JP4483004B2 - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
JP4483004B2
JP4483004B2 JP2000062866A JP2000062866A JP4483004B2 JP 4483004 B2 JP4483004 B2 JP 4483004B2 JP 2000062866 A JP2000062866 A JP 2000062866A JP 2000062866 A JP2000062866 A JP 2000062866A JP 4483004 B2 JP4483004 B2 JP 4483004B2
Authority
JP
Japan
Prior art keywords
plating
plating layer
copper
substrate
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000062866A
Other languages
Japanese (ja)
Other versions
JP2001251041A (en
Inventor
久和 川原
徹也 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000062866A priority Critical patent/JP4483004B2/en
Publication of JP2001251041A publication Critical patent/JP2001251041A/en
Application granted granted Critical
Publication of JP4483004B2 publication Critical patent/JP4483004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば発光ダイオード(LED)を多数配列して画像表示するためのLEDパネルなどに用いられるプリント配線板に関する。
【0002】
【従来の技術】
画像表示用のLEDパネルは、図2に示すように表示基板51と回路基板52とから構成されたものが従来から使用されている。これらの表示基板51及び回路基板52はぞれぞれ絶縁性の基材の表面に配線パターンを形成したもので、表示基板51にはLEDチップ53が実装搭載され、回路基板52には表示基板51に実装されたLEDチップ53を制御するドライバIC等の各種の回路部品54が実装され、ピンヘッダー61を介して表示基板51と回路基板52の配線パターンが電気的に接続されている。LEDチップ53は一極側を表示基板51の配線パターンに導通させるとともに他極側をワイヤ53aのボンディングによって表示基板51の配線パターンに導通させる実装方法が普通である。
【0003】
表示基板51及び回路基板52はいずれも銅メッキのパターンを基材の表面に形成する点では共通であるが、表示基板51には実装するLEDチップ53のワイヤボンディングのためにボンディング性が高く酸化しないAuメッキが必要とされている。したがって、従来では図3に示すように、表示基板51の表面に銅パターン51aを形成し、LEDチップ53を搭載するためにNiメッキ層51bとAuメッキ層51cを積層する処理がなされている。そして、Auメッキ層51cは銅パターン51aの表面にNiメッキ層51bを形成した後に電解メッキにより形成されるのが普通である。
【0004】
一方、LEDパネルはその薄型化が進み、表示基板51と回路基板52の2枚の組合せに代えて、図4に示すように、1枚の主基板55にまとめて集約する構成としたものが利用されるようになった。すなわち、主基板55の上面側をLEDチップ53の導通搭載面とした表示基板面とし、下面側を回路部品54の実装面とすることによって、薄型化を可能としたのである。なお、1枚の主基板55の表裏両面に配線パターンを形成するためには、主基板55の基材に予めスルーホールを開けておけばよく、このスルーホールの内周に形成されるパターンが表裏両面側の配線パターンを導通させる接続パターン55aとなる。
【0005】
【発明が解決しようとする課題】
このように1枚の主基板55の表裏両面にLEDチップ53及び回路部品54を搭載して回路パターンを形成する場合、回路パターンはかなり複雑になる。LEDチップ53が実装される面には、ワイヤボンド仕様のため、Auメッキ層51cを施す必要がある。従来は、LEDチップ53の実装は、表示基板51のみにされており、この表示基板51上でLEDチップ53の配線パターンを形成し且つすべての独立したパターンに電解Auメッキ用の引き出し線を形成することが可能であり、表示基板51の作製においても図3に示したように銅パターン51a,Niメッキ層51b,Auメッキ層51cの形成の工程を進み、完成品としては全てのパターンにAuメッキを施すことが可能であった。また、回路基板52はワイヤボンド仕様でないため、通常の銅メッキ後に銅の酸化防止のためフラックス処理で製造できる。
【0006】
しかしながら、今日のように、1枚の主基板55に対してその表面にLEDチップ53を実装し裏面に回路部品54を実装する場合は、回路パターンの形成は可能であるが、電解Auメッキ層の引き出し線を全ての独立したパターンに形成することは物理的に不可能である。ワイヤボンド仕様のLED面側のみ電解Auメッキ用引き出し線を形成した場合は、基板作製時のAuメッキ工程でAuメッキが施される間、LEDの配線パターンに関係ない回路部のAuメッキ用の引き出し線がないパターンは銅パターン51aがむき出しのため、銅の表面の不純物がAuメッキ処理の時間中Auメッキ槽の中で溶け出し、このAuメッキ槽を汚す。また、処理時の熱で回路部の銅パターンが酸化してしまうので、実質的に製造できないという問題がある。
【0007】
このような問題に対し、還元無電解Auメッキを利用すれば、銅パターンの酸化やAuメッキ液の汚染は免れる。しかしながら、還元無電解Auメッキは電解Auメッキに比べると処理コストが格段に高く、量産化には対応できない。また、還元無電解メッキでは銅パターンの保護は図られるものの、Auメッキのボンディング性が著しく低下することは広く知られている。したがって、LEDチップ53のワイヤ53aをAuメッキによるボンディングエリアにボンディングしても、その接合度が弱く信頼性に欠けるという問題がある。
【0008】
本発明は、複雑な回路パターンであってもボンディング性が高く、しかも既存の電解メッキ設備とボンディング設備をそのまま利用して安価に製造できるプリント配線板を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、1枚の基板の一面側を半導体発光素子の実装面とするとともに他面側を回路部品の実装面とし、前記基板の表裏両面に銅メッキ層でパターンを形成したプリント配線板であって、前記半導体発光素子及び回路部品の実装面のそれぞれの前記銅メッキ層の上にNiメッキ層を積層するとともに当該Niメッキ層の上に置換型無電解Auメッキ法によってAuメッキ層を積層し、前記半導体発光素子の実装面については、前記Auメッキ層の上に電解Auメッキ法によりボンディング用Auメッキ層を積層形成したことを特徴とする。
【0010】
【発明の実施の形態】
請求項1に記載の発明は、1枚の基板の一面側を半導体発光素子の実装面とするとともに他面側を回路部品の実装面とし、前記基板の表裏両面に銅メッキ層でパターンを形成したプリント配線板であって、前記半導体発光素子及び回路部品の実装面のそれぞれの前記銅メッキ層の上に銅メッキ層のすべての表面を被覆するようにNiメッキ層を積層するとともに当該Niメッキ層の上に置換型無電解Auメッキ法によってAuメッキ層を積層し、前記半導体発光素子の実装面については、前記Auメッキ層の上に電解Auメッキ法によりボンディング用Auメッキ層を積層形成したことを特徴とするプリント配線板であり、置換型無電解Auメッキ法によるAuメッキ層が銅メッキ層の酸化を保護するという作用を有する。
【0011】
図1は本発明の一実施の形態におけるプリント配線板の配線パターンの概略を示す縦断面図である。
【0012】
図1において、絶縁性の基板1はその上面をLEDチップの実装搭載面とするとともに下面を回路部品の搭載面としたもので、表裏両面にメッキによる配線パターンが形成されている。
【0013】
基板1の表裏両面にはまず銅メッキ層2による銅パターンを形成する。この銅メッキ層2は、基板1として、たとえば銅箔を一様に表面に形成した銅張積層板を基板材料とする場合では、最初に基板材料にスルーホールを開け、その後無電解銅メッキ法によって形成する。この工程では、スルーホールの内周面にも銅メッキが施され、その後にエッチング等の工程を経て銅メッキ層2による銅パターンが形成される。
【0014】
銅メッキ層2の形成の後にはNiメッキ層3とAuメッキ層4を順に形成する。これらのNiメッキ層3とAuメッキ層4は、銅メッキ層2のすべての表面を被覆できる無電解メッキで形成する。Niメッキ層3は従来からのNiメッキ法によって形成される。一方、Auメッキ層4は置換型無電解Auメッキ法によって形成する。この置換型無電解Auメッキ法は、いわゆるフラッシュメッキ法と呼ばれるもので、メッキ用配線が不要であり処理コストも電解メッキ法に比べると1/3程度まで下げることができる。そして、置換型無電解Auメッキ法では、全面置換の段階で反応が停止するので、Auメッキ層4の膜厚は通常の場合では0.05μm程度である。
【0015】
このようにNiメッキ層3とAuメッキ層4とを形成することにより、基板1の銅メッキ層2の全ての銅パターンがAuメッキ層4によって被膜され、銅メッキ層2の酸化が確実に防止されると同時に加熱による銅の溶出も出にくくなる。
【0016】
Auメッキ層4の基板1の両面へのメッキの後には、LEDを実装する面側にワイヤボンディングのためのAuメッキを形成する。これは、Auメッキ層4を施した後に電解メッキ法によってボンディング用Auメッキ層5を施す工程によるもので、形成されるボンディング用Auメッキ層5はLEDを導通搭載するときのワイヤボンディングエリアに対応する。このボンディング用Auメッキ層5を電解メッキするときには、基板1がメッキ液の中に浸漬されて加熱されるが、銅メッキ層2は置換型無電解AuメッキによるAuメッキ層4で被覆されているので、メッキ液には接触しない。このため、銅メッキ層2の表面の付着不純物がメッキ液中に溶出することはない。
【0017】
以上の構成において、基板1の両面に形成される銅メッキ層2のパターンはAuメッキ層4によって被覆されるので、従来のようにAuメッキ部分と銅メッキ部分とが混在しないパターンが得られる。したがって、電解Auメッキ用の引き出し線を形成できない回路部品実装面側の電解Auメッキは不要となり、LED搭載面側に電解Auメッキ用の引き出し線を形成し、ボンディング用Auメッキ層5を形成できる。
【0018】
また、LEDを実装搭載する面側では最終工程の電解Auメッキによってボンディング用Auメッキ層5が形成されるので、ワイヤのボンディング性も高く維持できる。そして、還元無電解型Auメッキを必要としないので製造コストの低減が図られるとともに、既存の電解メッキ用設備とボンディング装置をそのまま利用できるので製造設備の変更も不要となる。
【0019】
【発明の効果】
本発明では、基板の表裏両面に形成する銅メッキ層のパターンを置換型無電解AuメッキによるAuメッキ層で被覆するので、複雑な回路パターンであっても銅メッキ部のみのパターンは存在しないため、電解Auメッキ層の中で銅表面の不純物が溶け出すことがない。したがって、後工程でのボンディング用Auメッキ層を電解Auメッキによって形成でき、ボンディング性が高く半導体発光素子の安定した導通を維持できる製品を提供できる。
【0020】
また、還元型無電解Auメッキを用いないでボンディング用Auメッキを形成できるのでコストの低減が可能となるほか、既存の電解メッキ設備とボンディング装置をそのまま利用できるので設備の変更も不要となる。
【図面の簡単な説明】
【図1】本発明のプリント配線板の積層メッキ構造を示す概略縦断面図
【図2】従来のLEDパネル用の基板構造であって、表示基板と回路基板との組合せとした例を示す概略図
【図3】図2の例における表示基板の積層メッキ構造を示す概略縦断面図
【図4】1枚の主基板の一面側をLEDの搭載面及び他面側を回路部品の搭載面とした例の概略図
【符号の説明】
1 基板
2 銅メッキ層
3 Niメッキ層
4 Auメッキ層
5 ボンディング用Auメッキ層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a printed wiring board used for, for example, an LED panel for displaying an image by arranging a large number of light emitting diodes (LEDs).
[0002]
[Prior art]
As an LED panel for image display, a display panel 51 and a circuit board 52 are conventionally used as shown in FIG. Each of the display board 51 and the circuit board 52 is formed by forming a wiring pattern on the surface of an insulating base material. The LED chip 53 is mounted on the display board 51, and the display board is mounted on the circuit board 52. Various circuit components 54 such as a driver IC for controlling the LED chip 53 mounted on 51 are mounted, and the wiring patterns of the display substrate 51 and the circuit substrate 52 are electrically connected via the pin header 61. In general, the LED chip 53 is electrically connected to the wiring pattern of the display substrate 51 on the one electrode side and electrically connected to the wiring pattern of the display substrate 51 on the other electrode side by bonding of the wire 53a.
[0003]
Both the display substrate 51 and the circuit substrate 52 are common in that a copper plating pattern is formed on the surface of the base material, but the display substrate 51 has a high bonding property and is oxidized for wire bonding of the LED chip 53 to be mounted. There is a need for non-Au plating. Therefore, conventionally, as shown in FIG. 3, the copper pattern 51a is formed on the surface of the display substrate 51, and the Ni plating layer 51b and the Au plating layer 51c are stacked in order to mount the LED chip 53. The Au plating layer 51c is usually formed by electrolytic plating after the Ni plating layer 51b is formed on the surface of the copper pattern 51a.
[0004]
On the other hand, the LED panel has been made thinner, and instead of the combination of two display substrates 51 and circuit boards 52, as shown in FIG. It came to be used. That is, by making the upper surface side of the main substrate 55 a display substrate surface that is a conductive mounting surface of the LED chip 53 and the lower surface side is a mounting surface of the circuit component 54, the thickness can be reduced. In order to form a wiring pattern on both the front and back surfaces of one main board 55, a through hole may be formed in advance in the base material of the main board 55, and a pattern formed on the inner periphery of this through hole. This is a connection pattern 55a for conducting the wiring patterns on both the front and back surfaces.
[0005]
[Problems to be solved by the invention]
As described above, when the LED chip 53 and the circuit component 54 are mounted on both the front and back surfaces of one main substrate 55 to form a circuit pattern, the circuit pattern becomes considerably complicated. An Au plating layer 51c needs to be applied to the surface on which the LED chip 53 is mounted because of the wire bond specification. Conventionally, the LED chip 53 is mounted only on the display substrate 51. A wiring pattern of the LED chip 53 is formed on the display substrate 51, and lead wires for electrolytic Au plating are formed on all independent patterns. In the production of the display substrate 51, the process of forming the copper pattern 51a, the Ni plating layer 51b, and the Au plating layer 51c is advanced as shown in FIG. It was possible to apply plating. In addition, since the circuit board 52 is not of a wire bond specification, it can be manufactured by a flux treatment to prevent oxidation of copper after normal copper plating.
[0006]
However, when the LED chip 53 is mounted on the front surface of one main substrate 55 and the circuit component 54 is mounted on the back surface as in today, a circuit pattern can be formed. It is physically impossible to form the lead lines in all independent patterns. When the lead wire for electrolytic Au plating is formed only on the LED surface side of the wire bond specification, while the Au plating is performed in the Au plating process at the time of manufacturing the substrate, it is used for Au plating of a circuit portion that is not related to the wiring pattern of the LED. Since the copper pattern 51a is exposed in the pattern having no lead line, the impurities on the copper surface are dissolved in the Au plating tank during the Au plating process, and the Au plating tank is soiled. Moreover, since the copper pattern of a circuit part will be oxidized with the heat | fever at the time of a process, there exists a problem that it cannot manufacture substantially.
[0007]
If reduced electroless Au plating is used for such problems, oxidation of the copper pattern and contamination of the Au plating solution can be avoided. However, reduced electroless Au plating has a much higher processing cost than electrolytic Au plating, and cannot cope with mass production. Further, it is widely known that the reduction electroless plating can protect the copper pattern, but the bonding performance of the Au plating is remarkably lowered. Therefore, even if the wire 53a of the LED chip 53 is bonded to a bonding area by Au plating, there is a problem that the degree of bonding is weak and the reliability is lacking.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide a printed wiring board that has a high bonding property even with a complicated circuit pattern and that can be manufactured at low cost by using existing electrolytic plating equipment and bonding equipment as they are.
[0009]
[Means for Solving the Problems]
The present invention provides a printed wiring board in which one surface side of one substrate is a mounting surface for a semiconductor light emitting element and the other surface side is a mounting surface for a circuit component, and patterns are formed on both the front and back surfaces of the substrate with copper plating layers. In addition, an Ni plating layer is laminated on the copper plating layer on each of the mounting surfaces of the semiconductor light emitting element and the circuit component, and an Au plating layer is laminated on the Ni plating layer by a substitutional electroless Au plating method. The mounting surface of the semiconductor light emitting device is characterized in that an Au plating layer for bonding is laminated on the Au plating layer by an electrolytic Au plating method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, one surface side of one substrate is used as a mounting surface for a semiconductor light emitting element, and the other surface side is used as a mounting surface for a circuit component. A printed wiring board having a Ni plating layer laminated on the copper plating layer on each of the mounting surfaces of the semiconductor light emitting element and the circuit component so as to cover all surfaces of the copper plating layer and the Ni plating An Au plating layer was laminated on the layer by a substitutional electroless Au plating method, and an Au plating layer for bonding was laminated on the Au plating layer by an electrolytic Au plating method on the mounting surface of the semiconductor light emitting element. The printed wiring board is characterized in that the Au plating layer formed by the substitutional electroless Au plating method has an action of protecting the oxidation of the copper plating layer.
[0011]
FIG. 1 is a longitudinal sectional view showing an outline of a wiring pattern of a printed wiring board according to an embodiment of the present invention.
[0012]
In FIG. 1, an insulating substrate 1 has an upper surface as an LED chip mounting surface and a lower surface as a circuit component mounting surface, and has a wiring pattern formed by plating on both front and back surfaces.
[0013]
First, a copper pattern by the copper plating layer 2 is formed on both the front and back surfaces of the substrate 1. When the copper plating layer 2 is a substrate 1 made of, for example, a copper clad laminate having a copper foil uniformly formed on the surface thereof, a through hole is first opened in the substrate material, and then an electroless copper plating method is used. Formed by. In this step, copper plating is also applied to the inner peripheral surface of the through hole, and then a copper pattern by the copper plating layer 2 is formed through steps such as etching.
[0014]
After the formation of the copper plating layer 2, the Ni plating layer 3 and the Au plating layer 4 are formed in order. These Ni plating layer 3 and Au plating layer 4 are formed by electroless plating capable of covering all surfaces of the copper plating layer 2. The Ni plating layer 3 is formed by a conventional Ni plating method. On the other hand, the Au plating layer 4 is formed by a substitutional electroless Au plating method. This substitutional electroless Au plating method is called a so-called flash plating method, and does not require plating wiring, and the processing cost can be reduced to about 1/3 compared with the electrolytic plating method. In the substitutional electroless Au plating method, the reaction stops at the stage of the entire surface substitution, so that the thickness of the Au plating layer 4 is about 0.05 μm in a normal case.
[0015]
By forming the Ni plating layer 3 and the Au plating layer 4 in this way, all the copper patterns of the copper plating layer 2 of the substrate 1 are coated with the Au plating layer 4, and the oxidation of the copper plating layer 2 is surely prevented. At the same time, elution of copper by heating becomes difficult to occur.
[0016]
After the Au plating layer 4 is plated on both sides of the substrate 1, Au plating for wire bonding is formed on the side on which the LED is mounted. This is due to the step of applying the Au plating layer 5 for bonding by electrolytic plating after applying the Au plating layer 4, and the formed Au plating layer 5 for bonding corresponds to the wire bonding area when the LED is conductively mounted. To do. When the plating Au plating layer 5 is electrolytically plated, the substrate 1 is immersed in a plating solution and heated, but the copper plating layer 2 is covered with an Au plating layer 4 formed by substitutional electroless Au plating. Therefore, it does not contact the plating solution. For this reason, the adhering impurities on the surface of the copper plating layer 2 are not eluted into the plating solution.
[0017]
In the above configuration, since the pattern of the copper plating layer 2 formed on both surfaces of the substrate 1 is covered with the Au plating layer 4, a pattern in which the Au plating portion and the copper plating portion are not mixed as in the conventional case is obtained. Accordingly, the electrolytic Au plating on the circuit component mounting surface side where the lead wire for electrolytic Au plating cannot be formed becomes unnecessary, and the lead wire for electrolytic Au plating can be formed on the LED mounting surface side to form the bonding Au plating layer 5. .
[0018]
In addition, since the bonding Au plating layer 5 is formed by electrolytic Au plating in the final process on the surface side where the LED is mounted and mounted, the bonding property of the wire can be maintained high. And since reduction electroless type Au plating is not required, the manufacturing cost can be reduced, and the existing electrolytic plating equipment and the bonding apparatus can be used as they are, so that it is not necessary to change the manufacturing equipment.
[0019]
【The invention's effect】
In the present invention, the pattern of the copper plating layer formed on both the front and back surfaces of the substrate is covered with the Au plating layer by substitutional electroless Au plating, so there is no pattern of only the copper plating part even in a complicated circuit pattern. In addition, impurities on the copper surface do not dissolve in the electrolytic Au plating layer. Therefore, a Au plating layer for bonding in a later process can be formed by electrolytic Au plating, and a product that has high bonding properties and can maintain stable conduction of the semiconductor light emitting element can be provided.
[0020]
In addition, since the Au plating for bonding can be formed without using reduced electroless Au plating, the cost can be reduced, and the existing electrolytic plating equipment and the bonding apparatus can be used as they are, so that it is not necessary to change the equipment.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a multilayer plating structure of a printed wiring board according to the present invention. FIG. 2 is a conventional substrate structure for an LED panel, showing an example of a combination of a display substrate and a circuit substrate. FIG. 3 is a schematic longitudinal sectional view showing a laminated plating structure of a display substrate in the example of FIG. 2. FIG. 4 is a diagram showing a LED mounting surface on one side of one main substrate and a circuit component mounting surface on the other side. Schematic diagram of the example
1 Substrate 2 Copper plating layer 3 Ni plating layer 4 Au plating layer 5 Au plating layer for bonding

Claims (1)

1枚の基板の一面側を半導体発光素子の実装面とするとともに他面側を回路部品の実装面とし、前記基板の表裏両面に銅メッキ層でパターンを形成したプリント配線板であって、前記半導体発光素子及び回路部品の実装面のそれぞれの前記銅メッキ層の上に銅メッキ層のすべての表面を被覆するようにNiメッキ層を積層するとともに当該Niメッキ層の上に置換型無電解Auメッキ法によってAuメッキ層を積層し、前記半導体発光素子の実装面については、前記Auメッキ層の上に電解Auメッキ法によりボンディング用Auメッキ層を積層形成したことを特徴とするプリント配線板。A printed wiring board in which one surface side of one substrate is a mounting surface of a semiconductor light emitting element and the other surface side is a mounting surface of a circuit component, and a pattern is formed with a copper plating layer on both front and back surfaces of the substrate, A Ni plating layer is laminated on the copper plating layer on each of the mounting surfaces of the semiconductor light emitting element and the circuit component so as to cover all surfaces of the copper plating layer, and a substitutional electroless Au is formed on the Ni plating layer. A printed wiring board, wherein an Au plating layer is laminated by a plating method, and a bonding Au plating layer is laminated on the Au plating layer by an electrolytic Au plating method on the mounting surface of the semiconductor light emitting element.
JP2000062866A 2000-03-08 2000-03-08 Printed wiring board Expired - Fee Related JP4483004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062866A JP4483004B2 (en) 2000-03-08 2000-03-08 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062866A JP4483004B2 (en) 2000-03-08 2000-03-08 Printed wiring board

Publications (2)

Publication Number Publication Date
JP2001251041A JP2001251041A (en) 2001-09-14
JP4483004B2 true JP4483004B2 (en) 2010-06-16

Family

ID=18582822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062866A Expired - Fee Related JP4483004B2 (en) 2000-03-08 2000-03-08 Printed wiring board

Country Status (1)

Country Link
JP (1) JP4483004B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129068A (en) 2005-11-04 2007-05-24 Toshiba Corp Semiconductor device and its manufacturing method therefor, substrate used for manufacturing semiconductor device
JP5173350B2 (en) * 2007-10-19 2013-04-03 京セラ株式会社 Optical print head, optical print head manufacturing method, and image forming apparatus

Also Published As

Publication number Publication date
JP2001251041A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP2501019B2 (en) Flexible circuit board
TW571371B (en) Method for fabricating semiconductor package
JP5010737B2 (en) Printed wiring board
US5081562A (en) Circuit board with high heat dissipations characteristic
WO2009141928A1 (en) Printed wiring board and method for manufacturing the same
US8383950B1 (en) Metal etch stop fabrication method and structure
JP2004343030A (en) Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
JP3606785B2 (en) Wiring board manufacturing method
JP5003812B2 (en) Printed wiring board and printed wiring board manufacturing method
JP2002057424A (en) Printed wiring board and its manufacturing method
US7982138B2 (en) Method of nickel-gold plating and printed circuit board
JP4483004B2 (en) Printed wiring board
JP2001077228A (en) Printed wiring board for semiconductor package and manufacture thereof
JP4391671B2 (en) Electronic component mounting substrate and manufacturing method thereof
JP2859741B2 (en) Manufacturing method of printed wiring board
JP3893088B2 (en) Manufacturing method of substrate for semiconductor package
JPH08167676A (en) Semiconductor device
JP2001291800A (en) Package for electronic component
JP2002016330A (en) Substrate for mounting component and its manufacturing method
JP3987288B2 (en) Semiconductor element mounting structure and liquid crystal display device
JP3044415B2 (en) Electronic circuit module
JP3503173B2 (en) Composite substrate and method of manufacturing the same
JP2001284415A (en) Structure and method for mounting semiconductor element and liquid crystal display device
JP3608514B2 (en) Semiconductor element mounting structure and electronic device
JP4137295B2 (en) CSP tape carrier manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees