JP4469723B2 - 組織焼勺装置および組織を焼勺する方法 - Google Patents

組織焼勺装置および組織を焼勺する方法 Download PDF

Info

Publication number
JP4469723B2
JP4469723B2 JP2004554703A JP2004554703A JP4469723B2 JP 4469723 B2 JP4469723 B2 JP 4469723B2 JP 2004554703 A JP2004554703 A JP 2004554703A JP 2004554703 A JP2004554703 A JP 2004554703A JP 4469723 B2 JP4469723 B2 JP 4469723B2
Authority
JP
Japan
Prior art keywords
microwave radiation
probe
symbol
microwave
previous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004554703A
Other languages
English (en)
Other versions
JP2006507865A5 (ja
JP2006507865A (ja
Inventor
ハンコック,クリストファー・ポール
ショードリー,モハメド・サビ
グッドマン,アンドリュー・マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medical Device Innovations Ltd
Original Assignee
Medical Device Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0227628A external-priority patent/GB0227628D0/en
Priority claimed from GB0227635A external-priority patent/GB0227635D0/en
Application filed by Medical Device Innovations Ltd filed Critical Medical Device Innovations Ltd
Publication of JP2006507865A publication Critical patent/JP2006507865A/ja
Publication of JP2006507865A5 publication Critical patent/JP2006507865A5/ja
Application granted granted Critical
Publication of JP4469723B2 publication Critical patent/JP4469723B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00755Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00869Phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1823Generators therefor

Description

発明の背景
発明の分野
この発明は、組織をマイクロ波放射線で焼勺(ablation)するための装置および方法に関する。本願明細書においては、マイクロ波とは5GHz以上60GHz以下の周波数範囲を意味する。組織の焼勺には、14〜15GHzが用いられるのが好ましいが、この発明はそのような狭い範囲に限定されるものではない。
先行技術の概要
癌治療の伝統的な方法においては、癌組織を機械的に切り取って除去し、かつ/または化学療法を行ない、通常その後に放射線療法を行なう。しかし、両方の方法には重大な問題があり、患者に深刻な外傷を引起すおそれがある。
生体組織に熱エネルギーを加えることは、細胞を殺す上で有効な方法である。これに鑑み、この発明は、マイクロ波を加えて生体組織を加熱することでこれを焼勺(破壊)するという方策を提案する。この方策によって、癌組織がこの態様で焼勺可能であることから癌治療において興味深い可能性が提示される。また、癌治療またはその他の状況下でマイクロ波により組織を焼勺するための好適な装置および方法が必要とされる。
発明の概要
上記に鑑み、この発明の第1の局面は、組織焼勺装置であって、
マイクロ波放射線の源と、
焼勺されるべき組織の中へ上記マイクロ波放射線を向けるためのプローブと、
前記マイクロ波放射線とは異なる周波数を有する信号を生成するための局部発振器と、
反射して上記プローブを通り上記源の方へ戻ってきたマイクロ波放射線の大きさおよび位相を検出するための第1の検出器とを備え、前記第1の検出器は前記局部発振器に接続され、上記装置はさらに、
前記源および前記プローブ間に、調整可能な複素インピーダンスを有するインピーダンス調整器を備える、装置を提供することができる。
本願明細書においては、文脈が他を要求する場合を除き、「接続」という用語は、直接的な接続のみならず、1つ以上の構成要素を介在させた間接的な接続をも包含する。
また、上記組織焼勺装置は、
或る周波数を有するマイクロ波放射線の源と、
前記源に接続されたプローブとを備え、前記プローブは、焼勺されるべき前記組織の中へ前記マイクロ波放射線を向けるように構成され、上記装置はさらに、
前記マイクロ波放射線の前記周波数とは異なる周波数を有する、信号を生成するための局部発振器と、
前記マイクロ波放射線のうち、反射して前記プローブを通り前記源の方へ戻ってきた反射部分の大きさおよび位相を検出するための第1の検出器とを備え、
前記第1の検出器は、前記反射した放射線および前記局部発振器により生成された前記信号に基づいて前記マイクロ波放射線の前記反射部分の大きさおよび位相を判定するよう
に構成され、上記装置はさらに、
前記マイクロ波放射線の源に接続された入力部と、前記プローブに接続された出力部とを有するインピーダンス調整器を備え、前記入力部および出力部はそれぞれ複素インピーダンスを有し、前記出力部の前記複素インピーダンスは調整可能である、場合もある。
上記インピーダンス調整器の前記調整可能な複素インピーダンスが調整可能であるため、反射される放射線の量を最小限に抑えることができ、こうして組織へエネルギーを送り届ける効率の向上が可能となる。
一般的に、インピーダンス調整器の出力部でのインピーダンスと、負荷(たとえば焼勺されている組織)のインピーダンスとを整合させれば、プローブの末端にある負荷(たとえば組織)で反射してプローブを通り戻ってくる放射線のレベルは最小限に抑えられる。
インピーダンス調整器とプローブとを接続するには、同軸ケーブルまたは導波管といった伝達手段を用いることができる。マイクロ波放射線がインピーダンス調整器の出力部とプローブの末端との間で進む距離がλ/2の倍数に等しい場合(λは放射線の波長)、インピーダンス調整器の出力インピーダンスと、プローブの末端にある負荷(たとえば組織)のインピーダンスとを整合させることは単純な作業である。そうでない場合、インピーダンスを整合させて反射を最小限に抑えることはなお可能であるが、伝達手段およびプローブのインピーダンスもまた考慮する必要がある(たとえば、インピーダンス調整器の出力インピーダンスを、負荷、伝達手段およびプローブを合計したインピーダンスに整合させる必要がある)。したがって、本質的なことではないが、前記伝達手段の長さが調整可能であり、前記伝達手段と前記プローブとを合計した長さがλ/2の倍数に等しくなるように調整可能であることが好ましい。
検出器が大きさ(すなわち振幅または電力)の情報のみを生成する場合、複素インピーダンスを速やかに調整して反射放射線を効果的に最小化することは不可能であろう。位相の情報を用いるもう1つの利点として、信号対雑音比が劣悪なときでも位相の差が測定できることが挙げられる。したがって、検出器は大きさおよび位相の両方の情報を生成することが求められる。位相情報を生成するためには、局部発振器を用いてマイクロ波放射線の周波数とは異なる周波数の信号を生成することが必要である。これによって、検出されたマイクロ波放射線の位相と、上記局部発振器からの信号の位相とを比較することが可能となる。
通常、上記検出器は、上記局部発振器からの信号を、上記マイクロ波放射線と混合するためのミキサを含むことになる。たとえば、上記検出器では、反射での大きさおよび位相を検出する際、ヘテロダイン検出(反射した放射線またはそこから導き出した信号を局部発振器からの信号と混合すること)を採用することができる。これに代えて、上記位相の検出には、反射したマイクロ波放射線の位相と局部発振器の信号の位相とを比較するように構成された位相比較器を用いてもよい。反射したマイクロ波放射線は、1つ以上の周波数変換器の中を通過させてからミキサまたは位相比較器に入ることとしてもよい。これは位相比較器を採用した場合に特に有効であるが、なぜなら位相比較器とは、その傾向としてより低い周波数でより正確に動作するものだからである。
好ましくは、上記装置はさらに、順方向のマイクロ波放射線(前記源から前記プローブの方へ向けられた放射線)の大きさおよび位相を検出するための第2の検出器を備える。
上記第1の検出器と同様、マイクロ波放射線の位相が判定できるよう局部発振器を設けることが必要である。好ましくは、上記第1の検出器についてと同じ局部発振器が用いられる。したがって、たとえば上記検出器がミキサを用いる場合、各々の検出器がそれ自身
のミキサを有して、両方のミキサが共通の局部発振器に接続されることになる。このような場合、2つ以上のミキサを駆動するために局部発振器からの出力を緩衝する必要があることがある。これに代えて、各々のミキサを異なる局部発振器に接続する場合もあるが、この場合、位相を検出して適当なインピーダンス調整を行なうことは、局部発振器信号間の差のためより困難となる。
「順方向の」マイクロ波放射線の大きさおよび位相を検出するための第2の検出器がある場合、適当なインピーダンス調整を決定することがより容易となる。検出器が1つしかない場合、当該装置の特性(たとえば、インピーダンス調整器の入力部とプローブ/組織界面との間で当該装置によって引起される位相の変化)についてより多くの仮定をする必要がある。
さらに、第3の検出器が設けられることが好ましい。この第3の検出器は、反射したマイクロ波放射線の大きさおよび位相を検出するように構成されるか、または「順方向の」マイクロ波放射線の大きさおよび位相を検出するように構成される。上記第3の検出器によれば、上記の適当な(複素)インピーダンス調整をより正確に判定することが可能となる。第3の検出器がある場合、インピーダンス調整器自体の調整に起因する複素インピーダンスの変化を監視することが可能である。また、インピーダンス調整器の入力部および出力部間の位相の差を直接判定可能とすることもできる。この情報は、行なわれるべき適当な調整を判定する際に有用である。
上記第2の検出器と同様、上記第3の検出器は局部発振器に接続される必要がある。これは第1および第2の検出器のうち一方または両方についてと同じ局部発振器であっても、異なるものであってもよい。すべての検出器は1つの共通の局部発振器を共有することが好ましく、やはり緩衝を伴い得る。
位相比較器が使用される場合、上記第1ならびに(もしあれば)第2および第3の検出器を組合せて1つのユニットにしてもよい。
上記または各々の局部発振器は、上記マイクロ波放射線の源とは別個で独立のものとしてもよい。
代替的に、上記または各々の局部発振器は、前記マイクロ波放射線の源から導き出されるが異なる周波数を有する信号を生成してもよい。典型的にこれは、前記マイクロ波放射線の源からの信号をより低い周波数へと変換する周波数変換器によって行なわれる。次に、上記より低い周波数「局部発振器」信号を上記検出器のミキサに入力して順方向または反射したマイクロ波放射線を混合しても、上記信号を位相比較器のための基準信号として用いてもよい。マイクロ波放射線の源に接続された周波数変換器は、実質的に上記局部発振器として動作する。
もう1つの手法としては、別個の局部発振器を設ける一方、局部発振器信号を前記マイクロ波放射線の源からの信号と混合して、この混合した結果としての信号を上記検出器に入力するというものがある。典型的には、上記ミキサと上記検出器それ自体(これはそれ自体が上述のようなミキサを含み得る)との間にフィルタを設けて不所望の周波数をいずれもフィルタ除去することになる。
上記インピーダンス調整器は、検出されてディスプレイ上に表示される大きさおよび位相関係のデータに応じて人間のオペレータによって動作させられてもよい。しかしながら、インピーダンス調整器の前記調整可能な複素インピーダンスは、前記検出器により検出された放射線の大きさおよび位相に基づいてコントローラにより自動的に調整されるのが
好ましい。上記コントローラは、たとえば集積回路またはコンピュータの形態をとることができる。
上記コントローラは、前記検出器により検出された上記放射線の大きさおよび位相における変動に応じて動的に(実時間で)前記調整可能な複素インピーダンスを調整するように構成されるのが好ましい。この場合、当該組織の特性が焼勺プロセス中に変化するのに伴ってインピーダンスを調整することが可能となる。効果的に動的制御を行なうために、調整時間は当該組織の弛緩時間(または反応時間)未満とする。
上記インピーダンス調整器は任意の好適な形態をとることができる。たとえば、上記インピーダンス調整器として半導体装置またはスタブ同調器を用いることができる。スタブ同調器の場合、この同調器は、1つ、2つ、3つまたはそれ以上のスタブを有し得る。3スタブ同調器が好ましいが、それはこの場合、広範囲にわたる複素インピーダンス(理論的にはスミスチャート上の任意のインピーダンス)が採用可能となるからである。別の可能な方策としては、位相調整器および大きさ調整器を含むインピーダンス調整器を設けるというものがある(たとえば2つの可変長ラインまたは可変長ラインおよび同調スタブ。上記可変長ラインは同軸ラインまたはストリップラインであり得る)。
上記インピーダンス調整器を制御するための電気的に活性化可能なアクチュエータが設けられる場合もある。上記インピーダンス調整器としてスタブ同調器が用いられる場合、上記電気的に活性化可能なアクチュエータとして、たとえば1つ以上の圧電素子またはサーボモータを用いることができ、これによりスタブを制御してインピーダンスを調整する。上記アクチュエータを前記コントローラによって制御することでインピーダンス整合の制御を自動化することができる。
好ましくは、マイクロ波放射線の源は、安定な単一の周波数源、たとえば狭帯域フィルタを伴う広帯域源または位相固定した源である。これはたとえば反射したマイクロ波放射線において位相変化を検出する際に有益である。上記放射線源としては、VCO(電圧制御発振器)またはDRO(誘電体共振発振器)を用いることができるが、当業者にはその他可能な放射線源が明らかであろう。上記放射線源を同調可能とすることで、制御された態様で周波数が変化できるようにしてもよい。
上記プローブとしては、同軸プローブまたは導波管(これは負荷をかけられていてもいなくてもよい)を用いることができる。
好ましくは、上記プローブは、生体組織に貫入するように構成され、たとえば鋭い先端を持たせてもよい。これによって、上記プローブは、焼勺されるべき腫瘍付近またはその内部に達するまで当該組織の中に挿入することが可能となる。こうして、マイクロ波を腫瘍に対して効果的に照射することができる。特に、キーホールサージャリーで挿入することの可能なプローブとするのが有利である。これに従い、プローブの外径は1mm未満であるのが好ましい。このように小さなサイズにすることによって、患者に対する外傷が最小限に抑えられ、さらにプローブから放射されるマイクロ波放射線のエネルギー密度が増大する。
上記プローブとしては、中心導体と、外側の導体と、これら2つの導体間の誘電体とを有する同軸プローブを用いることができる。さらに、上記外側の導体上に1つ以上のバラン(平衡から不平衡への変換器)を設けることで、上記外側の導体における戻り電流を最小限にしてもよい(この電流は患者または当該装置の使用者にショックを生じさせるおそれがある)。上記バランは、上記外側の導体を取囲む導電性材料からなるリングまたは鞘の形態をとることができる。また、誘電体のバランを採用してもよい。
上記装置は、上記プローブから外へ向けられる「入射」(順方向)マイクロ波放射線と、反射したマイクロ波放射線とを分離するためのセパレータを有するのが好ましい。このセパレータは、たとえばサーキュレータの形態をとることができる。これに代えて、電力3dBカプラを用いてもよい。
好ましくは、上記装置は、反射した放射線の一部を上記第1の検出器に向けるための第1のカプラを有する。任意の好適なカプラ、たとえば単一ポートカプラを用いてもよいが、6ポートカプラが有利であろう。さらに、出て行く(順方向)放射線の一部を第2の検出器に向けるための第2のカプラを設けてもよい。また、放射線を第3の検出器に向けるための第3のカプラを設けてもよい。この第3のカプラは、反射放射線カプラか、または順方向放射線カプラのいずれかであり得る。上記カプラの指向性を高くすることによって、順方向の放射線および反射した放射線間の良好な差別化を確実にすることが好ましい。
この発明に従う方法は、最も大まかには、生体組織にプローブを接触して置くステップと、前記組織のうち少なくとも一部を焼勺するように、マイクロ波放射線を、前記プローブを通して前記組織へ送り届けるステップとを備える。上記方法は癌の治療に使用されるのが好ましい。上記組織は、癌部分または腫瘍を有し得る。この場合、上記放射線を用いて前記癌部分または腫瘍を焼勺し、好ましくは周囲の癌でない組織を実質的に無傷に残す。
或る種の処置においては、極めて細い(直径1mm未満の)プローブが有利であるが、この発明はこれに限定されない。
この発明は乳癌の治療に対して特に有用であると考えられる。もう1つの可能な用途として脳腫瘍の治療が挙げられる。しかしこの発明はこれらの用途に限定されず、肺癌、肝臓癌(たとえば肝臓転移)、前立腺癌、皮膚癌、結腸直腸癌腫、またはあらゆる癌腫であって固形の腫瘍が存在し焼勺可能であるものに対する治療にも利用可能である。当業者にはその他の用途が明らかであろう。実施例によっては、この発明は癌以外の状態、たとえば皮膚病または脳の病気(特に視神経付近の領域、ただしこれに限られない)の治療にも有用であろう。
したがって、この発明の第2の局面は、組織を焼勺する方法であって、
マイクロ波放射線の源を用いてマイクロ波放射線を生成するステップと、
プローブを生体組織に接触して置くまたはプローブを生体組織の中に挿入するステップと、
上記組織を焼勺するように、前記マイクロ波放射線を、前記プローブを通して上記組織の中へ向けるステップと、
反射して上記プローブを通り戻ってきたマイクロ波放射線の大きさおよび位相を、第1の検出器および局部発振器を用いて検出するステップと、
前記第1の検出器により検出されたマイクロ波放射線の大きさおよび位相に基づいて前記源と前記プローブとの間にあるインピーダンス調整器の複素インピーダンスを調整するステップとを備える、方法を提供することができる。
また、上記方法は、
マイクロ波放射線の源を用いて、或る周波数を有するマイクロ波放射線を生成するステップと、
プローブを生体組織に接触して置くまたはプローブを生体組織の中に挿入するステップと、
上記組織を焼勺するように、前記マイクロ波放射線を、前記源からインピーダンス調整
器を通して前記プローブを通し前記組織の中へ向けるステップとを備え、前記インピーダンス調整器は、前記源に接続された入力部と前記プローブに接続された出力部とを有し、前記入力部および前記出力部はそれぞれ複素インピーダンスを有し、上記方法はさらに、
反射して上記プローブを通り戻ってきた反射マイクロ波放射線の大きさおよび位相を、第1の検出器および局部発振器を用いて検出するステップを備え、前記局部発振器は、前記マイクロ波放射線の前記周波数とは異なる周波数を有する信号を生成し、前記第1の検出器は、上記反射した放射線または前記反射した放射線から導き出した信号と組合わせて前記局部発振器信号を用いて、前記反射した放射線の大きさおよび位相を判断し、上記方法はさらに、
反射して前記プローブを通り戻ってきたマイクロ波放射線の量が最小化されるように、前記第1の検出器により検出された前記反射したマイクロ波放射線の前記大きさおよび位相に基づいて前記インピーダンス調整器の前記出力部の前記複素インピーダンスを調整するステップを備える、場合もある。
好ましくは、この方法は、この発明の第1の局面の装置を用いて癌を治療する方法である。
好ましくは、上記プローブが組織の中に挿入されて当該組織内の癌腫瘍付近または好ましくはその内部にプローブの一端が達し、次にマイクロ波放射線がプローブを通されて前記癌腫瘍を焼勺する。
好ましくは、上記プローブが当該腫瘍付近またはその中まで挿入可能となるように上記プローブからのマイクロ波放射線を用いて当該組織内に経路を切開する。これは腫瘍近くまたはその中までプローブを持って行く効果的な方法である。
好ましくは、治療されている組織および/または身体からプローブを出す際、プローブからのマイクロ波放射線を用いてプローブの経路を封着する。
好ましくは、前記マイクロ波放射線の源から前記プローブの中へ向けられる順方向のマイクロ波放射線の大きさおよび位相は、第2の検出器および局部発振器によって検出され、前記インピーダンス調整器の前記調整可能な複素インピーダンスは、前記第1および第2の検出器により検出された大きさおよび位相に基づき、たとえば上記順方向の放射線および反射した放射線間の位相および大きさの差に基づいて調整される。
好ましくは、順方向の放射線または反射した放射線のいずれかについての大きさおよび位相を検出するために第3の検出器が使用され、前記インピーダンス調整器の前記調整可能な複素インピーダンスは、前記第1、第2および第3の検出器によって生成された情報に基づき、たとえば上記各検出器間の大きさおよび位相の差に基づいて調整される。
好ましくは、上記インピーダンス調整器の前記調整可能な複素インピーダンスは、反射して前記プローブを通り戻ってくる放射線の量を最小化するように、前記検出器により検出された上記大きさおよび位相に基づいてコントローラによって自動的に調整される。
上記インピーダンス調整は、検出される大きさおよび位相が変化するのに伴って動的に(実時間で)実行されるのが好ましい。これによって、焼勺プロセス中に当該組織のインピーダンスが変化するのに伴ってインピーダンス調整器の前記調整可能な複素インピーダンスを調整することが可能となる。これによって、プローブおよびケーブルの加熱(長期間にわたる当該装置内の反射エネルギーによって引起される)が最小限に抑えられ、速やかで効率的かつ制御された焼勺プロセスの実現を支援することができる。
その他の好ましい特徴点が前掲の特許請求の範囲に示される。
この発明の第3の局面においては、焼勺されるべき組織の中にマイクロ波放射線を送り届けるための細長のマイクロ波プローブであって、前記プローブは、細長部分と、前記細長部分の一端にある先端とを有し、前記先端は、セラミック材料から形成され、マイクロ波放射線を組織の中に送り届けるように構成される、マイクロ波プローブが提供される。
上記先端にセラミック材料が好適である理由は、セラミックが比較的硬質であり、電磁場を集束させるのに有利な高い誘電率(εr)を有するとともに、上記先端の加熱を低減する良好な熱伝導率を有することができるからである。
上記先端は円錐状または円蓋状であるのが好ましい。これは上記プローブから出て行くマイクロ波を集束させる助けとなる。
上記セラミックとしてはマイクロ波セラミックを用いることが好ましい。たとえば、パシフィック・セラミックス社(Pacific Ceramics Inc.)製のマイクロ波セラミックが採用できる。
好ましくは、上記マイクロ波セラミックの誘電率は1よりも大きく、より好ましくはマイクロ波周波数においてεr=6.5からεr=270である。好ましくは、上記マイクロ波セラミックは、該当するマイクロ波周波数において低い損失(tan δ)を有する。
この発明の第4の局面においては、同軸の組織焼勺プローブであって、内側の導体と、前記内側の導体を取囲む誘電体と、前記誘電体を取囲む導電性鞘と、前記鞘上にある1つ以上のバランとを有し、上記または各々のバランは吹付け誘電体を含む、プローブが提供される。好ましくは、上記または各々のバランはさらに、前記吹付け誘電体を取囲む外側の導体を含む。上記誘電体が吹付け誘電体であるため、バランを極めて小さくすることが可能である。これはプローブの断面積が小さくかつ/または周波数が高い場合に必要である。
この発明の第5の局面に従うと、同軸の組織焼勺プローブのためのバランを作製する方法であって、同軸プローブにおける外側の導電性鞘の外側表面に対して液体または粉末状の誘電体を吹付けまたはその他で配置するステップと、前記誘電体が液体の場合に上記液体を凝固させるステップとを備え、こうして上記バランが形成される、方法が提供される。
この発明の第4および第5の局面の両方において、好ましくは、前記プローブは、波長λのマイクロ波放射線での使用に対して設計され、上記バランの、前記プローブの軸方向での長さは、およそλ/4またはその奇数倍数に等しい。
この発明の第6の局面は、外科手術用装置であって、
組織の焼勺に適した第1の周波数のマイクロ波放射線の源と、
上記源から、焼勺されるべき組織の中へマイクロ波放射線を向けるためのプローブと、
上記源からの前記マイクロ波放射線を変調しないOFF状態、および、上記源からのマイクロ波放射線を変調して前記第1の周波数よりも小さい第2の周波数のパルスにするON状態、を有する変調器とを備え、前記第2の周波数は組織の切開に適したものである、装置が提供される。したがって、上記プローブは2つの異なる周波数を出力できる。すなわち、一方は組織焼勺(たとえば癌組織の焼勺)に対して最適なものにされ、他方は組織の切開(たとえば健康な組織を切って癌組織に達する)に対して最適なものにされる。しかし、この装置が必要とする放射線源はただ1つである。その方が、放射線源が別個に2
つある場合よりも好ましい。
好ましくは、組織焼勺のための第1の周波数は1GHz以上であり、より好ましくは13GHz以上である。一実施例では14〜15GHzの範囲内である。
組織切開のための第2の周波数は好ましくは10kHzから500MHzの範囲内である。組織切開の際にはこのような周波数が効果的であるとわかった。より好ましくは、500kHzから30MHzの範囲内である。
好ましくは、上記装置はさらに、前記変調器と前記プローブとの間に低域フィルタを備え、前記低域フィルタは、前記第1の周波数を通す第1の状態と、前記第2の周波数を通すが前記第1の周波数をフィルタ除去する第2の状態とを有する。上記装置はフィルタなしでも動作するが、上記フィルタは上記第2の周波数での切開効果を向上させる。
前記変調器は、前記第2の周波数を変化させることが可能であるのが好ましい。
前記低域フィルタは、上記変調器周波数が変化したときに第2の状態において通過帯域を変化させることが可能であるのが好ましい。これによって当該装置はより柔軟なものとなる。
上述したこの発明についての第1から第6の局面における特徴点のうち任意のものを互いに組合せることも可能である。
以下、この発明の各実施例について、添付の図面を参照して説明を行なう。
発明の詳細な説明
装置の概観
図1において、マイクロ波で組織を焼勺するための装置のブロック図が示される。この装置は、マイクロ波放射線を生成および制御するためのユニット100と、包括的に参照番号190の下で一まとめにして、プローブ5とプローブにマイクロ波放射線を送り届けるための伝達手段4とを有する。プローブ5を用いることで、マイクロ波放射線を組織6に加えて組織を焼勺することができる。
組織6は、マイクロ波のうちいくらかを反射してプローブ5およびユニット100の中へ戻す可能性があることから、装置100,200を組織6に対してインピーダンス整合させる方策が必要となる。この方策は、反射したマイクロ波を監視し、それに応じてインピーダンスを調整するための構成要素(包括的に参照番号3の下で一まとめにする)によって実現される。当該装置におけるこの重要な部分3では、反射したマイクロ波の大きさおよび位相の両方が考慮される。この実施例では、この部分3は、ユニット100内のサブユニットとして設けられる。これについては下でより詳細に説明する。
ユニット100は、マイクロ波放射線源1と、放射線源1からのマイクロ波を増幅する増幅システム2と、マイクロ波を検出してインピーダンスを調整するための構成要素3と、電源120と、増幅システム2およびユニット3を適宜制御するためのコントローラ101とを含む。
ユニット100は、伝達手段4およびホルダ5aを介してプローブ5に接続される。伝達手段4は、マイクロ波を伝達するのに適したものである限りどのような形態をとってもよく、たとえば導波管または同軸ケーブルを用いることができる。伝達手段4とプローブ
とを合計した長さがλ/2の倍数に等しい(ここでλは、放射線源1により生成されるマイクロ波放射線の波長)のが有利であるが、それはこの場合伝達手段4およびプローブがマイクロ波放射線に対して透明になり、その結果これらについてのインピーダンスが、組織6と装置100,200とのインピーダンス整合時に無視できるようになるからである。こうしてインピーダンス整合が容易となる。したがって、場合により長さ調整器を設けて伝達手段の有効長さを調整可能にする。考えられ得る長さ調整器としては、入れ子式コネクタ、同軸トロンボーン位相調整器またはピンダイオード位相調整器などがある。インピーダンス整合については下でより詳細に述べる。
マイクロ波増幅システム2は、プリアンプ10および電力増幅器20を有する。これらについては下でより詳細に説明する。
ユニット3は、反射して当該装置の中へ戻ってきたマイクロ波(反射マイクロ波放射線)の大きさおよび位相を検出するための第1の検出器60と、プローブ5の方へそしてここを通して向けられるマイクロ波(「順方向マイクロ波放射線」)の大きさおよび位相を検出するための第2の検出器30とを有する。これら2種類のマイクロ波放射線はその方向によって区別されるため、上記各検出器は、それぞれ順方向検出器30および逆方向(または反射放射線)検出器60と呼ぶことができる。
ユニット3は、プローブの方へ進むマイクロ波と、反射してプローブの中に戻ってきたマイクロ波(たとえば組織6で反射したマイクロ波)とを分離するためのサーキュレータ40を有する。上記各検出器は順方向マイクロ波と反射マイクロ波とを区別できるように設計されるのが好ましいが、以下の理由からサーキュレータ40も設けることが極めて好ましい。すなわちサーキュレータ40は、反射した放射線が増幅システム2の中へ戻って向けられることを防ぐための切離し部として働く。反射放射線が増幅システム2に達すると、増幅器が損傷を受けるおそれがあるからである。
サーキュレータ40は、周囲の回路と接続するための3つのポートC1,C2,C3を有する。ポートC1は、順方向検出器30および増幅システム2を介して放射線源1へ接続し、ポートC2は、インピーダンス調整器50、逆方向検出器60そして伝達手段4を介してプローブへ接続し、ポートC3はダンプ負荷70に接続する。C1から入った放射線はC2でサーキュレータから出る。サーキュレータにC2から入った反射放射線はC3でサーキュレータから出る。サーキュレータとしては、イットリウム・鉄・ガーネット(YIG)電力サーキュレータを使用することができる。
検出器
上述のように、検出器30,60は、マイクロ波放射線の大きさおよび位相の両方を検出する。図2は、ユニット3、特に検出器30,60をより詳細に示す概略図である。反射してプローブを通り戻ってきたマイクロ波放射線の大きさおよび位相を検出するための第1の電力検出器60は、サーキュレータのポートC2に接続されたインピーダンス調整器50に接続された方向性カプラ200を含む。方向性カプラ200は、反射した放射線のうち一部をミキサ220に向け、ここでこの放射線は局部発振器230からの信号と混合される。
この混合によって中間周波数信号が生成され、この信号は、上記ミキサ220の出力部に接続された検出素子240により検出され、こうして反射した放射線の大きさおよび位相の両方を導き出すことが可能となる。換言すると、上記システムはヘテロダイン検出システムである。混合によって生じる不所望の周波数を除去するために、検出素子240とミキサ220との間にフィルタ(図示せず)を設けてもよい。大きさおよび位相の情報はコントローラ101に送られる。これに代わる実施例では、検出素子240の機能をコン
トローラ自身で実行してもよい。このようなシステムにおいては、中間周波数は、局部発振器からの信号の周波数と反射した放射線の周波数との差に基づいて生成されるのが好ましい。しかしながら、中間周波数は、局部発振器からの信号の周波数および反射した放射線の周波数の源であることも可能である。
位相および大きさを両方とも検出できるには、局部発振器230を設けることが必要である。実施例によっては、反射した放射線は、局部発振器からの信号と混合させる前に、方向性カプラとミキサ220との間に設けた周波数変換器および/またはその他の素子を通すことによって容易に加工できるようにしてもよい。
第2の検出器30は方向性カプラ250を含む。方向性カプラ250は、入来する放射線の大部分を電力サーキュレータ40のポートC1に結合するが、一部を第2のミキサ260に向ける。第2のミキサ260は、上述の局部発振器230に接続されるのに加え、第1の検出器60について上述したのと同じ態様で構成された検出素子280に接続される。
代替的な一実施例では、第1の検出器60および第2の検出器30を、図2に示すように1つの共通の発振器230に接続するのでなく、それぞれ異なる局部発振器に接続してもよい。
当業者であれば、上記の各構成要素は、図1および図2に示す順序にある必要はないことが理解されるであろう。たとえば、各検出器およびインピーダンス調整器3は、伝達手段4のプローブ5側の端部にあってもよい。また、各構成要素を分離しかつ/またはその順序を変えることもまた可能であろう。たとえば、順方向カプラ250を、サーキュレータ40とインピーダンス調整器50との間に配することもでき、またはサーキュレータ40とダンプ負荷210との間に配してもよい。また、反射した放射線を検出するための第1の検出器60のみを有する装置とすることも可能であるが、順方向および逆方向両方の検出器があればより多くの情報が得られ、これによってインピーダンス調整器に対する適当なインピーダンス調整を求めることで反射放射線量を最小限にすることが容易となる。
図18は、図2の例に代わる構成例であって、ミキサをなくした代わりに位相比較器65を用いたものを示す。同様の参照番号は図1および図2と同様の要素を表わす。図2での説明と同様、順方向カプラ250、サーキュレータ40、インピーダンス調整器50、および逆方向カプラ200が設けられる。しかしながら、順方向カプラ250からの順方向マイクロ波放射線はまず、図17の構成例と同様に局部発振器として働く周波数変換器62および大きさセンサ(この場合DCセンサ)61に送られ、そしてこれらの各々から位相比較器65に送られる。周波数変換器62は、マイクロ波放射線を、位相比較器65で扱うことの可能な低い周波数へと変換する。逆方向カプラ200は、大きさセンサ63および周波数変換器64に接続され、これらの各々は、順方向カプラ250についての対応の部分61,62と同様に位相比較器に接続される。位相比較器65は、大きさセンサ61,63から大きさ(電力)情報入力を、そして周波数変換器62,64からは変換された周波数信号を受取り、これより順方向および逆方向のマイクロ波放射線の大きさおよび位相を求め、この情報をコントローラ101に送る。
局部発振器230は、放射線源1により生成されるマイクロ波放射線の周波数とは異なる周波数の信号を生成することが重要である。このことはミキサが用いられる図2の構成において重要であるが、それはヘテロダイン検出には2つの異なる周波数が必要だからである。また、周波数変換器62が局部発振器として働く図18の構成においても重要であるが、それは位相比較器とは、放射線源1で生成されたマイクロ波周波数よりもはるかに低い周波数しか満足に扱うことのできないものだからである。
図2の例では、局部発振器230は放射線源1とは別個で独立である。しかしながら、局部発振器において、マイクロ波放射線源1から導き出された信号を生成させることも可能である。たとえば、図17に示すように、マイクロ波放射線源1とプリアンプシステム10との間にカプラ22を設け、マイクロ波放射線のうち一部を周波数変換器24へ迂回させるように構成する場合もある。周波数変換器24は、実質的に局部発振器として働く。周波数変換器24はミキサ220に接続され、放射線源1からのマイクロ波放射線の周波数とは異なる(通常これよりはるかに低い)周波数の信号をミキサ220に出力する。逆方向カプラ200は、反射したマイクロ波放射線をミキサ220に向ける。反射マイクロ波放射線の大きさおよび位相は、ミキサ220の出力部に接続された検出素子240によって判定される。当該装置内のその他の部分は図17には示さず、図1,2で上述したのと同じものである。
図16はこの発明の装置の代替的な一実施例を示し、同様の参照番号は上述と同様の要素を表わす。ここには主な相違点が2つある。第1に、包括的に参照番号33で表わす追加の検出器が、サーキュレータ40とインピーダンス調整器50との間に位置付けられている。当業者であれば理解できるように、その他の場所、たとえばサーキュレータ40とダンプ負荷210との間、またはサーキュレータ40と放射線源1との間に位置付けてもよい。図16の実施例では、この第3の検出器33は反射マイクロ波放射線を検出するように構成されるが、これに代わる実施例では、順方向マイクロ波放射線を検出するように構成されてもよい。第3の検出器33は、サーキュレータ40およびインピーダンス調整器50間に位置付けられる逆方向カプラ34と、逆方向カプラ34に接続されたミキサ35と、検出素子36とを含む。第3の検出器33は、上述の第1および第2の検出器と同様に動作する。第3の検出器33はさらに、インピーダンス調整器50で行なうべき適当なインピーダンス調整を決定する際に有用な情報を出力し、これにより反射マイクロ波放射線の量を最小限に抑える。
図16の実施例における第2の主な相違点は、局部発振器230からの信号が、マイクロ波放射線源1からの信号とミキサ45において混合されることである。第1、第2および第3の検出器に入力されるのは、局部発振器230から直接与えられる信号でなく、ミキサ45からの出力信号である。ミキサ45の出力部はフィルタ46に接続される。フィルタ46は、ミキサで生じた不所望の周波数(通常はより低い周波数)を除去して、所望の周波数を第1、第2および第3の検出器のミキサ220,260,35の入力部へ通す。図16ではまた、それぞれの検出器のミキサ220,260,35および対応の検出素子240,280,36間にそれぞれ設けられたフィルタ221,281,35aを示す。
局部発振器信号を、マイクロ波放射線源から導き出したもの(図17)またはマイクロ波放射線源からの信号と混合したもの(図16)とする利点は、マイクロ波放射線源の周波数または位相に変化があれば、それがいずれも検出器に送られる信号に反映されることである。
インピーダンス調整器およびコントローラ
この実施例におけるインピーダンス調整器は三重スタブ同調器50の形態をとる。これについては下でより詳細に説明する。実施例によっては、これに代えて、インピーダンスを調整する単一もしくは二重スタブ同調器または半導体装置を用いてもよい。
インピーダンス調整器50は、検出器により検出された大きさおよび位相に基づいてコントローラ101によって制御され、こうして反射マイクロ波放射線の量を最小限にする。この実施例では、コントローラ101は集積回路である。その他の実施例では、適当な
ソフトウェアを伴うコンピュータとしてもよい。
インピーダンス調整器50は、図1および図16に示す他の構成要素を介してマイクロ波放射線源1に接続された入力部と、1つ以上の他の構成要素を介してプローブ5に接続された出力部とを有する。通常、マイクロ波放射線源1は固定の実インピーダンスを有し、これはインピーダンス調整器50の入力部のインピーダンスと整合される。したがって、ほとんどの場合、インピーダンス調整器50の入力部のインピーダンスは固定である。インピーダンス調整器50の出力部の複素インピーダンスは調整可能とする。インピーダンス調整器50の出力部の複素インピーダンスを調整することによって、組織で反射してプローブ5を通って戻ってくる放射線の量を最小限にすることが可能となる。マイクロ波放射線がインピーダンス調整器50の出力部とプローブ5の末端との間で進む距離が、マイクロ波放射線の波長を2で割ったものの倍数に等しい場合、インピーダンス調整器50の出力部の複素インピーダンスを組織6のそれと直接整合させることが可能である。これに対し、上記のような倍数に等しくない場合、インピーダンス調整器の出力部と組織/プローブ界面との間にある構成要素のインピーダンスを考慮に入れる必要がある(これは可能ではあるが、コントローラ101で必要となる計算が増加する)。
さらに、オペレータが当該装置の機能を監視できるようにするユーザインターフェイス110が設けられる。監視される機能としては特に、反射での大きさおよび位相や、任意にはさらに順方向での大きさおよび位相、プローブを当てる負荷(組織6)の測定インピーダンス、およびマイクロ波放射線が当てられた時間量が挙げられる。
ユーザインターフェイス110ではさらに、オペレータは、当該装置を制御、コントローラ101で増幅システム2を制御することでマイクロ波の電力を調整、およびコントローラ101または電源120によりマイクロ波を当てる動作を開始・停止させることが可能となる。この制御に対しては、足踏みスイッチまたはペダル105で影響を与えることが可能である。
発明の装置についてのいくつかの考えられ得る用途
この装置は、癌組織を焼勺して癌を治療するために使用可能である。これはキーホールサージャリーなどで実行される。キーホールサージャリーでは、プローブを挿入するための小さな通路を周囲の組織に切開してプローブを癌腫瘍に届かせる。それからマイクロ波を用いて腫瘍を焼勺することができるが、上述のように反射マイクロ波の大きさおよび位相を監視することによって当該装置のインピーダンスを適当に調整してプローブの中へ戻るマイクロ波の反射を最小限にすることができる。マイクロ波(放射線源1によって生成される)の放射は、プローブが腫瘍付近にあるときまたはそれより以前に行なうことができる。考えられる一方法として、プローブ5から放射されるマイクロ波を用いて、周囲の組織を通じてプローブを挿入するための経路を切開するというものである。
以下、放射線源1、増幅システム2およびプローブ5についてより詳細に説明する。
マイクロ波放射線源
この実施例においては、マイクロ波放射線源1は、14GHzから14.5GHzの間で周波数が調整可能な電圧制御発振器(VCO)である。実施例によっては、異なる種類のマイクロ波源、たとえば誘電体共振発振器(DRO)や、または異なる周波数範囲を用いてもよい。VCO制御信号FoAおよび監視信号FoMは、コントローラ101(図1を参照)を出入りするよう送られる。
マイクロ波放射線源1は、0dBmで電力を出力可能であり、かつその電力レベルがその出力周波数帯域全体にわたって+/−0.5dBで一定であり続けることができるのが
好ましい。出力周波数は上記帯域内で(コントローラ101を介して)変化させることができ、これを用いて当該装置を微調整することができる。たとえば、上記帯域内には、増幅システム2で回路共鳴が生じて最大電力を達成できる特定の周波数があり得る。また、上記帯域全体にわたって周波数を掃引することによって、或る器具同調、たとえば、プローブ5および/または伝達手段4が共鳴にはわずかに短すぎる場合に周波数を増加させる、またはその逆、を行なってもよい。
マイクロ波放射線源は安定である(すなわち安定な出力を生成する)ことが極めて好ましい。これは上述の位相検出の助けとなる。安定性を達成する一方策として、位相を固定した放射線源を用いることがある。図19に位相固定式マイクロ波放射線源の可能な一構成例を示す。VCO1001がマイクロ波放射線を生成し、これは図1で既に示したように増幅システム2を介して当該装置の残りの部分へ出力される。VCOからの出力信号の一部は周波数変換器1005に結合される。周波数変換器1005は、上記信号の周波数を減少させてこれを位相比較器1015の第1の入力部に入力する。位相比較器の第2の入力部には、安定な基準信号、たとえば水晶発振器からの信号が入力される。これを用いて、マイクロ波放射線の所望の周波数f0からの変動があればそれを追跡する。安定な基準により与えられる周波数はf0/Nである。これが安定であり得るのは、低い周波数においてはたとえば水晶発振器といった極めて安定な発振器を利用できるからである。周波数変換器1005は、VCOから出力された周波数をN分の1に減少させる。位相比較器1015は、上記2つの入力信号の周波数間および/または位相間の差を増幅器・フィルタ1010に出力し、これはVCOの入力部にフィードバックしてその制御電圧を適当に制御および調整し、こうして出力信号の周波数および位相におけるあらゆる不所望の変動を補正する。
図20は、マイクロ波放射線源から安定な出力を得るための代替的な一構成例を示す。広帯域の放射線源1030(これは合成したものであり得る)を用いて広範囲のマイクロ波周波数を生成し、これを狭帯域フィルタ1040に出力して、出力すべき狭い周波数帯域(または1周波数)を選択させる。このようにして、マイクロ波放射線の出力の安定が可能となる。
増幅システム
増幅システム2は、プリアンプ段またはユニット10および電力増幅段またはユニット20を含む。
図3に電力増幅段20の可能な一構成例を示す。プリアンプ段10の出力部からマイクロ波放射線がプリアンプドライバ300に入力される。プリアンプドライバ300は放射線をスプリッタ310に出力する。スプリッタ310は、この信号を4つの電力増幅器320,330,340,350間に分割する。信号は各々の電力増幅器によって増幅されてから出力され、コンバイナ360によって再結合される。コンバイナ360は、再結合した信号を各検出器およびインピーダンス調整器3に出力する。
電力増幅器の種類選択は、マイクロ波放射線源1の周波数出力によって決定される。14〜14.5GHz範囲の場合、GaAs FETが特に好適である。これは当該帯域幅全体にわたって43dBm(20W)の1dB圧縮点および6dBの電力利得を有することが好ましい。東芝マイクロ波半導体グループのTIM1414−20を用いることができる。この種類の電力増幅器が用いられる場合、理論的な最大出力電力レベルは49dBm(80W)である。
図3の例では、スプリッタ310およびコンバイナ360は、4分の1波長マイクロストリップ素子である。
これに代えて、上記増幅システムは、複数の電力増幅器間に入力信号を分割するための1つ以上のマイクロ波カプラと、上記電力増幅器から出力された信号を再結合するための1つ以上のマイクロ波カプラとを有してもよい。この場合、電力増幅器のうち1つが故障した場合、不整合になったエネルギーを、故障した電力増幅器が接続されたカプラにおける隔離されたポートに接続されたダンプ負荷へそらすことができ、他の電力増幅器には影響が及ばないという利点がある。
図4は、マイクロ波カプラを用いた構成の一例である。プリアンプドライバ400は図3の例と同様に使用されるが、電力増幅器間に信号を分割する、および増幅した信号を再結合するための構成は異なる。この例では、信号は2つの段で分割される。プリアンプドライバ400の出力部は、2つの出力部(図4のポート3,4)間に信号を分割するカプラに接続される。これら出力部のうち第1の出力部からの信号は回路の第1のアーム410aに向けられ、ここでもう1つのカプラ415によって再び2つに分割される。このカプラ415は、この時点で二度分割されている信号を第1の電力増幅器420および第2の電力増幅器430に向け、それから信号はカプラ435によって再結合される。カプラ435はこの信号をカプラ460の入力部に出力する。
カプラ410の第2のポートからの信号は回路の第2のアーム410bに向けられる。これは上述の第1のアーム410aと実質的に同じ構造を有し、すなわち、第1のポートと第2のポートとの間に信号を分割するカプラ417を有する。上記カプラの第1のポートは第3の電力増幅器440の入力部に結合され、第2のポートは第4の電力増幅器450に結合される。上記第3の電力増幅器440および第4の電力増幅器450の出力部は、入力信号を結合するための別のカプラ455の第1および第2の入力ポートに結合され、上記別のカプラ455の出力部は、2つのアーム10a,10bからの信号を結合するカプラ460に接続される。
図4では、電力増幅器としてTM414−20増幅器を用いているが、任意の好適な電力増幅器が適当な変更を伴って使用可能である。三菱のMEFK44 A4045増幅器が有利であろう。
カプラ410,415,435,417,455,460は、その2出力部の間に等しく電力を分割、またはその2入力部から等しく結合するのが好ましい。このようなカプラは3dB90°カプラとして知られる。
上述のように、図4の構成の利点は、電力増幅器のうち1つが故障した場合、不整合になったエネルギーが、故障した電力増幅器の接続されたカプラにおける隔離されたポートに接続されたダンプ負荷にそらされることである。このため、その他の電力増幅器は影響を受けない。
当業者には、電力増幅段についてその他の構成が明らかであろう。
増幅システム2は電力レベル制御部を有する。電力レベル制御部は、コントローラ101によって制御されて所望のレベルの出力電力を与える。この実施例では、電力レベル制御部は、増幅システム2のプリアンプ段10にある。
図5にプリアンプ段10についての可能な一構成例を示す。マイクロ波放射線源1の出力部は、プリアンプ段10の入力部に接続される。プリアンプ段10は複数のプリアンプ510,520,530,540を含み、これらは図5の例では直列に接続される。プリアンプのうち1つ(この例では第2のプリアンプ520)は可変利得を有することとし、
当該装置によって出力されるマイクロ波の電力レベルを制御するために用いることができる。可変利得プリアンプ520の利得はコントローラ101によって制御される。好ましくは、可変利得プリアンプは、その線形領域でのみ動作するよう構成されるが、ルックアップ表または類似のソフトウェア機能を設けて低レベル入力電力需要を代表的なバイアス電圧へ変換する場合、線形動作領域の外側で動作させてもよい。
図6に代替的な一構成例を示す。図5の例と同様、複数のプリアンプ610,620,630,640が設けられるが、電力レベル制御部はピンダイオード減衰器650である(そして、このピンダイオード減衰器650はコントローラ101によって制御される)。ピンダイオード減衰器650は、直列接続されるプリアンプのうち2つの間に配される。図6の例では、ピンダイオード減衰器650は第1のプリアンプ610と第2のプリアンプ620との間に配される。ピンダイオード減衰器650としては、反射型ピンダイオード減衰器または吸収型減衰器を用いることができる。
プリアンプの種類および利得は、所望のシステム要件に従って選択される。超小型モノリシック集積回路(MMIC)型のプリアンプが好適であろう。一実施例では、4つのプリアンプを設けて第1のプリアンプの利得を7dBとし、その他については各々10dBとすることができる。
マイクロ波放射線源1、プリアンプ段2および電力増幅段3を組合せて、たとえばマイクロストリップ回路基板上の1ユニットとすれば当該装置の小型化が可能である。
三重スタブ同調器およびスタブアクチュエータ
インピーダンス調整器50にはスタブ同調器を用いることが好ましい。
図7は、好適な三重スタブ同調器の一例を示す。三重スタブ同調器730は、2つの閉じた端部(入力部731、出力部732)と3つの同調スタブ740,750,760とを有する導波管を含む。各々の同調スタブ740,750,760は、当該導波管の壁にある対応の開口741,751,761の中に位置付けられ、これを動かすことで導波管の中へ延在する深さを変化させることができる。各々のスタブが導波管の中へ延在する深さを変化させることにより、インピーダンス調整器のインピーダンスが調整可能となる。このように、焼勺装置100,200のインピーダンスを、焼勺されるべき組織6のインピーダンスに整合させることができる。図7に示す三重スタブ同調器はその断面において円形(図8を参照)であるが、断面で長方形または正方形のものでもよい。
この実施例では、アクチュエータ(図7には示さず)、たとえばサーボモータまたは圧電素子により、各々の同調スタブ740,750,760の深さを制御する。このアクチュエータは、ユーザインターフェイス110および/または検出器により検出される大きさおよび位相に基づいてコントローラ101により制御される。
開口741,751,761は、図7に示すように導波管の同じ壁に、または異なる壁に設けられ得る。
図7に示す三重スタブ同調器の導波管730は、入力側および出力側を有する。入力側および出力側は、DC絶縁体770によって互いに隔離されたDC(直流)である。絶縁体770は、該当する周波数(マイクロ波放射線源で生成されるもの、たとえば14〜14.5GHz)を通過させる一方で直流を阻止する。任意の好適な絶縁体が使用可能であり、カプトン(登録商標)テープまたは、低損失・高電圧降伏の誘電材料の薄いシートたとえばPTFEまたはポリプロピレンが2つの可能な選択肢である。絶縁は最大6KVまで良好であるのが好ましい。
図7の例では、導波管730は2つの円筒体を含み、その一方は入力側に、他方は出力側に設けられ、一方が他方の中になるよう締りばめで嵌合され、絶縁体770で分離される。これら2つの円筒体を分離することで入力プローブ710および出力プローブ720の設置および調整を容易にすることが可能である。
入力部710および出力部720は、導波管の中へ延在するEフィールドプローブの形態をとるのがよい。これは当該装置の残りの部分との接続のためのタイプNコネクタなどを有する。また、SMAコネクタを有するHフィールドプローブを用いてもよい。
導波管730は、図8に示すように断面が円筒形状であるのが好ましい。図8は、図7の線A−Aに沿った断面図であり、(横方向にずらした)調整可能な同調スタブ740を併せて示す。
図7では、各同調スタブは波長(当該放射線源により生成されるマイクロ波放射線の波長またはその帯域の平均)の8分の3の間隔をおいて配される。これに代わる実施例では、波長の8分の1または8分の5の間隔をおいて配されてもよい。当業者にはその他の好適な距離が明らかであろう。
図21は、この発明の装置の代替的な一実施例を示し、同様の参照番号は上述と同様の要素を表わす。以下では新たな特徴点についてのみ説明を行なう。その他の特徴点は上に記載されている。マイクロ波放射線源1と増幅システム2との間には変調器1100およびフィルタ1120が設けられる。変調器1100は、これが接続されるコントローラ101からの変調信号1105によって制御される。変調器1100は、ON状態のときには、放射線源1からのマイクロ波放射線を変調して10kHz以上500MHz以下の範囲の周波数のパルスにする。変調器1100は柔軟で、上記範囲内の任意の周波数に変調可能なものとする。変調周波数はコントローラ101によって選択される。フィルタ1120は、変調器1100の出力部および増幅システム2の入力部に接続される。フィルタ1120はコントローラ101によって制御される。変調器1100がON状態のとき、フィルタ1120は、放射線源1からの高いマイクロ波周波数をフィルタ除去するように制御され、変調パルスの周波数を有する波形のみを通過させる。したがって、変調器1100がON状態のとき、10kHzから500MHzの範囲内の選択された周波数の放射線が当該装置の残りの部分へ出力されてプローブ5を通される。この周波数の放射線は特に切開に適したものである。変調器1100がOFF状態のとき、放射線源1からのマイクロ波放射線は変調されず、フィルタ1120はマイクロ波放射線を通過させるため、マイクロ波放射線が当該装置の残りの部分およびプローブ5に出力される。マイクロ波放射線は癌組織の焼勺に特に効果的である。変調器がON状態のときの変調周波数は、500kHzから30MHzの範囲内の周波数であることが好ましいが、なぜなら、これらの周波数が組織の切開にさらにより適していることがわかったからである。すなわちこれらの周波数は、神経刺激が生じないのに十分高いと同時に、熱マージンが最小限に抑えられるのに十分低いものだからである。
図21の実施例では、インピーダンス調整器として3スタブ同調器を用いている。スタブアクチュエータ1130は、スタブを制御することでインピーダンス調整器の出力インピーダンスを調整するように構成され、検出器230,250,260,280および200,220,240,270によって検出された電力および位相に基づいてコントローラ101で制御される。図21の実施例では、順方向マイクロ波放射線検出器および反射マイクロ波放射線検出器につき別個の局部発振器230,270を用いていることに注目されたい。
インピーダンス調整器50とプローブ5との間には位相調整器1110が設けられる。位相調整器1110はコントローラ101によって制御可能であり、これによって、インピーダンス調整器50の出力部とプローブ5の末端5aとの間の有効距離を、放射線源で生成されるマイクロ波放射線の波長を2で割ったものの倍数に等しくする。上述のように、これはインピーダンス整合および反射放射線の量の最小化に有利である。
当業者には明らかなように、上述の他の実施例のいずれにおいても、変調器および位相調整器の一方または両方を用いることができる。
プローブ
焼勺装置のうち図1で包括的に100で示す部分は、多くの異なる種類のプローブ5とともに用いることができる。したがって、この装置は、接続されるプローブの種類を検出できるプローブ検出器を有することが好ましい。プローブには、プローブ検出器に識別信号を送信するための手段を設けることができる。プローブ検出器は、コントローラ101の一部とすることができる。コントローラは、プローブの種類や、検出されたプローブに関係する手続上の情報を表示するように構成され、またプローブの種類に従って電力レベルを変化させるように構成され得る。
以下、種々のプローブについて説明する。
図9は、第1の導体900と、第2の導体910と、この両者の間にある誘電体920とを有する同軸プローブを示す。第1の導体900は細い細長の形状であり、銀または銅といった高導電性材料からなる。第2の導体920は第1の導体と同軸であり、外側の導電性鞘を形成する。誘電体はマイクロ波周波数について低損失の材料である。このプローブの特性インピーダンスは、第1の導体900の外径に対する第2の導体910の内径の比によって決定される。誘電体930は、導電性鞘920から外へ延在する。第1の導体900は、誘電体のさらに外へ延在し、組織6の貫入に用いることができる。図10は、図9の線B−Bに沿った断面図である。
図9のプローブは複数のバラン930を有する。各々のバランは、外側の導体920の一部を取囲む第3の導体の形態をとる。各々のバラン930は、一端において第2の導体910と導通接触し、その長さのうち残りの部分については第2の導体から空気絶縁される。各々のバランの長さは、当該装置で用いられる波長の4分の1またはその奇数倍数とする。このバランは、第2の導体に沿った戻り電流を最小限に抑えるため、患者またはオペレータへのショックの危険性を最小限にしかつ健康な組織の加熱を減少または完全になくす上での助けとなる。
図11(a)は図9と類似のプローブを示すが、ここでは第1の導体900はその端部にもう1つの誘電体材料片935を有する(誘電体935は誘電体920と同じ材料であるのが好ましい)。第1の導体のうち、2つの誘電材料片920,935間にある部分936のみが露出される。
図11(b)は、図9のプローブの端部の拡大図である。図11(c)は、図11(a)のプローブの端部の拡大図である。図11(d)は、第1の導体がその先端に誘電体935を有するが第1の誘電体片920が導電性鞘910より外へ延在しない例を示す。したがって、第1の導体のうち鞘910と第2の導体935との間にある部分が露出される。図11(e)は、誘電体920が鞘910の外へ延在せず、鞘910の端部付近の部分を取囲む金属製フェルール912を有するタングステン針911で第1の導体が終わっている例を示す。
図12は、組織6に挿入された同軸プローブを示す。同様の参照番号は図9と同様の要素を表わす。第2の導体910およびバラン930はトロカールによって取囲まれる。トロカールとは、身体内に挿入される管であってプローブまたはその他の装置(たとえば内視鏡)を挿入できるようにするものである。図13は図12の線C−Cに沿った断面図である。
図14は、プローブの代替的な一実施例であって、バランが第2の導体910と第3の導体930との間の吹付け誘電体932によって形成された例を示す。この目的に特に適した誘電体として、カミング社(Cumming Corporation)製の誘電体キャスト235Dがある。この態様で、バランを1つまたはそれ以上形成することができる。バランの長さは波長の4分の1またはその奇数倍数とする。
これに代わる一実施例では、バランとして第3の導体930のない純粋誘電体バランを用いてもよい。当業者には適当な変更が明らかであろう。
図15は、波長の2分の1の深さおよび波長×1の幅を有する矩形の導波管プローブを示す。この構成の場合、Te21モードが伝播する。マイクロ波は、Eフィールドプローブ2002を介して焼勺プローブ6の中に結合される。Eフィールドプローブ2002は、導波管の中へ延在し、タイプNもしくはタイプKまたはSMAコネクタ2001を有する。導波管開口2003には低損失の誘電体が充填(装入)される。
図22は、中心開口2003に固体の誘電材料を充填させた円筒形の導波管の焼勺プローブ6を示す。Eフィールドプローブが設けられ、SMA、NまたはKタイプのコネクタがその端部の1つからλ/4だけ離して設けられる。Hフィールドプローブを用いてもよい。
図14および図15の両方において、導波管ハウジング(壁)は、銅、真鍮またはアルミニウムから形成され、入力部(Eフィールドプローブ)は、導波管の一端から波長の4分の1だけ離して位置付けられる。
図23は、末端にセラミック先端911を有する細長の焼勺プローブを示す。この先端は、マイクロ波放射線を組織内に送り届けるように構成される。セラミックとしては、マイクロ波周波数で相対比誘電率(εr)が6.5の低損失マイクロ波セラミック材料が用いられる。
マイクロ波を用いる組織焼勺装置のブロック図である。 図1の装置の順方向電力検出器、反射電力検出器およびサーキュレータをより詳細に示す概略図である。 図1の装置内に設けられ、マイクロ波源により生成されるマイクロ波を増幅させるための電力増幅段の一部を示す図である。 代替的な電力増幅段を示す図である。 図1の装置におけるマイクロ波放射線源およびプリアンプ段を示す図である。 代替的な放射線源およびプリアンプ段の構成を示す図である。 インピーダンス調整器の一例を示す図である。 図7のインピーダンス調整器の、図7の線A−Aに沿った断面図である。 組織に挿入された同軸プローブを示す図である。 図9の同軸プローブの、線B−Bに沿った断面図である。 (a)〜(e)でプローブにおける異なる種類の可能な端部構造を示す図である。 組織に挿入された同軸プローブを示す図である。 図12の線C−Cに沿った断面図である。 特定の技術によって形成されたバランを有する同軸プローブを示す図である。 矩形の導波管の形態をとるプローブを示す図である。 この発明の装置の代替的な一実施例であって、局部発振器からの信号がマイクロ波放射線源からの信号と組合わされる例を示す図である。 マイクロ波放射線源で生成される信号から局部発振器信号が導き出される構成を示す図である。 位相比較器を用いた代替的な検出構成を示す図である。 位相固定した放射線源を示す図である。 広帯域の放射線源と狭帯域フィルタとを組合わせた例を示す図である。 代替的な一実施例であって変調器を有するものを示す図である。 円筒形の導波管の形態をとるプローブを示す図である。 セラミック先端を有するプローブを示す図である。

Claims (19)

  1. 組織焼勺装置であって、
    マイクロ波放射線を生成するよう配置されたマイクロ波放射線源と、
    焼勺されるべき組織の中へ記マイクロ波放射線を向けるためのプローブと、
    マイクロ波放射線源と記プローブとの間に接続された反射放射線検出器と、
    マイクロ波放射線源と記プローブとの間に接続されたインピーダンス調整器とを備え、
    マイクロ波放射線源によって生成された記マイクロ波放射線は、5から60GHzの範囲の安定した出力周波数を有し、
    記装置は、記マイクロ波放射線の周波数とは異なる周波数を有する信号を生成するよう配置された局部発振器を含み、
    記反射放射線検出器は、記局部発振器に接続され、記局部発振器からの信号と反射した放射線を比較することにより、反射して記プローブを通りマイクロ波放射線源の方へ戻ってきたマイクロ波放射線の大きさおよび位相を検出するよう配置され、
    記インピーダンス調整器は、記反射したマイクロ波放射線の検出された大きさおよび位相に基づいて制御可能である調整可能な複素インピーダンスを有する、装置。
  2. 記反射したマイクロ波放射線の記検出された大きさおよび位相に基づいて記インピーダンス調整器の記複素インピーダンスを自動的に調整するよう配置されたコントローラを備える、請求項1に記載の装置。
  3. 記コントローラは、記反射したマイクロ波放射線の記検出された大きさおよび位相における変動に応じて動的に記複素インピーダンスを調整するように構成される、請求項2に記載の装置。
  4. 記マイクロ波放射線源は安定した基準信号に位相ロックされる、請求項1から3のいずれかに記載の装置。
  5. 記マイクロ波放射線源は、その安定した出力周波数が制御可能に変動し得るように調整可能である、請求項4に記載の装置。
  6. 記マイクロ波放射線源から前記プローブに向かって前進するマイクロ波放射線の一部を受けるために前記マイクロ波放射線源と前記プローブとの間に接続された前進する放射線検出器を有し、記前進する放射線検出器は、前記マイクロ波放射線とは異なる周波数を有する信号を生成するよう配置された局部発振器に接続され、前記局部発振器からの信号と受けとった前記マイクロ波放射線源から前記プローブに向かって前進する前記マイクロ波放射線の一部とを比較することにより、マイクロ波放射線源から記プローブに向かって前進するマイクロ波放射線の大きさおよび位相を検出するよう配置されており、記インピーダンス調整器の記複素インピーダンスは、マイクロ波放射線源から前記プローブに向かって前進するマイクロ波放射線の記検出された大きさおよび位相に基づいてさらに調整可能である、請求項1から5のいずれかに記載の装置。
  7. 記マイクロ波放射線源と前記インピーダンス調整器の前記反射放射線検出器とは反対側の前記プローブとの間に接続された付加的な検出器を含み、記付加的な検出器は、前記マイクロ波放射線とは異なる周波数を有する信号を生成するよう配置された局部発振器に接続され、前記マイクロ波放射線源から前記プローブに向かって前進するマイクロ波放射線の一部または反射して前記プローブを通り前記マイクロ波放射線源に戻ってくるマイクロ波放射線の一部のいずれかを受けるとともに、前記局部発振器からの信号と受けとったマイクロ波放射線の一部とを比較することにより、マイクロ波放射線源から記プローブに向かって前進するか、または反射して記プローブを通りマイクロ波放射線源に戻ってくるマイクロ波放射線の大きさおよび位相を検出するよう配置されており、記インピーダンス調整器の記複素インピーダンスは、記付加的な検出器によって検出された大きさおよび位相に基づいてさらに調整可能である、請求項6に記載の装置。
  8. 記前進する放射線検出器および/または記付加的な検出器は、記反射放射線検出器と同じ局部発振器に接続される、請求項6または7に記載の装置。
  9. 記または各々の検出器は、記局部発振器からの信号を、前記検出器により検出されるマイクロ波放射線と混合するためのミキサを含む、請求項1から8のいずれかに記載の装置。
  10. 記検出器の1つ以上またはすべては、記局部発振器に接続された位相比較器および電力センサを含む、請求項1から9のいずれかに記載の装置。
  11. 記または各々の局部発振器は、記マイクロ波放射線源とは別個である、請求項1から10のいずれかに記載の装置。
  12. 記または各々の局部発振器は、記マイクロ波放射線源に接続され、マイクロ波放射線源からの記マイクロ波放射線とは異なる周波数を有する信号をマイクロ波放射線によって生成される前記マイクロ波放射線から生成するように構成される、請求項1から10のいずれかに記載の装置。
  13. 記プローブは生体組織に貫入するように構成される、請求項1から12のいずれかに記載の装置。
  14. 反射して記プローブを通りマイクロ波放射線源の方へ戻ってくるマイクロ波放射線を、マイクロ波放射線源から記プローブに向かって前進するマイクロ波放射線から分離するよう配置されたセパレータを有する、請求項1から13のいずれかに記載の装置。
  15. 記インピーダンス調整器は三重スタブ同調器である、請求項1から14のいずれかに記載の装置。
  16. 記プローブは、細長い内側の導体と、記内側の導体と同軸である外側の導体と、記導体間における誘電層とを含む、請求項1から15のいずれかに記載の装置。
  17. 記プローブは導波管である、請求項1から15のいずれかに記載の装置。
  18. 記プローブの外径は1mm未満である、請求項1から17のいずれかに記載の装置。
  19. 記マイクロ波放射線源は波長λの放射線を生成するよう配置され、記インピーダンス調整器と記プローブとが、その間でマイクロ波放射線を伝えるよう配置された放射線伝達手段によって接続され、記放射線伝達手段の長さは調整可能であり、記放射線伝達手段と記プローブとを合計した長さはλ/2の倍数に等しくなるように調整可能である、請求項1から18のいずれかに記載の装置。
JP2004554703A 2002-11-27 2003-11-27 組織焼勺装置および組織を焼勺する方法 Expired - Fee Related JP4469723B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0227628A GB0227628D0 (en) 2002-11-27 2002-11-27 Miniature monopole antenna structures for minimally invasive therapeutic cancer treatment and use in intricate open surgery procedures
GB0227635A GB0227635D0 (en) 2002-11-27 2002-11-27 An invention of Technology electrosurgical system to enable effective treatment of cancerous growths manifested in vital organs of the human body
PCT/GB2003/005166 WO2004047659A2 (en) 2002-11-27 2003-11-27 Tissue ablation apparatus and method of ablating tissue

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010000657A Division JP5081256B2 (ja) 2002-11-27 2010-01-05 組織焼勺装置および組織を焼勺する方法

Publications (3)

Publication Number Publication Date
JP2006507865A JP2006507865A (ja) 2006-03-09
JP2006507865A5 JP2006507865A5 (ja) 2006-11-09
JP4469723B2 true JP4469723B2 (ja) 2010-05-26

Family

ID=32395884

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2004554703A Expired - Fee Related JP4469723B2 (ja) 2002-11-27 2003-11-27 組織焼勺装置および組織を焼勺する方法
JP2010000657A Expired - Fee Related JP5081256B2 (ja) 2002-11-27 2010-01-05 組織焼勺装置および組織を焼勺する方法
JP2012034788A Expired - Fee Related JP5292484B2 (ja) 2002-11-27 2012-02-21 組織焼勺装置および組織を焼勺する方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2010000657A Expired - Fee Related JP5081256B2 (ja) 2002-11-27 2010-01-05 組織焼勺装置および組織を焼勺する方法
JP2012034788A Expired - Fee Related JP5292484B2 (ja) 2002-11-27 2012-02-21 組織焼勺装置および組織を焼勺する方法

Country Status (9)

Country Link
US (1) US8768485B2 (ja)
EP (3) EP1723921B1 (ja)
JP (3) JP4469723B2 (ja)
AT (3) ATE398974T1 (ja)
AU (1) AU2003285538A1 (ja)
CA (1) CA2547587C (ja)
DE (3) DE60309744T2 (ja)
ES (3) ES2276133T3 (ja)
WO (1) WO2004047659A2 (ja)

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
DE10143173A1 (de) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafersonde
WO2003052435A1 (en) 2001-08-21 2003-06-26 Cascade Microtech, Inc. Membrane probing system
US8043286B2 (en) 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US6780178B2 (en) * 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US7736361B2 (en) * 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
CA2529512A1 (en) * 2003-06-18 2004-12-29 The Board Of Trustees Of The Leland Stanford Junior University Electro-adhesive tissue manipulator
GB2403148C2 (en) * 2003-06-23 2013-02-13 Microsulis Ltd Radiation applicator
JP4232688B2 (ja) * 2003-07-28 2009-03-04 株式会社村田製作所 同軸プローブ
DE202004021946U1 (de) 2003-09-12 2013-05-29 Vessix Vascular, Inc. Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
EP1676108B1 (en) 2003-10-23 2017-05-24 Covidien AG Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
GB2425844B (en) 2003-12-24 2007-07-11 Cascade Microtech Inc Active wafer probe
US8989840B2 (en) * 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7877150B2 (en) 2004-03-30 2011-01-25 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844343B2 (en) 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable medical device
US9155877B2 (en) 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844344B2 (en) * 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable lead
US20070055224A1 (en) * 2004-04-29 2007-03-08 Lee Fred T Jr Intralumenal microwave device
DE602005024952D1 (de) 2004-05-26 2011-01-05 Medical Device Innovations Ltd Gewebenachweis- und ablationsgerät
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
US9215788B2 (en) 2005-01-18 2015-12-15 Alma Lasers Ltd. System and method for treating biological tissue with a plasma gas discharge
KR100895939B1 (ko) 2005-01-18 2009-05-07 알마 레이저스 엘티디 무선주파수 에너지를 통한 생물학적 조직 가열 방법 및개선된 시스템
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US8280526B2 (en) 2005-02-01 2012-10-02 Medtronic, Inc. Extensible implantable medical lead
ES2565342T3 (es) 2005-03-28 2016-04-04 Vessix Vascular, Inc. Caracterización eléctrica intraluminal de tejido y energía de RF regulada para tratamiento selectivo de ateroma y otros tejidos diana
US7853332B2 (en) 2005-04-29 2010-12-14 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US8027736B2 (en) 2005-04-29 2011-09-27 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
WO2006138382A2 (en) * 2005-06-14 2006-12-28 Micrablate, Llc Microwave tissue resection tool
US20100060231A1 (en) * 2006-01-05 2010-03-11 Tpl, Inc. Method and Apparatus for Energy Harvesting and/or Generation, Storage, and Delivery
US7692411B2 (en) * 2006-01-05 2010-04-06 Tpl, Inc. System for energy harvesting and/or generation, storage, and delivery
US8672932B2 (en) 2006-03-24 2014-03-18 Neuwave Medical, Inc. Center fed dipole for use with tissue ablation systems, devices and methods
US20070288079A1 (en) * 2006-03-24 2007-12-13 Micrablate Energy delivery system and uses thereof
EP1998698B1 (en) 2006-03-24 2020-12-23 Neuwave Medical, Inc. Transmission line with heat transfer ability
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
JP4611247B2 (ja) * 2006-06-14 2011-01-12 オリンパスメディカルシステムズ株式会社 高周波処置具
US11389235B2 (en) 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10376314B2 (en) * 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
WO2008034103A2 (en) 2006-09-14 2008-03-20 Lazure Technologies, Llc Device and method for destruction of cancer cells
GB0620058D0 (en) 2006-10-10 2006-11-22 Medical Device Innovations Ltd Tissue measurement and ablation antenna
US9050115B2 (en) 2006-10-10 2015-06-09 Creo Medical Limited Surgical antenna
CN102961184B (zh) 2006-10-10 2016-08-10 医疗设备创新有限公司 利用微波辐射来治疗组织的装置以及天线校准系统和方法
GB0620063D0 (en) 2006-10-10 2006-11-22 Medical Device Innovations Ltd Needle structure and method of performing needle biopsies
EP2954868A1 (en) 2006-10-18 2015-12-16 Vessix Vascular, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
ES2560006T3 (es) 2006-10-18 2016-02-17 Vessix Vascular, Inc. Inducción de efectos de temperatura deseables sobre tejido corporal
JP5559539B2 (ja) 2006-10-18 2014-07-23 べシックス・バスキュラー・インコーポレイテッド 身体組織に望ましい温度作用を誘発するシステム
MX2009004704A (es) * 2006-11-02 2009-09-21 Peak Surgical Inc Corte y coagulacion de tejido mediados por plasma electrico y aparato quirurgico.
GB0624584D0 (en) * 2006-12-08 2007-01-17 Medical Device Innovations Ltd Skin treatment apparatus and method
GB0624658D0 (en) 2006-12-11 2007-01-17 Medical Device Innovations Ltd Electrosurgical ablation apparatus and a method of ablating biological tissue
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US10537730B2 (en) 2007-02-14 2020-01-21 Medtronic, Inc. Continuous conductive materials for electromagnetic shielding
GB0704650D0 (en) 2007-03-09 2007-04-18 Medical Device Innovations Ltd Tissue classifying apparatus
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US8483842B2 (en) 2007-04-25 2013-07-09 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9861424B2 (en) * 2007-07-11 2018-01-09 Covidien Lp Measurement and control systems and methods for electrosurgical procedures
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
WO2009036457A1 (en) 2007-09-14 2009-03-19 Lazure Technologies, Llc Multi-layer electrode ablation probe and related methods
US8880195B2 (en) 2007-09-14 2014-11-04 Lazure Technologies, Llc Transurethral systems and methods for ablation treatment of prostate tissue
WO2009036459A1 (en) * 2007-09-14 2009-03-19 Lazure Technologies, Llc Multi-tine probe and treatment by activation of opposing tines
GB0718721D0 (en) 2007-09-25 2007-11-07 Medical Device Innovations Ltd Surgical resection apparatus
CN104174049B (zh) 2007-11-06 2017-03-01 克里奥医药有限公司 可调施放器组件以及等离子体灭菌设备
US9037263B2 (en) 2008-03-12 2015-05-19 Medtronic, Inc. System and method for implantable medical device lead shielding
US20100100093A1 (en) * 2008-09-16 2010-04-22 Lazure Technologies, Llc. System and method for controlled tissue heating for destruction of cancerous cells
US8242782B2 (en) 2008-09-30 2012-08-14 Vivant Medical, Inc. Microwave ablation generator control system
US8287527B2 (en) * 2008-09-30 2012-10-16 Vivant Medical, Inc. Microwave system calibration apparatus and method of use
US20100082083A1 (en) * 2008-09-30 2010-04-01 Brannan Joseph D Microwave system tuner
US8346370B2 (en) * 2008-09-30 2013-01-01 Vivant Medical, Inc. Delivered energy generator for microwave ablation
US8248075B2 (en) * 2008-09-30 2012-08-21 Vivant Medical, Inc. System, apparatus and method for dissipating standing wave in a microwave delivery system
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
EP2355737B1 (en) 2008-11-17 2021-08-11 Boston Scientific Scimed, Inc. Selective accumulation of energy without knowledge of tissue topography
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
US8137345B2 (en) 2009-01-05 2012-03-20 Peak Surgical, Inc. Electrosurgical devices for tonsillectomy and adenoidectomy
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8989855B2 (en) * 2009-01-30 2015-03-24 Medtronic Xomed, Inc. Nerve monitoring during electrosurgery
GB2467604B (en) 2009-02-10 2013-08-28 Univ Bangor Skin treatment apparatus and method
US8728139B2 (en) 2009-04-16 2014-05-20 Lazure Technologies, Llc System and method for energy delivery to a tissue using an electrode array
EP2537554B1 (en) 2009-04-30 2015-10-07 Medtronic, Inc. Termination of a shield within an implantable medical lead
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
US8246615B2 (en) * 2009-05-19 2012-08-21 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency
WO2011004561A1 (ja) * 2009-07-10 2011-01-13 パナソニック株式会社 マイクロ波加熱装置およびマイクロ波加熱制御方法
GB2472972A (en) 2009-07-20 2011-03-02 Microoncology Ltd A microwave antenna
GB2472012A (en) 2009-07-20 2011-01-26 Microoncology Ltd Microwave antenna with flat paddle shape
JP5914332B2 (ja) 2009-07-28 2016-05-11 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. アブレーション装置
US8328800B2 (en) * 2009-08-05 2012-12-11 Vivant Medical, Inc. Directive window ablation antenna with dielectric loading
US8328799B2 (en) * 2009-08-05 2012-12-11 Vivant Medical, Inc. Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
AU2014202676B2 (en) * 2009-08-05 2015-05-07 Covidien Lp Directive window ablation antenna with dielectric loading
US8328801B2 (en) * 2009-08-17 2012-12-11 Vivant Medical, Inc. Surface ablation antenna with dielectric loading
US8906007B2 (en) 2009-09-28 2014-12-09 Covidien Lp Electrosurgical devices, directional reflector assemblies coupleable thereto, and electrosurgical systems including same
US8469953B2 (en) 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US8394092B2 (en) * 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
WO2011061486A1 (en) * 2009-11-18 2011-05-26 Emblation Limited A microwave apparatus and method
US8491579B2 (en) * 2010-02-05 2013-07-23 Covidien Lp Electrosurgical devices with choke shorted to biological tissue
US8968288B2 (en) * 2010-02-19 2015-03-03 Covidien Lp Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
JP2013523318A (ja) 2010-04-09 2013-06-17 べシックス・バスキュラー・インコーポレイテッド 組織の治療のための発電および制御の装置
US9526911B1 (en) 2010-04-27 2016-12-27 Lazure Scientific, Inc. Immune mediated cancer cell destruction, systems and methods
EP3804651A1 (en) 2010-05-03 2021-04-14 Neuwave Medical, Inc. Energy delivery systems
US9561076B2 (en) * 2010-05-11 2017-02-07 Covidien Lp Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same
US20120116486A1 (en) 2010-10-25 2012-05-10 Medtronic Ardian Luxembourg S.A.R.L. Microwave catheter apparatuses, systems, and methods for renal neuromodulation
US9005193B2 (en) * 2010-11-08 2015-04-14 Biosense Webster (Israel) Ltd. Multichannel ablation with frequency differentiation
US9005192B2 (en) 2010-11-08 2015-04-14 Biosense Webster (Israel) Ltd. Simultaneous ablation by multiple electrodes
GB201021032D0 (en) 2010-12-10 2011-01-26 Creo Medical Ltd Electrosurgical apparatus
US9011421B2 (en) 2011-01-05 2015-04-21 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8932281B2 (en) * 2011-01-05 2015-01-13 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9017319B2 (en) 2011-01-05 2015-04-28 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9770294B2 (en) 2011-01-05 2017-09-26 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
WO2012170364A1 (en) 2011-06-10 2012-12-13 Medtronic, Inc. Wire electrode devices for tonsillectomy and adenoidectomy
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US9023025B2 (en) 2011-09-20 2015-05-05 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US9039692B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039693B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9033970B2 (en) 2011-09-20 2015-05-19 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
JP5979845B2 (ja) * 2011-10-25 2016-08-31 株式会社 オリエントマイクロウェーブ マイクロ波手術器およびマイクロ波手術器を備える装置
JP2015503963A (ja) 2011-12-21 2015-02-05 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. エネルギー供給システムおよびその使用方法
US8943744B2 (en) * 2012-02-17 2015-02-03 Nathaniel L. Cohen Apparatus for using microwave energy for insect and pest control and methods thereof
US8968290B2 (en) * 2012-03-14 2015-03-03 Covidien Lp Microwave ablation generator control system
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
PL2676624T3 (pl) * 2012-06-18 2017-06-30 Erbe Elektromedizin Gmbh Urządzenie chirurgiczne wysokiej częstotliwości
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9044254B2 (en) 2012-08-07 2015-06-02 Covidien Lp Microwave ablation catheter and method of utilizing the same
GB2506377A (en) * 2012-09-27 2014-04-02 Creo Medical Ltd Electrosurgical apparatus comprising an RF generator, microwave generator, combining circuit and waveguide isolator
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
JP6363169B2 (ja) * 2013-03-29 2018-07-25 コビディエン エルピー ステップダウン同軸マイクロ波アブレーションアプリケータ及び同を製造するための方法
US10470256B2 (en) * 2013-04-16 2019-11-05 Applied Materials, Inc. Method and apparatus for controlled broadband microwave heating
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
WO2015020617A1 (en) * 2013-08-06 2015-02-12 Agricultural Research Development Agency (Public Organization) A dielectric heating system for controlling mold, moisture, and/or pests such as weevils in agricultural products
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
GB201321710D0 (en) * 2013-12-09 2014-01-22 Creo Medical Ltd Electrosurgical apparatus
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
WO2015120278A1 (en) * 2014-02-06 2015-08-13 Meridian Medical Systems, Llc System for identifying tissue characteristics or properties utilizing radiometric sensing
US20170172655A1 (en) * 2014-03-21 2017-06-22 Steven D. Schwaitzberg System and method for treatment of barrett's esophagus incorporating radiometric sensing
US10368404B2 (en) 2014-03-21 2019-07-30 Whirlpool Corporation Solid-state microwave device
WO2016014427A1 (en) 2014-07-23 2016-01-28 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10624697B2 (en) * 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10925684B2 (en) 2015-05-12 2021-02-23 Navix International Limited Contact quality assessment by dielectric property analysis
EP3294179B1 (en) 2015-05-12 2024-04-17 Navix International Limited Lesion assessment by dielectric property analysis
WO2016181320A1 (en) 2015-05-12 2016-11-17 Navix International Limited Fiducial marking for image-electromagnetic field registration
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
GB2539494A (en) 2015-06-19 2016-12-21 Creo Medical Ltd Electrosurgical Instrument
EP3367942B1 (en) 2015-10-26 2021-01-20 Neuwave Medical, Inc. Energy delivery systems
GB2550537B (en) * 2016-02-11 2018-04-04 Gyrus Medical Ltd Microwave ablation antenna assemblies
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
WO2017165562A1 (en) * 2016-03-22 2017-09-28 Microcube, Llc Methods and devices for energy delivery and therapy
BR112018071018A2 (pt) 2016-04-15 2019-02-12 Neuwave Medical, Inc. sistemas e métodos para aplicação de energia
GB2552169A (en) 2016-07-11 2018-01-17 Creo Medical Ltd Electrosurgical generator
EP3484362A1 (en) 2016-07-14 2019-05-22 Navix International Limited Characteristic track catheter navigation
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11331029B2 (en) 2016-11-16 2022-05-17 Navix International Limited Esophagus position detection by electrical mapping
US11284813B2 (en) 2016-11-16 2022-03-29 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
EP3541313B1 (en) 2016-11-16 2023-05-10 Navix International Limited Estimators for ablation effectiveness
WO2018092059A1 (en) 2016-11-16 2018-05-24 Navix International Limited Tissue model dynamic visual rendering
WO2018092063A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
US10321878B2 (en) 2016-12-22 2019-06-18 Biosense Webster (Israel) Ltd. Pulmonary vein display in two dimensions
US11282191B2 (en) 2017-01-12 2022-03-22 Navix International Limited Flattened view for intra-lumenal navigation
US11842456B2 (en) 2017-01-12 2023-12-12 Navix International Limited Flattened view for intra-lumenal navigation
GB2569811A (en) * 2017-12-27 2019-07-03 Creo Medical Ltd Electrosurgical apparatus
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
JP2019154867A (ja) * 2018-03-14 2019-09-19 華郎 前田 マイクロ波治療器及びマイクロ波治療システム
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery
CN113040898A (zh) * 2021-03-08 2021-06-29 南京航空航天大学 一种双频微波消融仪

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US663622A (en) * 1899-04-12 1900-12-11 Thomas Ryan Leaf-turner.
GB1126901A (en) 1964-06-19 1968-09-11 British Ropes Ltd Improvements in or relating to the manufacture of wire ropes or strands
DE2504280C3 (de) * 1975-02-01 1980-08-28 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Vorrichtung zum Schneiden und/oder Koagulieren menschlichen Gewebes mit Hochfrequenzstrom
US4488559A (en) * 1981-06-30 1984-12-18 University Of Utah Apparatus and method for measuring lung water content
US4397313A (en) * 1981-08-03 1983-08-09 Clini-Therm Corporation Multiple microwave applicator system and method for microwave hyperthermia treatment
JPS58173540A (ja) * 1982-04-03 1983-10-12 銭谷 利男 マイクロ波手術装置
US4571552A (en) * 1983-11-07 1986-02-18 Raytheon Company Phase-locked magnetron system
US4815479A (en) 1986-08-13 1989-03-28 M/A Com, Inc. Hyperthermia treatment method and apparatus
DE3637549A1 (de) 1986-11-04 1988-05-11 Hans Dr Med Rosenberger Messgeraet zur pruefung der dielektrischen eigenschaften biologischer gewebe
US4825880A (en) * 1987-06-19 1989-05-02 The Regents Of The University Of California Implantable helical coil microwave antenna
FR2617723A1 (fr) 1987-07-07 1989-01-13 Odam Sa Procede et appareil pour le traitement d'etats pathologiques par stimulation de points d'acupuncture
US5524281A (en) * 1988-03-31 1996-06-04 Wiltron Company Apparatus and method for measuring the phase and magnitude of microwave signals
DE3815835A1 (de) * 1988-05-09 1989-11-23 Flachenecker Gerhard Hochfrequenzgenerator zum gewebeschneiden und koagulieren in der hochfrequenzchirurgie
WO1989011311A1 (en) * 1988-05-18 1989-11-30 Kasevich Associates, Inc. Microwave balloon angioplasty
JPH02182272A (ja) * 1988-12-14 1990-07-16 Microthermia Technol Inc 腫瘍などの細胞を破壊する装置及び方法
US4976711A (en) * 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5057105A (en) * 1989-08-28 1991-10-15 The University Of Kansas Med Center Hot tip catheter assembly
US5113065A (en) * 1990-09-10 1992-05-12 United Technologies Corporation Heterodyne circular photodetector array in a tracking system
WO1992004934A1 (en) * 1990-09-14 1992-04-02 American Medical Systems, Inc. Combined hyperthermia and dilation catheter
DE4126608A1 (de) * 1991-08-12 1993-02-18 Fastenmeier Karl Anordnung zum schneiden von biologischem gewebe mit hochfrequenzstrom
WO1993003677A2 (de) * 1991-08-12 1993-03-04 Karl Storz Gmbh & Co. Hochfrequenzchirurgiegenerator zum schneiden von geweben
US5557283A (en) * 1991-08-30 1996-09-17 Sheen; David M. Real-time wideband holographic surveillance system
JP2828817B2 (ja) * 1991-12-05 1998-11-25 日本商事株式会社 手術器切換装置
WO1993020768A1 (en) * 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5720718A (en) * 1992-08-12 1998-02-24 Vidamed, Inc. Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US5227730A (en) * 1992-09-14 1993-07-13 Kdc Technology Corp. Microwave needle dielectric sensors
US5364392A (en) * 1993-05-14 1994-11-15 Fidus Medical Technology Corporation Microwave ablation catheter system with impedance matching tuner and method
US5405346A (en) * 1993-05-14 1995-04-11 Fidus Medical Technology Corporation Tunable microwave ablation catheter
US5693082A (en) * 1993-05-14 1997-12-02 Fidus Medical Technology Corporation Tunable microwave ablation catheter system and method
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
GB9315473D0 (en) * 1993-07-27 1993-09-08 Chemring Ltd Treatment apparatus
US5507791A (en) * 1993-08-31 1996-04-16 Sit'ko; Sergei P. Microwave resonance therapy
AU7661494A (en) 1993-09-21 1995-04-10 Alcan International Limited Aluminium sheet with rough surface
US5518861A (en) * 1994-04-26 1996-05-21 E. I. Du Pont De Nemours And Company Element and process for laser-induced ablative transfer
US6002968A (en) 1994-06-24 1999-12-14 Vidacare, Inc. Uterine treatment apparatus
US5704355A (en) * 1994-07-01 1998-01-06 Bridges; Jack E. Non-invasive system for breast cancer detection
US5829437A (en) * 1994-07-01 1998-11-03 Interstitial, Inc. Microwave method and system to detect and locate cancers in heterogenous tissues
US6421550B1 (en) * 1994-07-01 2002-07-16 Interstitial, L.L.C. Microwave discrimination between malignant and benign breast tumors
US5509916A (en) * 1994-08-12 1996-04-23 Valleylab Inc. Laser-assisted electrosurgery system
FI98420C (fi) * 1995-01-24 1997-06-10 Nokia Mobile Phones Ltd Menetelmä ja kytkentä moduloidun signaalin muodostamiseksi lähetin/vastaanottimessa
US5519359A (en) * 1995-04-26 1996-05-21 Westinghouse Electric Corp. Microwave oscillator with loop frequency conversion to and signal amplification at an intermediate frequency
US5755753A (en) * 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US6345194B1 (en) * 1995-06-06 2002-02-05 Robert S. Nelson Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth
AU714014B2 (en) * 1995-06-28 1999-12-16 B & H Manufacturing Company, Inc. Applying stretch labels
US6496738B2 (en) * 1995-09-06 2002-12-17 Kenneth L. Carr Dual frequency microwave heating apparatus
US6350276B1 (en) * 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US6289249B1 (en) * 1996-04-17 2001-09-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Transcatheter microwave antenna
WO1997043971A2 (en) * 1996-05-22 1997-11-27 Somnus Medical Technologies, Inc. Method and apparatus for ablating turbinates
US5737384A (en) * 1996-10-04 1998-04-07 Massachusetts Institute Of Technology X-ray needle providing heating with microwave energy
US5810803A (en) * 1996-10-16 1998-09-22 Fidus Medical Technology Corporation Conformal positioning assembly for microwave ablation catheter
US5906609A (en) * 1997-02-05 1999-05-25 Sahar Technologies Method for delivering energy within continuous outline
KR100247005B1 (ko) * 1997-05-19 2000-04-01 윤종용 알에프 증폭기에서 전기 제어 임피던스 매칭장치
US6414562B1 (en) * 1997-05-27 2002-07-02 Motorola, Inc. Circuit and method for impedance matching
JP3245815B2 (ja) * 1997-07-02 2002-01-15 株式会社日本エム・ディ・エム 高周波利用生体組織処理装置
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
DE19737482A1 (de) * 1997-08-28 1999-03-04 Alsthom Cge Alcatel Verfahren zur optischen Übertragung über ein Lichtwellenleiternetz, sowie optisches Übertragungsnetz
US20020158212A1 (en) * 1998-04-17 2002-10-31 French Todd E. Apparatus and methods for time-resolved optical spectroscopy
US6047215A (en) * 1998-03-06 2000-04-04 Sonique Surgical Systems, Inc. Method and apparatus for electromagnetically assisted liposuction
US6635055B1 (en) * 1998-05-06 2003-10-21 Microsulis Plc Microwave applicator for endometrial ablation
JP3919947B2 (ja) 1998-07-09 2007-05-30 アルフレッサファーマ株式会社 マイクロ波手術用電極装置
US6251128B1 (en) * 1998-09-01 2001-06-26 Fidus Medical Technology Corporation Microwave ablation catheter with loop configuration
US6016811A (en) * 1998-09-01 2000-01-25 Fidus Medical Technology Corporation Method of using a microwave ablation catheter with a loop configuration
US6391026B1 (en) * 1998-09-18 2002-05-21 Pro Duct Health, Inc. Methods and systems for treating breast tissue
US6245062B1 (en) * 1998-10-23 2001-06-12 Afx, Inc. Directional reflector shield assembly for a microwave ablation instrument
FR2785172B1 (fr) * 1998-11-02 2000-12-29 Assist Publ Hopitaux De Paris Spire metallique biocompatible et dispositifs de pose de spires d'occlusion vasculaire electrosecables a longueur ajustable
US6148236A (en) * 1998-11-04 2000-11-14 Urologix, Inc. Cancer treatment system employing supplemented thermal therapy
US20020022836A1 (en) * 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
DE60021063T2 (de) * 1999-03-09 2006-05-11 Thermage, Inc., Hayward Vorichtung zur behandlung von gewebe
US6463336B1 (en) * 1999-04-01 2002-10-08 Mmtc, Inc Active bandage suitable for applying pulsed radio-frequencies or microwaves to the skin for medical purposes
US6684097B1 (en) * 1999-04-22 2004-01-27 University Of Miami Intraoperative monitoring of temperature-induced tissue changes with a high-resolution digital x-ray system during thermotherapy
US6325796B1 (en) 1999-05-04 2001-12-04 Afx, Inc. Microwave ablation instrument with insertion probe
US7226446B1 (en) * 1999-05-04 2007-06-05 Dinesh Mody Surgical microwave ablation assembly
US6962586B2 (en) * 1999-05-04 2005-11-08 Afx, Inc. Microwave ablation instrument with insertion probe
US6448788B1 (en) * 1999-05-26 2002-09-10 Microwave Imaging System Technologies, Inc. Fixed array microwave imaging apparatus and method
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
US6287302B1 (en) * 1999-06-14 2001-09-11 Fidus Medical Technology Corporation End-firing microwave ablation instrument with horn reflection device
US6306132B1 (en) * 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6413225B1 (en) * 1999-06-18 2002-07-02 Vivometrics, Inc. Quantitative calibration of breathing monitors with transducers placed on both rib cage and abdomen
US6683968B1 (en) * 1999-09-16 2004-01-27 Hewlett-Packard Development Company, L.P. Method for visual tracking using switching linear dynamic system models
US6347251B1 (en) * 1999-12-23 2002-02-12 Tianquan Deng Apparatus and method for microwave hyperthermia and acupuncture
US6699237B2 (en) * 1999-12-30 2004-03-02 Pearl Technology Holdings, Llc Tissue-lifting device
WO2001051638A2 (en) 2000-01-14 2001-07-19 Incyte Genomics, Inc. Drug metabolizing enzymes
US7033352B1 (en) 2000-01-18 2006-04-25 Afx, Inc. Flexible ablation instrument
US6853864B2 (en) * 2000-02-02 2005-02-08 Catholic University Of America, The Use of electromagnetic fields in cancer and other therapies
US6663622B1 (en) 2000-02-11 2003-12-16 Iotek, Inc. Surgical devices and methods for use in tissue ablation procedures
GB0004179D0 (en) 2000-02-22 2000-04-12 Gyrus Medical Ltd Tissue resurfacing
US6723091B2 (en) * 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US6673068B1 (en) * 2000-04-12 2004-01-06 Afx, Inc. Electrode arrangement for use in a medical instrument
US6471696B1 (en) * 2000-04-12 2002-10-29 Afx, Inc. Microwave ablation instrument with a directional radiation pattern
US6768925B2 (en) * 2000-04-13 2004-07-27 Celsion Corporation Method for improved safety in externally focused microwave thermotherapy for treating breast cancer
US6470217B1 (en) * 2000-04-13 2002-10-22 Celsion Corporation Method for heating ductal and glandular carcinomas and other breast lesions to perform thermal downsizing and a thermal lumpectomy
US6690976B2 (en) 2000-04-13 2004-02-10 Celsion Corporation Thermotherapy method for treatment and prevention of breast cancer and cancer in other organs
US6477426B1 (en) * 2000-06-20 2002-11-05 Celsion Corporation System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors
FR2812166B1 (fr) * 2000-07-21 2002-12-13 Commissariat Energie Atomique Applicateur de micro-ondes focalisant
US6699241B2 (en) * 2000-08-11 2004-03-02 Northeastern University Wide-aperture catheter-based microwave cardiac ablation antenna
DK176207B1 (da) * 2000-09-28 2007-02-05 Xo Care As Elektrokirurgisk apparat
US6866624B2 (en) * 2000-12-08 2005-03-15 Medtronic Ave,Inc. Apparatus and method for treatment of malignant tumors
US20020087151A1 (en) * 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
US7422586B2 (en) * 2001-02-28 2008-09-09 Angiodynamics, Inc. Tissue surface treatment apparatus and method
US20020165529A1 (en) * 2001-04-05 2002-11-07 Danek Christopher James Method and apparatus for non-invasive energy delivery
JP3885511B2 (ja) 2001-04-11 2007-02-21 ソニー株式会社 レーザー光発生装置及び方法
AU2002326952A1 (en) * 2001-09-19 2003-04-01 Urologix, Inc. Microwave ablation device
RU2237267C2 (ru) * 2001-11-26 2004-09-27 Волков Леонид Викторович Способ формирования изображений в миллиметровом и субмиллиметровом диапазоне волн (варианты) и система формирования изображений в миллиметровом и субмиллиметровом диапазоне волн
KR100423075B1 (ko) * 2001-12-19 2004-03-16 삼성전자주식회사 반도체 장치 및 그 제조 방법
JP2004118544A (ja) * 2002-09-26 2004-04-15 Renesas Technology Corp メモリシステム
AU2003901390A0 (en) 2003-03-26 2003-04-10 University Of Technology, Sydney Microwave antenna for cardiac ablation
DE602005024952D1 (de) * 2004-05-26 2011-01-05 Medical Device Innovations Ltd Gewebenachweis- und ablationsgerät

Also Published As

Publication number Publication date
JP2012143568A (ja) 2012-08-02
DE60321836D1 (de) 2008-08-07
EP1569570A2 (en) 2005-09-07
AU2003285538A1 (en) 2004-06-18
WO2004047659A3 (en) 2004-07-29
DE60321837D1 (de) 2008-08-07
DE60309744T2 (de) 2007-09-20
ES2309879T3 (es) 2008-12-16
EP1723921B1 (en) 2008-06-25
EP1723921A1 (en) 2006-11-22
EP1726268B1 (en) 2008-06-25
JP2010099498A (ja) 2010-05-06
ATE398973T1 (de) 2008-07-15
JP2006507865A (ja) 2006-03-09
US8768485B2 (en) 2014-07-01
JP5292484B2 (ja) 2013-09-18
DE60309744D1 (de) 2006-12-28
CA2547587A1 (en) 2004-06-10
ES2276133T3 (es) 2007-06-16
WO2004047659A2 (en) 2004-06-10
ATE398974T1 (de) 2008-07-15
ATE345091T1 (de) 2006-12-15
CA2547587C (en) 2013-11-19
ES2309878T3 (es) 2008-12-16
EP1726268A1 (en) 2006-11-29
JP5081256B2 (ja) 2012-11-28
US20060155270A1 (en) 2006-07-13
EP1569570B1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP4469723B2 (ja) 組織焼勺装置および組織を焼勺する方法
US11717341B2 (en) Electrosurgical apparatus for generating radiofrequency energy and microwave energy for delivery into biological tissue
EP1748726B1 (en) Tissue detection and ablation apparatus
JP5605809B2 (ja) 外科切断装置
US20170135762A1 (en) Tissue ablation system with energy distribution
JP2012517256A (ja) 電磁放射を用いた局在化された侵襲性皮膚治療のための装置
US20230057974A1 (en) Electrosurgical generator for delivering microwave energy at multiple frequencies
EP3962393B1 (en) Microwave amplification apparatus for an electrosurgical instrument

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees