JP4491947B2 - 正極活物質の製造方法及び非水電解質電池の製造方法 - Google Patents
正極活物質の製造方法及び非水電解質電池の製造方法 Download PDFInfo
- Publication number
- JP4491947B2 JP4491947B2 JP2000305352A JP2000305352A JP4491947B2 JP 4491947 B2 JP4491947 B2 JP 4491947B2 JP 2000305352 A JP2000305352 A JP 2000305352A JP 2000305352 A JP2000305352 A JP 2000305352A JP 4491947 B2 JP4491947 B2 JP 4491947B2
- Authority
- JP
- Japan
- Prior art keywords
- lifepo
- positive electrode
- electrode active
- active material
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の属する技術分野】
本発明は、リチウムを可逆的にドープ及び脱ドープ可能な正極活物質の製造方法及びこの正極活物質を用いた非水電解質電池の製造方法に関する。
【0002】
【従来の技術】
近年、種々の電子機器の飛躍的進歩とともに、長時間便利に、かつ経済的に使用できる電源として、再充電可能な二次電池の研究が進められている。代表的な二次電池としては、鉛蓄電池、アルカリ蓄電池、非水電解質二次電池等が知られている。
【0003】
上記のような二次電池の中でも特に、非水電解質二次電池であるリチウムイオン二次電池は、高出力、高エネルギー密度などの利点を有している。リチウムイオン二次電池は、少なくともリチウムイオンを可逆的に脱挿入可能な活物質を有する正極と負極と、非水電解質とから構成される。
【0004】
ここで、負極活物質としては、一般に金属リチウム、Li−Al合金等のリチウム合金、ポリアセチレンやポリピロール等のリチウムをドープした導電性高分子、リチウムイオンを結晶中に取り込んだ層間化合物や炭素材料等が用いられている。また、電解液としては、非プロトン性有機溶媒にリチウム塩を溶解させた溶液が用いられている。
【0005】
一方、正極活物質には、金属酸化物、金属硫化物、或いはポリマーが用いられ、例えばTiS2、MoS2、NbSe2、V2O5等が知られている。これらの材料を用いた非水電解質二次電池の放電反応は、負極においてリチウムイオンが電解液中に溶出し、正極では正極活物質の層間にリチウムイオンがインターカレーションすることによって進行する。逆に、充電する場合には、上記の逆反応が進行し、正極においては、リチウムがインターカレーションする。すなわち、負極からのリチウムイオンが正極活物質に出入りする反応を繰り返すことによって充放電を繰り返すことができる。
【0006】
現在、リチウムイオン二次電池の正極活物質としては、高エネルギー密度、高電圧を有すること等から、LiCoO2、LiNiO2、LiMn2O4等が用いられている。しかし、これらの正極活物質は、クラーク数の低い金属元素をその組成中に有しているため、コストが高くつく他、安定供給が難しいという問題がある。また、これらの正極活物質は、毒性も比較的高く、環境に与える影響も大きいことから、これらに代わる新規正極活物質が求められている。
【0007】
これに対し、オリビン構造を有するLiFePO4をリチウムイオン二次電池の正極活物質として用いることが提案されている。LiFePO4は、体積密度が3.6g/cm3と大きく、3.4Vの高電位を発生し、理論容量も170mAh/gと大きい。また、LiFePO4は、初期状態で、電気化学的に脱ドープ可能なLiを、Fe原子1個当たりに1個含んでいるので、リチウムイオン電池の正極活物質として有望な材料である。しかもLiFePO4は、資源的に豊富で安価な材料である鉄をその組成中に有しているため、上述のLiCoO2、LiNiO2、LiMn2O4等と比較して低コストであり、また、毒性も低いため環境に与える影響も小さい。
【0008】
しかしながら、LiFePO4の電子伝導性は低いため、LiFePO4を正極活物質として用いた場合、電池の内部抵抗が増大することがある。その結果、電池の内部抵抗の増大に起因して電池の閉回路時の分極電位が大きくなり、電池容量が減少してしまうという問題がある。
【0009】
そのため、LiFePO4を正極活物質として用いる場合には、電子伝導性を補うために導電剤を混合することが必要となり、導電剤との物理的接触を多くするためにLiFePO4粒子の比表面積が大きいこと、すなわちLiFePO4の粒径が小さいことが好ましい。
【0010】
【発明が解決しようとする課題】
しかしながら、LiFePO4を製造するに際しては、LiFePO4粒子の焼成時における粒子成長が著しいという問題がある。すなわち、LiFePO4の粒径が大きくなってしまうため、正極活物質として用いた場合に導電材との物理的接触を有するための十分な比表面積を得ることが難しいという問題がある。
【0011】
したがって、本発明は、上述した従来の実情に鑑みて創案されたものであり、電子伝導性に優れ、高容量を有する正極活物質の製造方法及び非水電解質二次電池の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る正極活物質の製造方法は、一般式LixFePO4(ただし、0<x≦1である。)で表される化合物と炭素材料との複合体を正極活物質とした正極活物質の製造方法であって、一般式LixFePO4(ただし、0<x≦1である。)で表される化合物の合成原料を混合する混合工程と、混合工程により得られた混合物にミリングを施すミリング工程と、ミリング工程でミリングを施した混合物を焼成する焼成工程とを備え、焼成工程前に一次粒子径が10.2μm以下である炭素材料を添加することを特徴とするものである。
【0013】
上述した正極活物質の製造方法では、一般式LixFePO4で表される化合物の合成原料に焼成前の何れかの時点で炭素材料を添加して焼成を行う。したがって、本発明による正極活物質の製造方法では、オリビン構造を有し、一般式LixFePO4(式中、0<x≦1.0である。)で表される化合物と炭素材料との複合体、即ちLiFePO4炭素複合体として製造される。
【0014】
そして、添加する炭素材料の一時粒径を10.2μm以下と規定するものである。ここで、一時粒径が10.2μm以下である炭素材料は、一般式LixFePO4で表される化合物の合成原料に添加して焼成を行った場合、上記化合物の粒子の成長を抑制する効果を有する。したがって、上記化合物LiFePO4の合成原料に一時粒径が10.2μm以下である炭素材料を添加して焼成することにより合成されたLiFePO4炭素複合体におけるLiFePO4の粒子は、焼成中に大きく成長することが抑制されている。すなわちLiFePO4の合成原料に一時粒径が10.2μm以下である炭素材料を添加して焼成することにより合成されたLiFePO4炭素複合体におけるLiFePO4粒子は、粒径が小さいものとされる。これにより、LiFePO4の重量当たりの比表面積は、一時粒径が10.2μm以下である炭素材料を添加せずに焼成を行って合成したLiFePO4粒子の比表面積に比べて大きいものとされる。
【0015】
ここで、LiFePO4粒子の比表面積が大きいということは、すなわちLiFePO4炭素複合体の比表面積が大きいということであり、これによりLiFePO4炭素複合体は、正極活物質に混合して用いられる導電剤との物理的接触を十分に得ることができるため、優れた電子伝導性を有するものとされる。また、電子伝導性が向上することにより、LiFePO4本来の容量が十分に引き出されるため、正極活物質として用いた場合に、高容量を有する非水電解液電池が実現される。
【0016】
また、本発明に係る非水電解質電池の製造方法は、正極活物質を有する正極と、負極活物質を有する負極と、非水電解質とを備える非水電解質電池の製造方法であって、一般式LixFePO4(ただし、0<x≦1である。)で表される化合物の合成原料を混合する混合工程と、混合工程により得られた混合物にミリングを施すミリング工程と、ミリング工程でミリングを施した混合物を焼成する焼成工程とを経て、焼成工程前に一次粒子径が10.2μm以下である炭素材料を添加することによって正極活物質を製造することを特徴とするものである。
【0017】
上述した非水電解質二次電池の製造方法では、正極活物質を作製する際に、一般式LixFePO4で表される化合物の合成原料に焼成前の何れかの時点で炭素材料を添加して焼成を行う。したがって、本発明による非水電解質二次電池の製造方法では、正極活物質は、オリビン構造を有し、一般式LixFePO4(式中、0<x≦1.0である。)で表される化合物と炭素材料との複合体、即ちLiFePO4炭素複合体として製造される。
【0018】
そして、添加する炭素材料の一時粒径を10.2μm以下と規定するものである。ここで、一時粒径が10.2μm以下である炭素材料は、一般式LixFePO4で表される化合物の合成原料に添加して焼成を行った場合、上記化合物の粒子の成長を抑制する効果を有する。したがって、上記化合物LiFePO4の合成原料に一時粒径が10.2μm以下である炭素材料を添加して焼成することにより合成されたLiFePO4炭素複合体におけるLiFePO4の粒子は、焼成中に大きく成長することが抑制されている。すなわちLiFePO4の合成原料に一時粒径が10.2μm以下である炭素材料を添加して焼成することにより合成されたLiFePO4炭素複合体におけるLiFePO4粒子は、粒径が小さいものとされる。これにより、LiFePO4の重量当たりの比表面積は、一時粒径が10.2μm以下である炭素材料を添加せずに焼成を行って合成したLiFePO4粒子の比表面積に比べて大きいものとされる。
【0019】
ここで、LiFePO4粒子の比表面積が大きいということは、すなわちLiFePO4炭素複合体の比表面積が大きいということであり、これによりLiFePO4炭素複合体は、正極活物質に混合して用いられる導電剤との物理的接触を十分に得ることができるため、優れた電子伝導性を有するものとされる。そして、電子伝導性が向上することにより、LiFePO4本来の容量が十分に引き出されるため、高容量を有する非水電解液電池が実現される。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0021】
本発明を適用して製造される非水電解液電池1は、図1に示すように、負極2と、負極2を収容する負極缶3と、正極4と、正極4を収容する正極缶5と、正極4と負極2との間に配されたセパレータ6と、絶縁ガスケット7とを備え、負極缶3及び正極缶5内に非水電解液が充填されてなる。
【0022】
負極2は、負極活物質となる例えば金属リチウム箔からなる。また、負極活物質として、リチウムをドープ、脱ドープ可能な材料を用いる場合には、負極2は、負極集電体上に、上記負極活物質を含有する負極活物質層が形成されてなる。負極集電体としては、例えばニッケル箔等が用いられる。
【0023】
リチウムをドープ、脱ドープ可能な負極活物質としては、金属リチウム、リチウム合金、リチウムがドープされた導電性高分子、炭素材料や金属酸化物などの層状化合物を用いることができる。
【0024】
負極活物質層に含有される結着剤としては、この種の非水電解液電池において負極活物質層の結着剤として通常用いられている公知の樹脂材料等を用いることができる。
【0025】
負極缶3は、負極2を収容するものであり、また、非水電解液電池1の外部負極となる。
【0026】
正極4は、例えばアルミニウム箔等からなる正極集電体上に、リチウムを電気化学的に放出することが可能であり、且つ吸蔵することも可逆的に可能である正極活物質を含有する正極活物質層が形成されてなる。
【0027】
正極活物質としては、詳細な製造方法は後述するが、オリビン構造を有し、一般式LixFePO4(式中、0<x≦1.0である。)で表される化合物と炭素材料との複合体、即ちLiFePO4炭素複合体を用いる。
【0028】
以下、LixFePO4としてLiFePO4を用い、これと炭素材料とかならる複合体を正極活物質として用いる場合について説明する。
【0029】
LiFePO4炭素複合体は、LiFePO4粒子の表面に、当該LiFePO4粒子の粒径に比べて極めて小とされる粒径を有する炭素材料の粒子が多数個、付着してなるものである。
【0030】
本発明において、LiFePO4炭素複合体は、後述するようにLiFePO4の合成原料に一時粒径が10.2μm以下である炭素材料を添加して焼成することにより製造されている。ここで、一時粒径が10.2μm以下である炭素材料は、LiFePO4の合成原料に添加して焼成を行った場合、LiFePO4粒子の成長を抑制する効果を有する。したがって、LiFePO4の合成原料に一時粒径が10.2μm以下である炭素材料を添加して焼成することにより合成されたLiFePO4炭素複合体におけるLiFePO4の粒子は、焼成中に大きく成長することが抑制されている。すなわちLiFePO4の合成原料に一時粒径が10.2μm以下である炭素材料を添加して焼成することにより合成されたLiFePO4炭素複合体におけるLiFePO4粒子は、粒径が小さいものとされている。これにより、LiFePO4の重量当たりの比表面積は、一時粒径が10.2μm以下である炭素材料を添加せずに焼成を行って合成したLiFePO4粒子の比表面積に比べて大きいものとされている。
【0031】
ここで、LiFePO4粒子の比表面積が大きいということは、すなわちLiFePO4炭素複合体の比表面積が大きいということであり、これによりLiFePO4炭素複合体は、正極活物質に混合して用いられる導電剤との物理的接触を十分に得ることができるため、優れた電子伝導性を有するものとされている。また、電子伝導性が向上することにより、LiFePO4本来の容量が十分に引き出されるため、正極活物質として用いた場合に、高容量を有する非水電解液電池1を実現できる。
【0032】
また、炭素材料は導電性を有するので、炭素材料とLiFePO4とから構成されるLiFePO4炭素複合体は、LiFePO4と比較するとLiFePO4粒子の表面に付着した炭素材料の導電性による電子伝導性向上の効果も得ることができる。すなわち、LiFePO4炭素複合体は、LiFePO4粒子の表面に付着してなる炭素粒子により電子伝導性が向上するので、LiFePO4本来の容量を十分に引き出される。したがって、正極活物質としてLiFePO4炭素複合体を用いることにより、高容量を有する非水電解液電池1を実現できる。
【0033】
LiFePO4炭素複合体における単位重量当たりの炭素含有量は、3重量%以上であることが好ましい。LiFePO4炭素複合体における単位重量当たりの炭素含有量が3重量%未満である場合、LiFePO4粒子の表面に付着している炭素粒子の量が十分でないため、電子伝導性向上の効果を十分に得ることができない虞がある。
【0034】
また、LiFePO4炭素複合体の粉体密度は、2.2g/cm3以上であることが好ましい。LiFePO4炭素複合体は、その粉体密度が2.2g/cm3以上となる程度に合成原料に対してミリングが施されると、十分に微小化されたものとなる。したがって、正極活物質の充填率が向上し、高容量を有する非水電解液電池1を実現できる。また、LiFePO4炭素複合体は、上記粉体密度を満たすように微小化されているので、LiFePO4の比表面積も増大しているといえる。つまり、LiFePO4と炭素材料との接触面積を十二分に確保することができ、電子伝導性を向上させることが可能となる。
【0035】
LiFePO4炭素複合体の粉体密度が2.2g/cm3未満である場合、LiFePO4炭素複合体は十分に圧縮されてないため、正極4における活物質充填率の向上が図れない虞がある。
【0036】
また、LiFePO4炭素複合体のブルナウアーエメットテラー(以下、BETと称する。)比表面積は、10.3m2/g以上であることが好ましい。LiFePO4炭素複合体のBET比表面積を10.3m2/g以上とすると、単位重量当たりにおけるLiFePO4の比表面積を十分に大きいものとすることができ、LiFePO4と炭素材料との接触面積を大きくすることができる。したがって、正極活物質の電子伝導性を確実に向上させることができる。
【0037】
さらに、LiFePO4炭素複合体の一次粒径は、3.1μm以下であることが好ましい。LiFePO4炭素複合体の一次粒径を3.1μm以下とすることにより、単位重量当たりにおけるLiFePO4の比表面積を十分に大きいものとすることができ、LiFePO4と炭素材料との接触面積を大きくすることができる。したがって、正極活物質の電子伝導性を確実に向上させることができる。
【0038】
正極活物質層に含有される結着剤としては、この種の非水電解液電池において正極活物質層の結着剤として通常用いられている公知の樹脂材料等を用いることができる。
【0039】
正極缶5は、正極4を収容するものであり、また、非水電解液電池1の外部正極となる。
【0040】
セパレータ6は、正極4と、負極2とを離間させるものであり、この種の非水電解液電池のセパレータとして通常用いられている公知の材料を用いることができ、例えばポリプロピレンなどの高分子フィルムが用いられる。また、リチウムイオン伝導度とエネルギー密度との関係から、セパレータの厚みはできるだけ薄いことが必要である。具体的には、セパレータの厚みは例えば50μm以下が適当である。
【0041】
絶縁ガスケット7は、負極缶3に組み込まれ一体化されている。この絶縁ガスケット7は、負極缶3及び正極缶5内に充填された非水電解液の漏出を防止するためのものである。
【0042】
非水電解液としては、非プロトン性非水溶媒に電解質を溶解させた溶液が用いられる。
【0043】
非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチルラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、プロピオン酸メチル、酪酸メチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等を使用することができる。特に、電圧安定性の点からは、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類を使用することが好ましい。また、このような非水溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
【0044】
また、非水溶媒に溶解させる電解質としては、例えば、LiPF6、LiClO4、LiAsF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2等のリチウム塩を使用することができる。これらのリチウム塩の中でも特に、LiPF6、LiBF4を使用することが好ましい。
【0045】
なお、本発明を適用した非水電解質電池として、非水電解液を用いた非水電解液電池1を例に挙げて説明したが、本発明はこれに限定されるものではなく、非水電解質として、固体電解質を用いた場合にも適用可能である。ここで、固体電解質としては、リチウムイオン導電性を有する材料であれば無機固体電解質、ゲル状電解質等の高分子固体電解質の何れも用いることができる。ここで、無機固体電解質としては、窒化リチウム、ヨウ化リチウム等が挙げられる。また、高分子固体電解質は、電解質塩とそれを溶解する高分子化合物からなり、その高分子化合物は、ポリ(エチレンオキサイド)や、同架橋体などのエーテル系高分子、ポリ(メタクリレート)エステル系高分子、アクリレート系高分子等を単独、又は分子中に共重合、又は混合して用いることができる。この場合、例えばゲル状電解質のマトリックスとしては、非水電解液を吸収してゲル化するものであれば種々の高分子材料を用いることができる。このような高分子材料としては、例えば、ポリ(ビニリデンフルオロライド)や、ポリ(ビニリデンフルオロライド−CO−ヘキサフルオロプロピレン)等のフッ素系高分子、ポリ(エチレンオキサイド)や、同架橋体などのエーテル系高分子、またポリ(アクリロニトリル)などを用いることができる。そして、これらの中でも特に、酸化還元安定性の観点からフッ素系高分子を用いることが好ましい。
【0046】
上述のように構成される非水電解液電池1の製造方法について、以下に説明する。
【0047】
まず、正極活物質としてLixFePO4と炭素材料との複合体を、以下に示す製造方法に従って合成する。
【0048】
この正極活物質を合成するには、LixFePO4の合成原料を混合し、ミリングを施し、焼成し、且つ上記焼成前の何れかの時点で炭素材料を添加する。LixFePO4の合成原料としては、Li3PO4と、Fe3(PO4)2又はその水和物であるFe3(PO4)2・nH2O(ただし、nは水和数である。)とを用いる。
【0049】
以下、合成原料として、リン酸リチウム(Li3PO4)と、下記に示すようにして合成されるリン酸第一鉄八水和物(Fe3(PO4)2・8H2O)とを用い、この合成原料に炭素材料を添加した後に種々の工程を行うことにより、LiFePO4炭素複合体を合成する場合について説明する。
【0050】
まず、LiFePO4の合成原料と炭素材料とを混合して混合物とする混合工程を行う。次いで、混合工程で得られた混合物にミリングを施すミリング工程を行う。次いで、ミリング工程でミリングを施した混合物を焼成する焼成工程を行う。
【0051】
混合工程では、合成原料として、リン酸リチウムとリン酸第一鉄八水和物とを所定比で混合し、さらに一時粒径が10.2μm以下である炭素材料を添加して混合物とする。ここで、一時粒径が10.2μm以下である炭素材料は、LiFePO4の合成原料に添加して焼成を行った場合、LiFePO4粒子の成長を抑制する効果を有する。したがって、一時粒径が10.2μm以下である炭素材料を添加することにより、焼成工程でLiFePO4炭素複合体を合成する際に、LiFePO4炭素複合体におけるLiFePO4粒子の成長を抑制することができる。
【0052】
すなわち、一時粒径が10.2μm以下である炭素材料を添加して焼成を行うことにより、焼成中にLiFePO4粒子が大きく成長することを抑制することができ、合成されたLiFePO4粒子の粒径を小さくすることができる。
【0053】
これにより、LiFePO4の重量当たりの比表面積を、一時粒径が10.2μm以下である炭素材料を添加せずに焼成を行って合成したLiFePO4粒子の比表面積に比べて大きいものとすることができる。
【0054】
その結果、LiFePO4炭素複合体は、正極活物質に混合して用いられる導電剤との物理的接触を十分に得ることができるため、優れた電子伝導性を有するものとされている。また、電子伝導性が向上することにより、LiFePO4本来の容量が十分に引き出されるため、正極活物質として用いた場合に、高容量を有する非水電解液電池1を実現できる。
【0055】
合成原料として用いるリン酸第一鉄八水和物は、硫酸鉄七水和物(FeSO4・7H2O)を水に溶かしてなる水溶液に、リン酸水素二ナトリウム一二水和物(2Na2HPO4・12H2O)を添加し、所定の時間放置することにより合成される。リン酸第一鉄八水和物の合成反応は、下記化1に示す反応式で表される。
【0056】
【化1】
【0057】
合成原料であるリン酸第一鉄八水和物には、その合成工程上、ある程度のFe3+が含まれている。合成原料にFe3+が残存すると、焼成により3価のFe化合物が生成されるため、LiFePO4炭素複合体の単相合成が妨げられてしまう。このため、焼成前の合成原料に還元剤を添加し、焼成時に合成原料中に含まれているFe3+をFe2+に還元する必要がある。
【0058】
しかし、還元剤によるFe3+のFe2+への還元能力には限界があり、合成原料中のFe3+の含有率が多すぎる場合、Fe3+が還元されきれずにLiFePO4炭素複合体中に残存してしまうことがある。
【0059】
そこで、リン酸第一鉄八水和物中の鉄総量に対するFe3+の含有率を、61重量%以下とすることが好ましい。合成原料であるリン酸第一鉄八水和物中の鉄総量に対するFe3+の含有率を61重量%以下とあらかじめ制限することにより、焼成時においてFe3+を残存させることなく、すなわちFe3+に起因する不純物を生成させることなく、LiFePO4炭素複合体の単相合成を確実に行うことができる。
【0060】
なお、リン酸第一鉄八水和物を生成する際の放置時間が長いほど、生成物中のFe3+の含有率が多くなるので、放置時間を所定の時間に制御することにより、任意のFe3+の含有率を有するリン酸第一鉄八水和物を生成させることができる。また、リン酸第一鉄八水和物中の鉄総量に対するFe3+の含有率は、メスバウア測定法により測定することができる。
【0061】
また、合成原料に添加される炭素材料は、合成原料のリン酸第一鉄八水和物中に含まれるFe2+が大気中の酸素や焼成等によりFe3+に酸化されたとしても、焼成時にFe3+をFe2+に還元する還元剤として働く。したがって、合成原料にFe3+が残存していたとしても、不純物の生成が防止され、LiFePO4炭素複合体の単相合成が可能となる。さらに、炭素材料は、合成原料に含まれるFe2+のFe3+への酸化を防止する酸化防止剤として働く。すなわち、炭素材料は、焼成前又は焼成時において大気中及び焼成炉内に存在する酸素により、Fe2+がFe3+へ酸化されてしまうことを防止する。
【0062】
すなわち、炭素材料は、上述したように正極活物質の電子伝導性を向上させる導電材としての働きをするとともに、還元剤及び酸化防止剤として働く。なお、この炭素材料は、LiFePO4炭素複合体の構成要素となるので、LiFePO4炭素複合体の合成後に除去する必要がない。従って、LiFePO4炭素複合体の製造が効率化される。
【0063】
なお、LiFePO4炭素複合体の単位重量あたりの炭素含有量は、3重量%以上とすることが好ましい。LiFePO4炭素複合体の単位重量あたりの炭素含有量を3重量%以上とすることにより、LiFePO4が本来有する容量及びサイクル特性を十分に引き出すことが可能となる。
【0064】
ミリング工程では、混合工程で得られた混合物に、粉砕・混合同時に行うミリングを施す。本発明におけるミリングとは、ボールミルを用いた強力な粉砕・混合をいう。また、ボールミルとしては、例えば遊星型ボールミル、シェイカー型ボールミル、メカノフュージョン等を好適に用いることができる。
【0065】
混合工程で得られた混合物にミリングを施すことにより、合成原料及び炭素材料を均一に混合することができる。また、ミリングを施すことにより合成原料を微細化すると、合成原料の比表面積を増大させることができる。したがって、原料同士の接触点が増大し、引き続く焼成工程における合成反応を速やかに進行することが可能となる。
【0066】
また、合成原料を含有する混合物にミリングを施す際には、粒子径3μm以上の粒子の粒度分布が体積基準の積算頻度にして22%以下となるようにすることが好ましい。合成原料の粒度分布を上記範囲とすることにより、合成原料は、表面積として、合成反応に十分な表面活性を得ることができる広さを有することができる。したがって、焼成温度が例えば600℃という合成原料の融点以下という低い温度であっても、反応効率が良好であり、LiFePO4炭素複合体の単相合成を確実に行うことができる。
【0067】
また、LiFePO4炭素複合体の粉体密度が2.2g/cm3以上となるように、ミリングを施すことが好ましい。上記粉体密度となるように合成原料を微小化することにより、LiFePO4の比表面積を大きくすることができる。これにより、LiFePO4と炭素材料との接触面積を大きくすることができ、正極活物質の電子伝導性を向上させることが可能となる。
【0068】
したがって、合成原料を含有する混合物にミリングを施すことにより、高容量である非水電解液電池1を実現する正極活物質を製造することができる。
【0069】
焼成工程では、ミリング工程でミリングを施した混合物を焼成する。混合物を焼成することにより、リン酸リチウムとリン酸第一鉄八水和物とを反応させ、LiFePO4を合成する。
【0070】
LiFePO4の合成反応は、下記化2に示す反応式で表される。なお、下記化に示す反応式においては、Li3PO4と、Fe3(PO4)2又はその水和物であるFe3(PO4)2・nH2O(ただし、nは水和数である。)とを反応させた場合を示す。
【0071】
【化2】
【0072】
上記化2に示す反応式から明らかなように、合成原料としてFe3(PO4)2を用いた場合、副生成物が生じない。また、Fe3(PO4)2・nH2Oを用いた場合、副生成物として無毒である水のみが生じる。
【0073】
ところで、従来は合成原料として炭酸リチウム、リン酸二水素アンモニウム及び酢酸鉄(II)を所定比で混合し、焼成し、下記化3に示す反応によってLiFePO4を合成していた。
【0074】
【化3】
【0075】
上記化3に示す反応式から明らかなように、従来のLiFePO4の合成方法では、焼成時に有毒なアンモニアや酢酸等の副生成物が生じていた。このため、これら有毒な副生成物を処理するための大規模な集気装置等の設備が必要となり、製造コスト上昇の原因となっていた。また、これらの副生成物が大量に生じるため、LiFePO4の収率が低下していた。
【0076】
本発明においては、合成原料としてLi3PO4と、Fe3(PO4)2又はその水和物であるFe3(PO4)2・nH2O(ただし、nは水和数である。)とを用いているので、有毒な副生成物が生じることなく、目的物質であるLiFePO4を得られる。言い換えると、従来の製造方法に比べて、焼成時における安全性が著しく向上する。また、従来では有毒な副生成物を処理するために大規模な処理設備が必要だったが、本発明の製造方法では、副生成物が無毒である水なので、処理工程を大幅に簡略化でき、処理設備を縮小できる。したがって、従来の副生成物であるアンモニア等を処理する際に比べて、製造コストを大幅に削減することができる。さらにまた、上記化2に示す反応式から明らかなように、副生成物の生成が少量であるので、LiFePO4の収率を大幅に向上させることができる。
【0077】
混合物の焼成を行う際の焼成温度は、上記の合成方法により400℃〜900℃とすることが可能であるが、電池性能を考慮すると、600℃程度とすることが好ましい。焼成温度が400℃未満であると、化学反応及び結晶化が十分に進まず、合成原料であるLi3PO4等の不純物相が存在し、均一なLiFePO4を得られない虞がある。一方、焼成温度が900℃を上回ると、結晶化が過剰に進行してLiFePO4の粒子が大きくなり、LiFePO4と炭素材料との接触面積が減少し、電子伝導性が下がるため、十分な放電容量を得られない虞がある。
【0078】
焼成時において、合成されたLiFePO4炭素複合体中のFeは2価の状態である。このため、合成温度である600℃程度の温度においては、LiFePO4炭素複合体中のFeは、焼成雰囲気中の酸素によって下記化4に示す反応式によりFe3+にすみやかに酸化されてしまう。これに起因して、3価のFe化合物等の不純物が生成され、LiFePO4炭素複合体の単相合成が妨げられてしまう。
【0079】
【化4】
【0080】
そこで、焼成雰囲気として窒素、アルゴン等の不活性ガス又は水素や一酸化炭素等の還元性ガスを用いるとともに、焼成雰囲気中の酸素濃度を、LiFePO4炭素複合体中のFeが酸化されない範囲、すなわち1012ppm(体積)以下とすることが好ましい。焼成雰囲気中の酸素濃度を、1012ppm(体積)以下とすることにより、600℃程度の合成温度においてもFeの酸化を防止し、LiFePO4炭素複合体の単相合成を確実に行うことが可能となる。
【0081】
焼成雰囲気中の酸素濃度が1012ppm(体積)よりも高い場合には、焼成雰囲気中の酸素量が多すぎるため、LiFePO4炭素複合体中のFeがFe3+に酸化されてしまい、これに起因して不純物が生成してしまうため、LiFePO4炭素複合体の単相合成が妨げられてしまう虞がある。
【0082】
焼成後のLiFePO4炭素複合体の取り出しについては、焼成後のLiFePO4炭素複合体の取り出し温度、すなわちLiFePO4炭素複合体を大気中に暴露する際のLiFePO4炭素複合体の温度は305℃以下とすることが好ましい。また、焼成後のLiFePO4炭素複合体の取り出し温度を204℃以下とすることがより好ましい。LiFePO4炭素複合体の取り出し温度を305℃以下とすることにより、焼成後のLiFePO4炭素複合体中のFeが大気中の酸素により酸化され、不純物が生成されることを防止できる。
【0083】
焼成後にLiFePO4炭素複合体を十分に冷却しない状態で取り出した場合、LiFePO4炭素複合体中のFeが大気中の酸素により酸化され、不純物が生成される虞がある。しかしながら、あまり低い温度までLiFePO4炭素複合体を冷却したのでは、作業効率の低下を招く虞がある。
【0084】
したがって、焼成後のLiFePO4炭素複合体の取り出し温度を305℃以下とすることにより、焼成後のLiFePO4炭素複合体中のFeが大気中の酸素により酸化されて不純物が生成されることを防止するとともに、作業効率も維持することが可能となり、電池特性として好ましい特性を有するLiFePO4炭素複合体を効率よく合成することができる。
【0085】
なお、焼成後のLiFePO4炭素複合体の冷却は焼成炉内で行うが、このときの冷却方法は、自然冷却でも良く、また、強制冷却でも良い。ただし、冷却時間の短縮、すなわち、作業効率を考慮した場合には、強制冷却することが好ましい。そして、強制冷却する場合には、焼成炉内を上述した酸素濃度、すなわち1012ppm(体積)以下とするように酸素と不活性ガスとの混合ガス、又は不活性ガスのみを焼成炉内に供給すれば良い。
【0086】
上記においては、ミリングを施す前に一時粒径が10.2μm以下の炭素材料の添加を行っているが、この炭素材料の添加は、ミリング後に行うことも可能である。すなわち、一時粒径が10.2μm以下の炭素材料の添加は、焼成前のいずれかの時点で行えばよい。
【0087】
上述のようにして得られたLiFePO4炭素複合体を正極活物質として用いた非水電解液電池1は、例えば次のようにして製造される。
【0088】
負極2としては、まず、負極活物質と結着剤とを溶媒中に分散させてスラリーの負極合剤を調製する。次に、得られた負極合剤を集電体上に均一に塗布、乾燥して負極活物質層を形成することにより負極2が作製される。上記負極合剤の結着剤としては、公知の結着剤を用いることができるほか、上記負極合剤に公知の添加剤等を添加することができる。また、負極活物質となる金属リチウムをそのまま負極2として用いることもできる。
【0089】
正極4としては、まず、正極活物質となるLiFePO4炭素複合体と結着剤とを溶媒中に分散させてスラリーの正極合剤を調製する。次に、得られた正極合剤を集電体上に均一に塗布、乾燥して正極活物質層を形成することにより正極4が作製される。上記正極合剤の結着剤としては、公知の結着剤を用いることができるほか、上記正極合剤に公知の添加剤等を添加することができる。
【0090】
非水電解液は、電解質塩を非水溶媒中に溶解することにより調製される。
【0091】
そして、負極2を負極缶3に収容し、正極4を正極缶5に収容し、負極2と正極4との間に、ポリプロピレン製多孔質膜等からなるセパレータ6を配する。負極缶3及び正極缶5内に非水電解液を注入し、絶縁ガスケット7を介して負極缶3と正極缶5とをかしめて固定することにより、コイン型の非水電解液電池1が完成する。
【0092】
以上のようにして製造されたLiFePO4炭素複合体を正極活物質とする非水電解液電池1は、正極活物質の電子伝導性に優れたものとされる。したがって、この非水電解液電池1は、リチウムイオンのドープ及び脱ドープが良好に行われるため、大容量を有するとともに、LiFePO4が本来有する優れたサイクル特性が十分に引き出されるため、高容量を有する非水電解質二次電池とされる。
【0093】
なお、上述したような本実施の形態に係る非水電解液電池1は、円筒型、角型、コイン型、ボタン型等、その形状については特に限定されることはなく、また、薄型、大型等の種々の大きさにすることができる。
【0094】
【実施例】
以下、本発明を具体的な実験結果に基づいて説明する。ここでは、本発明の効果を調べるべく、LiFePO4炭素複合体を合成し、得られたLiFePO4炭素複合体を正極活物質として用いて非水電解質電池を作製し、その特性を評価した。
【0095】
<実施例1>
正極活物質としてLiFePO4複合体を合成した。この正極活物質の製造方法を以下に示す。
【0096】
まず、Li3PO4とFe3(PO4)2・8H2Oとを、リチウムと鉄との元素比率が1:1となるように混合し、さらに一時粒径が0.02μmである炭素粉末を焼成物全体の10重量%となるように添加して混合物とした。次に、混合物及び直径10mmのアルミナ製ボールを、質量比で混合物:アルミナ製ボール=1:2として直径100mmのアルミナ製ポットに投入し、遊星型ボールミルを用いてこの混合物にミリングを施した。なお、遊星型ボールミルとして、実験用遊星回転ポットミル「LA−PO4」(伊藤製作所製)を使用し、下記に示す条件としてミリングを施した。
【0097】
遊星型ボールミルミリング条件
公転半径 :200mm
公転回転数:250rpm
自転回転数:250rpm
運転時間 :10h
次に、上記においてミリングを施した混合物の粒度分布を、以下に示すようにして測定した。まず、ミリングを施した混合物と、メチルエチルケトン、トルエン及びシクロヘキサノンからなる溶媒とをセル(スクリュー管瓶)に投入した。次いで、セル中の試料を超音波分散し、HRA(MICROTRAC社製)を用いて混合物の粒度分布を測定した。そして、粒子径3μm以上の粒子が示す粒度分布を体積基準の積算頻度として求めた。
【0098】
次に、粒度分布測定後の混合物をセラミックるつぼに入れ、窒素雰囲気中の電気炉にて600℃の温度で5時間焼成することによりLiFePO4炭素複合体を得た。
【0099】
次に、上述のようにして得られたLiFePO4炭素複合体を正極活物質として用いて電池を作製した。
【0100】
まず、上記において正極活物質として調製したLiFePO4炭素複合体を85重量部と、導電材としてアセチレンブラックを10重量部と、バインダーとしてフッ素樹脂粉末であるポリ(ビニリデンフルオロライド)5重量部とを混合した後、加圧成形して直径15.5mm、厚み0.1mmのペレット状の正極とした。
【0101】
次いで、リチウム金属箔を正極と略同形に打ち抜くことにより負極とした。
【0102】
次いで、プロピレンカーボネートとジメチルカーボネートとの等容量混合溶媒に、LiPF6を1mol/lの濃度で溶解させることにより非水電解液を調製した。
【0103】
以上のようにして得られた正極を正極缶に収容し、負極を負極缶に収容し、正極と負極との間にセパレータを配した。正極缶及び負極缶内に非水電解液を注入し、正極缶と負極缶とをかしめて固定することにより、直径20.0mm、厚み1.6mmの2016型のコイン型テストセルを作製した。
【0104】
<実施例2>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を0.08μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0105】
<実施例3>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を0.2μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0106】
<実施例4>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を1.1μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0107】
<実施例5>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を2.3μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0108】
<実施例6>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を6.3μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0109】
<実施例7>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を10.2μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0110】
<比較例1>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を13.1μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0111】
<比較例2>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を15.6μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0112】
<比較例3>
Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLiFePO4の合成原料に添加する炭素粉末の一時粒径を17.9μmとしたこと以外は、実施例1と同様にしてコイン型テストセルを作製した。
【0113】
以上のようにして作製した、実施例1乃至実施例7及び比較例1乃至比較例3の正極活物質であるLiFePO4炭素複合体について、一次粒子の粒度測定を行った。X線回折測定は、X線回折計:RINT2000(商品名、リガク社製)を用いていった。また、粒度測定は、超音波振動により凝集粒子分散後、レーザー回折法により粒子の粒度を測定した。そして、最も小粒径側に出現する頻度ピークもしくはそれに準ずる頻度域を一時粒子の粒径とした。一次粒子の粒度測定結果を、Li3PO4とFe3(PO4)2・8H2Oとの混合物に添加した炭素粉末の一時粒径とともに表1に示す。
【0114】
【表1】
【0115】
また、以上のようにして作製した実施例1乃至実施例7、比較例1乃至比較例3のコイン型テストセルについて、以下のようにして充放電サイクル特性試験を行い、初期放電容量密度及び50サイクル後の放電容量維持率を求めた。
【0116】
<充放電サイクル特性試験>
充放電サイクル特性は、充放電を繰り返した後の容量維持率により評価した。
【0117】
各テストセルに対して定電流充電を行い、電池電圧が4.2Vになった時点で、定電流充電から定電圧充電に切り替えて、電圧を4.2Vに保ったまま充電を行った。そして、電流が0.01mA/cm2以下になった時点で充電を終了させた。その後、放電を行い、電池電圧が2.0Vまで低下した時点で放電を終了させた。
【0118】
以上の工程を1サイクルとして、これを50サイクル行い、1サイクル目及び50サイクル目における放電容量を求めた。そして、1サイクル目の放電容量(C1)に対する、50サイクル目の放電容量(C2)の比率((C2/C1)×100)を放電容量維持率として求めた。なお、充電時、放電時ともに常温(25℃)で行い、このときの電流密度は0.1mA/cm2とした。その結果を表1に合わせてに示す。なお、表1における電池評価は、初期放電容量が100mAh/g以上、かつ50サイクル目の放電容量が50%以上のものに○を、初期放電容量が100mAh/g未満、もしくは50サイクル目の放電容量が50%未満のものに×を記した。ここで、100mAh/g以上、かつ50%以上は、電池特性として好ましい特性値である。
【0119】
表1より、Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLi3PO4の合成原料に添加した炭素粉末の一時粒径が10.2μm以下である実施例1乃至実施例7では、合成されたLiFePO4炭素複合体の一時粒径は小さいものとされている。そして、初期放電容量密度は、実用レベルの電池特性として望ましい100mAh/gを越えた良好な値を示しており、また、50サイクル目の放電容量維持率も実用レベルの電池特性として望ましい50%を大きく越えた良好な値を示している。これは、Li3PO4の合成原料に添加された炭素粉末の一時粒径が、焼成中におけるLi3PO4粒子の著しい成長を抑制するのに適正な値、すなわち10.2μm以下とされているため、LiFePO4の一時粒径が小さいものとされ、これによりLi3PO4炭素複合体の比表面積が大きくされたため、Li3PO4炭素複合体、すなわち正極活物質の電子伝導性が良好なものとされているためと考えられる。
【0120】
一方、Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLi3PO4の合成原料に添加した炭素粉末の一時粒径が10.2μmよりも大きい比較例1乃至比較例3では、合成されたLiFePO4炭素複合体の一時粒径は大きくなっている。そして、初期放電容量密度は、実用レベルの電池特性として望ましい100mAh/gを大きく下回った値を示している。また、比較例1では、50サイクル目の放電容量維持率も実用レベルの電池特性として望ましい50%を下回った値を示している。これは、Li3PO4の合成原料に添加された炭素粉末の一時粒径が、焼成中におけるLi3PO4粒子の著しい成長を抑制するのに適正な値、すなわち10.2μmよりも大きいため、LiFePO4の一時粒径が大きくなってしまい、これによりLi3PO4炭素複合体の比表面積が小さくなったため、Li3PO4炭素複合体、すなわち正極活物質の電子伝導性が不十分であるためと考えられる。
【0121】
以上のことより、焼成前にLiFePO4の合成原料に添加する炭素粉末の一時粒径を10.2μm以下とすることにより、合成されたLiFePO4の一時粒径を小さくし、優れた電子伝導性を有する正極活物質を作製することができるといえる。そして、当該LiFePO4炭素複合体を正極活物質として用いることにより、優れた電子伝導性を有する非水電解質電池を構成することができるといえる。
【0122】
次に、ポリマー電池を作製し、特性を評価した。
【0123】
<実施例8>
まず、ゲル状電解質を以下に示すようにして作製した。まず、ヘキサフルオロプロピレンが6.9重量%の割合で共重合されたポリフッ化ビニリデンと、非水電解液と、ジメチルカーボネートとを混合し、撹拌、溶解させ、ゾル状の電解質溶液を調製した。次いで、ゾル状の電解質溶液に、ビニレンカーボネート(VC)を0.5重量%の割合で添加してゲル状電解質溶液とした。なお、非水電解液として、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)とを体積比で6:4の割合で混合した混合溶媒にLiPF6を0.85mol/kgの割合で溶解させたものを使用した。
【0124】
次いで、正極を以下に示すようにして作製した。まず、実施例1で作製したLiFePO4炭素複合体を85重量部と、導電剤としてアセチレンブラックを10重量部と、バインダーとしてフッ素樹脂粉末であるポリ(ビニリデンフルオロライド)5重量部とを混合した後、N−メチルピロリドンを加えてスラリー状にしたものを準備した。次に、このスラリーを厚み20μmのアルミ箔に塗布、加熱乾燥後、加圧工程を経て正極塗布箔を作製した。次に、この正極塗布箔の片面にゲル状電解質溶液を塗布後、乾燥して溶剤を除去した後、セルの径に準じて直径15mmの円形に打ち抜き、正極電極とした。
【0125】
次いで、負極を以下に示すようにして作製した。まず、黒鉛粉末にバインダーとしてフッ素樹脂粉末を10重量%混合し、N−メチルピロリドンを加えてスラリー状にしたものを準備した。次に、このスラリーを銅箔に塗布、加熱乾燥後、加圧工程を経てセルの大きさに準じて直径16.5mmの円形に打ち抜き、負極電極とした。
【0126】
以上のようにして得られた正極を正極缶に収容し、負極を負極缶に収容し、正極と負極との間にセパレータを配した。そして、正極缶と負極缶とをかしめて固定することにより、直径20mm、厚み1.6mmの2016型のコイン型リチウムポリマー電池を作製した。
【0127】
<実施例9>
正極を作製する際に、実施例7で作製したLiFePO4炭素複合体を用いたこと以外は、実施例8と同様にしてコイン型リチウムポリマー電池を作製した。
【0128】
以上のようにして作製した実施例8及び実施例9のコイン型リチウムポリマー電池ついて、上記のようにして充放電サイクル特性試験を行い、初期放電容量密度及び30サイクル後の放電容量維持率を求めた。その結果を表2に示す。
【0129】
【表2】
【0130】
表2から判るように、Li3PO4とFe3(PO4)2・8H2Oとの混合物、すなわちLi3PO4の合成原料に添加した炭素粉末の一時粒径が10.2μm以下であるである実施例1及び実施例7の正極活物質を用いた実施例8及び実施例9は、初期放電容量密度、30サイクル後の容量維持率ともに良好な値を示している。このことから、本発明に係る正極活物質は、非水電解質として非水電解液の代わりにゲル状電解質を用いた場合においても放電容量の向上という効果を得られることが確認された。
【0131】
【発明の効果】
本発明に係る正極活物質の製造方法は、一般式LixFePO4(ただし、0<x≦1である。)で表される化合物と炭素材料との複合体を正極活物質とした正極活物質の製造方法であって、一般式LixFePO4(ただし、0<x≦1である。)で表される化合物の合成原料を混合する混合工程と、混合工程により得られた混合物にミリングを施すミリング工程と、ミリング工程でミリングを施した混合物を焼成する焼成工程とを備え、焼成工程前に一次粒子径が10.2μm以下である炭素材料を添加するものである。
【0132】
以上のような本発明に係る正極活物質の製造方法によれば、LiFePO4粒子の焼成中の粒子成長を抑制することができ、LiFePO4粒子の粒径の小さい正極活物質を作製することができるため、優れた電子伝導性と高容量を有する正極活物質を提供することができる。
【0133】
また、本発明に係る非水電解質電池の製造方法は、正極活物質を有する正極と、負極活物質を有する負極と、非水電解質とを備える非水電解質電池の製造方法であって、一般式LixFePO4(ただし、0<x≦1である。)で表される化合物の合成原料を混合する混合工程と、混合工程により得られた混合物にミリングを施すミリング工程と、ミリング工程でミリングを施した混合物を焼成する焼成工程とを経て、焼成工程前に一次粒子径が10.2μm以下である炭素材料を添加することによって上記正極活物質を製造するものである。
【0134】
以上のような本発明に係る非水電解質電池の製造方法によれば、LiFePO4粒子の焼成中の粒子成長を抑制することができ、LiFePO4粒子の粒径の小さい正極活物質を作製することができるため、優れた電子伝導性と高容量を有する正極活物質を作製することができる。したがって、本発明によれば、優れた電子伝導性と高容量を有する非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明を適用した非水電解質電池の一構成例を示す縦断面図である。
【符号の説明】
1 非水電解液電池、2 負極、3 負極缶、4 正極、5 正極缶、6 セパレータ、7 絶縁ガスケット
Claims (4)
- 一般式LixFePO4(ただし、0<x≦1である。)で表される化合物と炭素材料との複合体を正極活物質とした正極活物質の製造方法であって、
上記一般式LixFePO4(ただし、0<x≦1である。)で表される化合物の合成原料を混合する混合工程と、
上記混合工程により得られた混合物にミリングを施すミリング工程と、
上記ミリング工程でミリングを施した混合物を焼成する焼成工程とを備え、
上記焼成工程前に一次粒子径が10.2μm以下である炭素材料を添加すること
を特徴とする正極活物質の製造方法。 - 正極活物質を有する正極と、負極活物質を有する負極と、非水電解質とを備える非水電解質電池の製造方法であって、
一般式LixFePO4(ただし、0<x≦1である。)で表される化合物の合成原料を混合する混合工程と、
上記混合工程により得られた混合物にミリングを施すミリング工程と、
上記ミリング工程でミリングを施した混合物を焼成する焼成工程とを経て、
上記焼成工程前に一次粒子径が10.2μm以下である炭素材料を添加することによって上記正極活物質を製造すること
を特徴とする非水電解質電池の製造方法。 - 上記非水電解質が、液系電解質であること
を特徴とする請求項2記載の非水電解質電池の製造方法。 - 上記非水電解質が、ポリマー電解質であること
を特徴とする請求項2記載の非水電解質電池の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000305352A JP4491947B2 (ja) | 2000-10-04 | 2000-10-04 | 正極活物質の製造方法及び非水電解質電池の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000305352A JP4491947B2 (ja) | 2000-10-04 | 2000-10-04 | 正極活物質の製造方法及び非水電解質電池の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002117837A JP2002117837A (ja) | 2002-04-19 |
JP4491947B2 true JP4491947B2 (ja) | 2010-06-30 |
Family
ID=18786236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000305352A Expired - Fee Related JP4491947B2 (ja) | 2000-10-04 | 2000-10-04 | 正極活物質の製造方法及び非水電解質電池の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4491947B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5324731B2 (ja) * | 2001-07-31 | 2013-10-23 | 三井造船株式会社 | 2次電池正極材料の製造方法、および2次電池 |
CA2411695A1 (fr) | 2002-11-13 | 2004-05-13 | Hydro-Quebec | Electrode recouverte d'un film obtenu a partir d'une solution aqueuse comportant un liant soluble dans l'eau, son procede de fabrication et ses utilisations |
JP4620378B2 (ja) * | 2003-05-09 | 2011-01-26 | 日本化学工業株式会社 | リン酸リチウム凝集体、その製造方法及びリチウム鉄リン系複合酸化物の製造方法 |
JP2007230784A (ja) * | 2004-03-30 | 2007-09-13 | Agc Seimi Chemical Co Ltd | リチウム鉄複合酸化物の製造方法 |
WO2009015565A1 (en) * | 2007-07-31 | 2009-02-05 | Byd Company Limited | Method for preparing lithium iron phosphate as positive electrode active material for lithium ion secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001110414A (ja) * | 1999-10-04 | 2001-04-20 | Nippon Telegr & Teleph Corp <Ntt> | リチウム二次電池正極活物質およびリチウム二次電池 |
JP2002015735A (ja) * | 2000-06-29 | 2002-01-18 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池 |
JP2002075364A (ja) * | 2000-08-30 | 2002-03-15 | Sony Corp | 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法 |
JP2002110165A (ja) * | 2000-09-29 | 2002-04-12 | Sony Corp | 正極活物質の製造方法及び非水電解質電池の製造方法 |
JP2003520405A (ja) * | 2000-01-18 | 2003-07-02 | ヴァレンス テクノロジー インコーポレーテッド | リチウム金属含有物質の製造方法、生成物、組成物およびバッテリー |
JP2004509058A (ja) * | 2000-09-26 | 2004-03-25 | ハイドロ−ケベック | Lixm1−ym’y(xo4)nを主成分とする物質の合成法 |
-
2000
- 2000-10-04 JP JP2000305352A patent/JP4491947B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001110414A (ja) * | 1999-10-04 | 2001-04-20 | Nippon Telegr & Teleph Corp <Ntt> | リチウム二次電池正極活物質およびリチウム二次電池 |
JP2003520405A (ja) * | 2000-01-18 | 2003-07-02 | ヴァレンス テクノロジー インコーポレーテッド | リチウム金属含有物質の製造方法、生成物、組成物およびバッテリー |
JP2002015735A (ja) * | 2000-06-29 | 2002-01-18 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池 |
JP2002075364A (ja) * | 2000-08-30 | 2002-03-15 | Sony Corp | 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法 |
JP2004509058A (ja) * | 2000-09-26 | 2004-03-25 | ハイドロ−ケベック | Lixm1−ym’y(xo4)nを主成分とする物質の合成法 |
JP2002110165A (ja) * | 2000-09-29 | 2002-04-12 | Sony Corp | 正極活物質の製造方法及び非水電解質電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2002117837A (ja) | 2002-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4491946B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP3921931B2 (ja) | 正極活物質及び非水電解質電池 | |
JP4742413B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP4734701B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP4734700B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP4151210B2 (ja) | 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法 | |
JP3997702B2 (ja) | 非水電解質二次電池 | |
KR100437339B1 (ko) | 전지용 활물질의 제조방법 및 그로부터 제조되는 전지용활물질 | |
JP4848582B2 (ja) | 正極活物質の製造方法 | |
JP4207434B2 (ja) | 正極活物質及び非水電解質電池の製造方法 | |
JP4491949B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP4769995B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP4724912B2 (ja) | 正極活物質の製造方法及び非水電解質二次電池の製造方法 | |
JP4491950B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP4724911B2 (ja) | 非水電解質二次電池 | |
JP4491947B2 (ja) | 正極活物質の製造方法及び非水電解質電池の製造方法 | |
JP5553057B2 (ja) | 正極活物質及び非水電解質電池 | |
JP2001058828A (ja) | リチウムマンガン複合酸化物の合成方法及び非水電解質電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100316 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100329 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |