JP4484428B2 - 住居の換気構造 - Google Patents
住居の換気構造 Download PDFInfo
- Publication number
- JP4484428B2 JP4484428B2 JP2002360771A JP2002360771A JP4484428B2 JP 4484428 B2 JP4484428 B2 JP 4484428B2 JP 2002360771 A JP2002360771 A JP 2002360771A JP 2002360771 A JP2002360771 A JP 2002360771A JP 4484428 B2 JP4484428 B2 JP 4484428B2
- Authority
- JP
- Japan
- Prior art keywords
- ventilation
- air
- house
- airtight
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Description
【発明の属する技術分野】
本発明は、気密住宅や住戸や居室(住戸内の気密部屋)等の気密住居の外気を給気し、住居外に排気する換気を常時連続して行う換気構造に関するものである。
【0002】
【従来の技術】
従来、気密住居の常時換気設備は、機械換気による換気量を一定に保つものが一般である。即ち、給排気扇による換気システムのある住居では、一定の風量を確保することが行われている。
【0003】
現在、建築基準法関係シックハウス対策の改正試案では室内空気質への配慮から、特に気密性を改善していない住居においても常時換気設備の設置を義務付けることが検討されている。
【0004】
一方、住居の漏気(住居の換気口以外の隙間から侵入、放出する空気)による換気回数(回/h;時間)は内外温度差、外気風速により変動し、住居の気密性はこの換気回数に大きく影響する。
【0005】
室内空気質の観点からは、汚染物質の発生が大きくなる夏期への対応が重要であるため基本となる換気回数は夏期を想定する必要がある。また、省エネルギーの点では、換気による熱の搬出が問題であるため換気量は必要以上に大きくしたくないが、内外温度差が大きい冬期は漏気による換気回数が増大する傾向がある。冬期に換気回数が極めて大きくなることは熱の搬出によるエネルギー損失の増大や快適性を損なう等大きな問題である。
【0006】
住居の気密性を高めることは計画換気を行うには有効であるが、漏気の減少分を補填するため機械換気の換気風量を増加する必要があり、年間を通じて消費電力の増加が生じる。また、気密処理による材料、施工等のコストアップを伴う。
【0007】
換気過多を抑え、室内気流の風速を過度に上げることなく居住者が不快を感じないことを目的とした技術として、外気の取入口となる換気口の開口面積を可変して常に住宅内の気流を制御し、絶えず変化のある外気の取入口で給気風量を調整するものが提案されている(例えば、特許文献1参照。)。
【0008】
また、留守になっている期間の長いリゾートマンション等の住戸において防カビを目的として室内温度検知手段及び外気温度検知手段とを備え、室内温度と外気温度との大小を比較判定し、外気温度が室内温度よりも低いと判定すれば、外気を室内に取り入れる換気手段を動作させる信号を出力する温度制御装置を設けたものもある(例えば、特許文献2参照。)。
【0009】
また、上階ホールやトイレ等の小部屋に温度を検知するセンサーを設けた排気用ファンを設け、センサーの検知温度に応じて該排気用ファンを常時弱運転または強運転に切り替えて住宅内の居室等の大部屋の換気を行うものもある(例えば、特許文献3参照。)。
【0010】
また、室内温度が室外温度よりも高い状態で室内外の温度差が大きいときに屋根を貫通する縦ダクトを通して空気を排出するための排気扇の運転を停止し、空気の揚力を利用するパッシブ換気を行うものもある(例えば、特許文献4参照。)。
【0011】
また、人感センサ、温度センサ、湿度センサの検知情報に基づいて排気ファンの排気量を制御するものもある(例えば、特許文献5参照。)。
【0012】
また、室内温度検知手段、室内湿度検知手段、室外温度検知手段、室外湿度検知手段により室内エンタルピと外気エンタルピとの大小を比較判定し、外気エンタルピが室内エンタルピよりも低いと判定すれば外気を室内に取り入れるものもある(例えば、特許文献2、6参照。)。
【0013】
【特許文献1】
特開2002−257390号公報
【特許文献2】
特開平5−79681号公報
【特許文献3】
特開平11−325524号公報
【特許文献4】
特開平10−176851号公報
【特許文献5】
特開2001−355885号公報
【特許文献6】
特開平6−147583号公報
【0014】
【発明が解決しようとする課題】
しかしながら、前述の各従来例においても、気密住居における換気設備により最低必要な換気量を得ながら無駄な換気をしないように構成されたものはなく、特に冬期の換気量が増大するため省エネルギーの点で問題があった。
【0015】
例えば、特許文献1の技術では、外気風の変動が問題になるが、外気風を適切に把握するには住宅各面への風圧力を認識する必要がある。これは、建物高さでも変わるため測定点が増え、しかも相互にバランスを確認する必要がある。時々刻々の外気風の変動は大きく、風速、風向も三次元的に常時変動しているため、これを瞬時に把握することは困難である。
【0016】
本発明は前記課題を解決するものであり、その目的とするところは、内外温度差に着目して、漏気による住居内の換気量或いは漏気量を考慮し、更にこの内外温度差による換気量の変動を検知して換気装置の換気量を制御することで空気質を維持しつつエネルギー損失を最小限にすることが出来る住居の換気構造を提供せんとするものである。
【0017】
【課題を解決するための手段】
本発明者等の検討によれば、外気風を月間の平均値にして取り扱うことで殆どバラツキがないことが判明している。そして、常時連続して換気を行う気密住居において、外気風の変動を平均的レベルで考慮した上で、室内外温度差に応じて住居の空気の交換を行えば良いことを見出したものである。
【0018】
前記目的を達成するための本発明に係る住居の換気構造の第1の構成は、気密住居の換気を常時連続して行う換気装置を備える住居の換気構造であって、その気密住居に必要な換気量から該気密住居の隙間による季節や時刻に応じた自然換気量を減じた換気量に応じて、前記換気装置による強制的な換気量を制御する換気量制御手段をさらに有し、前記換気量制御手段は、前記自然換気量の変化を算出するにつき、前記気密住居周囲における当該自然換気量算出時点の外気風の影響を考慮することなく前記気密住居の室内温度と室外温度との温度差の変化に基づいて得るように構成したことを特徴とする。
【0019】
本発明は、上述の如く構成したので、換気量制御手段により気密住居に必要な換気量から該気密住居の隙間による季節や時刻に応じた自然換気(漏気)量を減じた換気量に応じて、換気装置の換気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。
【0020】
また、前記自然換気量の変化を、前記気密住居の室内温度と室外温度との温度差の変化から得るように構成すれば好ましい。例えば、住居の総隙間面積及び室外温度と室内温度との温度差から漏気量を算出することが出来る。そして、住居の必要換気量から漏気量を差し引いて必要換気量に不足する分の機械換気量を算出することが出来る。ここで、必要な機械換気量は各室床面積から容易に設定出来るため、換気装置による機械換気量は簡単に算出出来る。
【0021】
温度差の変化を得る手段としては、例えば、室内温度、室外温度を別々に検知手段により測定するか、若しくはその一方或いは両方を予め設定することにしても良い。
【0022】
また、本発明に係る住居の換気構造の第2の構成は、前記第1の構成において、前記換気装置は、前記気密住居の室外温度を検知する室外温度検知手段と、前記室外温度検知手段により検知された室外温度と、予め設定された室内温度との差を算出する内外温度差算出手段とを有することを特徴とする。
【0023】
上記構成によれば、室外温度検知手段により検知された室外温度と、予め設定された室内温度との差を内外温度差算出手段により算出し、その算出された温度差に応じて、例えば、給気量制御手段により気密住居の室内に常時連続して外気を給気する給気装置の給気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。温度検知が室外だけであっても室内は空調されているので、その設定温度を予め設定された室内温度としてもしても良い。
【0024】
また、本発明に係る住居の換気構造の第3の構成は、前記第1の構成において、前記換気装置は、前記気密住居が所定の換気回数に達するように予め換気量が設定されたことを特徴とする。
【0025】
上記構成によれば、気密住居の内外温度差を予め想定することによりその気密住居の換気回数を求め、その所定の換気回数に達するように予め設定された換気量に応じて、例えば、給気量制御手段により気密住居の室内に常時連続して外気を給気する給気装置の給気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。室内外温度の予測データを用いるので温度検知手段が不要である。また、この室内外温度の予測データから、その住宅地の外気温度(室外温度)の変動予測が出来、室内温度は空調機の設定温度にすることにより換気量を決定することが出来る。
【0026】
また、前記気密住居としては、気密住宅(1棟単位)またはアパートメントの住戸等を想定することが出来、また住宅或いは住戸内の気密部屋等の居室に適用することが出来る。ここで、気密住居とは、夏冬等の温度変化や、その他の条件変化に伴って漏気量が変化する住居であって漏気量が必要換気量に満たない住居をいう。また、住宅または住戸とは、トイレや浴室、洗面室等の空気汚染室を含む1棟または1戸の家であり、居室とは通常、人が居る部屋を想定することが出来る。
【0027】
従って、被換気場所は住宅や住戸だけでなく居室(住宅または住戸内の一部屋)も対象として想定しており、換気制御としては給気や排気、更にはその両方の給排気を想定することが出来る。また、給気は屋外から新鮮な空気を取り入れることを想定すれば良いが、排気は屋外以外にも居室から廊下への排気や専用ダクトを介して排気する場合も想定出来る。
【0028】
また、前記換気量制御手段は、換気装置の給気量のみを制御することが出来る。
【0029】
また、住居の室内温度と室外温度との差を検知する内外温度差検知手段と、前記内外温度差検知手段により検知された温度差に応じて、住居の室内に常時連続して外気を給気する給気装置の給気量を制御する給気量制御手段とを有して構成することが出来る。
【0030】
このような構成では、内外温度差検知手段により検知された温度差に応じて、給気量制御手段により気密住居の室内に常時連続して外気を給気する給気装置の給気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。
【0031】
また、本発明に係る住居の換気構造の他の構成は、前記第2の構成において、前記換気装置は、前記気密住居の給気を常時連続して行う給気扇であって、前記室外温度検知手段を、給気扇のファンから住居外部に連通する通気路であって日射や降雨や降雪を受けない位置に配置したことを特徴とする。
【0032】
上記構成によれば、室外温度検知手段を、給気扇のファンから住居外部に連通する通気路であって日射や降雨や降雪を受けない位置に配置したことで、日射や雨や雪が当たらない場所に室外温度検知手段を設置することが出来、給気を常時連続して行う給気扇であるため通気路の内部には常に外気が導入されていることから該室外温度検知手段により外気に相当する比較的正確な住居の室外温度が得られる。従って、室外に別途、室外温度を検知する場所(例えば、百葉箱等)を設ける必要がない。
【0033】
また、本発明に係る住居の換気構造の更に他の構成は、前記第1の構成において、前記換気装置は、気密住居の給気を常時連続して行う給気扇であって、前記気密住居は、トイレ、風呂、洗面台等の空気汚染室から外気に向けて常時連続して排気を行う排気装置を備えると共に、前記空気汚染室以外の室内空間に常時連続して外気を給気する前記給気扇を設けることを特徴とする。
【0034】
上記構成によれば、気密住居の室内に常時連続して外気を給気する換気装置または給気扇の給気量を制御することで漏気及び排気装置による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。
【0035】
【発明の実施の形態】
図により本発明に係る住居の換気構造の一実施形態を具体的に説明する。図1は本発明に係る住居の換気構造を装備した気密住居の間取りの一例を示す図、図2は本発明に係る給気扇の構成を示す図、図3は年間の室外温度、室内温度、外気風速、内外温度差、各相当隙間面積に対応する換気回数の月毎の平均値の一例を示す図、図4は年間の室外温度、室内温度、外気風速、内外温度差、各相当隙間面積に対応する換気回数の日毎の平均値の一例を示す図、図5は所定の換気回数に設定するために給気装置の給気量を制御する様子を示すフローチャートである。
【0036】
図1において、1は気密住居の一例となる気密住宅でり、図1(a)は気密住宅1の1階の間取りを示し、図1(b)は気密住宅1の2階の間取りを示す。気密住宅1において空気汚染室となる1階のトイレ1a、2階のトイレ1b及び1階の風呂1cには、夫々該空気汚染室から外気に向けて常時連続して排気を行う換気装置としての排気装置2が設けられている。尚、図示しないが、空気汚染室としては洗面台が設けられた洗面室に排気装置2を設ける場合もある。
【0037】
また、気密住宅1において、空気汚染室以外の室内空間として居室となる1階の和室1d、食堂兼居間1i、2階の洋室1e,1f,1g,1hには、夫々該空気汚染室以外の室内空間としての居室に常時連続して外気を給気する換気装置であって給気装置となる給気扇3が設けられている。
【0038】
これ等の排気装置2及び給気扇3により気密住宅1の換気を常時連続して行う換気装置を構成している。
【0039】
気密住宅1は、図3及び図4に示すように、図3及び図4の換気回数E〜J(C=2〜7)で示す各相当隙間面積(cm2/m2)に応じて、年間の漏気による換気回数(回/h;時間)が、内外温度差D、外気風速Cにより変動し、気密住宅1の気密性は、この換気回数に大きく影響することが判明している。
【0040】
例えば、図3及び図4に示すように、内外温度差Dが小さくなる夏期には、該内外温度差Dによる住居内外差圧が小さくなり、住居隙間による季節や時刻に応じた自然換気量(漏気量)が減少するため換気量が減少し、水蒸気、二酸化炭素、或いはホルムアルデヒド等の汚染物質の排除が不足がちとなる。また、内外温度差Dが大きくなる冬期には、該内外温度差Dによる住居内外差圧が大きくなり、住居隙間による季節や時刻に応じた漏気量が増大するため換気量が増大し、暖房等のエネルギー損失が増大するという問題がある。
【0041】
尚、図3及び図4において、外気温度A及び外気風速Cは、日本建築学会編の拡張アメダス気象データ標準年「東京」を使用した一例であり、換気回数E〜Jは換気回路網シミュレーション(プラン:132m2、全館1室)結果を基に重回帰分析から作成した分散共分散行列による重回帰式を使用して算出した予測値を示す。
【0042】
尚、アメダス(Automated Meteorological Data Acquisition System)は地域気象観測システムであり、無人自動気象観測装置で観測された気象情報を電話回線等を経由して地域気象観測センターに集めて編集し、全国の気象台等へ配信するものである。観測項目には、降水量、風向・風速、気温、日照時間や降雪量等が設定されている。
【0043】
また、図3及び図4の換気回数E〜Jにおいて、C=2〜7は、相当隙間面積が2cm2/m2〜7cm2/m2であることを示し、縦軸に示された漏気の換気回数(回/h)の目盛りにおいて、例えば、0.70は、全室の空気体積の70%に相当する体積の空気を1時間に換気(給気量=排気量)することを示す。
【0044】
図2(a),(b)において、1階の和室1d、食堂兼居間1iや2階の各洋室1e〜1hの壁面に設けられた給気扇3は、駆動源となるモータ3aの出力軸に固定されたファン3bが回転することにより、気密住宅1内への給気を行うようになっている。
【0045】
また、ファン3bから住居外部に連通する通気路となる通気ダクト4内であって、日射や降雨や降雪を受けない位置には、気密住宅1の室内温度と室外温度との差を検知する内外温度差検知手段となる熱電対温度計5の気密住宅1の室外温度を検知する室外温度検知手段となる室外側端部5aが配置されている。熱電対温度計5は温度検出手段であって温度センサの一例として採用しているが、他の構成の温度センサを使用することも出来る。
【0046】
ファン3bよりも室内側(図2(a)の左側)には、該ファン3bに対面する側が閉塞され、通気ダクト4に直交する方向に開口部が設けられたパッキン部材3cが設けられており、その開口部には方形環状のフィルター部材3dが設けられている。
【0047】
パッキン部材3cの閉塞された位置には、気密住宅1の室内温度を検知する室内温度検知手段であって温度センサの一例となる熱電対温度計5の室内側端部5bが設けられており、ファン3bによる吹き出し風が該室内側端部5bに直接当たらないように設定されている。
【0048】
通気ダクト4の室外側には防雨フード4aが設けられており、ファン3bと、通気ダクト4の外側に設けられた防雨フード4aとの間に熱電対温度計5の室外側端部5aを配置したことで、室外温度を検知する室外温度検知手段となる熱電対温度計5の室外側端部5aを日射や降雨や降雪を受けない位置に設置することが出来、給気扇3により給気を常時連続して行う場合、通気ダクト4の内部には常に外気が導入されていることから該室外温度検知手段となる熱電対温度計5の室外側端部5aにより外気に相当する比較的正確な住居の室外温度が得られる。
【0049】
また、熱電対温度計5の室外側端部5aをファン3bと防雨フード4aとの間に設置したことで、現場における配線工事を削減することが出来る。また、給気扇3は居室の外壁に取り付けられるため、通常、陽当たりの良い場所に設置されるが、熱電対温度計5の室外側端部5aをファン3bと防雨フード4aとの間に設置したことで、日射や雨水に対する特別の配慮をする必要が無い。
【0050】
上述した内外温度差検知手段となる熱電対温度計5により検知された温度差に応じて、図示しない給気量制御手段により、気密住宅1の室内に常時連続して外気を給気する給気装置となる給気扇3のモータ3aの回転数を制御することにより給気扇3による室内への給気量を制御することが出来る。
【0051】
気密住宅1に必要な換気量から該気密住宅1の隙間による季節や時刻に応じた漏気量を減じた換気量に応じて換気装置の換気量を制御する換気量制御手段となる給気量制御手段としては、給気扇3のモータ3aの駆動電源を制御するCPU(中央演算処理装置)やメモリ等を装備したコンピュータシステムにより構成することが出来、モータ3aの回転数を制御するに当たっては、例えば、モータ3aの駆動電源に設けられたインバータの周波数を変化させてモータ3aの回転数を変化させるように構成することが出来る。
【0052】
図5(a)は給気扇3による室内への給気量の設定を行う様子を示すフローチャートである。先ず、ステップS1において、気密住宅1の相当隙間面積の確認を行う。特に、工業化住戸等では相当隙間面積の平均的レベルが容易に想定出来る。
【0053】
次に、ステップS2において、対象空間となる和室1d、食堂兼居間1iや洋室1e〜1h等の居室の床面積の確認を行う。尚、各居室や空気汚染室相互を連絡する廊下等は排気装置2や給気扇3による換気流路として想定することが出来る。
【0054】
次に、各部屋の配置や形状による影響を的確に判断する場合には、ステップS3において、総隙間面積の算出を行う。尚、相当隙間面積が各部屋の床面積に比例すると判断する場合にはステップS3を省略することが出来る。
【0055】
次に、ステップS4において、内外温度差が最小になるときの漏気量を算出して最小漏気量の設定を行い、漏気による換気回数の設定を行う。ここで、室床面積と相当隙間面積との関係を比例関係とすれば、相当隙間面積に略比例する漏気量は室床面積により決まる。従って、室床面積と内外温度差から漏気量が把握出来る。また、図3及び図4の外気風速Cで示すように、外気風は年間を通じて略一定値として考慮することが出来、地域毎で個別に設定することも出来る。
【0056】
次に、ステップS5において、必要換気回数と漏気の換気回数とを比較して不足分を算出し、給気扇3による最大給気量の設定を行う。即ち、気密住宅1に必要な換気量となる必要換気回数から、該気密住宅1の隙間による季節や時刻に応じた自然換気量となる漏気の換気回数を差し引いた換気量に応じて換気装置となる給気扇3の換気量を制御する。
【0057】
ここで、必要換気回数は、前述した建築基準法関係シックハウス対策の改正試案において住戸の居室等の有効換気回数が0.7以上と記載されたことに基づいて、本実施形態では、図3及び図4に示す縦軸の換気回数で0.7(回/h)と設定し、各相当隙間面積(C=2〜7)に応じた漏気による換気回数との差分を給気扇3による最大給気量として設定した。
【0058】
図5(b)は給気扇3の作動条件の設定を示すフローチャートである。先ず、ステップS11〜S13において、熱電対温度計5により室外温度と室内温度との温度差を検知する。ステップS11、S12では室外温度と室内温度との夫々に相当する温度またはそれに代わる数値を把握し、ステップS13では室外温度と室内温度との温度差に関する信号を取得する。
【0059】
尚、本実施形態では、熱電対温度計5により室外温度と室内温度との温度差を直接測定するように構成したものであるが、ステップS11、S12において室外温度と室内温度とを夫々別々の温度計により測定し、ステップS13において、それ等の温度計により検知した温度の差を測定或いは計算して室外温度と室内温度との温度差を検知するように構成しても良い。
【0060】
次に、ステップS14において、総隙間面積及び室外温度と室内温度との温度差から漏気量を算出し、その漏気量を設定する。即ち、漏気量の変化を、気密住宅1の室内温度と室外温度との温度差の変化から得るように構成することが出来る。
【0061】
次に、ステップS15において、必要換気量に不足する分の給気扇3による換気量を算出する。ここで、必要な換気量は各室床面積から容易に設定出来るため、給気扇3による換気量は簡単に算出出来る。
【0062】
次に、ステップS16において、給気扇3(モータ3a)の回転数及び通気ダクト4の流路面積から該給気扇3による給気量を算出する。次に、ステップS17において、運転条件に合わせて給気扇3の作動を行う。
【0063】
ここで、気密住宅1の各居室に設けられた複数の給気扇3の内、全ての給気扇3を連続運転することでも良いし、所定の給気扇3を運転し、残りの給気扇3を停止させて総合的に連続運転することでも良い。また、各給気扇3の給気量を全て同じ給気量に設定しても良いし、個別に適宜設定しても良いし、更には複数の給気扇3の給気量を段階的に変化させるように設定しても良い。
【0064】
次に、ステップS18において、給気扇3により必要な給気量を室内に供給する。
【0065】
ここで、漏気量は、標準的と思われるモデルプランを設定し、換気回路網計算により内外温度差、外気風の換気動力を考慮して算出した。例えば、内外温度差が0℃、2℃、20℃、外気風の風速が0m/s、2m/s、2.8m/s、相当隙間面積が2cm2/m2、5cm2/m2、7cm2/m2の各3水準で計算を行い、各因子の影響を重回帰分析により分散共分散行列による重回帰式として求めた。
【0066】
また、外気条件の確認としては、相当隙間面積が2cm2/m2〜5cm2/m2の気密住宅1を建設する主要な地域について、外気温度及び外気風速の変動状況をアメダス気象データ等を用いて確認した。その結果、東京、前橋、京都等が特徴ある地域と見られたが、外気風速の月平均は殆ど変わらないことが判明した。
【0067】
また、室内温度は、本来、冷暖房の運転条件で大きく変化するが、ここでは計算の簡素化のため年間冷暖房負荷の算出条件としても使用される18℃〜27℃の範囲を1年間周期的に変化するものとした。
【0068】
上記漏気量の関数、外気条件及び室内温度条件を用いて漏気量を算出した。図3に示す如く、漏気量(換気回数E〜J)は外気風の影響は殆ど受けることなく内外温度差Dの影響により支配されていることが分かる。従って、内外温度差Dに基づいて給気扇3を制御することは制御系の構成としては簡易でありながら且つ有効な手段である。
【0069】
尚、簡素化した制御方法としては、図5(b)のステップS14〜S17を省略し、代わりにステップS13において、室内温度と室外温度との温度差に関する信号を取得した後、その温度差に基づいて給気扇3のモータ3aの回転数等を直接決定し、設定条件に合わせて給気扇3を作動させることも出来る。
【0070】
また、前記実施形態では、内外温度検知手段となる熱電対温度計5により室内温度と室外温度との実測値の温度差に基づいて給気扇3のモータ3aを制御することで給気量のみを制御するように構成した一例であるが、他の構成として、気密住宅1の室外温度を検知する室外温度検知手段を、図2(a)に示すように、通気ダクト4のファン3bと防雨フード4aとの間に配置し、該室外温度検知手段により検知された室外温度と、予め設定された室内温度との差を前述と同様なコンピュータシステムにより構築された内外温度差算出手段により算出し、その算出された温度差に基づいて給気量制御手段により給気扇3のモータ3aの回転数を制御して給気扇3による給気量を制御するように構成することも出来る。
【0071】
ここで、予め設定される室内温度は、一定温度にしても良いし、図3及び図4に示されるように予め測定された年間の室内温度Bをプログラムしておき、これを利用してコンピュータシステムによりプログラムを読み込んで、室外温度検知手段により検知された室外温度と、予め設定された室内温度との差を内外温度差算出手段により算出しても良い。
【0072】
また、更に他の構成として、気密住宅1の内外温度差を予め想定することにより気密住宅1が所定の換気回数に達するように予め給気扇3による給気量を設定し、その給気量に応じて、前述と同様なコンピュータシステムにより構築された給気量制御手段により給気扇3のモータ3aの回転数を制御して給気扇3による給気量を制御するように構成することも出来る。
【0073】
ここで、予め設定される給気量は、図3及び図4に示されるように、必要換気回数として、前述した建築基準法関係シックハウス対策の改正試案において住居の居室等の有効換気回数が0.7(回/h)以上と記載されたことに基づいて、図3及び図4に示す縦軸の換気回数で0.7(回/h)と設定し、各相当隙間面積(C=2〜7)に応じた漏気による換気回数との差分を給気扇3による必要給気量として設定することが出来る。
【0074】
そして、予め設定された年間の換気回数0.7(回/h)と、各相当隙間面積(C=2〜7)に応じた漏気による換気回数(回/h)との差分を必要給気量としてプログラムしておき、これを利用してコンピュータシステムによりプログラムを読み込んで、給気量制御手段により給気扇3のモータ3aの回転数を制御して給気扇3による給気量を制御するように構成することも出来る。
【0075】
このように、内外温度差や給気扇3による給気量を直接入力するためには、コンピュータシステムに設けられたタイマーにより給気扇3のモータ3aの運転条件を出力し、内外温度差や給気量により給気扇3のモータ3aの回転数等を直接決定して設定条件に合わせて作動させ、給気扇3による必要給気量を供給することが出来る。
【0076】
尚、前記各実施形態では、給気扇3による給気量の制御としてモータ3aの回転数を制御する場合の一例について説明したが、通気ダクト4に設けたシャッター部材等により通気ダクト4の流路面積を制御することでも良い。
【0077】
また、気密住宅1の居室に設けられる複数の給気扇3のうち、常時連続運転される給気扇3と、オン/オフ制御される給気扇3とを適宜組み合わせて構成することでも良い。また、給気扇3は風量が一定に設定されたものや適宜可変出来るものでも良い。
【0078】
また、気密住宅1は、在来木造住戸を除く住戸として、例えば、鉄筋コンクリート製の気密住宅1に適用すれば好ましく、相当隙間面積では、1cm2/m2以上、且つ7cm2/m2以下の気密住宅1に好適である。通常、鉄筋コンクリート製の住戸では、相当隙間面積が0cm2/m2以上、且つ2cm2/m2以下の範囲である。通常、相当隙間面積が1cm2/m2であれば、外気温度等により漏気が殆ど変動しない。在来木造住戸は相当隙間面積が15cm2/m2あり、漏気のみで必要換気量が得られる。
【0079】
また、室内温度検知手段は通気ダクト4から外れた居室の内壁等の所定位置に設置しても良い。
【0080】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、漏気による住居内の換気を考慮し、更に内外温度差に着目して、この内外温度差による換気量の変動を検知して給気装置の給気量を制御することで空気質を維持しつつエネルギー損失を最小限にすることが出来る住居の換気構造を提供することが出来る。
【0081】
即ち、請求項1に記載した換気構造によれば、換気量制御手段により気密住居に必要な換気量から該気密住居の隙間による季節や時刻に応じた自然換気量を減じた換気量に応じて、換気装置の換気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。
【0082】
また、自然換気量の変化を、気密住居の室内温度と室外温度との温度差の変化から得るように構成することが出来る。例えば、住居の総隙間面積及び室外温度と室内温度との温度差から漏気量を算出することが出来る。そして、住居の必要換気量から漏気量を差し引いて必要換気量に不足する分の換気量を算出することが出来る。ここで、必要な換気量は各室床面積から容易に設定出来るため、換気装置による機械換気量は簡単に算出出来る。
【0083】
また、気密住居の室内温度と室外温度との温度差の変化を、例えば、内外温度差検知手段により検知し、その検知された温度差に応じて、給気量制御手段により気密住居の室内に常時連続して外気を給気する給気装置の給気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。
【0084】
また、請求項3に記載した換気構造によれば、室外温度検知手段により検知された室外温度と、予め設定された室内温度との差を内外温度差算出手段により算出し、その算出された温度差に応じて、給気量制御手段により気密住居の室内に常時連続して外気を給気する給気装置の給気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。また、室内温度検知手段を省略出来る。
【0085】
また、請求項4に記載した換気構造によれば、気密住居が所定の換気回数に達するように予め設定された換気量に応じて、給気量制御手段により気密住居の室内に常時連続して外気を給気する給気装置の給気量を制御することで漏気による住居内の換気を考慮しながら空気質を維持しつつエネルギー損失を最小限にすることが出来る。また、室内外温度検知手段を省略出来る。
【0086】
また、請求項6に記載した換気構造によれば、室外温度検知手段を、給気扇のファンから住居外部に連通する通気路であって日射や降雨や降雪を受けない位置に配置したことで、日射や雨や雪が当たらない場所に室外温度検知手段を設置することが出来、給気を常時連続して行う給気扇であるため通気路の内部には常に外気が導入されていることから該室外温度検知手段により外気に相当する比較的正確な住居の室外温度が得られる。また、別途、室外温度検知場所を設ける必要がない。また、室外温度検知手段を給気扇に一体的に設置することが出来、施工等に有利である。
【0087】
【図面の簡単な説明】
【図1】 本発明に係る住居の換気構造を装備した気密住戸の間取りの一例を示す図である。
【図2】 本発明に係る給気扇の構成を示す図である。
【図3】 年間の室外温度、室内温度、外気風速、内外温度差、各相当隙間面積に対応する換気回数の月毎の平均値の一例を示す図である。
【図4】 年間の室外温度、室内温度、外気風速、内外温度差、各相当隙間面積に対応する換気回数の日毎の平均値の一例を示す図である。
【図5】 所定の換気回数に設定するために給気装置の給気量を制御する様子を示すフローチャートである。
【符号の説明】
1…気密住宅
1a,1b…トイレ
1c…風呂
1d…和室
1e〜1h…洋室
1i…食堂兼居間
2…排気装置
3…給気扇
3a…モータ
3b…ファン
3c…パッキン部材
3d…フィルター部材
4…通気ダクト
4a…防雨フード
5…熱電対温度計
5a…室外側端部
5b…室内側端部
Claims (7)
- 気密住居の換気を常時連続して行う換気装置を備える住居の換気構造であって、
その気密住居に必要な換気量から該気密住居の隙間による季節や時刻に応じた自然換気量を減じた換気量に応じて、前記換気装置による強制的な換気量を制御する換気量制御手段をさらに有し、
前記換気量制御手段は、前記自然換気量の変化を算出するにつき、前記気密住居周囲における当該自然換気量算出時点の外気風の影響を考慮することなく前記気密住居の室内温度と室外温度との温度差の変化に基づいて得るように構成したことを特徴とする住居の換気構造。 - 前記換気装置は、
前記気密住居の室外温度を検知する室外温度検知手段と、
前記室外温度検知手段により検知された室外温度と、予め設定された室内温度との差を算出する内外温度差算出手段と、
を有することを特徴とする請求項1に記載の住居の換気構造。 - 前記換気装置は、
前記気密住居が所定の換気回数に達するように予め換気量が設定されたことを特徴とする請求項1に記載の住居の換気構造。 - 前記気密住居は、住宅または住戸または居室であることを特徴とする請求項1に記載の住居の換気構造。
- 前記換気量制御手段は、前記換気装置の給気量のみを制御するように構成したことを特徴とする請求項1に記載の住居の換気構造。
- 前記換気装置は、前記気密住居の給気を常時連続して行う給気扇であって、
前記室外温度検知手段を、給気扇のファンから住居外部に連通する通気路であって日射や降雨や降雪を受けない位置に配置したことを特徴とする請求項2に記載の住居の換気構造。 - 前記換気装置は、気密住居の給気を常時連続して行う給気扇であって、
前記気密住居は、トイレ、風呂、洗面台等の空気汚染室から外気に向けて常時連続して排気を行う排気装置を備えると共に、前記空気汚染室以外の室内空間に常時連続して外気を給気する前記給気扇を設けることを特徴とする請求項1に記載の住居の換気構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002360771A JP4484428B2 (ja) | 2002-12-12 | 2002-12-12 | 住居の換気構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002360771A JP4484428B2 (ja) | 2002-12-12 | 2002-12-12 | 住居の換気構造 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004190973A JP2004190973A (ja) | 2004-07-08 |
JP4484428B2 true JP4484428B2 (ja) | 2010-06-16 |
Family
ID=32759758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002360771A Expired - Fee Related JP4484428B2 (ja) | 2002-12-12 | 2002-12-12 | 住居の換気構造 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4484428B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4548075B2 (ja) * | 2004-09-30 | 2010-09-22 | ダイキン工業株式会社 | 換気システム |
JP5125577B2 (ja) * | 2007-05-31 | 2013-01-23 | パナソニック株式会社 | 換気装置 |
JP5552392B2 (ja) * | 2010-08-02 | 2014-07-16 | ダイダン株式会社 | 変動データ演算装置 |
JP6017792B2 (ja) * | 2012-02-09 | 2016-11-02 | 住友林業株式会社 | 換気制御システム |
JP2013185714A (ja) * | 2012-03-06 | 2013-09-19 | Panasonic Corp | 熱交換型換気機器 |
JP6969197B2 (ja) * | 2017-08-03 | 2021-11-24 | 富士電機株式会社 | 店舗向け給気量制御システム |
CN110779114A (zh) * | 2019-10-11 | 2020-02-11 | 湖北霍尔科技有限公司 | 一种双向流全热交换新风机检测装置 |
JP7394659B2 (ja) * | 2020-03-06 | 2023-12-08 | 三菱電機株式会社 | 空調システム制御装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304661A (ja) * | 2000-04-21 | 2001-10-31 | Daikin Ind Ltd | 天井埋込型空気調和機用室内機 |
JP2002257390A (ja) * | 2001-02-27 | 2002-09-11 | Matsushita Seiko Co Ltd | 建物の換気システムおよび建物の換気方法 |
-
2002
- 2002-12-12 JP JP2002360771A patent/JP4484428B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304661A (ja) * | 2000-04-21 | 2001-10-31 | Daikin Ind Ltd | 天井埋込型空気調和機用室内機 |
JP2002257390A (ja) * | 2001-02-27 | 2002-09-11 | Matsushita Seiko Co Ltd | 建物の換気システムおよび建物の換気方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2004190973A (ja) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9933182B2 (en) | System for optimising an environmental parameter of an enclosed space | |
EP2609375B1 (en) | A method for controlling a ventilation system for the ventilation of an enclosure and a ventilation system | |
CN104067062A (zh) | 用于控制建筑物中的通风的方法及系统 | |
Moosavi et al. | Experimental study on the cooling performance of solar-assisted natural ventilation in a large building in a warm and humid climate | |
Manning et al. | The effects of thermostat set-back and set-up on seasonal energy consumption, surface temperatures and recovery times at the CCHT Twin House Facility | |
US20080039006A1 (en) | Ventilation system | |
JP2012017861A (ja) | 環境調整システム | |
JP4484428B2 (ja) | 住居の換気構造 | |
JP4810296B2 (ja) | 住宅用換気装置 | |
JP2013524143A (ja) | 建物の空気調和のための方法 | |
Wang et al. | A novel turbine ventilator with a damper regulator to adjust exhausted air for energy-saving in buildings | |
JP5502699B2 (ja) | 室内環境制御システム | |
JPWO2017170491A1 (ja) | 制御装置、空調システム、空調方法及びプログラム | |
Burch et al. | Ventilating residences and their attics for energy conservation | |
KR101243368B1 (ko) | 하이브리드 환기 시스템의 제어방법 | |
JP7558626B2 (ja) | 空調システム | |
CN112158703B (zh) | 一种电梯轿厢换气系统和方法 | |
JP2015068585A (ja) | 建物の空調システム | |
JP2002277020A (ja) | 換気システム及び換気方法 | |
JP2005009796A (ja) | 換気量制御方法 | |
JP2017161208A (ja) | 空調システム、空調方法、及びプログラム | |
JP2001221487A (ja) | 住宅の換気方法 | |
JP5866424B2 (ja) | 環境調整システム | |
JP2998743B2 (ja) | 戸建住宅用自然換気建造物の構造及び自然換気システム | |
JP3132958B2 (ja) | 住宅用換気システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051110 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090313 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091224 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4484428 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |