4101は2分周用Dフリップフロップ、4102は2入力NANDゲート、4103はインバータ、4104は2入力ANDゲート、4105は2入力NANDゲートである。時分割スイッチ制御回路41では、IDを2分周用Dフリップフロップ4101により2分周した信号(図49 ID/2)のローレベル期間とRSのローレベル期間との論理積を2入力NANDゲート4102でとり、図49 RS−2に示すタイミングを生成する。また、図49 ID/2の信号のハイレベルの期間とBSをインバータ4103により反転した信号との論理積を2入力ANDゲート4104でとり、図49 BS−2に示すタイミングを生成する。また、RS−2、BS−2両方のローレベルの期間の論理積を2入力NANDゲート4105でとり、図49 GS−2に示すタイミングを生成する。このRS−2、BS−2、GS−2は時分割スイッチ37の制御信号として供給される。
【0063】
時分割スイッチ39は制御信号がハイレベルのとき、対応する入力を選択し、RS−2がハイレベルのときは、メモリ38Rの読み出し出力が、GS−2がハイレベルのときは、メモリ38Gの読み出し出力が、BS−2がハイレベルのときは、メモリ38Bの読み出し出力が選択される。
これにより、時分割スイッチ39の出力は図49のメモリR、G、Bのハッチングを施した部分すなわち、おのおのメモリの読み出し出力が選択され、図49SRGBに示す時分割信号が得られる。この時分割信号SRGBは、画素クロックレートがシステムへの入力信号の1/2となっている。時分割信号SRGBはD/Aコンバータ40によりアナログ信号に戻り、伝送回路6に供給され、伝送される。
【0064】
伝送後の動作は実施の形態1と同一におこなわれ、水平、垂直同期信号および画素クロックが1/2のRGB並列の信号が再生される。
【0065】
実施の形態11.
図50は実施の形態11における表示装置のメモリおよび周辺を示す構成図である。図50おいて、34RはA,B2系統のメモリを持つR用メモリ回路であり、同様に34G、34Bも同一構成である。35は時分割信号SRGBか、並列のRGB信号かを外部からの切換え制御信号RGB/SRGBにより切り換える3回路2接点の画素変換入力切換えスイッチである。図51はR用メモリ回路34R内部構成を示し、34R01は制御信号がローレベルのとき1の接点に接続されるスイッチ、34R02AはメモリA、34R02BはメモリBで、スイッチ34R01は、メモリA34R02A、メモリB34R02Bのどちらに書き込み用データを供給するか選択する。34R03はメモリA34R02A、メモリB34R02Bのどちらから読み出しデータをとるか選択するスイッチで制御信号がローレベルのとき1の接点に接続される。34R04はメモリB34R02Bに書き込むデータをスイッチ34R01からか、メモリA34R02Aかの読み出しデータかを選択するスイッチで制御信号がローレベルのとき1の接点に接続される。34R05はメモリA34R02Aの読み出しデータをメモリの読み出しアドレスが与えられてからデータが出力されるまでの遅延時間分遅延させる遅延回路、34R06は3接点のスイッチであり、2接点にはメモリB34R02Bの出力が、残りの1接点には遅延回路34R05の出力が接続される。34R07は、スイッチ34R03出力かスイッチ34R06の出力かを選択するスイッチで制御信号がローレベルのとき1の接点に接続される。34R08は表示装置にあわせ走査線数、画素周波数を変換する画素変換回路、34R09は垂直同期信号を2分周する2分周器、34R10は切換え制御信号RGB/SRGBを極性反転するインバータ、34R11は2入力ANDゲート、34R12はメモリA34R02AおよびメモリB34R02Bへのアドレスをクロック、水平同期信号、垂直同期信号をもとに生成するアドレス生成回路、34R13および34R14はAND ORゲート、34R15は2入力NORゲートである。
【0066】
本実施の形態は、液晶など画素構造をもつ表示素子の表示装置における、画素変換回路による時分割信号のメモリ動作を示し、図50において、外部から供給される切換え制御信号RGB/SRGBにより通常のRGB入力による画素変換か、本発明の時分割多重信号のメモリ動作かを切り換える。すなわち、切換え制御信号RGB/SRGBは、通常のRGB入力による画素変換のときはローレベルであり、画素変換入力切換えスイッチ35は3回路とも1の接点に接続される。時分割多重信号のメモリ動作のときはハイレベルであり、画素変換入力切換えスイッチ35は3回路とも2の接点に接続される。2の接点には3回路とも時分割信号SRGBが接続されている。
【0067】
画素変換入力切換えスイッチ35の出力はA/Dコンバータ9R、9G、9Bに接続され、画素変換入力切換えスイッチ35により選択されたRGBあるいはSRGBがA/D変換され、R用メモリ回路34R、G用メモリ回路34G、B用メモリ回路34Bに供給される。R用メモリ回路34R、G用メモリ回路34G、B用メモリ回路34Bにはこの他、切換え制御信号RGB/SRGB、クロック、水平/垂直同期信号、メモリ制御回路11より、SR、SG、SBが供給される。SR、SG、SBについては、R用メモリ回路34RにはSR、SGが、G用メモリ回路34GにはSG、SBが、B用メモリ回路34BにはSB、SRが供給される。
【0068】
RGB入力時の動作として、図51に示すようにR用メモリ回路34Rは画素変換用バッファメモリとして、2つのメモリ34R02Aと34R02Bの2つを持ち、スイッチ34R01とスイッチ34R03が1フレームごとに連動して切り換わる。垂直同期信号を2分周器34R09で2分周した1フレームごとにハイレベル、ローレベルが反転する信号を2入力ANDゲート34R11の片方の入力に供給し、もう一方の入力には、切換え制御信号RGB/SRGBがインバータ34R10を介し供給される。RGB入力時は切換え制御信号RGB/SRGBはローレベルなので、インバータ34R10によりハイレベルととなり、1フレームごとにハイレベル、ローレベルが反転する信号は2入力ANDゲート34R11を通り、スイッチ34R01とスイッチ34R03に供給される。この結果、スイッチ34R01とスイッチ34R03は連動して1フレームごとに切り換わり、スイッチ34R01がメモリA34R02Aの入力(DATA IN)に接続されるときは、スイッチ34R03はメモリB34R02Bの出力に接続され、次のフレームではメモリAとBが反対の接続となる。
【0069】
また、RGB入力時の動作としてメモリA34R02A、メモリB34R02Bの書き込み制御入力W.E.(ハイレベルで書き込み、ローレベルで読み出し)には、切換え制御信号RGB/SRGBがローレベルなのでインバータ34R10によりハイレベルとなった信号がAND ORゲート34R13、34R14に供給され、互いに反転している2分周器34R09のQとQバーがそれぞれAND ORゲート34R13、34R14を通り、メモリA34R02A、メモリB34R02Bに供給される。従って、メモリA34R02Aへ書き込んでいるときはメモリB34R02Bは読み出し、メモリA34R02Aから読み出しているときはメモリB34R02Bは書き込み状態となる。
【0070】
それぞれのメモリからの読み出し信号はスイッチ34R03をとおり、スイッチ34R07に供給される。スイッチ34R07は制御信号がローレベルであるので、1の接点に接続され、メモリからの読み出し信号は画素変換回路34R08へ供給され、画素変換がおこなわれた後D/Aコンバータ13Rへと出力される。以上がRGB入力動作時のメモリ回路の動作である。
【0071】
メモリA34R02A、メモリB34R02Bの書き込み/読み出しアドレスはアドレス生成回路34R12にてクロック、水平同期信号、垂直同期信号をもとに生成される。
【0072】
次に切換え制御信号RGB/SRGBがハイレベルのSRGB入力動作時の動作を説明する。切換え制御信号RGB/SRGBがハイレベルなので、2入力ANDゲート34R11の出力は常にローレベルとなり、スイッチ34R01は常に接点1に接続される。また、スイッチ34R04および34R07は常に2の接点に接続される。メモリA34R02Aの書き込み制御入力W.E.にはSRがメモリB34R02Bの書き込み制御入力W.E.にはSGがそれえぞれAND ORゲート34R13、34R14を介し供給される。SRGBのR信号伝送時はSRがハイレベルであるので、メモリA34R02Aが書き込み状態となりR信号が記憶される。次のG信号伝送時にはSRがローレベル、SGがハイレベルとなるので、メモリA34R02Aから読み出されたR信号は、スイッチ34R04をとおりメモリB34R02Bに書き込まれる。次のB信号伝送時にはSR、SGが共にローレベルであり、メモリB34R02Bは読み出し状態となる(図52参照)。
【0073】
スイッチ34R06の制御はSRがハイレベルのとき接点1に、SGがハイレベルのとき接点2に、2入力NORゲート34R15によりどちらもローレベルのとき接点3に接続される(図52参照)。これにより、スイッチ34R06は図48のメモリA、メモリBの動作欄にREADに○を付した読み出しデータを選択する。ただし、SGがハイレベルで接点2に接続のときはメモリA34R02Aの読み出しデータを、メモリのアドレスが与えられてからデータが出力されるまでの遅延時間分だけ、遅延回路34R05で遅延されたものが供給され、メモリB34R02Bからの読み出しデータとの時間あわせが行われる。
以上の構成により、スイッチ34R06の出力は、3フレームに1フレームしか伝送されない信号をメモリにより3フレームすべての信号として得ることができ、スイッチ34R07を介し画素変換回路に入力される。
【0074】
実施の形態12.
次に図53は本実施の形態における表示装置を示す構成図である。図53において、図1に示す実施の形態1、図46に示す実施の形態9の構成と同一要素は、同一符号を付してその説明は省略する。図53において、51は時分割信号SRGBを外部へ出力するためのバッファAMP、52はバッファAMP51の出力を外部に出力するSRGB出力コネクタである。
【0075】
RGB入力コネクタ47に入力されたRGB信号は表示駆動回路および表示素子50に供給されると同時にクランプ回路1R、1G、1B、同期混合回路2、カウンタ3へ供給される。実施の形態1と同じようにここで時分割信号SRGBが生成され、バッファAMP51を介し、SRGB出力コネクタ52から外部へ出力される。この構成により、表示装置で信号分配出力の伝送情報量の少ない信号伝送が可能である。
【0076】
表示装置を同様機能を持つパーソナルコンピュータに適用しても同じである。図54は本実施の形態におけるコンピュータ機器を示す構成図である。図54において、53はパーソナルコンピュータ本体、54はRGB映像を外部表示機器に出力するRGB出力コネクタである。
【0077】
パーソナルコンピュータ本体53の表示映像はRGB出力コネクタ54に供給され、外部機器にて表示される。この表示映像信号は同時にクランプ回路1R、1G、1B、同期混合回路2、カウンタ3へ供給される。実施の形態1と同じようにここで時分割信号SRGBが生成され、バッファAMP51を介し、SRGB出力コネクタ52から外部へ出力される。この構成により、コンピュータ機器の画像を通常の映像出力と同時に、簡単な伝送路を使用した伝送することが可能となる。
【0078】
実施の形態13.
図55は本実施の形態における表示装置を示す構成図である。図55において、55は赤外線ワイヤレスデータ伝送用受光部、56は受信データ処理部である。
【0079】
本実施例は、赤外線ワイヤレスデータ伝送が受信可能な表示装置の受光部を時分割信号SRGBの受光用として共用するもので、赤外線ワイヤレスデータ伝送用受光部55で受光した赤外線ワイヤレスデータ伝送のデータは受信データ処理部56にてデコードなどデータ処理が行なわれる。
一方、赤外線FM変調信号を赤外線ワイヤレスデータ伝送用受光部55で受光した場合は、実施の形態1と同様に復調回路22で復調し、実施の形態12と同様に表示するものである。
【0080】
図56は本実施の形態におけるコンピュータ機器を示す構成図である。図56において57は、送信データ切換えスイッチ、58は赤外線ワイヤレスデータ伝送用発光部である。
【0081】
本実施例は、赤外線ワイヤレスデータ伝送が送信可能なコンピュータ機器の発光部を時分割信号SRGBの発光用として共用するもので、赤外線ワイヤレスデータ伝送用の送信データとFM変調された時分割信号は送信データ切換えスイッチ57にて選択され、赤外線ワイヤレスデータ伝送用発光部58に供給され、赤外光として発光・送信される。
【0082】
実施の形態14.
伝送帯域圧縮の送信に対応した受信装置を説明する。即ち、実施の形態10に対応する受信装置である。
図57は本実施の形態における画像伝送システムの受信装置を示す構成図である。図57において、59はクロック発生回路8のクロックを2分周する2分周器である。図58は本実施の形態のR用メモリ回路34RBの詳細を示し、図50の構成に加えて、アドレス生成回路34R12には、クロックとしてクロック発生回路8のクロック(2CLK)および2分周器59の出力(CLK)が供給される。さらに、切換え制御信号RGB/SRGB、RSが供給される。図59は、アドレス生成回路34R12の一部を示し、34R121はインバータ、34R122は2入力ANDゲート、34R123はインバータ、34R124はインバータ、34R125はAND 0Rゲート、34R126はAND 0Rゲートである。
【0083】
本実施の形態では、伝送前の処理は実施の形態10の方法によるものである。クロック発生回路8では、RGBあるいは、伝送された信号SRGBの画素クロックの2倍の周波数のクロック(2CLK)を発生する。従って2分周器59の出力が画素クロック(CLK)となる。
【0084】
切換え制御信号RGB/SRGBが、通常のRGB入力による画素変換のとき、すなわちローレベルである時は図59の2入力ANDゲート34R122の出力はRSの状態にかかわらずローレベルとなり、インバータ34R124の出力はハイレベルとなる。従って、AND ORゲート34R125はCLKを通し、メモリA34R02Aのアドレス生成用として供給される。また、インバータ34R123の出力はハイレベルであり、AND ORゲート34R126もCLKを通し、メモリB34R02Bのアドレス生成用として供給される。以上により、アドレス生成回路34R12は実施の形態11の同様に、RSの状態にかかわらずV、H、CLKをもとに書き込み、読み出しアドレスを生成し、メモリA34R02A、メモリB34R02Bの書き込み、読み出しが行われ、実施の形態11と同じの画素変換のための動作として行われる。
【0085】
切換え制御信号RGB/SRGBが、時分割多重信号のメモリ動作のとき、すなわちハイレベルの時、アドレス生成回路34R12の2入力ANDゲート34R122はRSの状態に左右され、RSがハイレベルの時はインバータ34R121によりローレベルとなり、2入力ANDゲート34R122も出力ローレベルとなる。従って、AND ORゲート34R125はCLKを通し、メモリA34R02Aのアドレス生成用として供給される。RSがハイレベルの時はメモリA34R02Aは書き込み状態であるのでSRGBの画素クロックCLKをもとに書き込まれる。
【0086】
Sがローレベルの時はインバータ34R121によりハイレベルとなり、切換え制御信号RGB/SRGBがハイレベルであるので、2入力ANDゲート34R122も出力ハイレベルとなる。従ってAND ORゲート34R125は2CLKを通し、メモリA34R02Aのアドレス生成用として供給される。2CLKをもとに生成されたアドレスは2倍のクロックレートとなっている。RSがローレベルの期間メモリA34R02Aは読み出し状態であり、2倍のクロックレート、すなわち書き込み時の2倍のスピードで読み出され、アドレス生成を1フレーム分のアドレス生成後、繰り返し最初からアドレス生成させることにより同じデータが2回繰り返し読み出される。これにより伝送前に2倍の時間に伸長された信号がもとの時間に戻される。図60にこの様子をしめす。
【0087】
AND ORゲート34R126はRSの状態に関係せず、切換え制御信号RGB/SRGBがハイレベルであるので2CLKを通し、メモリB34R02Bのアドレス生成用として供給される。従って図60に示すようにメモリB34R02Bは2倍のクロックレートで書き込み、読み出しが行われる。メモリB34R02Bへの書き込み、読み出しは同一のクロックに基づいたアドレスによるので、書き込まれたメモリA34R02Aからの読み出し信号をGSがハイレベルの期間そのまま書き込み、GSがローレベルの期間書き込みと同じレートで読み出される。
【0088】
スイッチ32R06は実施の形態11と同様、RS、GSに基づき図60に示すように切換えられ、丸で囲んだデータが選択される。これにより伝送後のSRGBのRデータにたいし、6回同じデータが読み出され、スイッチ32R06以降は実施の形態11と同一に動作する。これにより、もとの画素クロック/同期周波数レートの戻すことができる。
【0089】
G用メモリ回路34G、B用メモリ回路34Bも上記R用メモリ回路34Rと同一の動作を行ない、2倍の時間に伸長された時分割多重信号SRGBはもとの時間にもどされ、連続した並列のRGB信号が得られる。
【0090】
実施の形態15.
実施の形態10における伝送帯域の圧縮を行うか、またはそのままの帯域で伝送するかを選択する方式としてもよい。
図61は本実施の形態における画像伝送システムの送信装置を示す構成図である。図61において60は、4つの連動するスイッチからなる時分割モード切換えスイッチである。図62は本実施の形態における時分割スイッチ制御回路を示す構成図であり、図において、4106は3系統の信号を連動して選択するセレクタ、4107はインバータ、4108は抵抗である。
【0091】
時分割モード切換えスイッチ60の一つのスイッチは時分割スイッチ制御回路41に接続され、図62に示すように、電源に接続された抵抗4108をプルアップ抵抗として、インバータ4107およびセレクタ4106の3つの制御入力に接続される。したがって時分割モード切換えスイッチ60を図61において上へ切換えればローレベルが供給される。この時、インバータ4107の出力がハイレベルとなり、セレクタ4106の対応する入力がセレクタ4106の出力となる。すなわち、実施の形態10と同じ信号すなわち2入力NORゲート4102の出力(図63RS−2)、2入力NORゲート4105の出力(図63GS−2)、2入力ANDゲート4104の出力(図63BS−2)がセレクタ4106をとおる。また、時分割モード切換えスイッチ60のほかの3つのスイッチも上へ切り換わっており、2分周回路43、44、45の出力がおのおのアドレス発生回路へ供給され、全体の動作も実施の形態10と同様となる。
【0092】
次に時分割モード切換えスイッチ60が下に切り換わった場合は、時分割スイッチ制御回路41では、RS−2の代わりに図63GSが、図63GS−2の代わりに図63BSが、図63BS−2の代わりに図63RSがセレクタ4106をとおる。また、時分割モード切換えスイッチ60のほかの3つのスイッチも下へ切り換わっており、アドレス発生回路46へは2分周回路43、44、45の出力の代わりにそれぞれ2分周前のものが供給され、メモリ38R、38G、38Bの読み出し時のも書込み時と同じアドレスが供給される。これによりメモリ38R、38G、38Bからの読み出しも書き込みと同じ時間でおこなわれ、図63のハッチングをしたREADの部分のよみだしデータが時分割スイッチ39で選択され、D/Aコンバータ40に供給される。この動作は実施の形態1の動作と同一である。以上により時分割モード切換えスイッチ60により時分割モードを3フレームに1フレームの割合か、6フレームに1フレームするかを切換えることができる。
【0093】
実施の形態16.
実施の形態14で示した帯域圧縮後の受信信号を2倍速度で復元する受信装置の他の例を説明する。即ち、図64は本実施の形態における画像伝送システムの受信装置を示す構成図である。図64において、61はメモリ34R、34G、34Bの読み出しスピードを書き込み時と同じにするか、2倍とするかを切換える、読み出しスピード切換えスイッチである。また、図65はR用メモリ回路メモリ34RCを示し、図47に示す実施の形態16に加えて、アドレス生成回路34R12には、読み出しスピード切換えスイッチ61からの信号、クロックとしてクロック発生回路8のクロック(2CLK)および2分周器59の出力(CLK)が供給される。図66はR用メモリ回路34RCのアドレス生成回路34R12の一部を示し、図66において、図59に示す回路で示した同番号の同等要素以外の要素として、34R127は3入力ANDゲート、34R128は2入力ANDゲート、34R129はインバータである。
【0094】
読み出しスピード切換えスイッチ61はメモリ34R、34G、34Bに接続され、おのおののアドレス生成回路34R12、34G12,34B12に供給される。また、クロック発生回路8は画素クロックの2倍の周波数のクロック(2CLK)を発生する。
【0095】
ここで図66に示すR用メモリ回路34RCのアドレス生成回路34R12Cの動作について説明する。切換え制御信号RGB/SRGBが、通常のRGB入力による画素変換のとき、すなわちローレベルである時は図66の3入力ANDゲート34R127、2入力ANDゲート34R128の出力はともにRS、および読み出しスピード切換えスイッチ61の状態にかかわらず出力はローレベルとなり、
図59に示す実施の形態23の切換え制御信号RGB/SRGBが、通常のRGB入力による画素変換のときと同一動作を行い、実施の形態11と同じ画素変換のための動作として行われる。
【0096】
次に切換え制御信号RGB/SRGBが、時分割多重信号のメモリ動作のとき、すなわちハイレベルの時を説明する。まず、読み出しスピード切換えスイッチ61が図64において下側に切換えられた時すなわちローレベルの時は、切換え制御信号RGB/SRGBがローレベルの時と同様に、3入力ANDゲート34R127、2入力ANDゲート34R128の出力はともにRSの状態にかかわらず出力はローレベルとなり、切換え制御信号RGB/SRGBが、ローレベルの時と同様の動作を行なう。従ってメモリA34R02A、メモリB34R02BへのアドレスはクロックCLKをもとに生成され、書き込み、読み出し同一クロックレートで行われる。これは、実施の形態16におけるSRGB入力時の動作と同一である。
【0097】
次に読み出しスピード切換えスイッチ61が図64において上側に切換えられた時すなわちハイレベルの時を説明する。まず、RSがハイレベルの時、3入力ANDゲート34R127の出力はローレベルとなる。従ってAND ORゲート34R125はクロックCLKを通し、メモリA34R02Aのアドレス生成用として供給される。RSがハイレベルの時はメモリA34R02Aは書き込み状態であるのでSRGBの画素クロックCLKをもとに書き込まれる。
【0098】
Sがローレベルの時はインバータ34R121によりハイレベルとなり、切換え制御信号RGB/SRGBがハイレベルであるので、3入力ANDゲート34R127も出力ハイレベルとなる。従ってAND ORゲート34R125は2CLKを通し、メモリA34R02Aのアドレス生成用として供給される。2CLKをもとに生成されたアドレスは2倍のクロックレートとなっている。RSがローレベルの期間メモリA34R02Aは読み出し状態であり、2倍のクロックレート、すなわち書き込み時の2倍のスピードで読み出され、アドレス生成を1フレーム分のアドレス生成後、繰り返し最初からアドレス生成させることにより同じデータが2回繰り返し読み出される。これにより伝送前に2倍の時間に伸長された信号がもとの時間に戻される。これは実施の形態23の図60に示す動作と同一である。
【0099】
AND ORゲート34R126はRSの状態に関係せず、切換え制御信号RGB/SRGB、読み出しスピード切換えスイッチ61がハイレベルであるので2入力ANDゲート34R128の出力はハイレベルとなり、AND ORゲート34R126は2CLKを通し、メモリB34R02Bのアドレス生成用として供給される。従って図60に示す実施の形態14と同様にメモリB34R02Bは2倍のクロックレートで書き込み、読み出しが行われる。メモリB34R02Bへの書き込み、読み出しは同一のクロックに基づいたアドレスによるので、書き込まれたメモリA34R02Aからの読み出し信号をGSがハイレベルの期間そのまま書き込み、GSがローレベルの期間書き込みと同じレートで読み出される。
【0100】
スイッチ32R06は実施の形態14と同様、RS、GSに基づき図60に示すように切換えられ、丸で囲んだデータが選択される。これにより伝送後のSRGBのRデータにたいし、6回同じデータが読み出され、スイッチ32R06以降は実施の形態16と同一に動作する。これにより、もとの画素クロック/同期周波数レートの戻すことができる。
【0101】
G用メモリ回路34G、B用メモリ回路34Bも上記R用メモリ回路34RCと同一の動作を行ない、2倍の時間に伸長された時分割多重信号SRGBはもとの時間にもどされ、連続した並列のRGB信号が得られる。
以上実施の形態14の切換え制御信号RGB/SRGBが、ハイレベルすなわち時分割多重信号のメモリ動作のときと同様である。
以上のように切換え制御信号RGB/SRGBが、ハイレベルすなわち時分割多重信号のメモリ動作のとき、読み出しスピード切換えスイッチ61により時分割多重信号を伝送前の処理にあわせた、メモリ処理ができる。
【0102】
図67は本実施の形態における画像伝送システムの更に他の受信装置を示す構成図である。図67において、62は2入力ANDゲートであり、切換え制御信号RGB/SRGB、読み出しスピード切換えスイッチ61の出力の論理積をとり、出力はクロック発生回路8に供給され、クロック周波数を伝送信号の画素クロックと同一とするか2倍とするかを制御する。2入力ANDゲート62の出力がハイレベルの時クロック発生回路8は伝送信号の画素クロックの2倍のクロックを発生する。図68はR用メモリ回路34RDのアドレス生成回路34R12の一部を示し、図において、34R130は3入力ANDゲート、34R131はインバータである。
【0103】
切換え制御信号RGB/SRGBがローレベルの時は、2入力ANDゲート62の出力はローレベルであり、クロック発生回路8は伝送信号の画素クロックと同一の周波数のクロックを発生する。図68において、3入力ANDゲート34R130の出力もローレベルであり、AND ORゲート34R125はクロック発生回路8の出力、すなわち伝送信号の画素クロックと同一の周波数のクロックを通し、メモリAアドレス生成用として供給される。メモリBアドレス生成用には常にクロック発生回路8の出力が供給されているので、メモリBアドレス生成用にも伝送信号の画素クロックと同一の周波数のクロックが供給される。これにより、切換え制御信号RGB/SRGBがローレベルの時すなわちRGB信号処理時は実施の形態14と同一の動作をする。
【0104】
次に切換え制御信号RGB/SRGBがハイレベルの時を説明する。読み出しスピード切換えスイッチ61がローレベルの時は、2入力ANDゲート62の出力はローレベルであり、クロック発生回路8は伝送信号の画素クロックと同一の周波数のクロックを発生する。図68において、3入力ANDゲート34R130の出力もローレベルであり、AND ORゲート34R125はクロック発生回路8の出力、すなわち伝送信号の画素クロックと同一の周波数のクロックを通し、メモリAアドレス生成用として供給される。メモリBアドレス生成用には常にクロック発生回路8の出力が供給されているので、メモリBアドレス生成用にも伝送信号の画素クロックと同一の周波数のクロックが供給される。一方R用メモリ回路34Rは切換え制御信号RGB/SRGBがハイレベルの時の動作として、実施の形態14と同様に動作し、時分割多重信号SRGBの書き込み、読み出し同一スピードのメモリ処理が行なわれる。
【0105】
次に切換え制御信号RGB/SRGBがハイレベル、読み出しスピード切換えスイッチ61もハイレベルでRSもハイレベルの時を説明する。この時2入力ANDゲート62の出力はハイレベルとなり、クロック発生回路8は伝送信号の画素クロックの2倍の周波数のクロックを発生する。図68において、3入力ANDゲート34R130の出力もハイレベルとなり、AND ORゲート34R125はクロック発生回路8の出力を2分周器59で2分周した、伝送信号の画素クロックと同一の周波数のクロックを通し、メモリAアドレス生成用として供給される。RSがハイレベルの時はメモリA34R02Aは書き込み状態であるのでSRGBの画素クロックCLKをもとに書き込まれる。
メモリBアドレス生成用には常にクロック発生回路8の出力が供給されているので、メモリBアドレス生成用には伝送信号の画素クロックの2倍の周波数のクロックが供給され、メモリB34R02Bは伝送信号の画素クロックの2倍の周波数のクロックレートで読み出しが行われる。
【0106】
次に切換え制御信号RGB/SRGBがハイレベル、読み出しスピード切換えスイッチ61もハイレベルでRSがローレベルの時を説明する。この時3入力ANDゲート34R130の出力はローレベルとなりAND ORゲート34R125はクロック発生回路8の出力すなわち、伝送信号の画素クロックの2倍の周波数のクロックを通し、メモリAアドレス生成用として供給される。RSがローレベルの時はメモリA34R02Aは読み出し状態であるのでSRGBの画素クロックの2倍の周波数のクロックレートで読み出しが行われる。
メモリBアドレス生成用にはRSの状態は関係しないので、RSがハイレベルの時と同様に、伝送信号の画素クロックの2倍の周波数のクロックが供給され、メモリB34R02Bは伝送信号の画素クロックの2倍の周波数のクロックレートで書き込み、読み出しが行われる。
【0107】
以上により図67の構成では、読み出しスピード切換えスイッチ61の切換えにより図64の構成と同一の動作をさせることができるが、図64のものではクロック発生回路8は常に伝送信号の画素クロックの2倍のクロックを発生する必要があり、時分割多重信号SRGBが伝送前に2倍に時間伸長してないときも伝送前の入力信号の画素クロックの2倍という高い周波数を発生する必要があるが、図67のものでは伝送前に2倍に時間伸長しているかどうかにかかわらず、伝送前の入力信号の画素クロックと同一の周波数のクロックを発生すればよい。
【0108】
図69は本実施の形態による画像伝送システムの更に他の受信装置を示す構成図である。図69において、63は伝送されたSRGBの垂直走査周期が所定の値より長いか短いかを判定する垂直走査周期判定回路であり、所定の値より長いときはハイローレベル、短いときはローレベルを出力する。垂直走査周期判定回路63の出力は図64に示す、実施の形態25の読み出しスピード切換えスイッチ61の出力のかわりにR用メモリ回路34R、G用メモリ回路34G、B用メモリ回路34Bに供給される。
図70は垂直走査周期判定回路63の構成を示し、6301は入力の立上りエンジでトリガされる再トリガ可能なワンショットマルチバイブレータ、6302は入力の立上りエッジでトリガされるDフリップフロップ、6303はインバータである。
【0109】
垂直走査周期判定回路63で伝送されたSRGBの垂直走査周期を所定の値を25ms(垂直周波数40Hz)程度として長短を比較すれば、実際のRGB映像機器の垂直同期周波数が60Hz以上あり、伝送前に時間を2倍に伸長したかどうか判定できる。図70のワンショットマルチバイブレータ6301のパルス幅を25msとし、垂直同期信号Vの立上りエッジでトリガをかける。この様子を図71に示す。始めに伝送前にクロックレートを1/2に落として伝送した場合を示す(図71左半分;垂直周期34ms)。ワンショットマルチバイブレータ6301は垂直同期信号Vの立上りエッジでトリガされ25msハイレベルのパルスを出力する。入力Vは周期34msなので再トリガされずローレベルに戻る。Dフリップフロップ6302のクロック入力には垂直同期信号Vをインバータ6303により極性反転したものが入力されているので、Dフリップフロップ6302の反転出力はハイレベルとなり、判定出力として出力される。次に伝送前でのクロックレートが元(1/1)に切り換わった場合は、垂直同期信号Vの周期は17msとなり、ワンショットマルチバイブレータ6301のパルス幅より短くなる。これにより、ワンショットマルチバイブレータ6301は再トリガ可能であるので、出力がローレベルになる前に再トリガされ、出力は常にハイレベルとなる。従って、Dフリップフロップ6302の反転出力はローレベルとなり、判定出力として出力される。この判定結果を先の読み出しスピード切換えスイッチ61の出力のかわりに使用すれば、自動的に処理を切換えることができる。
【0110】
実施の形態17.
伝送部分の構成について説明する。
図72、図73、図74、図75は本実施の形態における画像伝送システムの送信装置と受信装置を示す構成図である。図72、図73において、64は同軸ケーブルの特性インピーダンスを出力インピーダンスとする同軸駆動増幅器、65は入力インピーダンスが同軸ケーブルの特性インピーダンスである入力増幅器、66も入力インピーダンスが同軸ケーブルの特性インピーダンスである入力増幅器、67は同軸ケーブルの特性インピーダンスを出力インピーダンスとする同軸駆動増幅器である。また、100は時分割多重信号生成ユニット、200は時分割多重信号受信処理ユニット、300は赤外線伝送ユニット、400は赤外線受光ユニットである。
【0111】
本実施の形態は、実施の形態1等で示した画像伝送システムをそれぞれの回路ごとにユニット化し、それらを同軸ケーブルで接続するものである。図72において、時分割多重信号生成ユニット100の加算器5までで実施の形態1と同様動作し時分割多重信号SRGBを生成する。この時分割多重信号SRGBは同軸駆動増幅器64により増幅され、同軸ケーブルを駆動する。同軸ケーブルにて時分割多重信号生成ユニット100に接続された時分割多重信号受信処理ユニット200では同軸ケーブルの特性インピーダンスで終端された入力増幅器65で伝送信号を増幅し、A/Dコンバータ9に供給し、以下実施の形態1と同様に動作し、RGB信号同期信号を得る。
【0112】
図73においては、時分割多重信号生成ユニット100には同軸ケーブルを介して赤外線伝送ユニット300が接続される。赤外線伝送ユニット300の入力には同軸ケーブルの特性インピーダンスで終端された入力増幅器66が接続され、増幅する。以降は実施の形態1の図16の構成と同様に動作し、赤外線が発射される。
赤外線受光ユニット400は赤外線を受光し、FM復調回路22で時分割多重信号SRGBを得る。この信号SRGBは同軸駆動増幅器67で増幅され、同軸ケーブルを介し、時分割多重信号受信処理ユニット200に接続される。時分割多重信号受信処理ユニット200では図72の構成と同様に動作し、RGB信号同期信号を得る。
【0113】
図72、図73の実際の機器、ユニット間の接続を示したのが図74、図75である。
以上のように本実施の形態では、画像伝送システムの要素ごとをユニット化することにより、同軸伝送でも赤外線ワイヤレス伝送でも簡単にユニット接続を変更することで対応可能となる。また、赤外線伝送の場合、発光、受光部が独立してユニット化されているので小形化でき、赤外線の光軸あわせが簡単にできる。
【0114】
実施の形態18.
送信側からの画像送信がない場合の受信側の画像再生について説明する。
図76は本実施の形態における画像伝送システムの受信装置を示す構成図である。図76において、68はクロック発生回路8の出力クロックをもとに水平同期信号H2、垂直同期信号V2を生成する同期生成回路、69はクロック発生回路8のクロック発生を水平同期信号に同期させるか自走とするか切換えるクロック切換えスイッチであり、自走させるときはハイレベルを、同期させる時はローレベルをCLKSとして出力する。
クロック発生回路8Bの詳細構成を図77に示す。図77において、805は固定電圧源、806はCLKSにより制御される自走/同期切換えスイッチであり、VCO801の制御線圧を位相比較器804の出力とするか(CLKS:ローレベル)、固定電圧源805とするか(CLKS:ハイレベル)切換える。
メモリ制御回路11Bの詳細構成を図78に示す。図78において1103は2入力ANDゲートである。
図79はR用メモリ回路34REを示し、アドレス生成回路34R12には、水平同期信号H、垂直同期信号V、クロックCLKに加えて水平同期信号H2、垂直同期信号V2、クロック切換えスイッチ69出力CLKSが供給される。
【0115】
通常は、実施の形態11等で他に示すように、クロックは水平同期信号Hに同期したもので信号処理させる。この時はクロック切換えスイッチ69はハイレベルを出力し、図77のクロック発生回路8の自走/同期切換えスイッチ806はVCO801の制御線圧を位相比較器804の出力を選択する。
メモリ制御回路11にもCLKSが供給されるが、ハイレベルであるので2入力ANDゲート1103を通らず、カウンタ1101のリセットはIDのみとなり、実施の形態11等と同様である。
クロック切換えスイッチ69出力CLKSはアドレス生成回路34R12に供給され、メモリへのアドレス生成を同期信号H、Vに基づき行なうか、H2、V2に基づき行なうかを制御する。ハイレベルの時は、実施の形態11他と同様メモリへのアドレス生成を同期信号H、Vに基づき行なうよう制御する。
【0116】
次にクロックを自走クロックとするよう、クロック切換えスイッチ69を切換えた場合、クロック切換えスイッチ69はローレベルを出力し、図77のクロック発生回路8の自走/同期切換えスイッチ806はVCO801の制御線圧として固定電圧源805を選択する。これにより、VCO801は自走状態となり、与えられた固定電圧源805の電圧に対応する周波数のクロックを発生する。同期生成回路68はこのクロックをもとに、あらかじめ定められたタイミング関係の水平、垂直同期信号H2、V2を生成する。
一方、メモリ制御回路11の2入力ANDゲート1103には、ローレベルのCLKSが供給されるので、2入力ANDゲート1103の出力はローレベルとなり、カウンタ1101は常にリセット状態となる。従って、図80に示すようにRSがハイレベル、GSがローレベルとなる。これにより、メモリB34R02Bは常に読み出しモードとなり、スイッチ34R06は常に1を選択し、メモリB34R02Bの内容がつねに読み出される。
さらにアドレス生成回路34R12はCLKSがローレベルの時はCLK、同期信号H2、V2をもとにアドレス生成を行なう。
以上のようにメモリB34R02BはCLKSがローレベルの間書き込まれることはなく、CLKSが切り換わる直前に伝送された画像を表示しつける。
アドレスも自走クロックをもとに生成した同期信号から生成されるので、SRGBがなくなっても影響はない。
【0117】
図81は本実施の形態における画像伝送システムの他の受信装置を示す構成図である。図81において、70は、SRGBが伝送されているかどうか信号検出する、信号検出回路であり、信号検出した時ハイレベルとする。
【0118】
図81の構成は、図76におけるクロック切換えスイッチ69のかわりに信号検出回路70を用いる構成である。この構成によると、SRGBが伝送されてないときはローレベルがCLKSとして出力されるので、信号が伝送されなくなると、直前に伝送された画像を表示することができる。
【0119】
実施の形態19.
図82は本実施の形態における画像伝送システムの送信装置と受信装置と受信装置を示す構成図である。図82において、71は、水平同期信号の周期が所定の値より大きいか、小さいかを判定する水平周期計測回路であり、所定の値より大きい(周波数が低い)時および無入力の時ハイレベルを出力する。
【0120】
本実施の形態は実施の形態6の図32中の時分割制御回路31の制御として水平周期計測回路72の出力を使用するものである。同期分離回路16は実施の形態3と同様G入力に接続されたG信号から同期信号を抜き取り、水平、垂直同期信号に分離する。同期分離回路16の水平同期信号出力は、水平周期計測回路71に入力される。水平周期計測回路71の周期判定のしきい値をNTSC信号やPAL信号の水平周期約64μsとPCの通常一番長い水平周期約32μsとの間の45μs程度として判定すれば、NTSC/PAL信号かPCの信号かが判定できる。NTSC/PAL信号はこのしきい値より水平周期が長いので、水平周期計測回路71はハイレベルを出力し、時分割制御回路31はG入力を常に選択するよう動作し、自動的に切換えることができる。
【0121】
実施の形態20.
図83は本実施の形態における画像伝送システムの送信装置と受信装置を示す構成図である。図83において500は時分割多重信号生成ユニットであり、赤外線伝送ユニットを内蔵する。
時分割多重信号生成ユニット500は実施の形態17の図72、図73に示す、時分割多重信号生成ユニット100において、加算器5の出力を同軸駆動増幅器64およびFM変調回路17に供給する。同軸駆動増幅器64の出力は実施の形態17と同様外部に出力される。一方FM変調回路17以降は、実施の形態17に示す赤外線伝送ユニット300と同一である。すなわち、時分割多重信号生成ユニット500は同軸ケーブル伝送と赤外線ワイヤレス伝送が同時に行なえる。図84に各ユニットの接続を示す。
【0122】
【発明の効果】
以上のようにこの発明によれば、基本構成の画像受信装置は、R・G・B各色の記憶した前フレームの色信号を読み出す各色信号毎のメモリと、限定送信されたR・G・Bの現フレームの色信号をから対応スイッチを制御する同期分離回路とを備えたので、間引かれて限定送信された色信号と前フレームの色信号とで、少ない色情報から高品質で明るい受信画像が得られる効果がある。
【0123】
また基本構成の画像送信装置は、R・G・B各色信号の内から定められた数の色信号のみをフレーム毎に順次選択するスイッチと、走査線計測回路を備えたので、フレーム毎の送信色信号として、選択された色信号のみでよくて送信量を少なくでき、また伝送画像の質対応で適切な伝送周波数帯域を選べる効果がある。
【0124】
また更に、受信信号中の1フレームの走査線数を計測する走査線計測回路を備えたので、伝送画像の質対応で適切な伝送周波数帯域を選べる効果がある。
【0125】
また更に、走査線数情報を符号化する符号化回路を備えたので、受信装置を簡易化して伝送画像の質対応で適切な伝送周波数帯域を選べる効果がある。
【0126】
また更に、受信信号中の1フレームの走査線数情報を復号する走査線情報復号回路を備えたので、簡易に伝送画像の質対応で適切な伝送周波数帯域を選べる効果がある。
【0127】
また更に、分離されたR・G・B各色信号毎に送信用バッファメモリを備えて、書き込み速度より低速で読み出して色信号を送信するようにしたので、伝送帯域を更に低減するか、または複数の色信号を同時送信できる効果がある。
【0128】
また更に、各色信号毎のメモリの読み出しクロックを書き込みクロックとは異なる周期も設けたので、低帯域による低速送信された色信号を復元できる効果がある。
【0129】
この発明による画像伝送システムは、R・G・B各色信号の内から定められた数の色信号のみをフレーム毎に順次選択するスイッチを備えて、フレーム毎の送信色信号を限定した画像送信装置と、R・G・B各色の前フレームの色信号を記憶、再生する各色信号毎のメモリと、送信されたR・G・Bの少なくとも1つの現フレームの色信号を検出して対応スイッチを制御する同期分離回路とを備えた画像受信装置、とで構成されるので、間引かれて限定送信された色信号と前フレームの色信号とで、少ない色情報から高品質で明るい画像伝送システムが得られる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における画像伝送システムの構成図である。
【図2】 実施の形態1における画像伝送システムの送信側クランプ回路の構成図である。
【図3】 実施の形態1の送信側同期混合回路出力の波形を示す図である。
【図4】 実施の形態1における画像伝送システムの送信側カウンタの構成図である。
【図5】 実施の形態1の送信側カウンタの内部波形QA、QB(Gs、Bs)を示す図である。
【図6】 実施の形態1の送信側加算器5の出力SRGBの波形を示す図である。
【図7】 実施の形態1における画像伝送システムの受信側同期分離回路の構成図である。
【図8】 実施の形態1の受信側同期分離回路の内部波形を示す図である。
【図9】 実施の形態1における画像伝送システムの受信側メモリ制御回路の構成図である。
【図10】 実施の形態1における画像伝送システムの受信側クロック発生回路の構成図である。
【図11】 実施の形態1における画像伝送システムの受信側R用メモリ回路の構成図である。
【図12】 実施の形態1における画像伝送システムの他の送信装置の構成図である。
【図13】 実施の形態1における他の送信側同期分離回路の構成図である。
【図14】 実施の形態1における画像伝送システムの他の送信装置の構成図である。
【図15】 実施の形態1における他の送信側同期分離回路の構成図である。
【図16】 実施の形態1における他の画像伝送システムの構成を示す図である。
【図17】 実施の形態1における送信側FM変調回路および赤外発光ダイオード駆動回路の構成図である。
【図18】 実施の形態1における受信側増幅回路の構成図である。
【図19】 実施の形態1における受信側FM復調回路の構成図である。
【図20】 実施の形態1における受信側FM復調回路の内部動作波形を示す図である。
【図21】 実施の形態1における他の受信側増幅器の構成図である。
【図22】 この発明の実施の形態2における画像伝送システムの構成図である。
【図23】 実施の形態2における受信側FM変調回路の構成図である。
【図24】 実施の形態2における受信側FM復調回路および受信処理切換スイッチ、クロック発生回路の構成図である。
【図25】 この発明の実施の形態3における画像伝送システムの受信装置の構成図である。
【図26】 実施の形態3における受信側クロック発生回路、スイッチ、計測回路の構成図である。
【図27】 この発明の実施の形態4における画像伝送システムの送信装置の構成図である。
【図28】 実施の形態4における送信側計測回路の構成図である。
【図29】 実施の形態4における他の画像伝送システムの構成図である。
【図30】 実施の形態4における他の送信側計測回路、符号化器の構成図である。
【図31】 この発明の実施の形態5における画像伝送システムの構成図である。
【図32】 この発明の実施の形態6における画像伝送システムの構成図である。
【図33】 実施の形態6における他の画像伝送システムの構成図である。
【図34】 実施の形態6における送信側計測回路の構成図である。
【図35】 この発明の実施の形態7における画像伝送システムの送信側同期混合回路の構成図である。
【図36】 実施の形態7における画像伝送システムの各部波形を示す図である。
【図37】 実施の形態7における受信側同期分離回路の構成図である。
【図38】 実施の形態7における画像伝送システムの受信側各部波形を示す図である。
【図39】 実施の形態7における画像伝送システムの他の送信側同期混合回路の構成図である。
【図40】 実施の形態7における他の送信側各部波形を示す図である。
【図41】 実施の形態7における他の受信側同期分離回路の構成図である。
【図42】 この発明の実施の形態8における画像伝送システムの構成図である。
【図43】 実施の形態8における送信側2分周回路の構成図である。
【図44】 実施の形態8における受信側復調回路の波形を示す図である。
【図45】 実施の形態8における他の画像伝送システムの構成図である。
【図46】 この発明の実施の形態9における表示装置の示す構成図である。
【図47】 この発明の実施の形態10における画像伝送システムの構成図である。
【図48】 実施の形態10における送信側時分割スイッチ制御回路の構成図である。
【図49】 実施の形態10における画像伝送システムの送信側各部波形を示す図である。
【図50】 この発明の実施の形態11における表示装置の構成図である。
【図51】 実施の形態11におけるメモリ回路の構成図である。
【図52】 実施の形態11における表示装置の動作を説明するタイミング図である。
【図53】 この発明の実施の形態12における表示装置の構成図である。
【図54】 実施の形態12におけるコンピュータ機器の構成図である。
【図55】 この発明の実施の形態13における表示装置の構成図である。
【図56】 実施の形態13におけるコンピュータ機器の構成図である。
【図57】 この発明の実施の形態14における画像伝送システムの受信装置の構成図である。
【図58】 実施の形態14における受信側R用メモリ回路の構成図である。
【図59】 実施の形態14における受信側アドレス生成回路の構成図である。
【図60】 実施の形態14における受信側メモリへの動作を説明する図である。
【図61】 この発明の実施の形態15における画像伝送システムの送信装置の構成図である。
【図62】 実施の形態15における送信側の時分割スイッチ制御回路の構成図である。
【図63】 実施の形態15における画像伝送システムの送信装置各部の動作波形を示す図である。
【図64】 この発明の実施の形態16における画像伝送システムの受信装置の構成図である。
【図65】 実施の形態16における受信側R用メモリ回路の構成図である。
【図66】 実施の形態16における受信側アドレス生成回路の構成図である。
【図67】 実施の形態16における画像伝送システムの他の受信装置の構成図である。
【図68】 実施の形態16における受信側の他のアドレス生成回路を示す構成図である。
【図69】 実施の形態16における画像伝送システムの他の受信装置の構成図である。
【図70】 実施の形態16における垂直走査周期判定回路63の構成図である。
【図71】 実施の形態16における他の受信装置動作を説明するための波形図である。
【図72】 この発明の実施の形態17における画像伝送システムの構成図である。
【図73】 実施の形態17における他の画像伝送システムの構成図である。
【図74】 実施の形態17における他の画像伝送システムの接続構成図である。
【図75】 実施の形態18における他の画像伝送システムの接続構成図である。
【図76】 この発明の実施の形態18における画像伝送システムの受信装置の構成図である。
【図77】 実施の形態18における受信側クロック発生回路の構成図である。
【図78】 実施の形態18における受信側メモリ制御回路の構成図である。
【図79】 実施の形態18における受信側R用メモリ回路の構成図である。
【図80】 実施の形態18における受信装置の動作を説明するための波形図である。
【図81】 実施の形態18における画像伝送システムの他の受信装置を示す構成図である。
【図82】 この発明の実施の形態19における画像伝送システムの構成図である。
【図83】 この発明の実施の形態20における画像伝送システムの構成図である。
【図84】 実施の形態20の画像伝送システムにおける接続構成図である。
【図85】 従来の画像伝送システムを示す構成図である。
【図86】 従来の画像伝送システムの各部波形を示す図である。
【図87】 従来の画像伝送システムの各部波形を示す図である。
【図88】 従来の画像伝送システムの各部波形を示す図である。
【符号の説明】
1R R用クランプ回路、1R G用クランプ回路、1B B用クランプ回路、2,2C 同期混合回路、3 カウンタ、4 スイッチ、5 加算器、6 伝送回路、7,7B,7C 同期分離回路、8,8B クロック発生回路、9 A/Dコンバータ、10 分配スイッチ、11,11B メモリ制御回路、12RR用メモリ回路、12G G用メモリ回路、12B B用メモリ回路、13RR用D/Aコンバータ、13G G用D/Aコンバータ、13B B用D/Aコンバータ、14R R用増幅回路、14G G用増幅回路、14B B用増幅回路、15 同期分離回路、16 同期分離回路、17,17B FM変調回路、18 赤外発光ダイオード駆動回路、19 赤外発光ダイオード、20 受光ダイオード、21 増幅回路、22 FM復調回路、23 増幅器、24 FM搬送周波数切換えスイッチ、25,25B 受信処理切換えスイッチ、26 計測回路、27,27B,27C 計測回路、28 符号化器、29 復号器、30 NTSC/PC切換スイッチ、31 時分割制御回路、32 2分周器、33 スイッチ、34R,34RB,34RC,34RD,34RE R用メモリ回路、34G,34GB,34GC,34GD,34GE G用メモリ回路、34B,34BB,34BC,34BD,34BE B用メモリ回路、35 画素変換入力切換えスイッチ、36R 加算器、37R R回路用A/Dコンバータ、38R R回路用メモリ、39 時分割スイッチ、40 D/Aコンバータ、41 時分割スイッチ制御回路、42 クロック発生回路、43 2分周回路、44 2分周回路、45 2分周回路、46 アドレス発生回路、47 RGB入力コネクタ、48 SRGB入力コネクタ、49 RGBスイッチ、50 表示駆動回路および表示素子、51 バッファAMP、52 SRGB出力コネクタ、53 パーソナルコンピュータ本体、54 RGB出力コネクタ、55 赤外線ワイヤレスデータ伝送用受光部、56 受信データ処理部、57 送信データ切換えスイッチ、58 赤外線ワイヤレスデータ伝送用発光部、59 時分割モード切換えスイッチ、60 時分割モード切換えスイッチ、61 読み出しスピード切換えスイッチ、62 2入力ANDゲート、63 垂直走査周期判定回路、64 同軸駆動増幅器、65 入力増幅器、66 入力増幅器、67 同軸駆動増幅器、68 同期生成回路、69 クロック切換えスイッチ、70 信号検出回路、71 水平周期計測回路、100 時分割多重信号生成ユニット、200時分割多重信号受信処理ユニット、300 赤外線伝送ユニット、400 赤外線受光ユニット、500 時分割多重信号生成ユニット、91 カラーテレビカメラ、92 第一の切替器、93 符号器、94 電話器、95 伝送制御器、96 伝送路入出力端、97 復号器、98 第二の切替器、99 カラーテレビディスプレイ。

Claims (7)

  1. 分離されたR・G・B各色信号の内から定められた数の色信号のみをフレーム毎に順次選択するスイッチと、送信信号中の1フレームの走査線数を計測する走査線計測回路を備えて、
    フレーム毎の送信色信号として、上記選択された色信号のみを送信し、走査線数が所定値以上であれば広帯域伝送であるとして搬送周波数を選択するようにしたことを特徴とする画像送信装置。
  2. 送信信号中の1フレームの走査線数を計測した結果を走査線情報として符号化する符号化回路を備えて、
    送信信号中に該走査線情報を多重化して送信するようにしたことを特徴とする請求項記載の画像送信装置。
  3. 分離されたR・G・B各色信号を色毎に記憶する送信用バッファメモリを備えて、
    記記憶された色信号を書き込み速度より低速で読み出して色信号を送信するようにしたことを特徴とする請求項記載の画像送信装置。
  4. 上記画像送信装置は、さらに、
    垂直同期信号と水平同期信号とを入力し、入力した垂直同期信号を極性反転し、極性反転した垂直同期信号と入力した水平同期信号との論理積をとり、論理積をとった信号と入力した水平同期信号とを加算し、加算して得られた信号を複合同期信号として出力する同期混合回路と、
    上記同期混合回路から出力された複合同期信号と上記選択された色信号とを加算する加算器と、
    上記加算器により得られた信号を伝送する伝送回路とを備えた
    ことを特徴とする請求項1記載の画像送信装置。
  5. 上記画像送信装置は、さらに、
    色信号を上記搬送周波数の2倍の周波数で周波数変調する変調回路と、
    前記変調回路により変調された色信号の周波数を1/2にする2分周器とを備えて、
    上記搬送周波数で色信号を送信する
    ことを特徴とする請求項1記載の画像送信装置。
  6. 上記画像送信装置は、さらに、
    各色信号をフレーム毎に順次選択するカウンタと、
    上記カウンタにより選択された色信号を書き込み、各色信号を1フレームずつ記憶するメモリとを備えて、
    上記メモリに記憶された各色信号のうち上記スイッチにより選択された色信号を1フレームの時間より長い時間送信することを特徴とする請求項1記載の画像送信装置。
  7. 画像送信装置と画像受信装置とを有する画像伝送システムにおいて、
    上記画像送信装置は、
    分離されたR・G・B各色信号の内から定められた数の色信号のみをフレーム毎に順次選択するスイッチと、送信信号中の1フレームの走査線数を計測する走査線計測回路を備えて、
    フレーム毎の送信色信号として、上記選択された色信号のみを送信し、走査線数が所定値以上であれば広帯域伝送であるとして搬送周波数を選択し
    上記画像受信装置は、
    上記搬送周波数が選択される受信処理切換えスイッチと、
    上記画像送信装置から送信された色信号を上記受信処理切換えスイッチで選択された搬送周波数で復調する復調回路と、
    上記復調回路により復調された色信号を書き込み、各色信号を1フレームずつ記憶するメモリ回路とを備えて、
    上記メモリ回路に記憶された各色信号を外部機器へ出力する
    ことを特徴とする画像伝送システム。
JP20255999A 1999-07-16 1999-07-16 画像送信装置及び画像伝送システム Expired - Fee Related JP4514852B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20255999A JP4514852B2 (ja) 1999-07-16 1999-07-16 画像送信装置及び画像伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20255999A JP4514852B2 (ja) 1999-07-16 1999-07-16 画像送信装置及び画像伝送システム

Publications (2)

Publication Number Publication Date
JP2001036925A JP2001036925A (ja) 2001-02-09
JP4514852B2 true JP4514852B2 (ja) 2010-07-28

Family

ID=16459511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20255999A Expired - Fee Related JP4514852B2 (ja) 1999-07-16 1999-07-16 画像送信装置及び画像伝送システム

Country Status (1)

Country Link
JP (1) JP4514852B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782585B (zh) * 2021-06-18 2022-11-01 友達光電股份有限公司 顯示裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983489A (ja) * 1982-11-02 1984-05-14 Ikegami Tsushinki Co Ltd カラ−映像信号の面直並列処理方式
JPH114461A (ja) * 1997-06-11 1999-01-06 Fujitsu General Ltd 赤外線画像伝送システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983489A (ja) * 1982-11-02 1984-05-14 Ikegami Tsushinki Co Ltd カラ−映像信号の面直並列処理方式
JPH114461A (ja) * 1997-06-11 1999-01-06 Fujitsu General Ltd 赤外線画像伝送システム

Also Published As

Publication number Publication date
JP2001036925A (ja) 2001-02-09

Similar Documents

Publication Publication Date Title
US4415931A (en) Television display with doubled horizontal lines
EP0096628B1 (en) Apparatus for combining a video signal with graphics and text from a computer
US4364090A (en) Method for a compatible increase in resolution in television systems
JPS5871778A (ja) テレビジヨン方式
GB2132444A (en) Television transmission system
EP0113932B1 (en) Television transmission system
JP2667900B2 (ja) 記録再生装置
JP2882584B2 (ja) 既存テレビジョン放送方法と互換性のあるワイドスクリーンテレビジョン放送方法
CA1212458A (en) Transmission and reception of component video signals
US6453109B1 (en) Video-signal processing apparatus providing a first clock signal and second clock signal which is based on the phase of the input signal
JP4514852B2 (ja) 画像送信装置及び画像伝送システム
US4631584A (en) Transmission of reduced resolution picture edge information using horizontal blanking period
GB2050729A (en) Television horizontal afpc systems
KR930009866B1 (ko) 텔레비젼 수신장치
EP0138573B1 (en) Multiplexed color video signal recording and reproducing apparatus
JPH0685587B2 (ja) 再生装置
JP2615750B2 (ja) テレビジョン受像機
JPH0683432B2 (ja) テレビジヨン信号応答装置
JPS58154970A (ja) テレビジヨン受像機
JP2720189B2 (ja) 文字放送信号発生装置および文字放送信号受信機
JPS5923149B2 (ja) 高精細度放送用コンバ−タ
JP2872269B2 (ja) 標準/高品位テレビジョン受信装置
JPS5923150B2 (ja) 高精細度放送用コンバ−タ
CN1009607B (zh) 多制式电视接收机
JPH0686325A (ja) 映像信号交番重畳及び広げ回路

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees