JP4505066B2 - 懸濁型グラウト剤 - Google Patents

懸濁型グラウト剤 Download PDF

Info

Publication number
JP4505066B2
JP4505066B2 JP29213198A JP29213198A JP4505066B2 JP 4505066 B2 JP4505066 B2 JP 4505066B2 JP 29213198 A JP29213198 A JP 29213198A JP 29213198 A JP29213198 A JP 29213198A JP 4505066 B2 JP4505066 B2 JP 4505066B2
Authority
JP
Japan
Prior art keywords
suspension
ground
water
grout agent
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29213198A
Other languages
English (en)
Other versions
JPH11293245A (ja
Inventor
正 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP29213198A priority Critical patent/JP4505066B2/ja
Publication of JPH11293245A publication Critical patent/JPH11293245A/ja
Application granted granted Critical
Publication of JP4505066B2 publication Critical patent/JP4505066B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフミン酸で代表されるフミン質有機酸や陽イオン吸着交換能を有する粘土鉱物のいずれかを比較的多く含み、かつ地震の際に液状化災害、滑り破壊災害、不同沈下災害等の発生が予想される細砂地盤及び/または礫質地盤を、確実かつ恒久的に固結強化安定化する事でその発生防止対策が可能な、微細な水砕スラグと微細な消石灰及び/または生石灰と特定の有機高分子系の分散助剤及び特定の水溶性硫酸塩と更に水とを含有してなる懸濁型グラウト剤、ならびにその懸濁型グラウト剤を用いた地盤改良工法、さらには連続地中杭または連続地中壁の構築方法に関する。
【0002】
より詳しくは、フミン酸で代表されるフミン質有機酸や陽イオン吸着交換能を有する粘土鉱物のいずれかを比較的多く含有してなり、かつ地震発生の際に、液状化、滑り破壊、不同沈下等に起因する重大災害が予想される細砂地盤及び/または礫質地盤等を主な対象地盤とし、液状化防止、滑り破壊防止、不同沈下防止等の地盤改良目的で注入され、その現場1次分散安定性が優れかつ高速高浸透性と短時間固結性とが同時に発揮される耐久性に優れた懸濁型グラウト剤に関する。
またその懸濁型グラウト剤を用いた地盤改良工法、またさらにその懸濁型グラウト剤を用いた連続地中杭または連続地中壁の構築方法等に関する。
【0003】
【従来の技術】
ここでフミン酸とは、若い地層の堆積物に多く含まれている事が良く知られており、その平均分子量は数百〜数万と言われ、詳細な分子構造はいまだに明らかになっていないが、タンパク質の分解生成物、また更に炭水化物などとの縮合反応によって生成された有機高分子化合物と言われている物である。
細砂地盤中の該フミン質有機酸の含有濃度を簡便的に知るには、0.5〜1N(N:規定)の水酸化ナトリウム溶液を用い、加熱下に1時間程度抽出する処理方法で抽出し、砂を除いた該抽出母液をフェノールフタレン指示薬の存在下に0.5〜1N塩酸で逆滴定する事で細砂中に含有するフミン質有機酸の絶対量を求める事ができる。完全に中和された該抽出母液からは茶褐色の物質が沈殿析出することがあるが、この沈殿物がフミン酸のNa塩であると広く認識されている。
【0004】
固結体が比較的高強度となる懸濁型グラウト剤としては、セメントを主成分とする懸濁型グラウト剤がすでに公知であり、例えば特開平1−133965号公報に代表される。しかし、汎用セメントは比表面積が0.3m2/gとその1次粒子が極めて大きいために、平均粒子径が0.1〜1mm程度の細砂地盤への浸透性が確保出来ない課題を持つ。従って、該課題を解決する手段としては最大粒子径が約10μm以下のいわゆる超微粒子セメントを用いる改良方法が知られているが、当該超微粒子セメントの生産効率はまだ低く供給安定性が欠ける課題及び価格が非常に高価で経済性に欠けるという課題がある。またセメント系懸濁型グラウト剤のおおくは、フミン質有機酸及び/または陽イオン吸着交換能を有する粘土鉱物を多く含んだ地盤中では著しく硬化阻害を受け、固結信頼性を欠く事が広く知られている。
【0005】
ところで、フミン質有機酸による硬化阻害を受けないとされる土壌固化剤として提案されているものに、例えば、特開昭54−113910号公報や特公平06−78524号等がある。
まず、特開昭54−113910号公報によれば高炉水砕スラグで代表される鉱砕スラグ20〜95重量部と生石灰、か焼ドロマイト、消石灰及び消化ドロマイトの内の少なくとも1種の5〜80重量部及び2水石膏、半水石膏、無水石膏の1種または2種以上の5〜30重量部からなる改良材を、有機質高含有軟弱地盤上に散布またはスラリー状にして注入する事で、該地盤を硬化出来る事が記載されている。
また特公平06−78524号公報によれば、4CaO・3Al23・SO3と11CaO・7Al23・CaX2(Xはハロゲン)、CaO・Al23、12CaO・7Al23の1種とが共存するカルシウム・アルミネートを主成分に半水石膏や無水石膏等で代表される水硬性石膏を添加混合してなる組成物が高有機質土壌固化剤として好ましく使用出来るとしている。
【0006】
両提案共にその組成物の基本的な固結反応は水と合うと速やかにエトリンガイトを形成する事にあるとしており、水中では不安定な組成物である。すなわち、該土壌固化剤組成物は基本的に水中に懸濁させて長時間安定な状態を保持管理する事が実質困難であることを意味している。該提案組成物をあえて水に懸濁させて見ると、水硬性石膏成分を大量に含む事に起因する懸濁初期段階からの著しい増粘が認められる。また同時に懸濁初期から肥大化した2次粒子の成長に起因すると考えられる懸濁液の浸透性能の著しい低下が観察される。それゆえ、該提案からは低粘度でかつ長時間安定な懸濁型グラウト剤を容易に導く事が極めて困難であった。
また、該提案組成物は粉体型土壌固化剤に分類され、地盤の表面近傍に散布後に機械的に混合処理する工法には広く適合するが、それ以外の例えば薬液浸透注入工法等の適性に著しく欠ける課題がある。
【0007】
一方、近年に提案されている高性能な懸濁型グラウト剤に関する公知技術としては、高炉水砕スラグ、転炉水砕スラグ等の潜在水硬性の性質を示すスラグ粉末を主剤としたいわゆるスラグ系懸濁型グラウト剤が数多く提案されており、例えば特開平6−219796号公報、特開平6−228558号公報、特開平7−119138号公報等に代表される。これらの開示技術ではスラグ粉末の潜在水硬性を顕在化させる為のアルカリ刺激剤として、例えばアルカリ水ガラス溶液やアルミン酸ソーダや水酸化ナトリウム等を例示している。しかしそれらのアルカリ刺激剤を添加してなる既知のスラグ系懸濁型グラウト剤のおおくは、地盤改良硬化速度や固結強度を高めようとすればするほどその系自体のゲルタイムは短くなる傾向にあり、1液化しても数十時間以上と長い液ライフを持つ急速固結型のスラグ懸濁型グラウト剤は得られない課題がある。
【0008】
また既知のスラグ系懸濁型グラウト剤の多くは、実際の細砂地盤へ注入すると、製造直後からの著しい増粘化現象によって注入作業中浸透性が極端に低下する課題を持つ。また地盤中にあるフミン質有機酸成分がアルカリ刺激剤によって中和かつ水溶化されて溶脱する為、スラグ粒子への硬性阻害が顕著に表れ、結果として地盤の高強度固結化が未達となる重大な課題を内在している。また同様に、陽イオン吸着交換能を有する粘土鉱物に起因するスラグ粒子の水和硬化性阻害、具体的には珪酸カルシウム水和結晶またはカルシウムアルミネート水和結晶等で代表される水和物結晶群の生成反応に必須なカルシウム陽イオンやアルミニウム陽イオンが粘土鉱物によって吸着消費される為にスラグ粒子の水和硬化反応が顕著に阻害され、結果として地盤の高強度固結化が未達となる重大な課題を内在している。
【0009】
特に河川域周辺の細砂地盤は腐葉土またはフミン質有機酸や陽イオン吸着交換能の強い粘土成分を比較的多く含む地盤と言われる。その為、すでに公知のセメント系懸濁型グラウト剤やスラグ系懸濁型グラウト剤のいずれかを使用したグラウチングに於いても、予想以上に著しい硬化阻害現象を受け、しばしば固化が全く観察されかったり、目標固結強度に達しない等の数多くの問題を抱えている実態にある。すなわち、実砂質土地盤ではその固結信頼性がまだ極めて不十分な実態にある。
特に、水ガラス−スラグ系懸濁型グラウト剤や水酸化ナトリウム−スラグ系懸濁型グラウト剤等の公知のグラウト用組成物では、実地盤中で著しい硬化阻害を受けると必然的に地下水の流入と共に環境負荷が大きいと懸念されるアルカリ刺激剤が広範囲に溶脱し所定領域外へ広く拡散または流出する事となる。すなわち、フミン質有機酸や陽イオン吸着交換能の強い粘土成分を比較的多く含む実地盤の注入に使用されると環境負荷の問題ならびに強度発現不良が助長されることが大きな問題となる。
【0010】
懸濁型グラウト剤の抱えている課題のうち、急激な増粘を抑制して浸透性を向上される為に取り得る手段としては、水/スラグ比または水/セメント比を出来るだけ大きくする事が挙げられが、該方法では新たな課題としてブリージング発生率が極めて高くなってしまう課題や強度低下が避けられない課題等を併発する。
【0011】
以上の様に、すでに公知の懸濁型グラウト剤に於いては実地盤に好ましく採用出来、フミン質有機酸や陽イオン吸着交換能の強い粘土成分を比較的多く含む細砂地盤及び/または礫質地盤等を短時間内に確実に高強度かつ恒久的に固結する事ができる高度な硬化機能と、また更に、1液化状態で24時間以上安定に取り扱え、注入作業中は著しい増粘が見られない高速高浸透性機能とを併せ持つ懸濁型グラウト剤が見当たらない。
【0012】
ところで、平成7年1月に発生した阪神淡路大震災の災害は、軟弱地盤上に構築されていた重要構造物に多大な被害が集中した事実から、その復旧工事方法や、不安定地盤上のすべての重要構造物に対する安全性確保の方法、恒久的な耐地震性強化方法等の課題をも提起したと言える。
特に前記した事に鑑みて、主要な都市部の液状化が予想される地盤上に構築されまたは構築しようとしている重要構造物の耐震安全性確保が緊急かつ強く求められており、安全に取扱え、かつ現場での注入信頼性や硬化信頼性に富んだ新規な懸濁型グラウト剤を市場に早期に提供する事の必要性が高まっている。
【0013】
【発明が解決しようとする課題】
従って本発明は前記した社会的要請に鑑み、フミン酸で代表されるフミン質有機酸及び/または陽イオン吸着交換能の強い粘土鉱物を比較的多く含む固結させずらい細砂地盤及び/または礫質地盤を主な対象地盤とし、その液状化防止、滑り破壊防止、不同沈下防止目的の為の地盤改良に際し、現場での1次分散安定性と高速高浸透性の注入作業性能に特に優れ、かつまたフミン質有機酸塩の溶脱による硬化阻害要因ならびに多価金属陽イオン吸着による硬化阻害要因を少なからず受けても、所定の時間内で確実に高強度に対象地盤を固結する事が出来、その固結体は恒久的機能を発揮する環境負荷の小さいスラグ系の懸濁型グラウト剤を安価に安定的に提供する事にある。
【0014】
より具体的には、以下の(A)〜(F)に示す性質を併せ持つ新たなスラグ系の懸濁型グラウト剤を提供する事にある。
(A)高くともB型粘度計による60回転・ローシェアー粘度が30mPa・s以下/20℃と低粘度溶液であり、かつ少なくとも調製後24時間以上それ自体安定であり著しい増粘現象が長時間抑制された、いわゆる注入現場に於ける施工管理が簡単でかつ懸濁液ライフが24時間以上と長い懸濁型グラウト剤。
(B)1kgの改良対象地盤から抽出されたフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の範囲にある細砂地盤及び/または礫質地盤、及び/または、100g当たり50ミリ当量未満のカルシウム陽イオン吸着交換能を有する細砂地盤及び/または礫質地盤を、懸濁型グラウト剤の懸濁液ライフに何等関係無く、浸透注入後1〜3日以内には該地盤の固結強度(サンドゲル1軸圧縮強度)を50N/cm2以上と急速固結させることが可能な懸濁型グラウト剤。
(C)10〜50リットル/分の経済的な高速浸透注入作業性を発揮する懸濁型グラウト剤。
(D)1ショット方式〜2ショット方式の任意な地盤注入方式で高速高浸透注入作業が実施可能であり、その1ケ所当たりのグラウチング作業で、少なくともグラウト注入管に対し90゜の垂直または鉛直方向に低くとも35cm以上の半径で確実に地盤改良を可能ならしめる懸濁型グラウト剤。
(E)固結体が長期間安定した強度特性を示す懸濁型グラウト剤。
(F)環境負荷の少ない懸濁型グラウト剤。
【0015】
また併せて、液状化防止、滑り防止、不同沈下防止目的の為の地盤改良目的に、前記した懸濁型グラウト剤を用いた、より経済性な地盤改良工法並びに連続地中杭または連続地中壁の構築方法をそれぞれ提供する事にある。
【0016】
【課題を解決するための手段】
上記課題を克服するため鋭意検討した結果、特定された微細な水砕スラグと、特定された微細な消石灰及び/または微細な生石灰と、特定された水溶性硫酸塩と、特定条件を満たす有機高分子系の分散助剤とをそれぞれ含有して成り、水/(消石灰+生石灰+水砕スラグ)比が1〜6の範囲、分散助剤/(消石灰+生石灰+水砕スラ)比が0.0005〜0.05の範囲にある懸濁型グラウト剤が前記課題を解決できる事を見出し本発明を達成した。
【0017】
すなわち、本発明の懸濁型グラウト剤とは、粒径加積曲線上に於ける95重量%粒子径が15μm以下でかつ比表面積が0.85〜3m2/gの範囲にある水砕スラグと、粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある消石灰及び/または粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある生石灰と、0.001〜1重量%水溶液から求められた慣性二乗半径が150オングストローム以上の有機高分子系分散助剤と、重硫酸塩、硫酸アルカリ金属塩、亜硫酸塩、重亜硫酸塩、過硫酸塩、硫酸マグネシウム、硫酸アルミニウム、チオ硫酸塩、みょうばんからなる群から選ばれた少なくとも1種または2種以上からなる水溶性硫酸塩及び水とを含有し、水/(消石灰+生石灰+水砕スラグ)の重量比が1〜6の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.0005〜0.05の範囲、グラウト総量1m3中に水溶性硫酸塩を1〜100kgの範囲でそれぞれ含有させた懸濁型グラウト剤である。
【0018】
本発明の懸濁型グラウト剤では、好ましくは、(消石灰+生石灰)/水砕スラグの重量比が0.01〜3の範囲にある事が更に好ましく、水砕スラグが(CaO+MgO+Al23)/SiO2で表される塩基度が1.7〜2.1の範囲にある高炉水砕スラグである事は最も好ましい。まて本発明の懸濁型グラウト剤では、水/水砕スラグの重量比で0.5〜5の範囲、(消石灰+生石灰)/水砕スラグの重量比で0.01〜3の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.005〜0.02の範囲とした懸濁水溶液を主剤液Aとし、一方、水溶性硫酸塩として重硫酸ナトリウム、硫酸ナトリウム、硫酸ナトリウムカリウム、重亜硫酸ナトリウム、亜硫酸ナトリウム、過硫酸ナトリウムからなる群から選ばれた1種を選定しその2〜10重量%含有水溶液を硬化剤液Bとし、その主剤液Aと硬化剤液Bの2液混合型とする事が最も特に好ましい事である。
【0019】
また本発明の地盤改良方法とは、1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有の細砂地盤及び/または礫質地盤、及び/または、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有する細砂地盤及び/または礫質地盤に対し、本発明の懸濁型グラウト剤を、グラウト注入管を介して、1〜2ショット方式で加圧下に浸透固結させる事を特徴とする地盤改良方法である。
【0020】
また本発明の連続地中杭または連続地中壁の構築方法とは、1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有のシルト細砂地盤及び/またはシルト礫質地盤、及び/または、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有するシルト細砂地盤及び/またはシルト礫質地盤に対し、本発明の懸濁型グラウト剤を、地中深く下ろされたグラウト用の注入ミキシング管を介し、該注入ミキシング管の先端附近に設けられた管側面の複数個の吐出孔から超高圧吐出させ、その吐出応力で吐出孔部が自由回転させ、管周辺の360゜鉛直方向に懸濁型グラウト剤を吐出させ、更に吐出開始後該注入ミキシング管を徐々に引上げて同操作を継続または繰返すことにより、注入管周辺の土砂と本発明の懸濁型グラウト剤とを一体混合させて固結させる方法である。
【0021】
ところで分子の慣性二乗半径とは、一般的に、無限希薄水溶液中に於いて1分子が占める自由占有体積または分子の広がり度合いを表すひとつの指標値であり、その数値が大きい程嵩高い占有面積または分子の広がりが高い事を意味する。
また本発明に於いては、その慣性二乗半径の数値は公知の慣性半径測定方法で得た数値で表されて良く、測定方法によって特に制約は無い。一般的には慣性半径分子量測定器で容易に求める事が出来る。
【0022】
すなわち、本発明は次の(1)〜(8)を提供するものである。
(1)粒径加積曲線上に於ける95重量%粒子径が15μm以下でかつ比表面積が0.85〜3m2/gの範囲にある水砕スラグと、粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある消石灰及び/または粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある生石灰と、0.001〜1重量%水溶液から求められた慣性二乗半径が150オングストローム以上と嵩高い有機高分子系分散助剤と、重硫酸塩、硫酸アルカリ金属塩、亜硫酸塩、重亜硫酸塩、過硫酸塩、硫酸マグネシウム、硫酸アルミニウム、チオ硫酸塩、みょうばんからなる群から選ばれた少なくとも1種または2種以上からなる水溶性硫酸塩及び水とを含有し、水/(消石灰+生石灰+水砕スラグ)の重量比が1〜6の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.0005〜0.05の範囲、グラウト総量1m3中に水溶性硫酸塩を1〜100kgの範囲でそれぞれ含有させた懸濁型グラウト剤。
【0023】
(2)グラウト総量1m3中に水溶性硫酸塩を10〜50kgの範囲で含有させると共に、有機高分子系の分散助剤が0.001〜1重量%水溶液から求められた慣性二乗半径が200〜2,000オングストロームの範囲にあるセメント用減水剤から選定された1種または2種以上とする事を特徴とする(1)記載の懸濁型グラウト剤。
【0024】
(3)硫酸アルカリ金属塩:過硫酸塩で表される重量比率で(1:99)〜(99:1)の範囲で水溶性硫酸塩を使用する事を特徴とする(1)または(2)の懸濁型グラウト剤。
(4)水溶性硫酸塩として硫酸アルカリ金属塩を単独使用する事を特徴とする(1)または(2)の懸濁型グラウト剤。
【0025】
(5)(消石灰+生石灰)/水砕スラグの重量比が0.01〜3の範囲にある事を特徴とする(1)〜(4)のいずれかに記載の懸濁型グラウト剤。
(6)水砕スラグが(CaO+MgO+Al2O3)/SiO2の重量比で表される塩基度で1.7〜2.1の範囲にある高炉水砕スラグである事を特徴とする(1)〜(5)のいずれかに記載の懸濁型グラウト剤。
(7)水/水砕スラグの重量比で0.5〜5の範囲、(消石灰+生石灰)/水砕スラグの重量比で0.01〜3の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.005〜0.02の範囲とした懸濁水溶液を主剤液Aとし、水溶性硫酸塩の2〜10重量%含有水溶液を硬化剤液Bとし、その主剤液Aと硬化剤液Bの2液混合型または1液型のいずれかを使用する事を特徴とする(1)〜(6)のいずれかに記載の懸濁型グラウト剤。
【0026】
(8)水溶性硫酸塩として硫酸ナトリウム、硫酸ナトリウムカリウム、硫酸カリウム、過硫酸ナトリウム、過硫酸カリウムからなる群から選ばれた1種または2種以上である事を特徴とする(7)に記載の懸濁型グラウト剤。
(9)主剤液Aと硬化剤液Bの2液を地盤注入吐出する直前で、主剤液A:硬化剤液Bで表される容量比率で(1:0.95)〜(0.95:1)の範囲で混和させてなる事を特徴とする(7)または(8)に記載の懸濁型グラウト剤。
【0027】
(10)1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有の細砂地盤及び/または礫質地盤、及び/または、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有する細砂地盤及び/または礫質地盤に対し、(1)〜(9)のいずれかに記載の懸濁型グラウト剤を、グラウト注入管を介して、1〜2ショット方式で加圧下に浸透固結させる事を特徴とする地盤改良方法。
【0028】
(11)1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有のシルト細砂地盤及び/またはシルト礫質地盤、及び/または、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有するシルト細砂地盤及び/またはシルト礫質地盤に対し、(1)〜(9)のいずれかに記載の懸濁型グラウト剤を、地中深く下ろされたグラウト用の注入ミキシング管を介し、該注入ミキシング管の先端附近に設けられた管側面の複数個の吐出孔から超高圧吐出させ、その吐出応力で吐出孔部が自由回転する結果、管周辺の360゜鉛直方向に懸濁型グラウト剤を吐出させる。更に、吐出開始後ゆっくりと該注入ミキシング管を引上げて同操作を継続または繰返すことにより、注入管周辺の土砂と(1)〜(9)記載のいずれかの懸濁型グラウト剤とを一体混合させて固結させる事を特徴とする連続地中杭または連続地中壁の構築方法。
【0029】
【発明の実施の形態】
本発明の懸濁型グラウト剤では、その対象地盤は、1kgの地盤改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の範囲で該有機酸を含有してなる細砂地盤及び/または礫質地盤がその主な対象範囲となる。
また更には、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有する細砂地盤及び/または礫質地盤も好ましい対象範囲である。
すなわち、フミン酸で代表されるフミン質有機酸及び/または陽イオン吸着交換能を有する粘土鉱物を含有してなる細砂地盤及び/または礫質地盤が対象範囲として好ましく示され、その他、スラグの硬化阻害を受けにくい一般的な細砂地盤及び/または礫質地盤であっても好ましく包含されるものである。
なお、前記した対象地盤範囲によって本発明の懸濁型グラウト剤のグラウチング適用範囲が特に限定される事がない事は明白である。
【0030】
また例えば、前記した値よりも高濃度に有機酸を含有してなる細砂地盤及び/または礫質地盤に於いては、本発明の懸濁型グラウト剤を浸透注入する前に、希薄な水酸化ナトリウム溶液等で代表される公知のフミン質有機酸溶脱作用を持つアルカリ希薄溶液を事前に注入して該有機酸塩を地盤改良対象域外に広く流出拡散・低濃度化させる方法、またはアルカリ希薄溶液を注入し適宜くみあげて除去・低濃度化する前処理方法などで、その対象地盤が前記範囲内の性質に改善されてなる改質地盤は好ましく包含される。
また例えば、前記した値よりも高いカルシウム陽イオン吸着交換能力を持つ細砂地盤及び/または礫質地盤に際し、予め、事前に消石灰飽和溶液や海水などを浸透注入させ、地盤の持つ陽イオン吸着交換能力を飽和・減少せしめる等の前処理を行う事で前記要件を満足する改質地盤も好ましく包含するものである。
【0031】
本発明の懸濁型グラウト剤とは、先に示したように基本的に粒径加積曲線上に於ける95重量%粒子径が15μm以下でかつ比表面積が0.85〜3m2/gの範囲にある水砕スラグ(イ)[以下の記載では単に水砕スラグ(イ)と呼ぶことがある]と、粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある消石灰(ロ)[以下の記載では単に消石灰(ロ)と呼ぶことがある]及び/または粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある生石灰(ハ)[以下の記載では単に生石灰(ハ)と呼ぶことがある]と、0.001〜1重量%水溶液から求められた慣性二乗半径が低くとも150オングストローム以上と嵩高い有機高分子系の分散助剤(ニ)[以下の記載では単に分散助剤(ニ)と呼ぶことがある]と、水溶性硫酸金属塩(ホ)および水(ヘ)とを必須成分として含有させ、水(ヘ)/[消石灰(ロ)+生石灰(ハ)]+水砕スラグ(イ)]の重量比が1〜6の範囲、分散助剤(ニ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が0.0005〜0.05の範囲、グラウト総量1m3中に水溶性硫酸塩(ホ)を1〜100kgの範囲でそれぞれ含有させた懸濁型グラウト剤である。
【0032】
そして本発明記載の水溶性硫酸塩(ホ)とは、より具体的に、以下の重硫酸塩(α)、硫酸アルカリ金属塩(β)、亜硫酸塩(γ)、重亜硫酸塩(δ)、過硫酸塩(ε)、硫酸マグネシウム(ζ)、硫酸アルミニウム(η)、チオ硫酸塩(θ)、みょうばん(ι)からなる群から選ばれた少なくとも1種または2種以上からなる易水溶性の硫酸塩化合物の事である。
好ましくは水(ヘ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が1〜5の範囲、分散助剤(ハ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が0.005〜0.02の範囲、[消石灰(ロ)+生石灰(ハ)]/水砕スラグ(イ)の重量比が0.01〜3の範囲、グラウト総量1m3中に水溶性硫酸塩(ホ)を10〜50kgの範囲で含有させてなる懸濁型グラウト剤がより好ましい。
また更に好ましくは水溶性硫酸塩として硫酸アルカリ金属塩:過硫酸塩で表される重量比率で(1:99)〜(99:1)の範囲で併用使用してなる事が良く、より最も好ましくは水溶性硫酸塩として硫酸アルカリ金属単独を選定使用する事が良い。
【0033】
ところで粒径加積曲線上に於ける95重量%粒子径が15μm以下とは、公知の粒度分布測定によって作成された粒度加積曲線の95重量%加積粒子径値(以下の記載では単に95重量%粒子径と呼び、記号はd95で表わす事がある。)に該当する粒子サイズ(μm:ミクロン)で表され、一般的に95重量%の粒子の全てが15μmを下まわる事を意味するものである。
また、粒径加積曲線上に於ける95重量%粒子径が15μm以下でかつ比表面積が0.85〜3m2/gの範囲にある水砕スラグ(イ)と、粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある消石灰(ロ)及び/または粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある生石灰(ハ)と、0.001〜1重量%と希薄な水溶液から求められた慣性二乗半径が低くとも150オングストローム以上と嵩高い有機高分子系の分散助剤(ニ)と、水溶性硫酸塩(ホ)とを含有し、分散助剤(ハ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が0.0005〜0.05の範囲、グラウト総量1m3中に水溶性硫酸塩(ホ)を1〜100kgの範囲でそれぞれ含有させた非懸濁化組成物であっても本発明の懸濁型グラウト剤として広く包含されることは明らかである。その理由は、前記した非懸濁化組成物を注入現場に運び、そこで水を加えて、水(ヘ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が1〜6の範囲となる様に懸濁調製する事で、容易に本発明の懸濁型グラウト剤が得られる事からである。
【0034】
また本発明では粒子サイズやその分布状態ならびに比表面積等に関する記載値は、光散乱式粒度分布測定器の使用によるものである。
また比表面積値を事前に求める方法としては、例えばコンクリート協会が推奨する空気を用いたセル通気法やその他窒素や他の不活性ガスを用いたセル通気法等のいずれかの方法で求める方法が例示出来る。
【0035】
粒径加積曲線上における95重量%粒子径が15μm以内でかつ比表面積が0.85〜3m2/gの範囲にある水砕スラグ(イ)の具体例には、例えば高炉水砕スラグ、転炉水砕スラグ、電炉水砕スラグ、平炉水砕スラグ等に代表される金属製錬副産物の1種または2種以上から成るものが挙げられる。
その中でもより更に好ましくは、日本工業規格・JIS−R−5202で示された「ポルトランドセメントの化学分析方法」に準じた測定結果で表され、SiO2分として30〜35重量%、CaO分として35〜45重量%、Al23分として13〜20重量%、MgO成分として5〜8重量%、その他の成分を数重量%含む等の組成比で構成され、かつ(CaO+MgO+Al23)/SiO2の重量比で表される塩基度が1.7〜2.1の範囲にある高炉水砕スラグが特に最も好ましい(イ)の具体例として挙げられる。
【0036】
徐冷スラグは本発明の水砕スラグ(イ)からは除外される。理由は徐冷スラグ類は結晶質スラグであり潜在水硬性(潜在的な水和硬化性)がないからである。
本発明記載の前記水砕スラグ(イ)としては、結晶質な成分が少量混在していても良く、基本的に水冷却法等の急冷法で得た非晶質性に富む超微粒子状の水砕スラグ粉であれば好ましく使用できる。
【0037】
一般的に水砕スラグ(水滓スラグとも言い、以下では単にスラグと呼ぶ事がある)はそれ自身では自硬性は示さない。
水砕スラグは一般的にアルカリの共存下の水溶液中や高湿度環境下ではその固体表面からSiO2やAl23成分が溶出し、次いでCaイオンが溶出して系中に珪酸カルシウム水和結晶・ゲル及び/またはシリカアルミネート水和結晶・ゲル等が生成し、その結晶・ゲルが順次生長または強固に凝集する事で系全体が固結する硬化メカニズムが広く支持されている。その固結体の1軸圧縮強度特性は経時と共に増大する事が良く知られており、その際使用するアルカリ量が過少の場合には、一向に一体的なゲル化がおこらなかったりする。また過大の場合にはスラリー粘度が過大で、結果として流動性不良からポンプ送液が出来なかったりすると共に、粘性変化が顕著な為に、地盤注入が中断されるまたは全く出来ない等の障害をきたす事が一般的な事実としてあり、アルカリ溶液硬化剤は総じてその傾向が顕著に表れる。
本発明の懸濁型グラウト剤では水砕スラグに対するアルカリ刺激作用効果を持つ必須な成分として消石灰(ロ)及び/または生石灰(ハ)が挙げられる。ところで生石灰(ハ)は実質水中に懸濁投入されると直ちに水と発熱反応して消石灰(ロ)を生成する事から、水砕スラグに対する刺激作用機構は消石灰と実質同じであると見なすことが出来るが、生石灰(ハ)は水和熱を発生する事から水硬性無機微粒子の水和反応を促進させる傾向にある事が利点として挙げられる。
一般に消石灰単独の水への飽和溶解濃度は約0.1重量%と希薄であり、それゆえ、微粒子状消石灰(ロ)の配合量を多くしても本発明の懸濁型グラウト剤はそのスラリー粘度を低くかつその変化を低く押さえる事が出来ると考えている。
【0038】
ところで、本発明に使用できる水砕スラグ(イ)では95重量%粒子径が15μmを超える粗大な水砕スラグ粒子を5重量%以上おおく含有する物を使用すると、本発明の目的が同時に達成されない。より具体的には、[本発明が解決しようとする課題]の項で示した6つの課題の内、(C)、(D)の2つの課題が未達となる。
すなわち、水砕スラグ(イ)に関わる必須要件としては、95重量%粒子径(d95)が15μm以下でかつ比表面積が0.85〜3m2/gの範囲にある事である。より好ましくは95重量%粒子径(d95)が10μm以下、より更に好ましくは8μm以下、より最も好ましくは5μm以下にあり、かつまたその比表面積が0.85〜3m2/gの範囲、好ましくは1〜2m2/g、より好ましくは1〜1.5m2/gの範囲にある物とする事はおおいに好ましい。
【0039】
本発明の懸濁型グラウト剤中には前記の水砕スラグ(イ)をグラウト総量1m3当り100〜500kgの範囲で用いる事が最も一般的である。より好ましくは150〜450kgの範囲、より最も好ましくは200〜400kgの範囲とする事が良い。
グラウト総量1m3当り100kg未満の(イ)の使用では凝結性が極めて緩慢で最終的な固結体の強度が低く実用性にとぼしいからである。
また一方、グラウト総量1m3当り500kgを超える(イ)の使用では懸濁溶液粘度が課題(A)に示した最大値より高くなりすぎてそれ自体の流動性や注入浸透作業性に欠けるからである。
【0040】
本発明の懸濁型グラウト剤を構成する上で更に欠かせない成分に、粒径加積曲線上に於ける95重量%粒子径(d95)が30μm以下でかつ比表面積が1〜50m2/gの範囲にある超微粒子状の消石灰(ロ)及び/または生石灰(ハ)が挙げられる。
消石灰(ロ)及び/または生石灰(ハ)は水砕スラグの持つ潜在水硬性を顕在化させる物質として、ならびに地盤中で急速かつ高強度な固結体を与えることが出来る以下の、珪酸カルシウム水和結晶、カルシウムアルミネート水和結晶、エトリンガイト等の地盤強化安定に有効な水和結晶体の成長をうながす上で欠かせない。またカルシウムイオンの供給源としても本発明の構成成分として必須な成分の一つである。
その消石灰(ロ)及び/または生石灰(ハ)の95重量%粒子径サイズ及び比表面積を特に限定している理由には、水砕スラグ(イ)で述べた理由と全く同様である。例えば、その(ロ)及び/または(ハ)自体の95重量%粒子径(d95)が30μmを超えるかまたは比表面積が1m2/g未満の(ロ)及び/または(ハ)の使用例では、豊浦標準砂クラスの細砂質な地盤に対し浸透注入作業性が著しく阻害される結果を招くからである。また(イ)成分が実際の細砂質地盤に浸透到達した全範囲地盤内を均質かつ3日以内には50N/cm2以上の固結強度(サンドゲル強度)特性を持つ様にする事が極めて困難となるからである。
【0041】
消石灰(ロ)成分はその製造方法や粉砕方法等によって特に制約は受ける事はなく、広く公知の方法で製造されたものの中から前記要件に合致する物を選定使用する事で良い。特に制約する物ではないが、例えば、一般ゴミの焼却ガス中の有害塩素系ガス吸着剤用に開発または市販されている超微粒子の消石灰製品群の中から、95重量%粒子径(d95)が30μm以下でかつ比表面積が1〜50m2/gの範囲にある物は好ましく使用できる。より好ましくは95重量%粒子径(d95)が20μm以下、より更に好ましくは15μm以下、より最も好ましくは10μm以下にあり、かつまたその比表面積が1.2〜45m2/gの範囲、好ましくは1.5〜40m2/g、より好ましくは2〜30m2/gの範囲にある物とする事はおおいに好ましい。またそのままでは適合出来ないが、更に分級や粉砕加工を加える事で前記条件を備えた超微粒子の消石灰粉は、当然好ましく使用出来る。
【0042】
生石灰(ハ)成分はその製造方法や粉砕方法等によって特に制約は受ける事はなく、広く公知の方法で製造されたものの中から前記要件に合致する物を選定使用する事で良い。95重量%粒子径(d95)が30μm以下でかつ比表面積が1〜50m2/gの範囲にある物は好ましく使用できる。より好ましくは95重量%粒子径(d95)が20μm以下、より更に好ましくは15μm以下、より最も好ましくは10μm以下にあり、かつまたその比表面積が1.2〜45m2/gの範囲、好ましくは1.5〜40m2/g、より好ましくは2〜30m2/gの範囲にある物とする事はおおいに好ましい。またそのままでは適合出来ないが、更に分級や粉砕加工を加える事で前記条件を備えた超微粒子の生石灰粉は、当然好ましく使用出来る。
【0043】
本発明記載の消石灰(ロ)及び/または生石灰(ハ)はそれぞれその純度には特に制約はない。例えば数十重量%以内で消石灰(ロ)中に生石灰(ハ)が不純物として含有されている物、またその逆の物、また例えば以下の、酸化マグネシウム、酸化リチウム、酸化錫、酸化亜鉛、酸化鉄、酸化銅、酸化アルミニウム等で代表される金属酸化物、水酸化マグネシウム、水酸化リチウム、水酸化錫、水酸化亜鉛、水酸化鉄、水酸化銅、水酸化アルミニウム等で代表される金属水酸化物を適宜含有するものであっても好ましく包含される。
【0044】
本発明の懸濁型グラウト剤では、消石灰(ロ)及び/または生石灰(ハ)の使用量としてグラウト剤総量1m3当り10〜300kgの範囲、好ましくは15〜250kgの範囲、より好ましくは20〜200kgの範囲とする事が良く、消石灰(ロ)/水砕スラグ(イ)の比が0.01〜3の範囲、特に好ましくは0.02〜1の範囲とする事が良い。グラウト剤総量1m3当り10kg未満の配合量ではグラウト固結強度が低く耐久性に欠けるからであり、一方、グラウト剤総量1m3当り300kgを超えての使用では、それ以上増量しても特に顕著な効果が見出せないばかりか高コストとなるからである。
本発明の懸濁型グラウト剤では、水(ヘ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が1〜6の範囲とする事が肝要である、好ましくは水(ヘ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比を1〜5の範囲とする事がより好ましい。
また、水砕スラグ(イ)の微粉末と消石灰(ロ)及び/または生石灰(ハ)の微粉末とは事前にドライブレンドされ、地盤注入現場に供給され、現場で所定量の分散助剤(ニ)、水溶性硫酸塩(ホ)及び水(ヘ)を加えて本発明の懸濁型グラウト剤を適宜調整して良い。
【0045】
次に、本発明の懸濁型グラウト剤を構成する上で必須な成分として水溶性硫酸塩(ホ)がある。
その水溶性硫酸塩(ホ)の必須要件としては、グラウト総量1m3中に1〜100kgの範囲とすることである。より好ましくは5〜100kgの範囲、最も好ましくは10〜50kgの範囲とすることが良い。
その水溶性硫酸塩(ホ)とは、重硫酸塩(α)、硫酸アルカリ金属塩(β)、亜硫酸塩(γ)、重亜硫酸塩(δ)、過硫酸塩(ε)、硫酸マグネシウム(ζ)、硫酸アルミニウム(η)、チオ硫酸塩(θ)、みょうばん(ι)からなる群から選ばれた1種または2種以上からなる硫酸塩化合物とすでに定義している。
重硫酸塩(α)としては、すでに公知の物質として良く、特に制約はない。例えば重硫酸カリウム(別名;硫酸水素カリウム)、重硫酸ナトリウム(別名;硫酸水素ナトリウム)、重硫酸リチウム(別名;硫酸水素リチウム)、重硫酸アンモニウム(別名;硫酸水素アンモニウム)などで代表され、それらの無水物及び/または1〜7水塩等を例示出来、かつそれらの1種または2種以上からなるものであって良い。より好ましい重硫酸塩(α)として重硫酸ナトリウムを選定する態様例が良い。
【0046】
硫酸アルカリ金属塩(β)としては、すでに公知の物質として良く、特に制約は無い。例えば硫酸カリウム、硫酸ナトリウム、硫酸ナトリウムカリウム、硫酸リチウム、硫酸リチウムナトリウム、硫酸ナトリウムリチウム、硫酸アンモニウムなどで代表され、それらの無水物及び/または1〜12水塩などを例示出来る。その中のいずれか1種または2種以上の混合物であっても何等問題無い。より好ましい硫酸アルカリ金属塩(β)として無水硫酸ナトリウム及び/または硫酸ナトリウム12水塩を選定する態様例が良い。特に硫酸ナトリウム無水物と硫酸ナトリウム12水塩はそれぞれ前者が別名;無水芒硝、後者が別名;芒硝と言われ、広く天然に存在しており、環境負荷が小さいことから大いに好ましい例である。
【0047】
亜硫酸塩(γ)としては、すでに公知の物質として良く、特に制約は無い。例えば亜硫酸カリウム、亜硫酸ナトリウム、亜硫酸リチウムなどで代表され、それらの無水物及び/または複水塩などを例示出来る。その中のいずれか1種または2種以上の混合物であっても何等問題無い。より好ましい亜硫酸塩(γ)として亜硫酸ナトリウムの無水物または複水塩を選定する態様例が良い。
重亜硫酸塩(δ)としては、すでに公知の物質として良く、特に制約は無い。
例えば亜硫酸水素カリウム、亜硫酸水素ナトリウム、亜硫酸水素リチウムなどで代表され、それらの無水物及び/または複水塩などを例示出来る。その中のいずれか1種または2種以上の混合物であっても何等問題無い。より好ましい重亜硫酸塩(δ)として亜硫酸水素ナトリウムの無水物または複水塩を選定する態様例が良い。
【0048】
過硫酸塩(ε)としては、すでに公知の物質として良く、特に制約は無い。例えば過硫酸カリウム、過硫酸ナトリウム、過硫酸リチウム、過硫酸アンモニウムなどで代表され、それらの無水物及び/または複水塩などを例示出来る。その中のいずれか1種または2種以上の混合物であっても何等問題無い。より好ましい過硫酸塩(ε)として過硫酸ナトリウム無水物を選定する態様例が良い。
硫酸マグネシウム(ζ)としては、その無水物またはそれらの複水塩などを例示出来る。また硫酸アルミニウム(η)としては、その無水物及び/または複水塩などを例示出来る。チオ硫酸塩(θ)としては、すでに公知の物質として良く、特に制約は無い。例えばチオ硫酸カリウム、チオ硫酸ナトリウム、チオ硫酸リチウム、チオ硫酸アンモニウムなどで代表され、それらの無水物及び/または複水塩などを例示出来る。その中のいずれか1種または2種以上の混合物であっても何等問題無い。より好ましいチオ硫酸塩(θ)としてチオ硫酸ナトリウム無水物を選定する態様例が良い。
みょうばん(ι)としては、その無水物及び/または複水塩などを例示出来、例えば、カリウムみょうばんやナトリウムみょうばんが例示できる。該12水塩などは市場容易に入手出来ることから好ましい例である。
【0049】
前記した内、亜硫酸塩(γ)や重亜硫酸塩(δ)は強還元性の物質として公知であり、一方、過硫酸塩(ε)は強酸化性の物質として知られている事から、両者を直接または高濃度で混合すると酸化還元反応が一気に進行し発熱や異常な分解反応を伴う事に留意が必要であるが、本発明では水溶性硫酸塩(ホ)として、亜硫酸塩(γ)または重亜硫酸塩(δ)と過硫酸塩(ε)との2種を併用使用する態様例を何等排除するものではない。
【0050】
本発明の懸濁型グラウト剤に於いては、水溶性硫酸塩(ホ)として亜硫酸塩(γ)または重亜硫酸塩(δ)と過硫酸塩(ε)を併用使用してよく、その際は、本発明の懸濁型グラウト剤を事前に2液で調整する方法が推奨され、主剤液または硬化剤液側にそれぞれ分けて配合調整する方法で前記した危険性を回避できる。
ここで水溶性硫酸塩(ホ)として、亜硫酸塩(γ)または重亜硫酸塩(δ)と過硫酸塩(ε)とを併用使用する態様の本発明の懸濁型グラウト剤に於いては、その利点として、2液合流後に発熱反応が期待出来、その結果、注入グラウト液の内部温度が上昇するに伴い液粘度の低下で高速浸透性の一層の向上が図れる、また更には、液温の上昇で懸濁型グラウト剤の固結活性力がより一層向上する事等を挙げることが出来る。
本発明の懸濁型グラウト剤では、グラウト総量1m3中に水溶性硫酸塩(ホ)として1〜100kgの範囲、好ましくは5〜100kgの範囲、最も好ましくは10〜50kgの範囲で使用する事が好ましい。
【0051】
また、本発明の懸濁型グラウト剤に於いては、特に前記した水溶性硫酸塩(ホ)の最も好ましい態様例としては硫酸アルカリ金属塩:過硫酸塩で表される重量比率で(99:1)〜1:99)、更に好ましくは(95:5)〜(50:50)の範囲で併用する事が良い。その理由は、本発明の懸濁型グラウト剤の水砕スラグに起因する水和固結反応を本質的に無臭化状態で達成可能であるからである。
より最も好ましくは、水溶性硫酸塩(ホ)として硫酸ナトリウムの単独とする態様が更に好ましい事である。理由は硫酸ナトリウムは安価に入手が可能で経済的であると同時に天然に広く存在する故環境にやさしいからである。
【0052】
次に、本発明の懸濁型グラウト剤を構成する上で必須な成分として分散助剤(ニ)成分があげられる。
その分散助剤(ニ)の必須要件として、0.001〜1重量%と希薄な水溶液から求められた慣性二乗半径が低くとも150オングストローム以上と嵩高い水溶性有機高分子系の分散助剤を使用する事が挙げられる。より好ましくは(ニ)の慣性二乗半径が200〜2,000オングストロームの範囲、最も好ましくは500〜2,000オングストロームの範囲にある事が最も好ましい。
前記分散助剤(ニ)としては、特に制約する物では無いが、例えば、希薄な該水溶液中に於いてその自由占有面積(溶液中での嵩高さ)を表すひとつの指標である慣性二乗半径が低くとも150オングストローム以上ある以下のいわゆるセメント用減水剤が代表的な具体例として挙げられる。
【0053】
そのセメント用減水剤には、例えばナフタレンスルフォン酸ホルムアルデヒド縮合誘導体やそれらのアルカリ塩類等で代表されるいわゆるナフタレン系減水剤、リグニンスルフォン酸ホルムアルデヒド縮合誘導体等やそれらのアルカリ塩類で代表されるいわゆるリグニン系減水剤、水溶性ポリカルボン酸化合物やそれらのアルカリ塩類で代表されるいわゆるポリカルボン酸系減水剤、水溶性メラミンスルファミン酸ホルムアルデヒド縮合物やそれらのアルカリ塩類等で代表されるいわゆるメラミンスルファミン酸系減水剤、水溶性メラミンスルホン酸ホルムアルデヒド縮合物やそれらのアルカリ塩類等で代表されるいわゆるメラミン系減水剤、水溶性アルキレングリコールモノアミン付加変性メラミンスルホン酸ホルムアルデヒド縮合物やそれらのアルカリ塩類等で代表されるいわゆる変性メラミン系減水剤等を例示出来、それらの1種または2種以上を併用使用して良い。また更に、前記した化合物群の中から、0.001〜1重量%と希薄な水溶液から求められた慣性二乗半径が150オングストローム以上、好ましくは200〜2,000オングストロームの範囲にあるセメント用減水剤を選択し本発明記載の分散助剤(ニ)として選定使用する事は大いに好ましい。特に最も好ましくは、前記要件と共にその重量平均分子量が1×104〜1×106の範囲にある(ニ)を選定使用する事は特に好ましい。
【0054】
本発明記載の分散助剤(ニ)のより更に好ましい物としては、0.001〜1重量%と希薄な水溶液から求められた慣性二乗半径が500〜2,000オングストロームにある水溶性ポリカルボン酸系高分子化合物やそれらのアルカリ塩類の1種とする事が特に最も好ましい。
【0055】
ところで、本発明記載の分散助剤(ニ)として、0.001〜1重量%と希薄な水溶液から求められた慣性二乗半径が150オングストローム未満の物を選定使用した場合、得られるスラグ系の懸濁型グラウト剤は、[本発明が解決しようとする課題]の項に挙げた(A),(C),(D)の課題がそれぞれ達成出来ない。
【0056】
すなわち、0.001〜1重量%と希薄な水溶液から求められた慣性二乗半径が150オングストローム未満の(ニ)の使用では、その使用割合を高めても、十分な高速注入作業性と高速浸透作業性と短期固結信頼性とを満足する低粘度な懸濁型グラウト剤が得られない傾向にある。すなわち、本発明記載の分散助剤(ニ)に関わる要件として挙げた慣性二乗半径が150オングストローム未満の嵩高く無い(ニ)の使用では、得られる懸濁型グラウト剤の60回転・ローシェアー粘度を20mPa・s以下とすることは到底困難である。その理由はまだ十分あきらかになっていないが、懸濁状態下にある各1次粒子の粒子間距離が短く、相互に強く影響し合って自由拡散力を抑制し合っている為と考えられる。
【0057】
分散助剤(ニ)は室温で固体またはあらかじめ水に溶解してなる濃厚溶液等であって良く、それ自体の取扱形態等の違いによって本発明は何等制約は受けない。なお濃厚水溶液などの形態で取り扱う場合は、その有効固形分を求め、その有効固形分換算で表される分散助剤(ニ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が0.0005〜0.05の範囲、より好ましくは0.005〜0.02の範囲と成る様に本発明の懸濁型グラウト剤を調整する事が肝要なこととして挙げられる。
【0058】
分散助剤(ニ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が0.0005未満では、懸濁型グラウト剤の初期粘度が高くなり過ぎ、流動性と減粘化の為に必要以上に大量の水(ヘ)を必要とする。その結果、到達グラウト固結強度が低く、耐久性に欠ける事となる。
また一方、分散助剤(ニ)/[消石灰(ロ)+生石灰(ハ)+水砕スラグ(イ)]の重量比が0.05を超えると、それ以上増量しても特に顕著な分散安定性ならびに低粘度化効果が見出せないばかりか高コストとなる。
【0059】
本発明記載の、水砕スラグ(イ)の微粉末と消石灰(ロ)及び/または生石灰(ハ)の微粉末と、固形状の分散助剤(ニ)と、更に固形状の水溶性硫酸塩(ホ)とを、事前にドライブレンドした組成物を1パック包装して後、保管または地盤注入現場に供給し、本発明の懸濁型グラウト剤を調整する態様であっても何等差し支えない。
1パック包装の際に使用される包装材料には特に制約は無く、例えば紙袋、ポリ袋、アルミラミネート袋、金属製容器などその材種や形は任意であって良い。
好ましくはポリ袋内袋型の紙袋またはアルミラミネート袋のいずれかとする事がおおいに好ましい。
1パック包装体で供給された該組成物は、作業現場で開封後、所定量の水で溶解/懸濁分散作業を行なうのみで本発明の懸濁型グラウト剤が簡便かつ容易に調整できる。
【0060】
すなわち、本発明の懸濁型グラウト剤に必須な構成成分である水砕スラグ(イ)の微粉末と消石灰(ロ)及び/または生石灰(ハ)の微粉末と更に固形状の分散助剤(ハ)と更に固形状の水溶性硫酸塩(ホ)とを、事前に1パック包装供給する利点としては、地盤注入現場の懸濁型グラウト剤の調整時での計量配合添加ミスを完全に回避できる事があげられる。
ここで、本発明の懸濁型グラウト剤の提供意義が地震発生に伴い液状化や滑り破壊や不同沈下等の要因によって重大災害の発生が予想される脆弱な細砂地盤及び/または礫質地盤を高強度に一体固結させる、いわゆる液状化防止、滑り破壊防止、不同沈下防止等の地盤改良目的にある事から、その観点に立てば、事前に4〜5者の成分をドライブレンドして1パック包装し地盤注入現場での配合ミスの回避は懸濁型グラウト剤の持つ固結性能を再現性よく発揮させる上で有益であることは明らかである。
【0061】
本発明の懸濁型グラウト剤では、水砕スラグ(イ)の微粉末と消石灰(ロ)及び/または生石灰(ハ)の微粉末と固形状の分散助剤(ニ)更に水溶性硫酸塩(ホ)からなる必須構成成分をドライパック包装して供給するとするいわゆる懸濁型グラウト剤の現場供給方法ならびにその包装体を開封して必要量の水で懸濁させて目的の本発明の懸濁型グラウト剤を調製する方法を好ましく包含するものである。
【0062】
本発明の懸濁型グラウト剤では低粘度な懸濁溶液とする上で欠かせないものに水(ヘ)がある。
水(ヘ)は注入現場近辺で手に入る物であれば特に制約は無く、例えば河川水、雪、氷、湖水、地下水、湧き水、雨水、水道水、工業用水、海水含有水、イオン交換水、純水などであってよい。好ましくは水道水や地下水や河川の水があげられる。
【0063】
本発明の懸濁型グラウト剤では水砕スラグ(イ)と消石灰(ロ)及び/または生石灰(ハ)と分散助剤(ニ)と水溶性硫酸塩(ホ)及び水(ヘ)の各必須成分を必ず含有している事が必須要件であり、本発明の目的を達成する上で何一つ欠かせない。以下にその理由を簡単に記す。
まず消石灰及び/または生石灰を含有せず、水砕スラグと分散助剤と水の3成分からなる懸濁組成物ではスラグの水和硬化反応がほとんど観察されない事による。
次に水砕スラグを含有せず、消石灰及び/または生石灰と分散助剤と水の3〜4成分からなる高含水懸濁組成物では水和硬化反応が全く観察されないことによる。
【0064】
また分散助剤を全く含まず、水砕スラグと消石灰及び/または生石灰と水の3〜4成分で構成された懸濁組成物または水砕スラグと消石灰及び/または生石灰と水溶性硫酸塩と水の4〜5成分で構成された懸濁組成物は、本発明の懸濁型グラウト剤と同様に基本的なスラグ粒子の水和硬化反応が少なからず観察される。
しかし本発明者等は、例えば、水/[水砕スラグ+(消石灰及び/または生石灰)]の重量比で0.5〜5の範囲にある該懸濁組成物をそれぞれ調製し、そのグラウチング適性を種々検討した所、水砕スラグ及び消石灰及び/または生石灰の現場1次分散易性や分散安定性が極端に劣る事、また高粘度液である為に細砂地盤への高速高浸透性に欠ける等の基本的な課題を多く内在している事を見出したことによる。
【0065】
より詳しくは、水砕スラグと消石灰及び/または生石灰と水の3〜4成分系、または、水砕スラグと消石灰と水溶性硫酸塩と水の4成分系のいずれかで構成され、かつ、水/(水砕スラグ+消石灰)の重量比で0.5〜5の範囲にある該懸濁組成物は、1次粒子分散安定溶液を現場調整する際には簡易なスクリュー型またはイカリ型の小型攪拌機を内蔵するオープン式調整槽では全く達成困難な実態にあり、その解決には、例えば密閉式ボールミル分散機やジェットミル分散機などの高価かつ大掛かりな分散機の使用が必須であった。かつまた少なくとも30分以上の分散時間を要する等も判明した。以上の結果から該懸濁液の生産性は極めて低く経済性や1次分散易性とその分散信頼性に著しく欠ける課題が内在している事が判明したことによる。
【0066】
また高強度固結性を発現させる目的に於いて一般的に処方される構成要件として水砕スラグを1m3中に200〜500kgの範囲で高濃度に含有させてなる該3または該4成分系組成物では、概して、B型粘度計による20℃,60回転ローシェアー粘度(初期粘度)がおよそ50mPa・sを大きく超える系であり、経済的な現場グラウチング性の指標値のひとつとして重要な注入速度10リットル/分以上の注入速度条件指標値を満たす事が全く出来ない問題点が見出されたことによる。
【0067】
ところで水砕スラグと消石灰と水溶性硫酸塩および水の4成分で構成され、B型粘度計による20℃,60回転ローシェアー粘度(初期粘度)が50mPa・sを大きく超える懸濁溶液組成物を無理矢理10リットル/分以上の注入速度で実細砂地盤に対して注入を強行した場合、しばしば脈状注入となる。その結果、地盤の著しい隆起や予想外の局所遠方地盤に薬液が運ばれて当該領域内に限定した地盤改良が極めて困難になる。
【0068】
前記した水砕スラグと消石灰と水溶性硫酸塩と水の4成分で構成された懸濁溶液組成物の持つ実用上の課題を種々解決する為の手段としては、単に水砕スラグ粒子をより超微粒子化した物を使用するとか、または同様に消石灰も微粒子化を高めるなどの手段が容易に考えられが、その場合には、一般的な傾向として、該系の初期動的粘度が更に高くなる、1次分散に要する時間が更に長くなる、等の現場注入作業性が益々悪化する方向にある。
またその逆の水砕スラグ微粒子をより粗粒子化した物を使用するとか、または同様に消石灰も粗粒子化を高めるなどの手段では細砂地盤への浸透性が極度に悪化する方向にあることによる。
単に水砕スラグと消石灰と水の3成分系、または、水砕スラグと消石灰と水溶性硫酸塩と水の4成分系のいずれかで構成された懸濁溶液組成物は、著しく流動性に欠けるなど、好適な地盤改良用懸濁型グラウト剤としての実用性に著しく欠ける。
【0069】
また水溶性硫酸塩を全く含まず、水砕スラグと消石灰と分散助剤と水の4成分で構成された懸濁組成物は本発明の懸濁型グラウト剤と同様に基本的なスラグ粒子の水和硬化反応が少なからず観察されるが、川砂や海砂と混和された時の硬化活性が極めて緩慢であり、急速固結性と液ライフのバランスに欠けるからである。しかも本発明の解決すべき課題、(A)〜(F)の課題を同時に達成できない。以上の理由から、本発明の懸濁型グラウト剤では前記した様に特定要件を満たた水砕スラグ(イ)と特定要件を満たした消石灰(ロ)及び/または生石灰(ハ)と特定要件を満たした分散助剤(ニ)と水溶性硫酸塩(ホ)及び水(ヘ)の各成分を必ず含有している事が必須構成要件である。
本発明の懸濁型グラウト剤では、それ自体液ライフが24時間以上と長く、砂質土などで代表される細砂と混和されると直ちに高速固結反応する性質を発揮させる主目的に照し、前記した水溶性硫酸塩(ホ)は絶対に欠かせない成分である。
【0070】
また本発明の懸濁型グラウト剤では必要に応じて以下の(a)〜(g)に示した各種の添加助剤が、より好ましくは(a)〜(g)の1種または2種以上からなる添加助剤をその公知の作用効果を期待し、かつ本発明の目的を達成できる範囲内に於いて、適宜併用使用して良い。
【0071】
(a)は、以下に示された燐酸塩類(a)である。
その燐酸塩類(a)の例には、第2及び/または第3アルカリ金属燐酸塩、第2及び/または第3アルカリ土類金属燐酸塩から選ばれた1種または2種以上からなる物が挙げられる。
第2燐酸アルカリ金属塩には燐酸水素2ナトリウム、燐酸水素2カリウム、燐酸水素2リチウム等の無水物やそれらの含水塩類を例示出来る。また第3燐酸アルカリ金属塩には燐酸3ナトリウム、燐酸3カリウム、燐酸3リチウム等の無水物やそれらの含水塩類を例示出来る。
第2アルカリ土類金属燐酸塩には燐酸水素カルシウム、燐酸水素マグネシウム等の無水物やそれらの含水塩類を例示出来る。また第3アルカリ土類金属燐酸塩には燐酸カルシウム、燐酸マグネシウム等の無水物やそれらの含水塩類を例示出来る。
本発明の懸濁型グラウト剤ではその燐酸塩類(a)をグラウト総量1m3当り固形分換算で0.01〜5kgの範囲で併用使用して良い。
【0072】
(b)としては有機カルシウム塩類(b)である。例えば、乳酸カルシウム、酒石酸カルシウムなどの公知の水溶性モノカルボン酸及び/または水溶性ジカルボン酸のカルシウム塩類、カルシウムサッカラートで代表される糖のカルシウム錯体等が好ましく例示される。
本発明の懸濁型グラウト剤ではその有機カルシウム塩類(b)をグラウト総量1m3当り固形分換算で0.01〜5kgの範囲で併用使用して良い。
【0073】
また(c)は1次粒子径が0.01〜8μmの範囲にある非水硬性の無機微粒子(c)があげられる。その非水硬性の無機微粒子(c)としては例えば、炭酸カルシウム粉末、炭酸マグネシウム粉末、チタンホワイト粉末、水酸化亜鉛粉末、水酸化アルミニウム粉末、水酸化マグネシウム粉末等が挙げられる。非水硬性の無機微粒子(c)はグラウト総量1m3当り20〜250kgの範囲で併用使用させる事ができる。
【0074】
(d)は水砕スラグ以外の水硬性無機微粒子(d)である。1次粒子径が0.01〜8μmの範囲にある例えば、メタカオリン、ポルトランドセメント、半水石膏、無水石膏等が例示される。それらの水硬性無機微粒子(d)をグラウト総量1m3当り20〜250kgの範囲で併用使用させる事ができる。
【0075】
(e)としては有機質なセメント用硬化遅延剤(e)である。すでに公知の有機質なセメント用硬化遅延剤が挙げられ、特に制約する物では無いが、例えば庶糖やグラニュー糖やブドウ糖などの単糖類類、同二糖類、同多糖類、があり、また例えば、乳酸、リンゴ酸、グリコール酸、イタコン酸、マレイン酸、琥珀酸等の有機酸化合物、また例えば、尿素やシクロデキストリンなどで代表される包接化合物形成剤などがそれぞれ挙げられる。
グラウト総量1m3当り前記セメント用硬化遅延剤の1種または2種以上を最大10kg未満の範囲で、好ましくは市販の有り姿で0.1kg〜5kgの範囲で適宜併用使用して良い。
【0076】
また(f)は界面活性剤である。すでに公知の各種の、カチオン石鹸、アニオン石鹸、両性石鹸、ノニオン石鹸等が例示出来る。また更には水性シリコン化合物、エチレングリコールやグリセリンなどの多価水溶性グリコール類、3,6−ジメチル−4−オクチン−3,6−ジオールや3,5−ジメチル−1−ヘキシン−3−オールで代表されるアセチレンアルコール類系消泡剤も好ましい前記(f)に含まれる。
グラウト総量1m3当り前記界面活性剤(f)の1種または2種以上を最大2kg未満の範囲で、好ましくは0.1g〜1kgの範囲で併用使用して良い。
【0077】
また(g)としては、公知の粒子沈降分離軽減剤(g)があげられ、例えば、メチルセルロースやヒドロキシセルロースや可溶性デンプンやポリビニルアルコール等があげられる。グラウト総量1m3当り前記(g)の1種または2種以上を最大2kg未満の範囲で、好ましくは0.1g〜1kgの範囲で併用使用して良い。
【0078】
本発明の懸濁型グラウト剤に於いては、基本的に1液型または2液型とする事が良く、注入管先端混合(いわゆる2ショット方式)または注入管直前混合(いわゆる1.5ショット方式)または1液注入(いわゆる1ショット工法)などの方法で当該懸濁型グラウト剤を調製と同時に地盤に注入する方法を採る事が好ましい。
その2液の形態には特に制約は無いが、一般的には主剤液として水砕スラグ粉末と分散助剤と消石灰及び水とからなる懸濁水溶液をあて、もう一方の硬化剤液として水溶性硫酸塩と水とからなる溶液とする態様が一般的に好ましい。
ところで、本発明の懸濁型グラウト剤の特徴のひとつは、発明の提供目的のひとつに[発明が解決しようとする課題]の項の(A)項の課題を満足してなる組成物を提供する事で明らかな様に、下記の(A1)と(A2)である。
(A1)B型粘度計による20℃・60回転ローシェアー粘度が30mPa・s以下と極めて低粘度な懸濁組成物であること。
(A2)また常温で少なくとも24時間以上は凝結または著しい増粘がみとめられない懸濁組成物であること。
【0079】
本発明の懸濁型グラウト剤では、例えばその懸濁液ライフ(非流動化時間またはゲルタイム)を最大300時間程度、好ましくは50〜200時間の範囲と極めて長くすることは容易に可能であり、かつ、その様に極めて長い液ライフを持つ組成物でありながら豊浦標準砂や1〜5号珪砂等で代表される高純度珪砂を始めとする本発明記載の対象地盤が混和されるとその時点から直ちに懸濁型グラウト剤の硬化反応が進行し、1〜3日以内には該砂などと一体固結する活性を兼備していることが挙げられる。
そのゆえ、1液型からなる本発明の懸濁型グラウト剤を注入現場以外の遠い場所で予め調整し、注入現場にその1液化してなる本発明の懸濁型グラウト剤を搬送してそのまま現場注入作業に供する事ができる点は、従来に無い本発明の懸濁型グラウト剤の性質である。
【0080】
すなわち、本発明の懸濁型グラウト剤の特徴とは[発明が解決しようとする課題]の項で示した(A)〜(F)のすべての性質を兼備(満足)する懸濁型グラウト剤である事が挙げられる。
【0081】
本発明の懸濁型グラウト剤を1液化する際、前記した各構成成分の配合手順や調製方法等には特に制約はない。
例えば、水砕スラグ粉末と消石灰粉末及び/または生石灰粉末ならびに分散助剤とを事前に仕込だ後、所定量の水及び水溶性硫酸塩を追添加して懸濁1液としたり、またその逆であったりして良い。
また前記した様に、水砕スラグ粉末と消石灰粉末及び/または生石灰粉末と固形分散助剤と固体の水溶性硫酸塩とをそれぞれ所定量ドライブレンド・1パック包装して貯蔵・搬送・供給された物を、注入現場にて開封後、所定量の水にて分散溶解混合させるなどの1液化現地調製法などの態様例が好ましく採用できる。
【0082】
本発明の懸濁型グラウト剤では、特に調製方法などに制約は無いが、好ましいは水/水砕スラグの重量比で0.5〜5の範囲、(消石灰+生石灰)/水砕スラグの重量比で0.01〜3の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.005〜0.02の範囲とした懸濁水溶液を主剤液Aとし、一方、水溶性硫酸塩の2〜10重量%含有水溶液を硬化剤液Bとし、その主剤液Aと硬化剤液Bの2液混合型または1液型のいずれかとする事がよい。
より最も好ましくは、水/水砕スラグの重量比で0.5〜5の範囲、(消石灰+生石灰)/水砕スラグの重量比で0.01〜3の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.005〜0.02の範囲とした懸濁水溶液を主剤液Aとし、一方、水溶性硫酸塩として硫酸ナトリウム、硫酸ナトリウムカリウム、硫酸カリウム、過硫酸ナトリウム、過硫酸カリウムから選ばれた1種または2種以上の2〜10重量%含有水溶液を硬化剤液Bとし、その主剤液Aと硬化剤液Bの2液混合型または1液型のいずれかとする事がより良い。
その主剤液Aと硬化剤液Bの2液を地盤注入吐出する直前で、主剤液A:硬化剤液Bで表される容量比率で(1:0.95)〜(0.95:1)の範囲、より好ましくは(1:1)に出来るだけ近似させて混和してなる2液混合型または1液型のいずれかの懸濁型グラウト剤とする事がより更に好ましく、最も好ましくはその1液型懸濁型グラウト剤が良い。
【0083】
本発明の地盤改良工法について以下記述する。
本発明の地盤改良方法とは、1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有の細砂地盤及び/または礫質地盤、及び/または、100g当たり50ミリ当量未満のカルシウム陽イオン吸着交換能を有する細砂地盤及び/または礫質地盤に対し、本発明の懸濁型グラウト剤を選定使用し、グラウト注入管を介し、1〜2ショット方式のいずれかの方式を採用して、加圧下に浸透固結させる方法である。
【0084】
特に限定制約する物では無いが、一般的には本発明の懸濁型グラウト剤を大気圧以上最大100N/cm2(ゲージ圧力)以下の範囲、より好ましくは2.5N/cm2〜50N/cm2(ゲージ圧力)の範囲の吐出圧で地盤浸透注入作業する事が良く、本発明の目的に合致した安定した高速高浸透作業性が確保された地盤改良工事(作業)が可能である。
特に好ましい地盤改良方法としては、前記した1液から成る本発明の懸濁型グラウト剤を1ショット方式でグラウト注入用単管を介して地盤中に加圧浸透固結させる方法を挙げることが出来る。
【0085】
次に本発明のグラウト剤組成物を使用した連続地中杭または連続地中壁の構築方法とは、1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有のシルト細砂地盤及び/またはシルト礫質地盤、及び/または、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有するシルト細砂地盤及び/またはシルト礫質地盤に対し、地中深く下ろされたグラウト用の注入ミキシング管を介し、該注入ミキシング管の先端附近に設けられた管側面の複数個の吐出孔から超高圧吐出させ、その吐出応力で吐出孔部が自由回転する結果、管周辺の360゜鉛直方向に本発明の懸濁型グラウト剤を吐出させる。吐出開始後ゆっくりと該注入ミキシング管を引上げて同操作を継続または繰返すことにより、注入管周辺の土砂と本発明の懸濁型グラウト剤とを一体混合させて固結させるなる、いわゆるジェットミキシング工法による連続地中杭または連続地中壁の構築方法である。
【0086】
本発明のグラウト剤組成物を用いた地盤改良用途には前記した以外に、止水を主な目的とする地盤改良用途、また更に従来公知の、水ガラス系グラウト剤、水ガラス系半懸濁型グラウト剤、非晶質シリカ系懸濁型グラウト剤等の中から1秒〜10分と短時間にゲル化するいわゆる瞬結〜緩結型の公知薬剤を選定使用し、その公知薬剤と本発明の懸濁型グラウト剤とを組合せて行なう復相注入による地盤改良用途が挙げられる。
【0087】
前記した水ガラス系グラウト剤には例えば、特開昭55−16074号、特開昭55−118993号、特開昭55−144082号、特開昭58−183183号、特開昭60−215685号、特開昭62−181387号、特開昭63−10689号公報等が例示でき、それらの技術からなる公知薬液の中から1秒〜10分と短時間にゲル化するいわゆる瞬結〜緩結型の公知薬剤を前記の複相注入用の一つとして選定使用して良い、。また同様に、水ガラス半懸濁型グラウト剤には例えば、特開昭60−69185号、特開昭60−197789号、特開昭63−312389号、特開平01−188591号、特開平01−1234491号、特開平01−252687号、特開平02−222485号、特開平07−166163号公報等に代表される公知技術群から選ばれた1秒〜10分と短時間にゲル化するいわゆる瞬結〜緩結型の公知薬剤の1種を、前記した複相注入用の公知薬剤の一つとして選定使用して良い。また同様に、従来公知の非晶質シリカ系懸濁型グラウト剤としては、例えば、特開平06−219796号、特開平08−109378号公報等に代表される公知技術群から選ばれた1秒〜10分と短時間にゲル化するいわゆる瞬結〜緩結型の公知薬剤の1種を、前記した複相注入用の公知薬剤の一つとして選定使用して良い。
【0088】
【実施例】
以下に本発明の実施例、比較例を示すが、本発明は実施例によって何等制約や限定はされない。また、例中の%、部とはそれぞれ重量%、重量部を意味し、L、mLとはリットル、ミリリットルをそれぞれ意味する。
本発明の実施例、比較例として使用するために調整された懸濁型グラウト剤の配合は、表4と表8にそれぞれ記載した。またそれぞれの配合について水/(消石灰+水砕スラグ)の重量比、分散助剤/(消石灰+水砕スラグ)の重量比、消石灰/水砕スラグの重量比、主剤液A中に於ける水/水砕スラグの重量比、グラウト液1m3中に占める水溶性硫酸塩の配合量を表5に、また同様に、本発明の実施例と比較例に関し、水/(消石灰+生石灰+水砕スラグ)の重量比、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比、(消石灰+生石灰)/水砕スラグの重量比、主剤液A中に於ける水/水砕スラグの重量比、グラウト液1m3中に占める水溶性硫酸塩の配合量を表9に記載した。
【0089】
ところで、本発明の実施例および比較例に於いて使用した原材料は以下の物を用いた。
1.水砕スラグ
表1に示した微粒子状の高炉水砕スラグを使用した。ただし、表1記載の95%最大粒子径(d95)とは光学式粒度分布測定器で求めた粒径加積曲線の95重量%粒子径を意味する。またブレーン値とはコンクリート協会で指定されたセル通気法で求めた比表面積値である。また塩基度とは日本工業規格(JIS−R−5202;ポルトランドセメントの化学分析法)に準じた元素分析法によってCaO,MgO,Al23,SiO2で表される各成分の含有重量%を測定した後、その値から(CaO+MgO+Al23)/SiO2の重量比を算出し、その算出値を塩基度として表示。
【0090】
【表1】
Figure 0004505066
【0091】
2.消石灰
表2に示した微粒子状の消石灰を使用した。
この内、消石灰1とは、一般ゴミの焼却ガス中の有害塩素系ガス吸着剤用に開発された超微粒子消石灰製品群の中から選ばれたものであり、消石灰2、消石灰3は汎用の市販微粒子消石灰である。
また表2中に記載の95%最大粒子径(d95)とは光学式粒度分布測定器で求めた粒径加積曲線の95重量%粒子径を意味する。またブレーン値とはコンクリート協会で指定されたセル通気法で求めた比表面積値である。
【0092】
【表2】
Figure 0004505066
【0093】
3.生石灰
試薬の生石灰を密閉乾燥下にボールミルで粉砕後、更に篩いで分級し、およそ95%最大粒子径(d95)が15.2μm、ブレーン値が45m2/gの超微粒子状生石灰を得て実施例用の生石灰原料とした。その物を以下の各例中では生石灰1(略記号ではCK1)と表示した。
また、肥料業界向けに市販の生石灰を入手し、そのものは95%最大粒子径(d95)が45.2μm、ブレーン値がおよそ0.8〜1.0m2/gと判明、市販生石灰を比較用の生石灰として使用。その物を以下の例中では生石灰2(略記号ではCK2)と表示した。
4.分散助剤
表3に示した3種類の分散助剤を用意した。
ただし、表3中に記載の固形分とは、試料を110℃×30分間強熱乾燥した後、残分の重量%を求めた値であり、重量平均分子量及び慣性二乗半径は試料を0.01%、0.1%、0.2%の3水準に希釈しGPC(サイズ排除クロマトグラフ)と多角度散乱検出器を接続した計測システムによって導かれた値である。
【0094】
【表3】
Figure 0004505066
【0095】
5.水溶性硫酸塩
重硫酸塩の例として硫酸水素ナトリウム・1水塩(試薬品)を用意した。
硫酸アルカリ金属塩の例としてそれぞれ硫酸ナトリウム無水物(以下の記載では単に硫酸ソーダと表示)(試薬品)、硫酸カリウム無水物(以下の記載では単に硫酸カリと表示)(試薬品)、硫酸ナトリウムカリウム無水物(試薬品)を用意した。
重亜硫酸塩の例として重亜硫酸ナトリウム無水物(試薬品)を用意した。
亜硫酸塩の例として亜硫酸ナトリウム・7水塩(試薬品)を用意した。
過硫酸塩の例として過硫酸カリウム無水物(試薬品)を用意した。
チオ硫酸塩の例としてチオ硫酸ナトリウム無水物(試薬品)を用意した。
硫酸マグネシウムとしては硫酸マグネシウム・12水塩(試薬品)[略記号で(硫Mg)と称する]を、硫酸アルミニウムとしては硫酸アルミニウム・12水塩(試薬品)[略記号で(硫Al)と称する]を、みょうばんとしは硫酸カリウムアルミニウム(別名;カリみょうばん)(試薬品)をそれぞれ用意した。
【0096】
6.砂質土
本発明の実施例または比較例に於いて、高速浸透性に関わる評価の試験、サンドゲル強度特性の試験、耐久性試験、大規模注入試験等に供したモデル地盤としては、千葉県鎌滝産の礫質交じりの砂質土[以下砂質土(I)と単に称する]及び茨城県利根川流域産の川砂[以下砂質土(II)と単に称する]のいずれかを用いた。
砂質土(I)については、最大粒子径(d99.9);約5mm、平均粒子径(d50)が約400μm、フミン質有機酸量:10〜15ミリ当量NaOH/kg,カルシウム陽イオン吸着交換能:30〜35ミリ当量/100gであった。
砂質土(II)については、最大粒子径(d99.9);約2mm、平均粒子径(d50)が約200μm、フミン質有機酸量:60〜65ミリ当量NaOH/kg,カルシウム陽イオン吸着交換能:3〜5ミリ当量/100gであった。
なお、上記フミン質有機酸量とは砂質土と10倍量の1規定水酸化ナトリウム溶液を混合し、1時間加熱下にフミン質有機酸の抽出中和処理を行って後、抽出母液を得て、その母液をフェノールフタレイン指示薬の存在下に1規定塩酸溶液で逆滴定して求めた水酸化ナトリウム消費量のミリ当量数で表した値である。
いずれの砂質土モデル地盤も本発明の対象地盤として好ましい範囲のものであり、特に砂質土(II)自体はその粒度分布が豊浦標準砂にほぼ匹敵するものであった。
【0097】
また本発明の実施例及び比較例に於いて実施した試験方法については以下の通である。
a.初期ローシェアー粘度(以下の記載では単に初期粘度とも言う)
調整直後の懸濁型グラウト剤を20℃に保ち、B型粘度計60rpmにて測定した値をローシェアー粘度(初期粘度)とした。
b.流動消失時間
懸濁型グラウト剤を静置状態で放置し、ときどき傾斜させて懸濁液部の流動性が失われた時点までに要した時間または日数を計測して表示。
【0098】
c.高速浸透性に関わる評価の方法
300mmφ×2000mmの剛直な試験容器に砂質土(II)を圧密充填して満たし、その中心部にグラウト注入管を差込み、その先端吐出口から容器底面までの距離を100mmとした位置に該注入管を停止固定させ、その位置で10L/分の注入速度で用意した各例の懸濁型グラウト剤を10秒間注入した。その後60分放置後、注入管を100mm程度引き上げた位置で、調整後60分経過後の懸濁型グラウト剤を20L/分の速度で5秒間注入した。また更に60分放置後、同様に注入管を100mm引き上げてその位置で調整後120分以上経過後の懸濁型グラウト剤を30L/分の注入速度で3秒間注入作業を実施した。
以上の3ステップにわたる注入操作に於いて使用される懸濁型グラウト剤は調整から注入作業終了まで一貫して1液型溶液とした。
上記の方法で注入を終えた試験容器を24〜48時間経過後に解体し、各部のサンドゲル構成状況を細部にわたり観察した。この時、脈状注入になった部分が無く均一に懸濁型グラウト剤が浸透固結してなるサンドゲルを構築している場合を高速浸透性が良いと判断し、記号○で例中に表示。20L/分以上の高速注入で脈状現象が多く観察され、それ以下の10L/分以下と低速な浸透注入作業ではスムーズな浸透注入固結が出来る場合を△の記号で表示。注入速度にあまり関係無く、脈状注入となる傾向が強い懸濁型グラウト剤である場合や、注入管近傍のみの狭い範囲のみしか浸透固結が見られ無い場合の懸濁型グラウト剤であり、高速浸透性が著しく欠ける場合等では記号×で各例中に表示した。
【0099】
d.ホモゲル強度特性
調整直後の懸濁型グラウト剤を成型用円筒モールド容器(50mmφ×100mm高さ)に充填固結させ、各例中の養生条件をそれぞれ経て後、脱型し、得られたホモゲル体を1軸圧縮強度試験に供した。そして単位面積当たりの降伏破壊強度の値を求め、その値をホモゲル強度とした。
e.サンドゲル強度特性
砂質土(I)または砂質土(II)を、上部に6mmφの減圧吸引管と下部に6mmφの送液吸引管を脱着可能なアクリル製充填搭(50mmφ×520mm高さ)を用意し、その上下面に100メッシュ濾布を介して砂質土が洩れない様、砂質土充填高さ500mmとなる様に圧密充填した。
該砂質土充填容器に、減圧下で調整直後の懸濁型グラウト剤を吸引浸透注入させた。見た目白濁してなる懸濁型グラウト剤が上部減圧管からいきよいよく出てくる事を確認後、更に30〜60秒減圧注入を継続した後、減圧を止め浸透注入作業を停止し、さらに上下面を注意深く密封し、そのまま20℃で3日間で養生固結させた。
各例中では3日経過後に固結状態のサンドゲルがまったく得られなかった場合は、単に未硬化と表中に記載した。また各例中では前記減圧式浸透法によるサンドゲルの調整が出来なかった場合は、例中または表中には単に調整不可と記載した。
3日経過後脱型し、50mmφ×100mm高さのサンドゲル固結体の4本を切出して採取し、うち1本は直ちに1軸圧縮強度試験に供し、3日室温養生後のサンドゲル強度とした。残り3本の固結体は更に同体積の水中下で7日間養生して得られたサンドゲル(I)体[懸濁型グラウト剤と砂質土(I)との一体固結ゲル]とサンドゲル(II)体[懸濁型グラウト剤と砂質土(II)との一体固結ゲル]をそれぞれを1軸圧縮強度試験に供した。そして単位面積当たりの降伏破壊強度の平均値を求め、その値をサンドゲル(I)強度またはサンドゲル(II)強度とした。
【0100】
f.耐久性試験
上記サンドゲル強度と同様な方法で得たサンドゲル(I)を、1ケ月、3ケ月、6ケ月、12ケ月間大過剰の50℃温水中に浸漬させて後、取り出して20℃の時のサンドゲル(I)の1軸圧縮強度試験を実施し、調整10日後のサンドゲル(I)強度値を100とし、測定値を元の基準値で割って100を掛けた値を強度保持率%とし、その値を耐久性として各例の結果に示した。
【0101】
実施例1
表4に示す割合で、まず、分散助剤1の6部を水道水200部に溶解させた液を5L容器に採り、強攪拌下に水砕スラグ2の300部と消石灰1の50部を加え、3分間混合した。次いで総量が500mLとなる様に水道水を加えて均一な懸濁溶液からなるA液を得た。
一方、水道水の475部を2L容器に採り、硫酸ソーダの50部を加え、十分溶解してなる硬化剤液Bを調整した。
そのA液の全量500mLに攪拌下に硬化剤液Bの525部(約500mL)を一気に加えて1液性の懸濁型グラウト剤(KG−1)を調整し、そのローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価、室温1ケ月養生後のホモゲル強度特性、サンドゲル強度特性試験を行って、その結果を表6に示した。
実施例1の懸濁型グラウト剤(KG−1)の1日室温養生後のサンドゲル(I)固結体は100N/cm2の圧縮負荷では破壊がみとめられず、124N/cm2と高い1軸圧縮強度を示した。
また、実施例1の懸濁型グラウト剤(KG−1)の3日室温養生後のサンドゲル(I)固結体は300N/cm2の圧縮負荷では破壊がみとめられず、340N/cm2と高い1軸圧縮強度を示した。
【0102】
実施例2〜10
表4に記載の実施例2〜実施例10の配合表に従い、実施例1と同様な手順でそれぞれ1液性の懸濁型グラウト剤[(実施例2の懸濁型グラウト剤;KG−2)〜(実施例10の懸濁型グラウト剤;KG−10)]を調整した。そしてローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価室温、1ケ月養生後のホモゲル強度特性、サンドゲル強度特性試験をそれぞれ行って、その結果を表6に示した。
実施例2〜実施例10の懸濁型グラウト剤[(KG−2)〜(KG−10)の各3日室温養生後のサンドゲル(I)固結体は、そのいずれも100N/cm2の圧縮負荷では破壊がみとめられず、それ以上の高い1軸圧縮強度特性を持つ高強度なサンドゲルであった。
【0103】
比較例1〜4
表4に記載の比較例1〜4の配合表に従い、実施例1と同様な手順でそれぞれ1液性の懸濁型グラウト剤[(比較例1の懸濁型グラウト剤;KF−1)〜(比較例4の懸濁型グラウト剤;KF−4)]を調整した。そしてローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価、室温1ケ月養生後のホモゲル強度特性、サンドゲル強度特性試験をそれぞれ行って、その結果を表6に示した。
【0104】
比較例5
表4に記載の比較例5の配合表に従い、実施例1と同様な手順でそれぞれ1液性の懸濁型グラウト剤(比較例5の懸濁型グラウト剤;KF−5)を調整した。なお、KF−5の懸濁型グラウト剤は、主剤液Aは実施例1と同組成物からなり、一方硬化剤液Bを実施例1記載の硫酸ナトリウムの50部に替えて、公知のアルカリ刺激剤の1種であるアルカリ3号水ガラス溶液の66部に替えた以外は全く実施例1と同様にして得た1液型の懸濁型グラウト剤組成物である。そしてKF−5のローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価、室温1ケ月養生後のホモゲル強度特性、サンドゲル強度特性試験をそれぞれ行って、その結果を表6に示した。
【0105】
比較例6
表4に記載の比較例6の配合表に従い、実施例1と同様な手順でそれぞれ1液性の懸濁型グラウト剤(比較例6の懸濁型グラウト剤;KF−6)を調整した。なお、KF−6の懸濁型グラウト剤は、主剤液Aは実施例1と同組成物からなり、一方硬化剤液Bを実施例1記載の硫酸ナトリウムの50部に替えて、公知のアルカリ刺激剤の1種であるアルミン酸ナトリウム水溶液の50部に替えた以外は全く同様にして得た比較例6の懸濁型グラウト剤組成物である。そしてKF−6のローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価、室温1ケ月養生後のホモゲル強度特性、サンドゲル強度特性試験をそれぞれ行って、その結果を表6に示した。
【0106】
比較例7〜9
表4に記載の比較例7〜9の配合表に従い、実施例1と同様な手順でそれぞれ1液性の懸濁型グラウト剤[(比較例7の懸濁型グラウト剤;KF−7)〜(比較例9の懸濁型グラウト剤;KF−9)]を調整した。なお、KF−7の懸濁型グラウト剤は消石灰成分を一切含まないスラグ系懸濁型グラウト剤の例を示す。またKF−8の比較懸濁型グラウト剤は低濃度に水砕スラグ−1と消石灰等−1とを含有してなる比較懸濁型グラウト剤組成物の例であり、またKF−9は高濃度な水砕スラグ−1と消石灰等−1とを含有してなる比較懸濁型グラウト剤組成物の例である。そしてKF−7〜9の各懸濁型グラウト剤のローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価、室温1ケ月養生後のホモゲル強度特性、サンドゲル強度特性試験をそれぞれ行って、その結果を表6に示した。
【0107】
【表4】
Figure 0004505066
表中記載の記号の説明
水砕スラグのS1とは水砕スラグ1を、同S2とは水砕スラグ2を、同S3とは水砕スラグ3をそれぞれ意味する。
また、消石灰のC1とは消石灰1を、C2とは消石灰2を、C3とは消石灰3を意味する。また更に分散助剤のE1とは分散助剤1を、E2とは分散助剤2を、E3とは分散助剤3を意味する。
また、硫Mgとは硫酸マグネシウム・12水塩の事であり、硫Alとは硫酸アルミニウム・12水塩の事である。
また、アルカリ刺激剤の硬Xとは3号水ガラス溶液を意味し、硬Yとは28%アルミン酸ナトリウム溶液をそれぞれ意味する。
【0108】
【表5】
Figure 0004505066
表中記載の記号の説明
Sは水砕スラグを、Cは消石灰を意味する。
また、硫Na無水物とは無水硫酸ナトリウム、硫Mg12水塩とは硫酸マグネシウム・12水塩、硫Al12水塩とは硫酸アルミニウム・12水塩の事である。
また、28%アルミン酸Naとはアルミン酸ナトリウムの28%溶液を意味する。
【0109】
【表6】
Figure 0004505066
字句の説明
水中自己崩壊;脱型後水中養生に於いて自己崩壊クラックの発生が観察され、規定寸法の試験体を得る事が出来なかった事を意味する。
調整不可 ;1液または2液型の懸濁型グラウト剤組成物の非流動化時間が早すぎて浸透作業が全く実施出来なかった事を意味する。
【0110】
【表7】
Figure 0004505066
【0111】
実施例11
アルミ−ポリエチレンラミネート袋に水砕スラグNo.2の300部と消石灰No.1の50部と無水硫酸ナトリウムの50部からなるドライミックス包装袋を作成し、温度40℃、湿度90%の雰囲気下に1ケ月間保存した後、分散助剤No.2の6部及び水道水を加えて強攪拌し、実質表4の実施例1と同組成からなる懸濁型グラウト剤(KG−11)を調整した。
得られたKG−11の懸濁型グラウト剤は諸物性および耐久性に関し、実施例1のKG−1と全く同様に結果を得た。
実施例12
実施例1に於いて分散助剤−2(E2)に替えて、同族系の重量平均分子量が18,000、慣性二乗半径が165オングストロームの物に替えた以外は全く同様にして得た1液型の懸濁型グラウト剤(KG−12)を得た。
得られたKG−12の懸濁型グラウト剤の初期粘度は18mPa・s/室温と低粘度で、高速浸透性は○、流動消失時間は6日であった。液ライフが6日と長い(固体状のホモゲル体生成に最低7日以上を要した事になる)のに反し、そのKG−12を用いた1日養生後のサンドゲル(I)強度が130N/cm2、5日養生後のサンドゲル(I)強度が440N/cm2、1日養生後のサンドゲル(II)強度が127N/cm2、5日養生後のサンドゲル(II)強度が430N/cm2、と高速固結性を示した。
【0112】
実施例13
表8に示す割合で、まず、分散助剤2の6部を水道水100部に溶解させた液を5L容器に採り、強攪拌下に水砕スラグ3の200部と消石灰1の50部を加え、3分間混合した。次いで総量が500mLとなる様に水道水を加えて均一な懸濁溶液からなるA液を得た。
一方、水道水の473部を2L容器に採り、重硫酸ナトリウム・1水塩の50部を加え、十分溶解してなる硬化剤液Bを調整した。
そのA液の全量500mLに攪拌下に硬化剤液Bの523部(約500mL)を一気に加えて1液性の懸濁型グラウト剤(KG−13)を調整し、そのローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価、室温20日養生後のホモゲル強度特性、サンドゲル強度特性試験を行って、その結果を表10に示した。
実施例13の懸濁型グラウト剤(KG−13)の2日室温養生後のサンドゲル(I)固結体は100N/cm2の圧縮負荷では破壊がみとめられず、135N/cm2と高い1軸圧縮強度を示した。
また、実施例13の懸濁型グラウト剤(KG−13)の5日室温養生後のサンドゲル(I)固結体は200N/cm2の圧縮負荷では破壊がみとめられず、223N/cm2と高い1軸圧縮強度を示した。
【0113】
実施例14〜18
表8に記載の実施例14〜実施例18の配合表に従い、実施例13と同様な手順でそれぞれ1液性の懸濁型グラウト剤[(実施例14の懸濁型グラウト剤;KG−14)〜(実施例18の懸濁型グラウト剤;KG−18)]を調整した。そしてローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価室温、20日養生後のホモゲル強度特性、サンドゲル強度特性試験をそれぞれ行って、その結果を表10に示した。
実施例14〜実施例18の懸濁型グラウト剤[(KG−14)〜(KG−18)の各2〜3日室温養生後のサンドゲル(I)固結体は、そのいずれも50N/cm2の圧縮負荷で破壊がみとめられず、それ以上の高い1軸圧縮強度特性を持つ高強度なサンドゲルであった。
なお、実施例13で得られたサンドゲル固結体に鼻を近づけると、イオウ化合物ガス状物質と推察されるわずかな異臭の発生がある事が認められた。それに対し、実施例16のサンドゲル固結体では、その固化養生過程ならびに完全固結体および強制的に破断した破断面などにからはいっさい異臭の発生が無かった。
【0114】
比較例10〜13
表8に記載の比較例10〜13の配合表に従い、実施例1と同様な手順でそれぞれ1液性の懸濁型グラウト剤[(比較例10の懸濁型グラウト剤;KF−10)〜(比較例13の懸濁型グラウト剤;KF−13)]を調整した。そしてローシェアー粘度特性、流動消失時間、高速浸透性に関わる評価、室温20日養生後のホモゲル強度特性、サンドゲル強度特性試験をそれぞれ行って、その結果を表10に示した。
なお、KF−10の懸濁型グラウト剤は、その硬化剤液Bを特に実施例13記載の重硫酸ナトリウムの50部に替えて95%最大粒子径(d95)が150μmのβ型半水石膏の50部とした以外は全く実施例13と同様にして得た1液型の懸濁型グラウト剤組成物である。
またKF−12の懸濁型グラウト剤は、その硬化剤液Bを特に実施例14記載の亜硫酸ナトリウムの50部に替えて、95%最大粒子径(d95)が135μmのα型半水石膏の50部とした以外は全く同様にして得た1液型の懸濁型グラウト剤組成物である。
またKF−13の懸濁型グラウト剤はその主液Aを特に、実施例1記載のスラグ2の300部に替えてやや粗い粒子径特性のスラグ1の300部、消石灰1の50部に替えて消石灰2の30部と生石灰2の20部、分散剤E2の6部に替えて分散剤E3の9部とした以外は全く同様にして得た1液型の懸濁型グラウト剤組成物である。
【0115】
【表8】
Figure 0004505066
表中記載の記号の説明
水砕スラグのS1とは水砕スラグ1を、同S2とは水砕スラグ2を、同S3とは水砕スラグ3をそれぞれ意味する。
また、消石灰のC1とは消石灰1を、C2とは消石灰2を、C3とは消石灰3を意味する。また更に分散助剤のE1とは分散助剤1を、E2とは分散助剤2を、E3とは分散助剤3を意味する。
【0116】
【表9】
Figure 0004505066
【0117】
【表10】
Figure 0004505066
【0118】
以下の実施例19〜実施例23、比較例13はそれぞれ大規模・高速注入試験の結果である。
実施例19
実施例1のKG−1懸濁型グラウト剤の約150Lを新たに調整し、1液とし、以下の模擬地盤−1に対して1ショット注入試験を実施した。
まず砂質土(I)を2m四方、高さ4mの試験槽に充填し水締めして後24時間放置して模擬地盤−1とした。一般に用いられているグラウトマシンを使用し、グラウト注入管をその先端吐出口から容器底面までの距離を100mmとした位置まで差込んで固定させ、その位置で25L/分の注入速度で1液から成るKG−1懸濁型グラウト剤を10分間注入した。その後30分放置後、注入管を290mm程度引き上げた位置で、調整後30分経過後のKG−1懸濁型グラウト剤を25L/分の速度で10分間注入した。また更に30分放置後、同様に注入管を290mm引き上げてその位置で調整後60分以上経過後のKG−1懸濁型グラウト剤を25L/分の注入速度で10分間注入作業を実施した。合計5ステップにわたる注入操作を実施し、KG−1懸濁型グラウト剤は調整から注入作業終了まで一貫して3時間以内で完了した。また5ステップ注入作業中に於いて、KG−1懸濁型グラウト剤は20mPa・sを超える著しい増粘や注入圧力の急上昇などの現象は一切観察されなかった。
【0119】
3日後に、模擬地盤−1上面の注入管の位置を中心とした半径30cmの円周上の各4点から試験槽内の鉛直方向に金属棒を差し入れた所、どの部位に於いても深さ約2.7mの地点で固結体と思われる塊に当たった。
注入から7日後に試験槽を解体し、未固結部分を水で洗い流して固結体を露出させた。その結果、浸透固結塊は概ね直径1m、高さ1.45mであった。また該固結体を鉛直方向及び水平方向の数箇所に切断し内部のサンドゲル構成状況を詳細に観察した結果、脈状固結体の生成は無く、全てが砂質土と混和してなる固結体であることが判明。
また、約5cm大のキュウビック塊を5点採取し、その密度を測定した結果、密度のバラツキはほとんど無かったことから均等に浸透固結してなる砂質土(I)サンドゲルが形成されている事が判明した。そして該サンドゲル(I)強度は最低値でも500N/cm2を超える高い圧縮破壊強度を持つものであった。
【0120】
また更に、砂質土(II)を用いて構成され、前記模擬地盤−1と全く同様に調整された模擬地盤−2に対しても、KG−1懸濁型グラウト剤を用いて前記したと同様に行った浸透注入試験の結果は、模擬地盤−1の結果と同じ内容の固結体を形成した。
【0121】
実施例20
表4の実施例3の配合表で示したと同様な主剤液100Lと硬化剤液100Lの2液からなるKG−20懸濁型グラウト剤;合計200L総量を新たに調整し、別々に送液し注入単管に到達する直前で合流混合させて1液化させ、該1液を注入単管先端部より吐出させる方法、すなわち1.5ショット方式で、実施例19と同様な模擬地盤−1に対して高速浸透注入固結実験を実施した。
まず一般に用いられているダブルパッカー式グラウト注入管にて、その先端吐出口から容器底面までの距離を100mmとした位置まで模擬地盤−Iに差込んで固定させ、その位置で25L/分の注入速度でKG−20懸濁型グラウト剤を10分間注入した。その後30分放置後、注入管を290mm程度引き上げた位置で、調整後30分経過後のKG−20懸濁型グラウト剤を25L/分の速度で10分間注入した。また更に30分放置後、同様に注入管を290mm引き上げてその位置で調整後60分以上経過後のKG−20懸濁型グラウト剤を25L/分の注入速度で10分間注入作業を実施した。合計5ステップにわたる注入操作を実施し、KG−20懸濁型グラウト剤は調整から注入作業終了まで一貫して3時間以内で完了した。KG−20懸濁型グラウト剤は50mPa・sを超える著しい増粘や注入圧力の急上昇などの現象は一切観察されなかった。
【0122】
1日後に、模擬地盤−1上面の注入管の位置を中心とした半径30cmの円周上の各4点から試験槽内の鉛直方向に金属棒を差し入れた所、どの部位に於いても深さ約2.7mの地点で固結体と思われる塊に当たった。
注入から7日後に試験槽を解体し、未固結部分を水で洗い流して固結体を露出させた。その結果、浸透固結塊は概ね直径1m、高さ1.45mであった。また該固結体を鉛直方向及び水平方向の数箇所に切断し内部のサンドゲル構成状況を詳細に観察した結果、脈状固結体の生成は無く、全てが砂質土と混和してなる固結体であることが判明。
また、約5cm大のキュウビック塊を5点採取し、その密度を測定した結果、密度のバラツキはほとんど無かったことから均等に浸透固結してなる砂質土(Iサンドゲルが形成されている事が判明した。
【0123】
また更に、砂質土(II)を用いて構成された前記模擬地盤−1と全く同様な模擬地盤−2に対しても前記同様に行った浸透注入試験の結果は、模擬地盤−1の結果とほとんど同じであった。
【0124】
実施例21
表4の実施例7である主剤液100Lと硬化剤液100Lの2液からなるKG−21懸濁型グラウト剤;合計200L総量を新たに調整し、別々に送液し注入二重管に直結させ吐出口直前で合流混合させて1液化させ、該1液を先端吐出孔より吐出させる方法、すなわち2ショット方式で、実施例19と同様な模擬地盤−1に対して高速浸透注入固結実験を実施した。
まず一般に用いられているダブルパッカー式グラウト注入管にて、その先端吐出口から容器底面までの距離を100mmとした位置まで模擬地盤−Iに差込んで固定させ、その位置で25L/分の注入速度でKG−21懸濁型グラウト剤を10分間注入した。その後20分放置後、注入管を290mm程度引き上げた位置で、調整後20分経過後のKG−21懸濁型グラウト剤を25L/分の速度で10分間注入した。また更に20分放置後、同様に注入管を290mm引き上げてその位置で調整後40分以上経過後のKG−21懸濁型グラウト剤を25L/分の注入速度で10分間注入作業を実施した。合計5ステップにわたる注入操作を実施し、KG−21懸濁型グラウト剤は調整から注入作業終了まで一貫して1.5時間以内で完了した。なお、5ステップに渡る注入作業中、注入圧力の急上昇などの現象は一切観察されなかった。
【0125】
1日後に、模擬地盤−1上面の注入管の位置を中心とした半径30cmの円周上の各4点から試験槽内の鉛直方向に金属棒を差し入れた所、どの部位に於いても深さ約2.7mの地点で固結体と思われる塊に当たった。
注入から7日後に試験槽を解体し、未固結部分を水で洗い流して固結体を露出させた。その結果、浸透固結塊は概ね直径1m、高さ1.45mであった。また該固結体を鉛直方向及び水平方向の数箇所に切断し内部のサンドゲル構成状況を詳細に観察した結果、脈状固結体の生成は無く、全てが砂質土と混和してなる固結体であることが判明。
また、約5cm大のキュウビック塊を5点採取し、その密度を測定した結果、密度のバラツキはほとんど無かったことから均等に浸透固結してなる砂質土(I)サンドゲルが形成されている事が判明した。そして該サンドゲル(I)強度は最低値でも490N/cm2を超える高い圧縮破壊強度を持つものであった。
【0126】
また更に、砂質土(II)を用いて構成された前記模擬地盤−1と全く同様な模擬地盤−2に対しても前記同様に行った浸透注入試験の結果は、模擬地盤−1の結果とほとんど同じであった。
【0127】
実施例22
表4の実施例1と同様な組成からなる主剤液100Lと硬化剤液100Lの2液からなるKG−22懸濁型グラウト剤;合計200L総量を新たに調整し、別々に送液し注入単管に到達する直前で合流混合させて1液化させ、該1液を注入単管先端部より吐出させる方法、すなわち1.5ショット方式で、以下の模擬地盤−αに対して高圧ジェット式注入混合方式で注入固結実験を実施した。
その模擬地盤−αとしては、関東ローム赤土と砂質土(I)とを容積比で1:2の比率にドライブレンドし、2m×5m、高さ4mの試験槽に充填し、水締めして後24時間以上放置してなるシルト−砂質土模擬地盤である。
高圧ジェット式注入実験はまず高圧ジェット式注入管を容器底面から500mmの位置まで下ろし、KG−22懸濁型グラウト剤を水平角360゜回転下に超高圧(約5kN/cm2)吐出させながら、高圧ジェット式注入管を深さ2.5mの位置まで徐々に引き上げることで、該模擬地盤−α中に1.5mφ×1m範囲の懸濁型グラウト剤と該シルト砂質土地盤との一体混合層を儲けることにある。
注入速度は15L/分とし、上記注入作業を直線上の3箇所に施工したが、作業中は注入圧力の急上昇は全く観察されなかった。
【0128】
数日後に、模擬地盤−α上面の3箇所それぞれの注入点の真中を中心とした半径30cmの円周上の各4点から試験槽内の鉛直方向に金属棒を差し入れた所、どの部位に於いても深さ約2.5mの地点で固結体と思われる塊に当たった。
7日後に試験槽を解体し、未固結部分を水で洗い流して固結体を露出させたところ、高圧ジェット式注入固結によって生じた強固な連続地中杭ないし連続地中壁が構築されており、その塊は概ね400N/cm2を超える圧縮強度特性を持つサンドゲル固結体を成していた。
また更に、関東ローム赤土と砂質土(II)とを容積比で1:2の比率にドライブレンドしたものを用いて構成された模擬地盤−βに対して前記同様に行った高圧ジェット式注入試験の結果も、前記模擬地盤−αの結果と全く同様であった。
【0129】
実施例23
表4の実施例3である主剤液200Lと硬化剤液200Lを混合してなる1液型のKG−23懸濁型グラウト剤;合計400L総量を新たに調整し、以下の模擬地盤−1に対して超高圧浸透注入工法で注入固結実験を実施した。
その模擬地盤−1としては、砂質土(I)を2m×5m、高さ4mの試験槽に充填し、水締めして後24時間以上放置してなる模擬地盤である。
その模擬地盤−1にグラウト用の注入ミキシング管を底面から100mmの位置まで差込み、該注入ミキシング管の先端附近に設けられた管側面の複数個の吐出孔からKG−23懸濁型グラウト剤を圧力3kN/cm2の超高圧下に、かつ50L/分の吐出速度にて吐出させた。
なお、吐出応力で吐出孔部が自由回転する構造となっており、管周辺の360゜方向に均一に懸濁型グラウト剤を吐出させる様にした。
更に、吐出開始後ゆっくりと該注入ミキシング管を引上げて深さ2.5mの位置まで引き上げて同注入操作を停止させた。
施工数日後に、模擬地盤−1上面の注入点の真中を中心とした半径100cmの円周上の各4点から試験槽内の鉛直方向に金属棒を差し入れた所、どの部位に於いても深さ約2.5mの地点で固結体と思われる塊に当たった。
【0130】
7日後に試験槽を解体し、未固結部分を水で洗い流して固結体を露出させたところ、浸透固結塊は半径125〜150cmと長く、砂質土(I)と懸濁型グラウト剤がよく混合一体化固結された高強度なサンドゲル塊からなる地中杭を形成している事が観察された。
【0131】
比較例13
比較例1のKF−1懸濁型グラウト剤の約150Lを新たに調整し、1液とし、実施例19で示したと同様な構成及び注入方法で、模擬地盤−1に対して1ショット注入試験を実施した。
その結果、1ステップ目の注入作業で注入開始後すぐに注入圧が大きく上下する挙動が観察され、開始3〜4分後には注入圧が80N/cm2を超えた為、その時点での注入を停止させた。再度ステップアップして同様に注入を再開したが、前記結果を再現するだけだった。
3ステップ目では注入速度を実用性を度外視した領域、すなわち2〜3L/分と低下させたが注入量20Lを超えると注入圧力が増す傾向が顕著に観察された。
従って比較例1の懸濁型グラウト剤は高速浸透性に著しく欠ける組成物であることが判明した。
【0132】
【発明の効果】
実施例1〜10(表4〜表6)と実施例11〜18(表8〜表10)及び実施例19〜23で明らかな様に、本発明の懸濁型グラウト剤は流動消失時間が1日以上と長い特性を持つ一方、砂質土に浸透注入されると急速に固結する作用効果が見られる。上記特性を持つスラグ系懸濁型グラウト剤組成物はこれまでに全く知られていない。
また実施例中で明らかな様に、本発明の懸濁型グラウト剤は初期粘度が高速浸透性を確保する上で欠かせない低粘度を長時間保持している、その結果、10〜30L/分と高速浸透注入によっても例示した標準砂並みの細砂質モデル地盤に対しても1〜2ショット注入工法または高圧ジェット注入工法のいずれの工法でも問題無く施工出来、理想的な浸透固結塊を地中に形成できる作用効果を持つことがあきらかである。
【0133】
特に、高フミン質有機酸を含有する砂質土地盤及び/またはカルシウムイオン吸着交換能が大きい硬化させずらい砂質土地盤を、本発明の懸濁型グラウト剤は注入後3日以内と短時間内に確実に50N/cm2以上のサンドゲル強度発現を達成できる新規な懸濁型グラウト剤組成物である。
【0134】
また表7の耐久性評価結果に示す様に、本発明の懸濁型グラウト剤を用いた固結させずらい砂質土との一体化固結体、すなわち砂質土−サンドゲル固結体は12ケ月間の温水浸漬劣化試験でもむしろ強度が上向きであり、問題となる様な著しい強度低下は認められない事から、本発明の懸濁型グラウト剤は耐久性に極めて優れる事が明らかである。
【0135】
また一方、比較例1〜比較例4の懸濁型グラウト剤は本発明の懸濁型グラウト剤と同様、水砕スラグ−消石灰−分散助剤−硫酸塩−水の5成分からなるが、そのいずれも本発明の構成材料要件に関わる条件範囲を超えた組成物である為、発明の目的を達成できていない。特に比較例1〜比較例4の懸濁型グラウト剤は、高速浸透性の評価結果が×、サンドゲル強度特性の結果が目詰調整不可となる点で不適であった。
【0136】
比較例1や比較例2で明らかな様に、95重量%粒子径が最大16μm以上でかつ比表面積が0.6m2/g以下の範囲にある水砕スラグを使用してなる懸濁型グラウト剤は高速浸透性が欠ける事が明らかである。また比較例3や比較例4及び比較例12等で明らかな様に、95重量%粒子径が粒子径が32μm以上の消石灰及び/または95重量%粒子径が粒子径が45.2μm以上の生石灰を用いた懸濁型グラウト剤は同様に高速浸透性に欠けた。
また実施例と比較例の対比からは、本発明の目的の一つにある低粘度な懸濁型グラウト剤を提供する目的に照し、その目的を達成する上には、分散助剤に関わる構成要件としては、0.001〜1重量%と希薄な水溶液中に於ける慣性二乗半径が150オングストローム以上にあるセメント減水剤から選ばれた1種または2種以上とする必要があきらかである。すなわち、本発明の懸濁型グラウト剤の初期粘度を、20mPa・s以下と低い粘性を持つ懸濁液とする上で、分散助剤に関わる必須要件として、0.001〜1重量%と希薄な水溶液中に於ける慣性二乗半径が低くとも150オングストローム以上とする事は欠かせない。
【0137】
比較例5、比較例6で明らかな様に、公知のアルカリ刺激剤を含むスラグ−消石灰併用系からなる懸濁型グラウト剤は、その液ライフが短く、1液型懸濁型グラウト剤となりにくい、また初期粘度を低くする事に難があることも明らかである。
また比較例7や比較例9では本発明の懸濁型グラウト剤に必須な構成成分の内、一つでも欠けると目的が達成されない事が明らかである。
また、比較例8や比較例9で明らかな様に、本発明の範囲を著しく欠く場合は発明の目的が達成されない。
また、比較例10や比較例11で明らかな様に、スラグ−消石灰−半水石膏等からなる懸濁型グラウト剤では液ライフが短すぎかつ高速浸透注入作業性が欠ける。
すなわち、本発明の目的を達成する上で、本発明の懸濁型グラウト剤の必須構成成分の一つである水溶性硫酸塩をグラウト剤1m3当たり1〜100kg含有使用する要件は欠かせない。しかもその代替物質として公知のアルカリ刺激剤成分または水硬化性石膏成分とする事では目的が何等達成出来ない事が明らか。
【0138】
本発明の懸濁型グラウト剤は、以下の(A)〜(F)の全てを満たす点でその効果が特に顕著である。
(A)高くともB型粘度計による60回転・ローシェアー粘度が20mPa・s以下/20℃と低粘度溶液であり、かつ少なくとも調製後24時間以上それ自体安定であり著しい増粘現象が長時間抑制された、いわゆる注入現場に於ける施工管理が簡単でかつ懸濁液ライフが24時間以上と長い懸濁型グラウト剤。
(B)1kg当たりの改良対象地盤から抽出されたフミン質有機酸量として、その全量を中和するに要した水酸化ナトリウムのミリ当量で表した含有濃度で0〜100ミリ当量の範囲にある細砂地盤及び/または礫質地盤、及び/または、100g当たり0〜50ミリ当量のカルシウム陽イオン吸着交換能を有する細砂地盤及び/または礫質地盤を、懸濁型グラウト剤の懸濁液ライフに何等関係無く、長くとも浸透注入後1〜3日以内には該地盤のサンドゲル1軸圧縮強度を低くとも50N/cm2以上と急速固結させることが可能な懸濁型グラウト剤。
(C)10〜50リットル/分の経済的な高速浸透注入作業性を発揮する懸濁型グラウト剤。
(D)1ショット方式〜2ショット方式の任意な地盤注入方式で高速高浸透注入作業が実施可能であり、その1ケ所当たりのグラウチング作業で、少なくともグラウト注入管に対し90゜の垂直または鉛直方向に低くとも35cm以上の半径で確実に地盤改良を可能ならしめる懸濁型グラウト剤。
(E)固結体が長期間安定した強度特性を示す懸濁型グラウト剤。
(F)環境負荷の少ない懸濁型グラウト剤。
【0139】
すなわち、本発明の懸濁型グラウト剤の作用効果として総論すると、フミン酸で代表されるフミン質有機酸及び/または陽イオン吸着交換能を有する粘土鉱物を多く含有し、地震時に液状化災害、滑り破壊災害、不同沈下災害等の重大災害の発生が予想される砂質土地盤及び/または礫質地盤への浸透注入工法による地盤改良現場に於いて、高速高浸透作業性が確保できる上に短時間内に高強度固結性を示す事から、環境負荷が極限まで抑制出来、改良総コストが安くかつ高信頼性の地盤改良を可能にする事が挙げられるる。
併せて、耐久性に優れた浸透注入固結地盤改良工法ならびに連続地中杭または連続地中壁の構築方法等を安価に提供出来る効果を持つ。

Claims (10)

  1. 粒径加積曲線上に於ける95重量%粒子径が15μm以下でかつ比表面積が0.85〜3m2/gの範囲にある水砕スラグと、粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある消石灰及び/または粒径加積曲線上に於ける95重量%粒子径が30μm以下でかつ比表面積が1〜50m2/gの範囲にある生石灰と、0.001〜1重量%水溶液から求められた慣性二乗半径が150オングストローム以上の有機高分子系分散助剤と、重硫酸塩、硫酸アルカリ金属塩、亜硫酸塩、重亜硫酸塩、過硫酸塩、硫酸マグネシウム、硫酸アルミニウム、チオ硫酸塩、みょうばんからなる群から選ばれた少なくとも1種または2種以上からなる水溶性硫酸塩及び水とを含有し、水/(消石灰+生石灰+水砕スラグ)の重量比が1〜6の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.0005〜0.05の範囲、グラウト総量1m3中に水溶性硫酸塩を1〜100kgの範囲でそれぞれ含有させた懸濁型グラウト剤。
  2. 硫酸アルカリ金属塩:過硫酸塩で表される重量比率で(1:99)〜(99:1)の範囲の水溶性硫酸塩を使用する事を特徴とする請求項1記載の懸濁型グラウト剤。
  3. 水溶性硫酸塩として硫酸ナトリウムを単独使用する事を特徴とする請求項1記載の懸濁型グラウト剤。
  4. (消石灰+生石灰)/水砕スラグの重量比が0.01〜3の範囲にある事を特徴とする請求項1〜のいずれかに記載の懸濁型グラウト剤。
  5. 水砕スラグが(CaO+MgO+Al23)/SiO2の重量比で表される塩基度で1.7〜2.1の範囲にある高炉水砕スラグである事を特徴とする請求項1〜のいずれかに記載の懸濁型グラウト剤。
  6. 水/水砕スラグの重量比で0.5〜5の範囲、(消石灰+生石灰)/水砕スラグの重量比で0.01〜3の範囲、分散助剤/(消石灰+生石灰+水砕スラグ)の重量比が0.005〜0.02の範囲とした懸濁水溶液を主剤液Aとし、水溶性硫酸塩の2〜10重量%含有水溶液を硬化剤液Bとし、その主剤液Aと硬化剤液Bの2液混合型で使用する事を特徴とする請求項1〜のいずれかに記載の懸濁型グラウト剤。
  7. 水溶性硫酸塩が硫酸ナトリウム、硫酸ナトリウムカリウム、硫酸カリウム、過硫酸ナトリウム、過硫酸カリウムからなる群から選ばれた1種または2種以上である事を特徴とする請求項に記載の懸濁型グラウト剤。
  8. 主剤液Aと硬化剤液Bの2液を地盤注入吐出する直前で、主剤液A:硬化剤液Bで表される容量比率で(1:0.95)〜(0.95:1)の範囲で混和させてなる事を特徴とする請求項またはに記載の懸濁型グラウト剤。
  9. 1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有の細砂地盤及び/または礫質地盤、及び/または、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有する細砂地盤及び/または礫質地盤に対し、請求項1〜のいずれかに記載の懸濁型グラウト剤を、グラウト注入管を介して、1〜2ショット方式で加圧下に浸透固結させる事を特徴とする地盤改良方法。
  10. 1kgの改良対象地盤から抽出されたフミン酸で代表されるフミン質有機酸量として、その全量を中和するのに要した水酸化ナトリウムのミリ当量で表した含有濃度で100ミリ当量未満の高有機酸含有のシルト細砂地盤及び/またはシルト礫質地盤、及び/または、100gの改良対象地盤中50ミリ当量未満のカルシウム陽イオン吸着交換能を有するシルト細砂地盤及び/またはシルト礫質地盤に対し、請求項1〜のいずれかに記載の懸濁型グラウト剤を、地中深く下ろされたグラウト用の注入ミキシング管を介し、該注入ミキシング管の先端附近に設けられた管側面の複数個の吐出孔から超高圧吐出し、その吐出応力で吐出孔部を自由回転させ、管周辺の360゜鉛直方向に懸濁型グラウト剤を吐出し、更に吐出開始後該注入ミキシング管を徐々に引上げて同操作を継続または繰返すことにより、注入管周辺の土砂と請求項1〜のいずれかに記載の懸濁型グラウト剤とを一体混合させて固結させる事を特徴とする連続地中杭または連続地中壁の構築方法。
JP29213198A 1998-02-16 1998-10-14 懸濁型グラウト剤 Expired - Lifetime JP4505066B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29213198A JP4505066B2 (ja) 1998-02-16 1998-10-14 懸濁型グラウト剤

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-32985 1998-02-16
JP3298598 1998-02-16
JP29213198A JP4505066B2 (ja) 1998-02-16 1998-10-14 懸濁型グラウト剤

Publications (2)

Publication Number Publication Date
JPH11293245A JPH11293245A (ja) 1999-10-26
JP4505066B2 true JP4505066B2 (ja) 2010-07-14

Family

ID=26371611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29213198A Expired - Lifetime JP4505066B2 (ja) 1998-02-16 1998-10-14 懸濁型グラウト剤

Country Status (1)

Country Link
JP (1) JP4505066B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618275B2 (ja) * 2000-03-27 2005-02-09 有限会社シモダ技術研究所 グラウト注入工法およびグラウト注入材
JP5153987B2 (ja) * 2003-09-25 2013-02-27 三井化学産資株式会社 懸濁型地盤改良材の調製法
JP2007197559A (ja) * 2006-01-26 2007-08-09 Mitsui Kagaku Sanshi Kk 懸濁型地盤改良材
KR101228815B1 (ko) * 2012-06-21 2013-01-31 국립대학법인 울산과학기술대학교 산학협력단 고로 슬래그를 포함하는 구조용 바인더 및 그것을 이용한 경화체 제조 방법
JP6398871B2 (ja) * 2015-05-26 2018-10-03 信越化学工業株式会社 水硬性組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555719A (en) * 1978-10-20 1980-04-23 Nippon Steel Corp Improving organic soft soil with iron slag
JPH07166163A (ja) * 1993-12-14 1995-06-27 Kyokado Eng Co Ltd 地盤注入用薬液
JPH08319146A (ja) * 1995-05-25 1996-12-03 Nippon Kayaku Co Ltd 液状組成物、及びこれを用いた高強度無機質材料の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530658B2 (ja) * 1987-07-20 1996-09-04 電気化学工業株式会社 アルカリ水硬性地盤注入材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555719A (en) * 1978-10-20 1980-04-23 Nippon Steel Corp Improving organic soft soil with iron slag
JPH07166163A (ja) * 1993-12-14 1995-06-27 Kyokado Eng Co Ltd 地盤注入用薬液
JPH08319146A (ja) * 1995-05-25 1996-12-03 Nippon Kayaku Co Ltd 液状組成物、及びこれを用いた高強度無機質材料の製造方法

Also Published As

Publication number Publication date
JPH11293245A (ja) 1999-10-26

Similar Documents

Publication Publication Date Title
CN109369079A (zh) 一种以煤矸石为主要原料制备碱激发煤矸石混凝土的方法
CN105367010A (zh) 一种道路用固化剂及基层固化方法
CN102344813A (zh) 一种用于固化海相软弱土的固化剂
CN101198563A (zh) 将冻结和解冻抗性提供给粘结性组合物
CN104609814A (zh) 一种大比重低稠度抗水分散同步注浆材料
CN102518126A (zh) 一种水泥土搅拌桩的制备方法
CN103253921A (zh) 一种抗氯盐侵蚀的水泥混凝土及其制备方法
CN102093898A (zh) 复合土壤固化剂
CN110218037A (zh) 一种湿排灰基充填材料及其制备方法和应用
CN103965918A (zh) 一种水淬锰渣软土固化剂
JPS6197381A (ja) 注入可能な硬化性微細グラウト
WO2020015509A1 (zh) 一种注浆料制备方法
CAI et al. Physical and mechanical performance of quicklime-activated GGBS stabilized Hong Kong marine sediment at high water content
JP4505066B2 (ja) 懸濁型グラウト剤
TWI434818B (zh) Manufacture of artificial stone
JP4505065B2 (ja) 地盤固結改良剤
JP4505063B2 (ja) 懸濁型グラウト剤とその地盤改良方法
CN116143468B (zh) 一种预拌流态固化盐渍土及其制备方法
JPH10168452A (ja) 水ガラス系懸濁型グラウト剤とそれを用いた地盤注入固 結法
JPH10168451A (ja) 懸濁型グラウト剤とそれを用いた地盤注入固結法
JP4505064B2 (ja) 地盤固結改良剤
CN116947406A (zh) 一种用于搅拌桩地基加固工程的复合型浆材
JPH11349942A (ja) 地盤固結改良剤ならびに懸濁型グラウト剤とそれを用いた地盤改良方法
JPH04221116A (ja) 地盤注入工法
CN101255043A (zh) 一种公路工程填土的改性剂配方

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050830

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term