JP4469195B2 - 複合光学素子の製造方法 - Google Patents

複合光学素子の製造方法 Download PDF

Info

Publication number
JP4469195B2
JP4469195B2 JP2004072339A JP2004072339A JP4469195B2 JP 4469195 B2 JP4469195 B2 JP 4469195B2 JP 2004072339 A JP2004072339 A JP 2004072339A JP 2004072339 A JP2004072339 A JP 2004072339A JP 4469195 B2 JP4469195 B2 JP 4469195B2
Authority
JP
Japan
Prior art keywords
mold
resin
optical
light irradiation
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004072339A
Other languages
English (en)
Other versions
JP2005254720A (ja
Inventor
孝 佐藤
哲雄 牧野
俊勝 小飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Optronics Co Ltd
Original Assignee
Suwa Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Optronics Co Ltd filed Critical Suwa Optronics Co Ltd
Priority to JP2004072339A priority Critical patent/JP4469195B2/ja
Publication of JP2005254720A publication Critical patent/JP2005254720A/ja
Application granted granted Critical
Publication of JP4469195B2 publication Critical patent/JP4469195B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は複合光学素子の製造方法に係り、特に、光学基材に樹脂層を積層する工程における製造技術に関する。
一般に、ガラスレンズなどの光学基材の表面上に紫外線硬化樹脂層を積層してなる複合光学素子の製造方法が知られている。特に、非球面レンズなどのような研磨加工が難しい光学面を必要とする光学部品を製造する場合には、上記の製造方法は紫外線硬化樹脂を型成形することにより容易に任意の光学面を形成できる点で、工数やコストを要する研磨加工に較べて有利である。
上記の複合光学素子の製造方法は概ね次のような工程を有する。まず、光学基材(ガラスレンズ)の表面に未硬化状態の紫外線硬化樹脂を滴下する。次に、光学基材の表面に金型を接近させ、光学基材と金型との間において紫外線硬化樹脂を所定の形状に成形する。さらに、所定の形状に成形された未硬化の紫外線硬化樹脂に対して光学基材の側から紫外線を照射し、紫外線硬化樹脂を硬化させる。最後に、硬化した紫外線硬化樹脂から金型を剥離する(例えば、以下の特許文献1参照)。
ところで、上記の製造方法における紫外線照射工程では、紫外線硬化樹脂の硬化速度が場所によって異なることにより樹脂層に歪が発生するという問題点がある。そこで、紫外線の照射光路上に光学フィルタ、液晶パネル、印刷パターンを有する透明フィルム、光走査機構などの光変調手段を配置することにより、紫外線硬化樹脂の硬化速度の均一性を高め、歪の発生を防止する技術が提案されている。(例えば、以下の特許文献2参照)。
特開平6−315943号公報 特開平7−108623号公報
しかしながら、前述の複合光学素子の製造方法においては、金型で光硬化樹脂を成形する際に空気が巻き込まれることにより、光硬化樹脂の内部に空気が混入した状態となり、そのまま光硬化されることにより、樹脂層の内部に気泡が残留し、複合光学素子が不良品になるといった問題点がある。
そこで、本発明は上記問題点を解決するものであり、その課題は、樹脂層の内部に気泡が混入することを防止できる複合光学素子の製造方法を提供することにある。
斯かる実情に鑑み、本発明の複合光学素子の製造方法は、光学基材に樹脂層を積層してなる複合光学素子を製造するに際し、前記光学基材の表面上に配置された光硬化樹脂に対して成形型により成形を行い、また、前記光硬化樹脂に光照射を施すことにより前記光硬化樹脂を硬化させて前記樹脂層を形成する製造方法において、前記成形型を前記光硬化樹脂から離間した初期位置から前記成形型による前記光硬化樹脂の成形が完了する最終位置まで連続して移動させる成形過程を有し、該成形過程において、前記成形型が前記光硬化樹脂に接触する接触位置を通過した後であって前記成形型が前記最終位置に到達する前に前記光照射が開始され、前記光照射の開始時と同時若しくはそれより前に前記成形型の移動速度を低下させ、或いは、前記光照射開始後に時間の経過とともに前記成形型の移動速度を漸次低下させていくことを特徴とする。
前記成形型が前記光硬化樹脂に接触する接触位置を通過した後であって成形型が最終位置に到達する前に光照射が開始される場合には、光硬化樹脂を変形させながら光硬化プロセスを生じさせることができるので、光硬化樹脂の硬化収縮による樹脂層の変形や内部歪の発生を抑制することができる。また、この場合には光硬化樹脂の硬化プロセスが進行してその粘度が上昇するので、光硬化樹脂が成形型によって変形される際に空気を巻き込みやすくなるとともに、光硬化樹脂の内部に生じた気泡が抜けにくくなる。したがって、上記のように、光照射が開始された後の成形型の移動速度をその前の移動速度よりもさらに低くすることにより、空気の巻き込みを低減し、また、気泡の放出のための時間を確保することができるので、樹脂層の内部に残留する気泡を低減することができ、或いは、樹脂層の内部における気泡の残留をより確実に防止できる。
本発明において、前記成形型による前記光硬化樹脂の外径変化量が全外径変化量の半分となった時点以降に光照射が開始されることが好ましい。これによれば、光硬化により光硬化樹脂の粘度が高まり、特に成形プロセスの後半において成形型による成形が困難になることを防止できる。
本発明において、前記光学基材はその前記表面に変曲点を有し、前記成形型の移動に伴って変形する前記光硬化樹脂の外縁が前記変曲点を通過する前に前記成形型の移動速度を低下させ、前記外縁が前記変曲点を通過する時点で前記成形型の移動速度を低下前より低くすることが好ましい。光学基材の表面に変曲点が存在する場合には、成形型の移動に伴って光硬化樹脂が押し広げられていく過程においてその光硬化樹脂の外縁が上記変曲点を通過する。この場合、光硬化樹脂の外縁が変曲点を通過する時点では、光学基材の表面の曲率が変化するために空気をより巻き込みやすくなる。したがって、上記時点における成形型の移動速度をさらに低くすることにより、空気の巻き込みを低減することができるため、樹脂層の内部に残留する気泡をさらに低減でき、或いは、樹脂層の内部における気泡の残留をより確実に防止できる。
本発明によれば、複合光学素子において樹脂層の内部に気泡が残留する恐れを低減できると言う優れた効果を奏し得る。
以下、本発明の実施の形態を図示例と共に説明する。図1は、本実施形態の複合光学素子の製造方法に用いる製造装置の構成を模式的に示す概略構成図、図2(a)〜(c)は受け部材111の拡大縦断面図である。この実施形態の製造装置100は、MPU(マイクロプロセッサユニット)などで構成される制御部101によって各部が制御されるように構成されている。製造装置100には、光学基材保持部110、樹脂供給部120、成形処理部130、光照射部140、偏芯測定部150、表面位置測定部160、及び、光軸調整部170が設けられている。
光学基材保持部110には、レンズなどの光学基材11を保持する受け部材(レンズ受台)111と、光学基材11を受け部材111に固定する固定具112とが設けられている。受け部材111は、例えば鉄、真鍮、ステンレス鋼などによって構成され、その表面にニッケルめっきなどを施したものを用いることもできる。受け部材111は、図2(a)に示すように、円筒部111aと、この円筒部111aの下端から外周側に広がったフランジ部111bとが一体に構成されている。受け部材111の内部には光軸方向に貫通する光学開口部111opが形成されている。図示例の場合、光学開口部111opの開口断面は円形である。
また、受け部材111の上端部(円筒部111aの上部開口縁)には内周側に開いた形状の段部111cが形成されている。この段部111cは全周に亘って環状に形成されている。段部111cには、光学基材11を光軸方向に支持する段底面111c1と、光学基材11を外周側から取り囲むように構成された段周面111c2とが設けられている。段部111cの内径(段底面111c1の内縁の径)は光学基材11の外周径より(僅かに)小径であり、段部111cの外径(段周面111c2の径)は光学基材11の外周より(僅かに)大きく構成されている。また、段部111cの厚さ(段周面111c2の光軸方向の幅)は、光学記基材11の厚さより小さく(例えば半分程度に)形成されている。
図1に示す固定具112は環状に構成され、光軸方向であって受け部材111の段部111cが支持する向きとは反対向きに光学基材11の周縁部を支持するフランジ面を有し、このフランジ面が光学基材11の周縁部に当接した状態で受け部材111に対して固定される。ここで、固定具112を受け部材111に対して固定する構造としては、受け部材111と固定具112とを係合させるバヨネット構造、或いは、受け部材111と固定具112とを螺合させるねじ構造などの適宜の固定手段を用いることができる。
上記構成により、光学基材11を上記受け部材111の段部111cに嵌合(遊嵌)させ、受け部材111とは反対側から固定具112のフランジ面を当接させ、固定具112を受け部材111に固定することによって、光学基材11は保持固定された状態になる。なお、上記受け部材111と固定具112の形状は任意であり、例えば、受け部材111と固定具112の光軸方向の位置関係を逆にすれば、固定具112と呼ばれていたものが受け部材となり、受け部材111と呼ばれたものが固定具となる。すなわち、本発明においては、光学基材11の光入射側に配置された保持部品を受け部材と呼ぶこととする。
樹脂供給部120には、樹脂収容部121と、この樹脂収容部121に接続された供給ノズル122とが設けられている。樹脂収容部121内には未硬化の光硬化樹脂(例えば紫外線硬化樹脂)が収容され、供給ノズル122から光学基材11上に吐出させることができるように構成されている。光学基材11の表面上に吐出される光硬化樹脂12の量は予め設定されている。この光硬化樹脂12の量は調整することが可能である。供給ノズル122は、図示の退避位置Aと、供給位置Bとの間を移動可能に構成されている。
成形処理部130には、型駆動機構131と、この型駆動機構131により移動される成形型(金型)132とが設けられている。図示例では、型駆動機構131は、図示例ではボールねじ機構によって成形型132を光軸方向に(光学基材11に向けて)移動可能に構成したものであるが、ボールねじ機構などの送りねじ機構に限らず、流体圧シリンダ機構などの任意の駆動構造で型駆動機構131を構成することができる。
光照射部140には、光照射装置141が設けられ、この光照射装置141から光(例えば紫外線)を光学基材11に向けて照射することができるように構成されている。また、光照射装置141の照射光を拡散させる光拡散板142が設けられている。この光拡散板142は、光照射装置141の照射光密度の均一化を図るものであり、例えば、透明ガラス板の表面にパールコート(パール塗装)を施したものなどで構成できる。これらの光照射装置141及び光拡散板142は、光学基材11の光軸から退避した退避位置Aと、光軸上に配置される照射位置Bとの間を移動可能となるように構成されている。
偏芯測定部150は、成形型132の転写面の軸芯位置や光学基材11の光軸位置の偏芯状態を測定するものである。この偏芯測定部150には、測定光を放射し、その反射光を測定する測定光照射受光装置151と、測定結果を表示するモニタ装置152とが設けられている。測定光照射受光装置151は、例えばコリメート光を照射し、このコリメート光の成形型132や光学基材11からの反射光を測定する。モニタ装置152には、成形型132の軸芯位置や光学基材11の光軸位置が表示される。モニタ装置152のモニタ画面には、例えば、軸芯位置や光軸位置を示す十字などの形状を有するターゲットTGが表示される。また、このモニタ画面にはXY座標CDも描画されるので、モニタ画面上においてターゲットTGの位置座標、すなわち軸芯や光軸の位置座標を特定できるように構成されている。
表面位置測定部160は、光学基材11の表面位置(高さ)、すなわち、光学基材11の成形型132と対向する側の表面の位置を測定するものである。この表面位置測定部160には、検出器161と、この検出器161に接続された測定プローブ162とが設けられ、測定プローブ162を光学基材11の上記表面に当接させることで、その表面位置を測定できるように構成されている。この測定プローブ162は、光軸位置から退避した退避位置Aと、光軸上の測定位置Bとの間を移動可能に構成されている。この表面位置測定部160は例えばマイクロメータ装置で構成できる。
光軸調整部170にはXYステージ171が配置されている。このXYステージ171は上記光学基材保持部110の平面位置を調整可能とするものであり、上記の受け部材111を載置した構造となっている。この光軸調整部170により、例えば、光学基材保持部110に保持固定された光学基材11の光軸を成形型132の転写面の軸芯に合致させることができる。なお、XYステージ171には、光軸周りを開口し、上記の光照射部140により照射される照射光を通過させるための光学開口部が設けられている。
次に、図2を参照して、受け部材111のより詳細な構造について説明する。この受け部材111は上述のように光学基材11に対して光照射部140による照射光の光入射側(図1の下側)に配置されて光学基材11を保持するためのものであり、上記照射光を通過させるための光学開口部111opを備えている。この光学開口部111opの内面111pは円筒内面である。
図2(a)に示す例では、内面111pの一部が鏡面(光学鏡面)状態の光反射面111p1となっており、残部が粗面状態の光散乱面111p2となっている。本実施形態の場合、光反射面111p1は、内面111pの一部を光学鏡面となるように構成したものである。光反射面111p1は、超精密切削加工や研磨加工によって形成できる。また、光反射面111p1は、内面111p上にアルミニウムなどで構成される光反射層を形成することによって構成してもよい。この例では、光反射面111p1は光学基材11の光入射側に隣接して設けられている。より具体的には、光反射面111p1は、上記の内面111pのうち、最も光学基材11に近い部分(例えば、光学基材11側から内面111pの光軸方向の長さの1/3程度までの部分)に限定して形成してある。
また、図2(b)に示す例では、光反射面111p1は、光学基材11の光入射側において光学基材11から離間した位置に設けられている。すなわち、光学基材11に隣接する部分は光散乱面111p2が設けられ、この光散乱面111p2のさらに光入射側に光反射面111p1が形成されている。図示例では、光反射面111p1は、光学基材11とは反対側の端部から光学基材11との間に間隔を有する位置まで(光学基材11とは反対側の端部から内面111pの光軸方向の長さの1/3程度の位置まで)に限定して形成されている。
さらに、図2(c)に示す例では、光反射面111p1は、上記内面111pの全てに亘って形成されている。すなわち、受け部材111の光学開口部111opの内面111p全体が鏡面状の光反射面111p1となっている。
上記の各例では、いずれも、光反射面111p1が光軸周りにおいて均等に設定された範囲に形成されている。すなわち、光反射面111p1は環状(円筒状)に形成されている。しかし、光反射面111p1が光軸周りに見て周回方向に異なる態様で構成されていてもよい。例えば、光反射面111p1が光軸周りの或る角度位置には形成されているが、他の角度位置には形成されていないといった状態であってもよい。
ところで、一般に、光学基材11はその光屈折特性に応じて照射光を屈折させるので、光学基材11に対する照射光の入射強度分布が均一であったとしても、光学基材12を透過した後の光硬化樹脂12への入射強度分布は均一にはならない。例えば、光学基材11が凹レンズであれば、光発散特性を有するので、光硬化樹脂12の外周側にいくほど光硬化速度が速くなる傾向がある。
上記の光反射面111p1においては、光照射部140によって光学基材11を通して光硬化樹脂12に光を照射する際に、その照射光の一部が図示二点鎖線で示すように反射し、その反射光が光学基材11に入射する。この場合、光反射面111p1の反射光は上記照射光の入射強度分布に影響を与えるため、光反射面111p1の位置や形成範囲を適宜に設定することで、光学基材11の光屈折作用に起因する照射分布の偏りを低減することができる。
例えば、図2(a)に示す例では、光反射面111p1が光学基材11に隣接配置されているので、反射光は図2(b)に示す場合よりも相対的に光学基材11の外周部に入射しやすくなる。また、図2(b)に示す例では、光反射面111p1が光学基材11から離間した位置に設けられているので、図2(a)の場合に較べて反射光が相対的に光学基材11の内周部に入射しやすくなる。さらに、図2(c)に示す例では、光反射面111pが受け部材111の内面111p全体に亘って形成されているので、内面111pの光軸方向の長さによって光学基材11に対する入射光強度分布が決定される。
一方、光散乱面111p2では、その粗面状態に応じて光散乱角が分散し、また、その粗面状態によって光散乱角の範囲に上限が生ずるので、その散乱光は光学基材11に入射しても光硬化樹脂12に入射するとは限らず、一般には光硬化プロセスに関与しない割合が高くなる。したがって、光反射面111p1を設けない場合、光硬化樹脂12への光硬化プロセスに寄与する形で光学基材11に対する入射光強度分布を制御することは難しい。ここで、光反射面以外の残部を光散乱面ではなく、光反射の少ない光吸収面としてもよい。
なお、上記の光反射面111p1を形成する位置及び範囲は、受け部材111の内径、光照射装置の照射特性、光拡散板の拡散作用、光学基材11の屈折特性などにより異なるため、実験などにより予め決定する。また、光反射面111p1は、照射光のうち光硬化樹脂12の光硬化プロセスに主として寄与する代表波長域に対して光学鏡面として作用する面状態となっていればよい。ただし、上記受け部材111の内面111pの一部に限定して光反射面111p1を形成する場合には、当該光反射面111p1は、上記代表波長域の光に対して内面111pの残部よりも正反射率の高い領域として構成されていればよい。
次に、図3乃至図5を参照して、上記製造装置100を用いた複合光学素子の製造方法について説明する。図5は、この製造方法の工程を示す概略工程図である。最初に、偏芯測定部150を用いて成形型132の転写面の軸芯位置(成型された光学面の光軸に相当する位置)を測定する(ステップ1)。この測定結果は、モニタ装置152の画面上にターゲットTG1として表示され、この表示位置は維持される。なお、樹脂供給部120、光照射部140及び表面位置測定部160は退避位置Aに退避しているので、光学開口部111opを通して成形型132の転写面の軸芯を測定することができる。
次に、光学基材11を上記光学基材保持部110に給材する(ステップ2)。具体的には、光学基材11を受け部材111に嵌合させ、固定具112によって固定する。通常、光学基材11はガラスなどの光学材料を研磨加工したものであるが、これに限定されるものでなく、樹脂成形により形成された合成樹脂基材であってもよい。光学基材11としては、レンズ、光学フィルタ、プリズムなどの光透過性を有する光学部品であれば如何なるものであってもよい。
次に、偏芯測定部150を用いて光学基材11の光軸位置を測定する(ステップ3)。このときも、上記と同様に、樹脂供給部120、光照射部140及び表面位置測定部160は退避位置Aに退避している。この測定が行われると、偏芯測定部150では、光学基材11の光軸位置がターゲットTG2によってモニタ装置152のモニタ画面上に示される。
次に、上記のようにして測定した光学基材11の光軸位置を、光軸調整部170を用いて調整し、成形型132の転写面の軸芯位置に一致させる(ステップ4)。この調整は、例えば、モニタ装置152のモニタ画面上に表示されたターゲットTGを成形型132の転写面の軸芯位置を表示するターゲットTG2に合わせるようにXYステージ171を調整して行う。この調整作業は手動で行ってもよく、或いは、制御部101によって自動的に行われるように構成してもよい。このステップ4が自動的に行われる場合には、上記ステップ1及び3において測定データが制御部101に送られる。なお、このステップ4において、例えば、モニタ画面上に表示されるXY座標CDの原点位置をステップ2で測定した成形型132の転写面の軸芯位置に合致するように構成してもよい。
次に、表面位置測定部160を用いて光学基材11の成形型132側の表面位置を測定する(ステップ5)。このステップ5では、測定プローブ162を退避位置Aから測定位置Bに移動させ、光学基材11の所定の平面位置(例えば、光軸位置或いは頂点位置)にある表面部分に当接させ、検出器151によって測定を行う。測定終了後、表面位置測定部160は退避位置Aに戻り、測定データを制御部101に送る。
次に、樹脂供給部120を用いて、光学基材11の表面上に光硬化樹脂12を供給する(ステップ6)。このステップ6では、樹脂供給部120の供給ノズル122を退避位置Aから供給位置Bに移動させ、光学基材11上から光硬化樹脂12を滴下する。この滴下量は予め設定されており、光学基材11の表面上に光硬化樹脂の量を精密に供給できるようになっている。樹脂供給が終了すると、供給ノズル122は退避位置Aに戻る。なお、このステップ6の後に、上記光照射部140を退避位置Aから照射位置Bへ移動させることが好ましい。
次に、成形処理部130を用いて、成形型132を光学基材11へ向けて移動させる(ステップ7)。この成形型132の移動に際しては、予め制御部101に送られている光学基材11の表面位置のデータ(ステップ5で測定されたデータ)に応じて、成形型132が最も光学基材11に接近する位置(以下、単に「最終位置」という。)が決定されている。この最終位置は、光学基材11上に積層されるべき樹脂層の厚さに対応する距離だけ、光学基材11の表面から離間した位置である。
このステップ7において、成形型132は光学基材11へ向けて移動し、やがて未硬化の光硬化樹脂12に接触する。この最初に光硬化樹脂12に接触する位置を、以下において単に「接触位置」という。成形型132は接触位置を通過して光硬化樹脂12を変形させながら移動し、やがて上記の最終位置に到達して停止する。この最終位置にある成形型132によって光硬化樹脂12が硬化して形成される樹脂層が成形される。
図3は、成形型132の移動速度と、その移動量(或いは移動位置)との関係を示すグラフである。本実施形態では、成形型132の移動速度を変化させることに特徴を有する。具体的には、このステップ7において、図示実線に示すように、成形型132が上記接触位置に到達するまでは、成形型132を高速で移動させ、上記接触位置に到達する直前に移動速度を低下させ、それまでよりも低い速度で成形型132を光硬化樹脂12に接触させるようにしている。
一般に、未硬化の光硬化樹脂12と成形型132とが接触すると、その接触時において光硬化樹脂12が大きく動揺し、それによって光硬化樹脂12内に気泡が混入する恐れがある。また、未硬化の光硬化樹脂12は或る程度の粘性を有しているため、成形型132が光硬化樹脂12に接触した後においても、光硬化樹脂12が成形型132によって押し広げられていく際に、成形型132の移動速度が大きいと、光硬化樹脂12と成形型132の間に空気を巻き込んだ状態となり、光硬化樹脂12の内部に気泡が生じてしまう。さらに、光硬化樹脂12の内部に気泡が発生した場合、成形型132の移動速度が大きいと気泡が光硬化樹脂12から抜け出るための時間的余裕がなくなる。
これに対して、上記のように成形型132が光硬化樹脂12に接触する前に移動速度を低下させておくことにより、上記のように成形型132が接触する際の光硬化樹脂12の動揺も小さくなり、空気の巻き込みも低減される。また、上記のように光硬化樹脂12に接触した後の成形型132の移動速度が小さいことにより、光硬化樹脂12を押し広げる際の光硬化樹脂12への空気の巻き込みも少なくなり、しかも、光硬化樹脂12の内部に気泡が生じても、成形型132の移動速度が小さいために成形型132の移動中に気泡が光硬化樹脂12から抜け出るための充分な時間を確保することができる。さらに、成形型132が最終位置に到達したときに、成形型132の移動速度が小さいことによって最終位置に対する位置決め精度が向上するという利点もある。
一方、上記接触位置の手前までは成形型132を高速に移動させることにより、製造工程のサイクルタイムが短縮でき、効率的に製造できる。したがって、成形型132の当初の移動速度はなるべく大きく、また、上記接触位置及びそれ以降において成形型132の移動速度はなるべく小さいことが望ましい。接触位置より前の成形型132の移動速度は基本的には速いほどよいが、減速時の負荷や振動発生などを低減するために、1〜10cm/secの範囲内であることが好ましく、例えば5cm/sec程度であることが望ましい。また、接触位置以降の成形型132の移動速度は、0.01mm/sec〜0.2mm/secの範囲内であることが好ましく、特に、0.01〜0.08mm/secの範囲内であることが望ましい。
ここで、接触位置における成形型132の移動速度は、成形型132が光硬化樹脂12に与える動揺を低減するために特に低いことが好ましい。したがって、例えば、図3に破線で示すように、成形型132が接触位置を通過する時点前後において一時的に移動速度を低く(例えば0.01〜0.05mm/secの範囲内、特に0.03mm/sec程度に)し、成形型132が接触位置を通過した後に移動速度が上昇する(接触位置の手前の移動速度よりは低いが、接触位置における移動速度よりは高くする、例えば0.04〜0.08mm/secの範囲内、特に0.06mm/sec程度にする)ことがより好ましい。
さらに、光学基材11の表面が非球面形状であるときなど、その表面に変曲点がある場合には、成形型132によって光硬化樹脂12が押し広げられていく過程で、光硬化樹脂12の外縁が上記変曲点を通過する時点では、光学基材11の表面の曲率が変化することから、光硬化樹脂12の内部に空気を巻き込む危険性が高くなる。したがって、図示二点鎖線で示すように、成形型132によって光硬化樹脂12が押し広げられていく過程における、光硬化樹脂12の外縁位置が上記変曲点を通過する時点で、成形型132の移動速度が特に低くなっていることが好ましい。具体的には、光硬化樹脂12の外縁が上記変曲点を通過する前に成形型132の移動速度をさらに低下させる。このとき、図示例のように上記変曲点を通過した後に移動速度を上昇させてもよい。
また、後述するように成形型132が最終位置に到達する前に光照射を開始する場合、光照射による硬化プロセスによって光硬化樹脂12の粘度が上昇すると、空気を巻き込みやすくなるとともに、光硬化樹脂12の内部の気泡も抜けにくくなる。したがって、図示三点鎖線で示すように、光硬化樹脂12の硬化の開始以降において、成形型132の移動速度が低くなっていることが好ましい。具体的には、光照射開始時と同時若しくはそれより前に成形型132の移動速度を低下させる、或いは、光照射開始後に時間の経過とともに成形型132の移動速度を漸次低下させていく、などの方法が考えられる。
なお、成形型132が接触位置にある時点の移動速度や、接触位置を通過した後の移動速度は、光硬化樹脂12の粘度や成形型132の転写面の形状などの条件によってその影響が異なるため、予め実験などを行い決定しておく。また、上記の接触位置は、供給される光硬化樹脂12の量や表面張力に起因する光硬化樹脂12の初期形状などによって異なるため、接触位置の手前で移動速度を低下させる位置についても、予め実験などにより決定しておくことが好ましい。
ところで、従来一般には、成形型132が上記のように最終位置に到達し、停止してから、光照射部140による光照射が開始されるが、この場合、成形型132による成形が完了してから光硬化プロセスが行われるので、光硬化に伴う収縮が発生して、樹脂層に変形が生じて成形精度が悪化したり、樹脂層の内部に大きな歪が残留し、経時的に樹脂層の表面形状が変化したりする恐れがある。
そこで、本実施形態では、成形型132が最終位置に到達する前に、光照射部140による光照射が開始される(ステップ8)。図4は、光照射部140による光照射時の光照射密度と、成形型132の移動量(或いは移動位置)との関係を示すグラフである。この実施形態において、光照射は成形型132の成形プロセスと並行して行われる。特に、図示実線で示すように、成形型132が上記接触位置に到達した時点以降に光照射が開始されることが好ましい。本発明では、上記接触位置を通過して光硬化樹脂12を押し広げている途中で光照射を開始する。このようにすることで、光硬化樹脂12を変形させながら光硬化プロセスを生じさせることができるので、光硬化樹脂12の硬化収縮による樹脂層の変形や内部歪の発生を抑制することができる。すなわち、光硬化プロセスによって光硬化樹脂12自体は硬化収縮を起こすが、このとき、光硬化樹脂12は成形型132によって押し広げられている状態にあり、光硬化樹脂12に対して押し広げる力が作用し、光硬化樹脂12が変形し続けているので、その硬化収縮に起因する変形や内部歪が残留しにくい。
光照射の開始時点は、図示実線で示すように、例えば、成形型132によって光硬化樹脂12の外径変化量が成形による全外径変化量の半分程度になるまで押し広げられた時点、或いはそれ以降とすることができる。これは、成形型132による成形開始時点以降、比較的早期に光照射を始めると、光硬化により光硬化樹脂12の粘度が高まり、特に成形プロセスの後半において成形型132による成形が困難になる場合があるからである。
実際には、成形型132が最終位置に到達する前に硬化プロセスが完了してしまうと、樹脂層の成形ができなくなるので、成形型132が最終位置に到達した後に光硬化樹脂12の光硬化プロセスが終了するように光照射の態様が調整される。この光照射の態様は、光硬化樹脂12の硬化完了に必要な光照射量や光硬化プロセスの反応速度と成形型132の移動速度との兼ね合いなどを勘案して、成形型132が最終位置に到達するまでの光照射量の累計や単位時間当たりの光照射量を設定することによって決定される。
また、上記と同じ成形プロセス上の理由により、成形型132が最終位置に到達する前の単位時間当りの平均光照射密度、特に、比較的早期の平均光照射密度は、或る程度小さいことが好ましい。したがって、例えば、接触位置と最終位置の間に成形型132が位置するときの光照射密度を図示破線のように断続的に行うことが好ましい。このようにすると、光照射が休止されている期間において主として硬化収縮による影響を成形型132による変形作用によって解消することができるとともに、光硬化プロセスの進行を抑制できる。また、図示二点鎖線のように光照射密度が時間とともに増大していくように構成することにより、成形プロセス初期の光硬化樹脂の硬化を抑制することができるので、成形プロセスを無理なく行うことができる。この場合、断続的に行われる照射ステップの光照射密度を図示のように時間と共に増大させていくことがさらに望ましい。
なお、光照射の開始タイミング、すなわち、光硬化樹脂12がどの程度押し広げられた時点で光照射を開始するかは、光照射密度や光硬化樹脂12の厚さなどの各種条件により異ならせる必要があるため、これらの条件に対応させて予め実験などにより決定しておく。ここで、上記のように、成形型132による成形プロセスが完了した後に光硬化プロセスが完了するように構成するために、成形型132が最終位置に到達した後に光照射が終了するように構成することが好ましい。一般に、成形型132が最終位置に到達した時点より0.5〜10秒後に光照射が終了するように構成することが好ましく、特に1〜5秒後に光照射を終了させることが望ましい。ただし、光硬化樹脂12の成形形状の厚さが薄い場合や、光学基材11の外径が小さく、光硬化樹脂12の量が少ない場合には、成形型132が最終位置に到達した時点で、或いは当該時点の直前に光照射を終了させる場合もある。この場合でも、実質的には光硬化樹脂12の硬化プロセスは成形型132が最終位置に到達した後に完了する。
上記のようにして、成形型132が最終位置に到達すると、成形型132の移動を停止し(ステップ9)、その後、光硬化樹脂12の硬化プロセスが完了する(ステップ10)と、成形型132を逆方向に移動(上昇)させることにより光学基材11から離反させる(ステップ11)。その後、形成された複合光学素子を光学基材保持部110から除材する(ステップ12)。
尚、本発明の複合光学素子の製造方法は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態の製造方法において、光学基材11への光硬化樹脂12の供給工程、成形型132による光硬化樹脂12の成形工程、及び、光硬化樹脂12に対する光照射工程以外の構成については、必要に応じて適宜変形した態様で実施し、或いは、省略することが可能である。
本発明に係る製造装置の実施形態の構成を模式的に示す概略構成図。 同製造装置の受け部材の拡大断面図(a)〜(c)。 本発明に係る製造方法における成形型の移動速度と移動量との関係を示すグラフ。 同製造方法における光照射密度と成形型の移動量との関係を示すグラフ。 同製造方法の工程を示す概略工程図。
100…製造装置、101…制御部、110…光学基材保持部、111…受け部材、112…固定具、120…樹脂供給部、130…成形処理部、132…成形型、140…光照射部、141…光照射装置、142…光拡散板、150…偏芯測定部、160…表面位置測定部

Claims (3)

  1. 光学基材に樹脂層を積層してなる複合光学素子を製造するに際し、前記光学基材の表面上に配置された光硬化樹脂に対して成形型により成形を行い、また、前記光硬化樹脂に光照射を施すことにより前記光硬化樹脂を硬化させて前記樹脂層を形成する製造方法において、
    前記成形型を前記光硬化樹脂から離間した初期位置から前記成形型による前記光硬化樹脂の成形が完了する最終位置まで連続して移動させる成形過程を有し、
    該成形過程において、前記成形型が前記光硬化樹脂に接触する接触位置を通過した後であって前記成形型が前記最終位置に到達する前に前記光照射が開始され、
    前記光照射の開始時と同時若しくはそれより前に前記成形型の移動速度を低下させ、或いは、前記光照射開始後に時間の経過とともに前記成形型の移動速度を漸次低下させていくことを特徴とする複合光学素子の製造方法。
  2. 前記成形型による前記光硬化樹脂の外径変化量が全外径変化量の半分となった時点以降に光照射が開始されることを特徴とする請求項1に記載の複合光学素子の製造方法。
  3. 前記光学基材はその前記表面に変曲点を有し、前記成形型の移動に伴って変形する前記光硬化樹脂の外縁が前記変曲点を通過する前に前記成形型の移動速度を低下させ、前記外縁が前記変曲点を通過する時点で前記成形型の移動速度を低下前より低くすることを特徴とする請求項1又は2に記載の複合光学素子の製造方法。
JP2004072339A 2004-03-15 2004-03-15 複合光学素子の製造方法 Expired - Lifetime JP4469195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072339A JP4469195B2 (ja) 2004-03-15 2004-03-15 複合光学素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072339A JP4469195B2 (ja) 2004-03-15 2004-03-15 複合光学素子の製造方法

Publications (2)

Publication Number Publication Date
JP2005254720A JP2005254720A (ja) 2005-09-22
JP4469195B2 true JP4469195B2 (ja) 2010-05-26

Family

ID=35080910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072339A Expired - Lifetime JP4469195B2 (ja) 2004-03-15 2004-03-15 複合光学素子の製造方法

Country Status (1)

Country Link
JP (1) JP4469195B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212547A (ja) * 2006-02-07 2007-08-23 Nikon Corp 光学素子の製造方法および光学素子
JP2010107879A (ja) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc ウエハレンズの製造方法、ウエハレンズ及びウエハレンズの製造装置

Also Published As

Publication number Publication date
JP2005254720A (ja) 2005-09-22

Similar Documents

Publication Publication Date Title
JP2011098484A (ja) 3次元光造形装置、3次元光造形方法及び造形物
KR20100053516A (ko) 액정 부품의 제조 방법 및 제조 장치
TWI532583B (zh) 轉印設備及導光膜片的製造方法
JP2006337985A (ja) ハイサグレンズの製作方法及びこれを利用し製作されたレンズ
KR20100029577A (ko) 기능성 나노패턴을 갖는 렌즈와 그 제조방법
TWI335474B (en) Mass manufacturing method of light guide plate
WO2013038912A1 (ja) 微細構造形成用型および光学素子の製造方法
JP4469195B2 (ja) 複合光学素子の製造方法
JPWO2013183263A1 (ja) インプリント装置及びテンプレート
JP4416115B2 (ja) 複合光学素子の製造方法
JP4416114B2 (ja) 複合光学素子の製造方法及び製造装置
CN105759566A (zh) 压印装置、压印方法以及物品的制造方法
JP5793330B2 (ja) 成形品の製造方法および成形品の製造装置
JP2006215115A (ja) 光拡散反射板の製造方法
JP2006224578A (ja) 複合光学素子の製造方法
JP2007008004A (ja) 光学部品、光学部品の製造方法及び光学部品用型の製造方法
JP2019046819A (ja) 型を用いて基板上の組成物を成形する成形装置及び物品の製造方法
JP2011242478A (ja) 光学素子の製造方法および光学素子の製造装置
KR100317882B1 (ko) 평판 조명장치 및 그에 사용되는 홀로그램 도광판의 제조방법
JP4270828B2 (ja) 微細凹凸面形成用転写母型、及びその製造方法、並びに母型製造装置
JPH09127338A (ja) 導光体およびその製造方法
JPH07164453A (ja) 樹脂接合型レンズの製造方法及び装置
JPH04261501A (ja) 微小光学素子の製造方法
TWI439744B (zh) 導光板的製作方法
JP2013109017A (ja) 光学素子の接合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070314

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090723

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A711 Notification of change in applicant

Effective date: 20091015

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100226

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130305