JP4481893B2 - 乾燥システム - Google Patents

乾燥システム Download PDF

Info

Publication number
JP4481893B2
JP4481893B2 JP2005200622A JP2005200622A JP4481893B2 JP 4481893 B2 JP4481893 B2 JP 4481893B2 JP 2005200622 A JP2005200622 A JP 2005200622A JP 2005200622 A JP2005200622 A JP 2005200622A JP 4481893 B2 JP4481893 B2 JP 4481893B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
drying system
temperature
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005200622A
Other languages
English (en)
Other versions
JP2007017107A (ja
Inventor
彰久 小鍋
靖治 豊島
弘 安田
Original Assignee
株式会社グリーンセイジュ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グリーンセイジュ filed Critical 株式会社グリーンセイジュ
Priority to JP2005200622A priority Critical patent/JP4481893B2/ja
Publication of JP2007017107A publication Critical patent/JP2007017107A/ja
Application granted granted Critical
Publication of JP4481893B2 publication Critical patent/JP4481893B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Drying Of Solid Materials (AREA)

Description

本発明は乾燥システムに係り、特にエネルギー効率が高く、且つ周囲環境への影響を低減できる、圧縮冷凍サイクルを利用した閉鎖系の乾燥システムに関するものである。
古くから行われている日干しや風乾は最も手軽な乾燥方法であり、腐敗を防ぐことができれば、品質は高いが、広大な場所と長い時間が必要で、天気にも影響されるため、工業的に行うのは難しかった。また、従来の加温式の乾燥装置や熱風乾燥装置では、いずれも水蒸気を含む高温の排ガスを系外に放出するため、莫大なエネルギーが浪費されるだけでなく、被乾燥処理物の種類によっては周囲の環境に悪影響を及ぼす危険性があった。
従来の乾燥装置に伴う欠点を解消するために、本発明者は、先に特許文献1に記載されている新規且つ有用な乾燥システムを提案した。
この乾燥システムでは 圧縮冷凍サイクルを利用し、凝縮器で熱を放出して被乾燥処理物に与えることでその被乾燥処理物から水分を蒸発・分離させ、その水蒸気を蒸発器で凝縮して水分を系外に排出すると共に熱を回収し、その熱を上記した凝縮器に戻すことで、比較的単純な構造ながら、エネルギー効率を高めることに成功している。
特開2004−301496号公報
先の乾燥システムでは、特に乾燥運転期間の加温用凝縮器における冷媒の凝縮温度に着目して調整用凝縮器での排熱量を調整することで、乾燥が進行して加温用凝縮器で十分に熱が冷媒から奪われなくなっても冷却能力が低下したり、無制限の熱の放出により蒸発器の凍結による機能不全に陥ったりするのを防止している。
本発明者は、先の乾燥システムを実際に運転しながら改良を重ね、上記した効果に加えて、更に一層の消費エネルギーの削減、被乾燥処理物の品質の安定、運転期間の短縮化等の課題を解決できる、改良された乾燥システム及びその運転方法をここで提案する。
請求項1の発明は、処理槽と、前記処理槽内で湿り空気を除湿される部位に導き且つ除湿後の空気を前記被乾燥処理物に導く槽内空気循環手段と、圧縮冷凍サイクル部であって、冷媒循環経路と、前記冷媒循環経路に接続された圧縮機および膨張弁と、前記圧縮機から前記膨張弁の間のうち冷媒が前記圧縮機から前記膨張弁に向かう冷媒循環経路に接続されて、前記処理槽内に挿入された含水性の被乾燥処理物に凝縮器の熱を供給することで前記被乾燥処理物から水分を蒸発・分離させて湿り空気を生成する加温用凝縮器、および系外に熱を排出する排熱量調整可能な調整用凝縮器と、前記圧縮機から前記膨張弁の間のうち冷媒が前記膨張弁から前記圧縮機に向かう冷媒循環経路に接続されて、前記湿り空気から熱を奪うことで除湿する除湿用蒸発器、および系外から熱を吸収する吸熱用蒸発器とからなるものと、通常運転期間に前記加温用凝縮器における冷媒凝縮圧力を一定に調整する凝縮圧力制御手段とを備えた乾燥系の乾燥システムであって、立上り運転期間には、冷媒は前記圧縮機から吐き出された後、前記加温用凝縮器で凝縮され、前記膨張弁で減圧され、前記吸熱用蒸発器で蒸発されて、前記圧縮器に戻り、通常運転期間には、冷媒は前記圧縮機から吐き出された後、前記加温用凝縮器と前記調整用凝縮器で凝縮され、前記膨張弁で減圧され、前記除湿用蒸発器で蒸発されて、前記圧縮器に戻る構成になっていることを特徴とする乾燥システムである。
請求項2の発明は、請求項1に記載した乾燥システムにおいて、調整用凝縮器は吸熱用蒸発器と兼用されており、四方弁の接続状態を変更することにより、立上り運転期間の圧縮機、加温用凝縮器、膨張弁及び吸熱用蒸発器の配管構成から、通常運転期間の圧縮機、加温用凝縮器、調整用凝縮器、膨張弁及び除湿用蒸発器を接続した配管構成に切り替えられることを特徴とする乾燥システムである。
請求項3の発明は、請求項1または2に記載した乾燥システムにおいて、凝縮圧力制御手段は、調整用凝縮器の入口、膨張弁の入口、または前記調整用凝縮器の出口側にサブクーラが組み込まれている場合にはそのサブクーラの直前のいずれかの位置の冷媒温度を検出する温度センサーと、前記温度センサーから検出された温度に基づいて調整用凝縮器の排熱量を調整するコントローラとによって構成されていることを特徴とする乾燥システムである。
請求項4の発明は、請求項1から3のいずれかに記載した乾燥システムにおいて、さらに、除湿用蒸発器における蒸発圧力を一定の範囲内に調整する蒸発圧力制御手段とを備えることを特徴とする乾燥システムである。
請求項5の発明は、請求項4に記載した乾燥システムにおいて、蒸発圧力制御手段は容量可変型の圧縮機と、除湿用蒸発器の入口または出口の位置の冷媒温度を検出する温度センサーと、前記温度センサーから検出された温度に基づいて前記圧縮機の容量を調整するコントローラとによって構成されていることを特徴とする乾燥システムである。
請求項6の発明は、請求項4に記載した乾燥システムにおいて、蒸発圧力制御手段は容量可変型の圧縮機と、除湿用蒸発器の入口と出口のそれぞれの冷媒温度を検出する温度センサーと、前記温度センサーから検出された2つの位置の冷媒温度差が一定の範囲に収まるように前記圧縮機の容量を調整するコントローラとによって構成されていることを特徴とする乾燥システムである。
請求項7の発明は、請求項4から6のいずれかに記載した乾燥システムにおいて、膨張弁は開度を調整可能なものであり、且つコントローラは前記圧縮機の容量が変更されたときに前記膨張弁の開度を調整して冷媒流量を常に適切に維持し、圧縮機の容量変化が段階的であった場合でも冷媒流量の変化を滑らかに調整することを特徴とする乾燥システムである。
請求項8の発明は、請求項5から7のいずれかに記載した乾燥システムにおいて、槽内空気循環手段は風量調整可能であり、コントローラは現在の圧縮機容量または温度センサーにより検出された温度に基づいて前記槽内空気循環手段の風量を調整することを特徴とする乾燥システムである。
請求項9の発明は、請求項5から8のいずれかに記載した乾燥システムにおいて、さらに被乾燥処理物を撹拌する、撹拌部の動作の速度調整可能な撹拌手段を備え、コントローラは現在の圧縮機容量または温度センサーにより検出された温度に基づいて前記撹拌手段の撹拌部の動作の速度を調整することを特徴とする乾燥システムである。
請求項10の発明は、請求項1から9のいずれかに記載した乾燥システムにおいて、圧縮冷凍サイクル部の加温用凝縮器において高温側冷媒との熱交換により加熱された二次冷媒から加温用熱交換器を介して被乾燥処理物に熱を供給する間接加温構成部と、除湿用蒸発器において低温側冷媒との熱効果により冷却された二次冷媒から冷却用熱交換器を介して湿り空気から熱が奪われる間接冷却構成部の少なくともいずれかの間接構成部を備え、しかも、前記圧縮冷凍サイクル部の間接構成部は乾燥システムから分離可能に構成されていることを特徴とする乾燥システムである。
請求項11の発明は、請求項10に記載した乾燥システムを構成する圧縮冷凍サイクル部である。
請求項12の発明は、請求項4に記載した乾燥システムの運転方法において、運転期間を立上り運転期間と乾燥運転期間に分け、立上り運転期間は、圧縮機の容量を最大に設定し、前記凝縮温度が予め設定された凝縮圧力に対応する温度に到達した時点で立上り運転期間から乾燥運転期間に移行し、乾燥運転期間は、凝縮圧力制御手段により凝縮温度を一定に調整すると共に、前記蒸発圧力制御手段により、冷媒蒸発圧力に対応する冷媒温度が一定の範囲内に収まるように前記圧縮機の容量を調整し、前記圧縮機の容量を最低に変更しても前記一定の範囲の下限より下回った時点で運転を終了する、ことを特徴とする運転方法である。
請求項13の発明は、請求項12に記載した乾燥システムの運転方法において、圧縮機の容量を段階的に変更し、且つ前記圧縮機の容量を変更した場合には膨張弁の開度を調整することで蒸発圧力の変動を滑らかにすることを特徴とする運転方法である。
本発明の請求項1によれば、閉鎖系の常温常圧下でエネルギー効率高く乾燥システムを運転できる。しかも立上げ運転期間におけるエネルギー消費量が大幅に低減され、立上り時間も大幅に短縮化される。
請求項2は、四方弁を用いることで、シンプルでしかも弁切替時の液バック等の障害が少ない実用的な配管構成を提案している。
請求項3は、凝縮圧力制御手段の好適な具体例を提案している。
請求項4によれば、蒸発圧力制御手段の付加により、乾燥の進行状況によって変動する水分蒸発量に応じた運転ができ、乾燥効率の低下が防止され、しかも運転終了時を処理槽の外側から信頼性高く判断できる。
請求項5〜7は、蒸発圧力制御手段の好適な具体例を提案している。
請求項8、9によれば、乾燥の進行より被乾燥処理物が粉状になっても飛散を最低限に抑制することができる。
請求項10、11によれば、圧縮冷凍サイクル部のみを汎用品としてパッケージ化できるので量産化が可能である。
請求項12、13によれば、全運転期間を通してエネルギー消費量が低減され、且つ運転期間間も短縮化される。しかも、常に高品質の乾燥済み処理物を得ることができる。
以上より、本発明の乾燥システムは、経済的且つ環境に優しいシステムと言える。
本発明の第1の実施の形態を、図1から図8に従って説明する。
図1は実施の形態に係る乾燥システム1の全体の模式図である。
この実施の形態では、被乾燥処理物(W)は野菜等の含水性有機物である。
乾燥システム1は、圧縮冷凍サイクル部3と処理槽5とから主に構成されている。この乾燥システム1では直接冷却方式・直接加熱方式を採用している。
先ず、圧縮冷凍サイクル部3の構成を説明する。
図1に示すように、7は冷媒循環経路を示し、圧縮機9、加温用凝縮器11、調整用凝縮器兼吸熱用蒸発器13、膨張弁15、および除湿用蒸発器17が配設されている。
圧縮機9は容量が変更できる容量可変タイプのものである。
加温用凝縮器11は処理槽5の床下に這い回るように接触配管された熱伝導性の管(銅製)によって構成されており、空気を通さないで冷媒の熱を直接処理槽5の被乾燥処理物(W)に与える。
調整用凝縮器兼吸熱用蒸発器13は、処理槽5の外部に配設されており、調整用凝縮器と吸熱用蒸発器とを兼ねており、調整用凝縮器として使用される場合には組み込まれているファン14の回転数が制御されて排熱量が調整される。吸熱用蒸発器として使用される場合にはヒートポンプの原理により外気から熱が冷媒に取り込まれる。
この場合、ファン14の回転数を出来る限り上げたほうが立上り運転期間を短くすることができるが、外気が非常に高温の場合には圧縮冷凍サイクルの内部が異常高温にならないようにファン14の回転数を抑制しなければならない場合もある。外気が低温の場合は膨張弁の開度を調整するなど適切な運転によって着霜を防止すべきであることは当然である。
膨張弁15は開度を調整可能な電子膨張弁である。
除湿用蒸発器17は処理槽5の中に組み込まれている。
符号19は切替可能な四方弁を示す。
温度センサーS1、S2、S3、S4は、それぞれセンサーが設けられた位置の冷媒の温度を検出する。
符号21はコントローラ(CPU、メモリ、I/Oポート、電源回路等で構成)を示し、このコントローラ21が専用の乾燥処理手順に従って乾燥システム1全体を制御している。即ち、温度センサーS1等からの信号を受取り、調整用凝縮器13のファン14等の図示しない駆動回路に制御信号を発している。
次に、処理槽5の構成を説明する。
23は被乾燥処理物(W)撹拌手段としてのスクリューを示し、このスクリュー23は処理槽5の床上に近い部分に設置されている。
25は槽内空気循環手段としてのブロアを示し、このブロア25の駆動により除湿用蒸発器17を通過した除湿後の空気が被乾燥処理物(W)に導かれ、且つ被乾燥処理物(W)から水分を水蒸気として取り込んだ湿り空気を除湿用蒸発器に導かれる循環経路が形成される。
四方弁19の切り替えにより、立上り運転期間と乾燥運転期間では配管構成が異なり、熱の循環経路も異なるので、以下に分けて説明する。
図2は、立上り運転期間の配管構成であり、冷媒は圧縮機9から吐き出された後、加温用凝縮器11で処理槽5の床下から槽内の被乾燥処理物(W)に熱を奪われて凝縮され、膨張弁15で減圧され、吸熱用蒸発器13で蒸発され、再び圧縮機9に戻る構成になっている。このとき、加温用凝縮器から出てきた冷媒は高温の状態で除湿用蒸発器17を通るが後述するブロア25が駆動されていないので凝縮器としては機能しない。したがって立上げ時には除湿用蒸発器17はバイパスしてもよい。
この配管構成で乾燥システム1が動作すると、被乾燥処理物(W)にはヒートポンプの原理で外気からの熱が与えられ、更に圧縮機9等のジュール熱も与えられて予熱される。
図3は、乾燥運転期間の配管構成であり、冷媒は圧縮機9から吐き出された後、加温用凝縮器11で処理槽5の床下から槽内の被乾燥処理物(W)に熱を奪われて凝縮され、調整用凝縮器13で系外に余剰熱量を排熱されて更に適当な量だけ凝縮され、膨張弁15で減圧され、除湿用蒸発器17で蒸発され、再び圧縮機9に戻る構成になっている。
この配管構成で乾燥システム1が動作すると、図4に示すように、加温用凝縮器11から被乾燥処理物(W)に熱が与えられて被乾燥処理物(W)が加温され、そこから水分が蒸発・分離されてその被乾燥処理物(W)上の空気に取り込まれて湿り空気が生成される。その湿り空気は循環経路に従って除湿用蒸発器17に運ばれてそこで水蒸気が凝縮・分離され、ドレンにより系外に排出される。一方、除湿用蒸発器17で水分が分離されることにより除湿された後の除湿後の空気は循環経路に従って被乾燥処理物(W)上に戻される。そして、湿り空気の生成が再び繰り返される。
図3中処理槽5内の矢印は空気の循環経路を示している。矢印中の白丸は被乾燥処理物(W)から取り込んだ水蒸気を示している。なお、除湿後の空気の矢印には水蒸気は示されていないが、これは湿度がゼロの乾燥空気を示しているわけでは無く、どちらも湿度は100%近くに達しているが定常的に蒸発・凝縮を繰り返す水分量のみに着目して湿り空気と除湿後の空気とを視覚上明確に区別するためにこのような図示になっている。
以下、制御手段について説明する。
この乾燥システム1では、立上り運転期間には、凝縮圧力制御手段は、膨張弁15前の冷媒温度を検出する温度センサーS1と、その温度センサーS1から検出された温度に基づいて冷媒が一定の「凝縮温度」=「凝縮圧力」に達したか否かを判断し、立上げ運転を終了させるコントローラ21とから構成されている。
また、温度センサーS2とS4が吸熱用蒸発器13の入口と出口側にそれぞれ設けられており、これらの温度センサーS2とS4から検出される温度差が一定になるように膨張弁15の開度を調整することによって、外気温度が非常に低い場合にも対処でき、北海道のような寒冷地域でも問題なく使用できる。
なお、冷媒の圧力と温度は、線形対応関係にあるので、冷媒の温度を検出することで冷媒の圧力を換算導出している。以下の蒸発圧力制御手段においても同様である。
乾燥運転期間には、凝縮圧力制御手段は、膨張弁15の直前の冷媒温度を検出する温度センサーS2と、そのセンサーS2から検出された冷媒温度に基づいて調整用凝縮器13の排熱量を調整するコントローラ21とから構成されており、加温用凝縮器11の冷媒の「凝縮圧力」を一定(固定的)に制御している。
なお、調整用凝縮器13の出口にサブクーラが組み込まれた場合には、そのまま温度センサーS2から検出された膨張弁15の直前の冷媒温度に基づいて冷媒凝縮温度を推算し、この推算温度から加温用凝縮器11の冷媒の「凝縮圧力」を一定(固定的)に制御してもよいし、或いは、温度センサーS2の配置をサブクーラの直前に変更し、その位置が変更された温度センサーS2から検出された温度に基づいて加温用凝縮器11の冷媒の「凝縮圧力」を一定(固定的)に制御してもよい。
また、上記したように寒冷地域にも対応できるよう調整用凝縮器の直前に温度センサーS4を配置した場合には、温度センサーS4から検出された温度に基づいて加温用凝縮器11の冷媒の「凝縮圧力」を一定(固定的)に制御してもよい。
乾燥の進行により被乾燥処理物(W)中の水分が減少してくると、冷媒は加温用凝縮器11で十分に熱が奪われなくなり、冷媒の過冷却度が十分に取れなくなる。このような冷媒がそのまま除湿用蒸発器17に運ばれると、冷却能力が低下しているので乾燥システム1が空回りしてしまうだけでなく、処理槽5内が異常高温化するので途中で運転を停止しなければならなくなる。
一方、調整用凝縮器13で何らの調整無しに熱を放出し続けると、除湿用蒸発器17の温度が低下し、最悪の場合には凍結などの機能不全に陥る。
しかしながら、この乾燥システム1では、調整用凝縮器13の排熱量が調整されているので、冷媒は高温側にも低温側にも傾かず、冷却能力及び加熱能力が高い水準でバランスが取れているので利用効率が高い。
しかも材料への加熱熱量が最大に保たれる一方で循環する空気の冷却能力も最大化される結果、除湿後の空気も相対湿度が好ましくは90%以上、より好ましくは95%以上と高いため、相対湿度が100%に近い範囲の空気が槽内を循環することになり、加熱能力を水分の蒸発に最大限利用でき、同時に冷却能力を水分の凝縮に最大限利用できる。
なお、この乾燥システム1のように、膨張弁15前の温度を検出する場合には、調整用凝縮器13の特性に起因する温度低下分を考慮して凝縮温度を補正する必要がある。
凝縮圧力制御手段により「凝縮圧力」を一定にしているため、除湿用蒸発器17を通る湿り空気は相対湿度が略100%、即ち飽和水蒸気量となっている。これは冷却能力の効率的使用の点からは好ましい。
しかしながら、乾燥が進行して水分蒸発量が減少してくると余剰の冷却能力により除湿後の空気の温度が下げられる。その際、凝縮圧力制御手段のみにより制御されると、除湿後の空気の温度の下げ幅が過剰に大きくなり、結果として乾燥速度が過剰に低下してしまい、乾燥効率が下がる。従って、ある程度乾燥が終了した後の減率乾燥期間が長くなる。
また、コントローラ21が終了信号に相当する信号を受取れないので、いつ乾燥運転を終了して良いのか判断が難しい。
ところで、水分蒸発量の増減は除湿用蒸発器17の熱負荷の増減と相関関係にある。また、上記したように冷媒の「凝縮圧力」が一定の場合には、除湿用蒸発器17の熱負荷の増減と冷媒の「蒸発圧力」もまた相関関係がある。この乾燥システム1では、凝縮圧力が固定されて、除湿用蒸発器17を通過する湿り空気は相対湿度が略100%であるため、除湿用蒸発器17の熱負荷は被乾燥処理物(W)からの水分蒸発量に大きく影響され、水分蒸発量が減ると熱負荷が小さくなって冷媒の「蒸発圧力」は下がり、水分蒸発量が増えると熱負荷は大きくなって冷媒の「蒸発圧力」は上がる。
従って、水分蒸発量と蒸発圧力の関係で説明すると、乾燥速度が小さくなる減率乾燥期間では水分蒸発量が減るので、この期間が除湿用蒸発器17の熱負荷が不足している状態で続くと、圧縮冷凍サイクルが低温側に傾き、乾燥速度が更に下がり、エネルギー効率が悪くなる。一方、減率乾燥期間でも、被乾燥処理物(W)の種類によっては、途中で熱負荷が過剰な状態が生じるが、圧縮機9の容量が下げられた後にこの状態が続くと圧縮機9からの冷媒の吐出し温度が異常高温化して、圧縮冷凍サイクルが高温側に傾き、却ってエネルギー効率が悪くなる。
そこで、この乾燥システム1では、乾燥状況に合わせて冷媒の「蒸発圧力」を一定の範囲内に収まるよう絶えず調整する蒸発圧力制御手段を備えることで減率乾燥時でもエネルギー効率の高い運転を可能とした。
蒸発圧力制御手段は容量を段階的に変えられる圧縮機9と、除湿用蒸発器17の入口と出口のそれぞれの位置の冷媒温度を検出する温度センサーS1、S3と、前記温度センサーから検出された2つの位置の冷媒温度差に基づいて圧縮機9の容量を調整するコントローラ21とから構成されており、センサーS1またはS3で計測された冷媒蒸発圧力または除湿用蒸発器17の冷媒の温度差(即ち、スーパーヒート)が一定の範囲内に収まるように調整する。
なお、膨張弁15の開度を補正的に調整することで、圧縮機9の容量をアナログ的に変えずに、段階的に変えても冷媒流量の変化を滑らかに調整することができ、結果として冷却能力を滑らかに変動させることができる。
蒸発圧力制御手段による具体的な制御手法を以下に説明する。
図5(2)に示すように、圧縮機容量に対して水分蒸発量が過小なときには蒸発圧力は低下し、スーパーヒートが一定の範囲の下限より小さく検出されるので、スーパーヒートが一定の範囲内に収まるまで圧縮機9の容量を小さくする調整がなされる。
一方、図5(1)に示すように、圧縮機容量に対して水分蒸発量が過大になったときには蒸発圧力は上昇し、スーパーヒートが一定の範囲の上限より大きく検出されるので、スーパーヒートが一定の範囲内に収まるまで圧縮機9の容量を大きくする調整がなされる。
図5では、スーパーヒートを判断指標として蒸発圧力の制御方法が示されているが、スーパーヒートの代わりに蒸発圧力に対応する冷媒温度を判断指標とすることができることは言うまでもない。その場合には、蒸発圧力に対する冷媒温度が下限より小さく検出された場合には圧縮機9の容量を小さくする調整がなされ、上限より大きく検出された場合には圧縮機9の容量を大きくする調整がなされることになる。
図6は、蒸発圧力制御手段を設けた場合と設けなかった場合の減率乾燥運転期間における乾燥速度の比較図である。ここで、乾燥速度は時間当りのドレン量(kg-水/時間/m2見掛けの乾燥面積)を、最大値を100%としてグラフ化したものである。なお、実際の乾燥面積は被乾燥処理物の表面積の合計であるが、実際には被乾燥処理物の種類や状態によっても異なるため、これを算出することは困難なので、便宜的に接触する床面積を、見掛けの乾燥面積として計算している。
以下に、乾燥システム1の運転方法を、図7のフローチャートに従って、立上げ運転期間(予熱期間)、乾燥運転期間(恒率乾燥期間、減率乾燥期間)に分けて説明する。図8は、圧縮機9の容量と乾燥速度との関係図である。
(立上り運転期間)
立上り運転期間は、被乾燥処理物(W)の予熱を行う予熱期間に相当する。
先ず、処理槽5内に被乾燥処理物(W)を投入した後に投入口を閉じて処理槽5を閉鎖し、次に乾燥システム1の電源回路をONにして運転を開始する。この立上り運転期間には、初期設定として、図2に示すように、冷媒は圧縮機9から吐き出された後、加温用凝縮器11で凝縮され、膨張弁15で減圧され、吸熱用蒸発器13で蒸発され、再び圧縮機9に戻る配管構成にし、圧縮機9の容量は最大に設定する。さらに、吸熱用蒸発器の入口と出口における冷媒温度差が一定以上になるように膨張弁の開度を調整することにより、外気温が低い時の吸熱性能低下にも対処することができる。
この立上り運転期間では、ヒートポンプの原理により、吸熱用蒸発器13で系外から熱を吸収してその熱を加温用凝縮器11から被乾燥処理物(W)に与えて加温している。
従来の乾燥システムにおいては、被乾燥処理物(W)が低温の場合には、被乾燥処理物(W)の吸熱能力が大きいため、処理槽5内に設けられた除湿用蒸発器17の温度が下がり、特に投入された被乾燥処理物(W)の温度が低い場合には最悪の場合には凍結して機能不全に陥る。
圧縮機9等のジュール熱のみを熱源として被乾燥処理物(W)を加熱するとなると、圧縮機9の容量を大きくすること等で、すなわちエネルギー消費量を増やすことで対応することになる。しかも、圧縮機9の容量を大きくするには限界が有るので、場合によっては加温用凝縮機11から被乾燥処理物への加熱量を抑える必要があり、予熱時間、即ち立上り時間は長くなりがちである。
これに対して、この乾燥システム1では外気からも熱を吸収しているために、ジュール熱のみを熱源とした場合に比べて、エネルギー消費量を大幅に削減でき、しかも、予熱期間が大幅に短縮化できる。
被乾燥処理物(W)が十分に予熱されて予め設定された所定の温度に到達した時点で立上り期間の終了とする。
立上り期は、加温用凝縮器11の冷媒の凝縮圧力(=凝縮温度)が一定に達した時点で終了する。
(通常乾燥運転期間)
この通常運転期間には、初期設定として、四方弁19が切り替えられて、図3に示すように、冷媒は圧縮機9から吐き出された後、加温用凝縮器11で凝縮され、調整用凝縮器13で更に凝縮され、膨張弁15で減圧され、除湿用蒸発器17で蒸発され、再び圧縮機9に戻る配管構成にし、圧縮機9の容量はそのまま最低に設定する。
圧縮機9の容量が最大になった時点では、恒率乾燥運転期間となり乾燥速度は最大となり、高い乾燥効率で被乾燥処理物(W)の乾燥が進行する。
恒率乾燥運転期間には、凝縮圧力制御手段により、調整用凝縮機13から余分な熱が放出されることで凝縮圧力が一定に制御され、乾燥速度も最大で乾燥が進行するので、冷凍圧縮サイクル部3は安定的に効率良く運転されると共に、処理槽5内も常温常圧下に維持される。
即ち、乾燥システム1の恒率運転期間は、被乾燥処理物(W)中の水分蒸発量と除湿用蒸発器17における水分凝縮量が均衡し、水分が凝結する際に放出して冷媒に移転する潜熱の熱量は被乾燥処理物(W)から水分が気化する際に使用する熱量と同等でバランスしている。これに加えて、圧縮機9等を駆動させている限りは発生し続けるジュール熱である圧縮機発生原熱とスクリュー発生原熱が系内に持ち込まれてくるが、これに相当する熱量も調整用凝縮器13から排出する。
そして、乾燥が進行して、水分蒸発量が減少してくると、減率乾燥期間に移り、水分蒸発量が減少してくるが、蒸発圧力制御手段により、図5(2)に示すように、水分蒸発量が過小になったときにはスーパーヒートが一定の範囲の下限より小さく検出されるので、圧縮機9の容量が1段ずつ下げられてスーパーヒートが上げられ一定の範囲内に収まる。この際、膨張弁15により冷却能力は滑らかに補正される。
なお、被乾燥処理物(W)が野菜のような場合には、泥状から粘土状に変わり、更に乾燥が進行すると粘土状から粉末状に変わるが、粉末状に変わった直後には露出表面積の増大により、水分蒸発量が一時的に増大する。従って、図5(1)に示すように、圧縮機9の容量が上げられてスーパーヒートが下げられ一定の範囲内に収まる。
そして、圧縮機9の容量が最低に設定されている時に、なおかつスーパーヒートが下限を下回る時は運転を終了する。この時点では、乾燥が進んで圧縮機容量に見合う水分蒸発量がない状態にあることを示しており、乾燥処理を停止する。
なお、ブロア25は、恒率乾燥時までは、総水分凝縮量を最大限に高めるために、風量を大きくする。そして、乾燥が進み、被乾燥処理物(W)中に含まれる水分が少なくなり、時間あたりの水分蒸発量が減少してくると、除湿に必要な風量も減少してくるため、ブロワ25の風量を小さくしてゆく。水分の凝縮量にあわせて風量を小さくすることはエネルギー効率を高め、圧縮機容量と見合う風量に調整することによって、正確な制御を行うために有利である。更に、粉末状になった被乾燥処理物が処理槽5内で飛散すると却って水分の蒸発が阻害されるが、風量が上記したように調整されるのでこのような不都合はない。
また、シャフト付きスクリュー23の回転速度が調整される。水分の凝縮量にあわせて風量を小さくすることによってエネルギー効率を高めることができる。乾燥が進んで粉末状になった被乾燥処理物が処理槽5内で飛散すると却って水分の蒸発が阻害されるが、スクリュー23の回転が上記したように調整されるのでこのような不都合はない。
第2の実施の形態に係る乾燥システム30を説明する。この乾燥システム30は乾燥システム1と殆ど同じ構成になっており、温度センサーS3,S4の代わりに温度センサーS5が四方弁19から圧縮機9に向かう冷媒循環経路7の途中に設けられている点のみが異なっている。
図9(1)〜(3)の簡易模式図に示すように、このように温度センサーS5を配置し、凝縮圧力制御手段として温度センサーS2を使用している場合には、1個の温度センサーS5で温度センサーS3とS4の両方の機能を果たさせることができる。即ち、立上り運転期間は、(2)に示すように、温度センサーS2とS5が吸熱用蒸発器13の入口と出口側にそれぞれ設けられていることになり、これらの温度センサーS2とS5から検出される温度差が一定になるように膨張弁15の開度を調整する。また、乾燥運転期間は、(3)に示すように、温度センサーS1とS5が除湿用蒸発器17の入口と出口側にそれぞれ設けられていることになり、これらの温度センサーS1とS5から検出される温度差(即ち、スーパーヒート)が一定の範囲内に収まるように調整する。
第3の実施の形態に係る乾燥システム31を、図10に従って説明する。図10は乾燥システム31の全体の模式図であり、図1の乾燥システム1と同じ構成部分は同じ符号を付して説明を省略している。
この乾燥システム31では間接冷却・加熱方式を採用しており、除湿用蒸発器は熱交換器33と除湿用熱交換器35と二次冷媒循環経路37で構成されており、加温用凝縮器は熱交換器39と加温用熱交換器41と二次冷媒循環経路43で構成されている。それぞれの二次冷媒循環経路37、43には圧送手段としての循環ポンプ38、44とが設けられている。二次冷媒は例えば水を利用できる。構造的には、加温用熱交換器41が第1の実施の形態(直接冷却・加熱方式)の加温用凝縮器11に、除湿用熱交換器35が除湿用蒸発器17にそれぞれ対応している。除湿用熱交換器35は除湿用蒸発器17と同様に処理槽5内に設けられている。
このように構成することで、圧縮冷凍サイクル部32をパッケージ化することができ、このパッケージ化された圧縮冷凍サイクル部32と乾燥装置本体との接続は、二次冷媒循環経路37、43を除湿用熱交換器35と加温用熱交換器41にそれぞれ接続し、さらに、スクリュー23とブロア25の電源の配線を接続するだけで済む。
従って、以下の利点がある。
(1)乾燥装置本体から、圧縮冷凍サイクル部を切り離し別個に製造・メンテナンスすることができる。
(2)接続部の規格を統一することで、圧縮冷凍サイクル部を種々の設計態様の装置本体に接続することができる。従って、圧縮冷凍サイクル部の利便性を向上できると共に、製造コストを下げることができる。
(3)圧縮冷凍サイクル部側で検出されたセンサー情報に基づいてコントローラがシステム全体を制御できるので、乾燥システムの制御の動作確認、メンテナンスが容易になると言う利点が有る。
第4の実施の形態に係る乾燥システム51を、図11に従って説明する。図11は乾燥システム51の全体の簡易模式図であり、図10乾燥システム31と同じ構成部分は同じ符号を付して説明を省略している。この乾燥システム51では間接冷却方式を採用している。
第5の実施の形態に係る乾燥システム53を、図12に従って説明する。図12は乾燥システム53の全体の簡易模式図であり、図10乾燥システム31と同じ構成部分は同じ符号を付して説明を省略している。この乾燥システム53では間接加熱方式を採用している。
上記の実施の形態に示すように、間接構成部は冷却側だけ或いは加熱側だけ設けてもよい。
以上、本発明の実施の形態について説明したが、本発明の具体的構成はこの実施の形態に限定されるものでは無く、本発明の要旨から外れない範囲での設計変更等があっても本発明に含まれる。
例えば、圧縮機は、容量がアナログ的に連続的に滑らかに変化するものでも段階的に変化するものでもよい。
運転方法に関しては、予め予熱された被乾燥処理物を処理槽に投入する場合には立上り運転期間は殆ど無く、直ちに乾燥運転期間に移行する。
被乾燥処理物は、有機物に限定されないことは言うまでもない。
凝縮圧力制御手段の温度センサーは、調整用凝縮器の入口即ち膨張弁の前に限定されず、膨張弁の入口や、調整用凝縮器の出口側にサブクーラが組み込まれている場合にはそのサブクーラの直前の位置の冷媒温度を検出するものでもよい。槽内を循環する空気の温度を計測して蒸発圧力を推定する場合も含む。
本発明の乾燥システムによれば、消費エネルギーが大幅に低減され且つ系外への排熱が極力抑制される。従って、経済的且つ環境に優しいと言える。
また、装置本体から制御部を含む圧縮冷凍サイクル部を分離できる構成にすれば、種々の装置本体に一つの圧縮冷凍サイクル部を汎用的に利用できるので、利便性が良く、また、圧縮冷凍サイクル部を大量生産できる利点がある。
本発明の第1の実施の形態に係る乾燥システムの模式図である。 図1の乾燥システムの立上げ運転期間の配管構成である。 図1の乾燥システムの乾燥運転期間の配管構成である。 乾燥運転期間の熱の移動サイクルの説明図である。 蒸発圧力制御手段による具体的な制御手法の説明図である。 蒸発圧力制御手段を設けた場合と設けなかった場合の減率乾燥運転期間における乾燥速度の比較図である。 運転方法のフローチャートである。 圧縮機の容量と乾燥速度との関係図である。 本発明の第2の実施の形態に係る乾燥システムの簡易模式図である。 本発明の第3の実施の形態に係る乾燥システムの模式図である。 本発明の第4の実施の形態に係る乾燥システムの模式図である。 本発明の第5の実施の形態に係る乾燥システムの模式図である。
符号の説明
1‥‥乾燥システム 3‥‥圧縮冷凍サイクル部
5‥‥処理槽 7‥‥冷媒循環経路
9‥‥圧縮機 11‥‥加温用凝縮器
13‥‥調整用凝縮器(吸熱用蒸発器) 14‥‥ファン
15‥‥膨張弁 17‥‥除湿用蒸発器
19‥‥四方弁 21‥‥コントローラ
23‥‥スクリュー 25‥‥ブロア
S1,S2,S3,S4‥‥温度センサー
30‥‥乾燥システム
S5‥‥温度センサー
31‥‥乾燥システム 32‥‥圧縮冷凍サイクル部
33‥‥熱交換器 35‥‥除湿用熱交換器
37‥‥二次冷媒循環経路 38‥‥循環ポンプ
39‥‥熱交換器 41‥‥加温用熱交換器
43‥‥二次冷媒循環経路 44‥‥循環ポンプ
51‥‥乾燥システム
53‥‥乾燥システム

Claims (13)

  1. 処理槽と、
    前記処理槽内で湿り空気を除湿される部位に導き且つ除湿後の空気を前記被乾燥処理物に導く槽内空気循環手段と、
    圧縮冷凍サイクル部であって、
    冷媒循環経路と、
    前記冷媒循環経路に接続された圧縮機および膨張弁と、
    前記圧縮機から前記膨張弁の間のうち冷媒が前記圧縮機から前記膨張弁に向かう冷媒循環経路に接続されて、前記処理槽内に挿入された含水性の被乾燥処理物に凝縮器の熱を供給することで前記被乾燥処理物から水分を蒸発・分離させて湿り空気を生成する加温用凝縮器、および系外に熱を排出する排熱量調整可能な調整用凝縮器と、
    前記圧縮機から前記膨張弁の間のうち冷媒が前記膨張弁から前記圧縮機に向かう冷媒循環経路に接続されて、前記湿り空気から熱を奪うことで除湿する除湿用蒸発器、および系外から熱を吸収する吸熱用蒸発器とからなるものと、
    通常運転期間に前記加温用凝縮器における冷媒凝縮圧力を一定に調整する凝縮圧力制御手段とを備えた乾燥系の乾燥システムであって、
    立上り運転期間には、冷媒は前記圧縮機から吐き出された後、前記加温用凝縮器で凝縮され、前記膨張弁で減圧され、前記吸熱用蒸発器で蒸発されて、前記圧縮器に戻り、
    通常運転期間には、冷媒は前記圧縮機から吐き出された後、前記加温用凝縮器と前記調整用凝縮器で凝縮され、前記膨張弁で減圧され、前記除湿用蒸発器で蒸発されて、前記圧縮器に戻る構成になっていることを特徴とする乾燥システム。
  2. 請求項1に記載した乾燥システムにおいて、調整用凝縮器は吸熱用蒸発器と兼用されており、四方弁の接続状態を変更することにより、立上り運転期間の圧縮機、加温用凝縮器、膨張弁及び吸熱用蒸発器の配管構成から、通常運転期間の圧縮機、加温用凝縮器、調整用凝縮器、膨張弁及び除湿用蒸発器を接続した配管構成に切り替えられることを特徴とする乾燥システム。
  3. 請求項1または2に記載した乾燥システムにおいて、凝縮圧力制御手段は、調整用凝縮器の入口、膨張弁の入口、または前記調整用凝縮器の出口側にサブクーラが組み込まれている場合にはそのサブクーラの直前のいずれかの位置の冷媒温度を検出する温度センサーと、前記温度センサーから検出された温度に基づいて調整用凝縮器の排熱量を調整するコントローラとによって構成されていることを特徴とする乾燥システム。
  4. 請求項1から3のいずれかに記載した乾燥システムにおいて、さらに、除湿用蒸発器における蒸発圧力を一定の範囲内に調整する蒸発圧力制御手段とを備えることを特徴とする乾燥システム。
  5. 請求項4に記載した乾燥システムにおいて、蒸発圧力制御手段は容量可変型の圧縮機と、除湿用蒸発器の入口または出口の位置の冷媒温度を検出する温度センサーと、前記温度センサーから検出された温度に基づいて前記圧縮機の容量を調整するコントローラとによって構成されていることを特徴とする乾燥システム。
  6. 請求項4に記載した乾燥システムにおいて、蒸発圧力制御手段は容量可変型の圧縮機と、除湿用蒸発器の入口と出口のそれぞれの冷媒温度を検出する温度センサーと、前記温度センサーから検出された2つの位置の冷媒温度差が一定の範囲に収まるように前記圧縮機の容量を調整するコントローラとによって構成されていることを特徴とする乾燥システム。
  7. 請求項4から6のいずれかに記載した乾燥システムにおいて、膨張弁は開度を調整可能なものであり、且つコントローラは前記圧縮機の容量が変更されたときに前記膨張弁の開度を調整して冷媒流量を常に適切に維持し、圧縮機の容量変化が段階的であった場合でも冷媒流量の変化を滑らかに調整することを特徴とする乾燥システム。
  8. 請求項5から7のいずれかに記載した乾燥システムにおいて、槽内空気循環手段は風量調整可能であり、コントローラは現在の圧縮機容量または温度センサーにより検出された温度に基づいて前記槽内空気循環手段の風量を調整することを特徴とする乾燥システム。
  9. 請求項5から8のいずれかに記載した乾燥システムにおいて、さらに被乾燥処理物を撹拌する、撹拌部の動作の速度調整可能な撹拌手段を備え、コントローラは現在の圧縮機容量または温度センサーにより検出された温度に基づいて前記撹拌手段の撹拌部の動作の速度を調整することを特徴とする乾燥システム。
  10. 請求項1から9のいずれかに記載した乾燥システムにおいて、圧縮冷凍サイクル部の加温用凝縮器において高温側冷媒との熱交換により加熱された二次冷媒から加温用熱交換器を介して被乾燥処理物に熱を供給する間接加温構成部と、除湿用蒸発器において低温側冷媒との熱効果により冷却された二次冷媒から冷却用熱交換器を介して湿り空気から熱が奪われる間接冷却構成部の少なくともいずれかの間接構成部を備え、
    しかも、前記圧縮冷凍サイクル部の間接構成部は乾燥システムから分離可能に構成されていることを特徴とする乾燥システム。
  11. 請求項10に記載した乾燥システムを構成する圧縮冷凍サイクル部。
  12. 請求項4に記載した乾燥システムの運転方法において、
    運転期間を立上り運転期間と乾燥運転期間に分け、
    立上り運転期間は、圧縮機の容量を最大に設定し、
    前記凝縮温度が予め設定された凝縮圧力に対応する温度に到達した時点で立上り運転期間から乾燥運転期間に移行し、
    乾燥運転期間は、凝縮圧力制御手段により凝縮温度を一定に調整すると共に、前記蒸発圧力制御手段により、冷媒蒸発圧力に対応する冷媒温度が一定の範囲内に収まるように前記圧縮機の容量を調整し、
    前記圧縮機の容量を最低に変更しても冷媒蒸発圧力がさらに前記一定の範囲の下限を下回った時点で運転を終了する、
    ことを特徴とする運転方法。
  13. 請求項12に記載した乾燥システムの運転方法において、圧縮機の容量を段階的に変更し、且つ前記圧縮機の容量を変更した場合には膨張弁の開度を調整することで蒸発圧力の変動を滑らかにすることを特徴とする運転方法。
JP2005200622A 2005-07-08 2005-07-08 乾燥システム Active JP4481893B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200622A JP4481893B2 (ja) 2005-07-08 2005-07-08 乾燥システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200622A JP4481893B2 (ja) 2005-07-08 2005-07-08 乾燥システム

Publications (2)

Publication Number Publication Date
JP2007017107A JP2007017107A (ja) 2007-01-25
JP4481893B2 true JP4481893B2 (ja) 2010-06-16

Family

ID=37754416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200622A Active JP4481893B2 (ja) 2005-07-08 2005-07-08 乾燥システム

Country Status (1)

Country Link
JP (1) JP4481893B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103363795A (zh) * 2012-03-28 2013-10-23 杭州迈驰除湿净化设备有限公司 节能热泵高温除湿循环系统的工作原理
CN106225283A (zh) * 2016-07-18 2016-12-14 青岛海尔股份有限公司 制冷系统及具有其的冰箱

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869425B1 (ko) 2007-05-29 2008-11-21 오병호 제습식 건조기
JP4976965B2 (ja) * 2007-09-07 2012-07-18 株式会社東芝 衣類乾燥機
JP2009123594A (ja) * 2007-11-16 2009-06-04 Espec Corp 燃料電池評価試験装置
KR101129530B1 (ko) 2008-11-21 2012-03-29 황보기철 전기아크 반응장치에 사용되는 전극봉 어셈블리
JP5474397B2 (ja) * 2009-04-02 2014-04-16 株式会社グリーンセイジュ 自律平衡型ヒートポンプユニット
KR100928843B1 (ko) 2009-07-08 2009-11-30 (주)에이티이엔지 하이브리드 건조시스템 및 하이브리드 건조시스템의 제어방법
FR2984895B1 (fr) 2011-12-21 2016-01-01 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un hydroxyde de metal alcalin ou alcalino-terreux
CN103438683B (zh) * 2013-07-29 2015-07-08 浙江天洲制冷机电有限公司 热泵型谷物烘干机
CN103791616B (zh) * 2014-01-28 2016-03-09 滁州奥岚格机械有限公司 烘干机的干燥进风产生装置
US10130006B2 (en) * 2016-04-21 2018-11-13 Hanon Systems Thermal control within an enclosure with circular cross-section
FI128437B (en) * 2016-08-18 2020-05-15 Tm System Finland Oy Method and arrangement for air recirculation in the drying process
CN107940925A (zh) * 2017-12-19 2018-04-20 贝莱特空调有限公司 一种可模块组合的热回收型除湿干燥机
CN108895822B (zh) * 2018-07-28 2024-06-18 朱文龙 一种具恒温除湿及卸荷热回收功能的纯冷媒热泵烘干机
CN110538480B (zh) * 2019-09-25 2024-09-17 上海电气集团股份有限公司 一种冷凝系统及冷凝方法
CN110686502B (zh) * 2019-09-30 2023-06-09 江苏大学 一种以热泵为热源并进行热回收的热风干燥系统及干燥方法
CN110736321A (zh) * 2019-11-05 2020-01-31 徐州徐工精密工业科技有限公司 自调式移动烘干机
CN115014041A (zh) * 2022-05-19 2022-09-06 青岛海尔空调器有限总公司 加热系统、加热方法及制冷设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103363795A (zh) * 2012-03-28 2013-10-23 杭州迈驰除湿净化设备有限公司 节能热泵高温除湿循环系统的工作原理
CN103363795B (zh) * 2012-03-28 2016-01-06 杭州迈驰除湿净化设备有限公司 节能热泵高温除湿循环系统的工作方法
CN106225283A (zh) * 2016-07-18 2016-12-14 青岛海尔股份有限公司 制冷系统及具有其的冰箱
CN106225283B (zh) * 2016-07-18 2018-10-12 青岛海尔股份有限公司 制冷系统及具有其的冰箱

Also Published As

Publication number Publication date
JP2007017107A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4481893B2 (ja) 乾燥システム
JP3696224B2 (ja) 乾燥システム
US7191543B2 (en) Drying device and method of operation therefor
EP3040470B1 (en) Clothes treating apparatus
JP4575463B2 (ja) 乾燥装置
JP4629670B2 (ja) ヒートポンプ式乾燥装置、乾燥装置、及び乾燥方法
US9487910B2 (en) Clothes dryer and control method thereof
JP2008142101A (ja) ヒートポンプ式乾燥機とその運転方法
JP6200241B2 (ja) 乾燥装置
JP2002516168A (ja) 冷却乾燥方法および装置
JP2007082586A (ja) 衣類乾燥装置
JP2009061163A (ja) 衣類乾燥機
JP4319958B2 (ja) 蒸留水製造システム
JP2004313765A (ja) 乾燥装置及びその運転方法
JP2006204548A (ja) 乾燥装置
JP2008020113A (ja) 圧縮空気供給装置
JP4528635B2 (ja) 乾燥装置
JP2005265402A5 (ja)
JP2013017639A (ja) 衣類乾燥装置
JP6533700B2 (ja) 浴室乾燥システム
JP5947103B2 (ja) 衣類乾燥装置
EP1508752A1 (en) Thermohygrostat-type air conditioner with means for controlling evaporation temperature
JP2003185342A (ja) 乾燥装置
JP2002005515A (ja) ヒートポンプ式給湯器
JP2007111325A (ja) 衣類乾燥機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160326

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250