JP4462885B2 - 高比表面積消石灰及びその製造方法 - Google Patents

高比表面積消石灰及びその製造方法 Download PDF

Info

Publication number
JP4462885B2
JP4462885B2 JP2003337793A JP2003337793A JP4462885B2 JP 4462885 B2 JP4462885 B2 JP 4462885B2 JP 2003337793 A JP2003337793 A JP 2003337793A JP 2003337793 A JP2003337793 A JP 2003337793A JP 4462885 B2 JP4462885 B2 JP 4462885B2
Authority
JP
Japan
Prior art keywords
surface area
specific surface
particle size
slaked lime
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003337793A
Other languages
English (en)
Other versions
JP2005104754A5 (ja
JP2005104754A (ja
Inventor
英典 酒井
山口  篤
信孝 中山
繁壽 松田
眞治 山田
守 冨谷
修治 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2003337793A priority Critical patent/JP4462885B2/ja
Publication of JP2005104754A publication Critical patent/JP2005104754A/ja
Publication of JP2005104754A5 publication Critical patent/JP2005104754A5/ja
Application granted granted Critical
Publication of JP4462885B2 publication Critical patent/JP4462885B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、廃棄物等の燃焼排ガス中に含まれる酸性物質を除去するための消石灰に関し、窒素吸着比表面積が大きい高比表面積消石灰に関する。なお、窒素吸着比表面積とはBET法による窒素ガス吸着比表面積を言う。
廃棄物等のゴミの焼却から排出される燃焼ガスは煤塵のほか、有害物質として塩化水素、硫黄酸化物、窒素酸化物等の酸性ガスを含んでいる。塩化水素は最近の環境問題の最重要課題の一つであるダイオキシンの生成に大きく関与することも良く知られている。これら酸性ガスの除去剤としては、取り扱い易さやコスト面から消石灰を使用するのが主流である。
酸性ガスの除去剤を用いた除去方法には、湿式、乾式、半乾式法などがあり、最も効率よく酸性ガスを除去できるのは湿式法である。しかし建設費、運転費が高いため、近年、消石灰の比表面積を大きくし、反応効率を上げた除去剤を用いた乾式法を適用する焼却施設が多くなっている。乾式法では、乾式で高比表面積消石灰を煙道に吹き込み、高比表面積消石灰を燃焼ガス中の有害物質と反応させて有害物質を除去する。高比表面積消石灰と有害物質との反応生成物として飛灰・ダストが発生する。このタイプの高比表面積消石灰は、反応効率が良いだけではなく、同時に、発生する飛灰・ダスト量も軽減できるという特徴を有している。
高比表面積消石灰を製造する方法としては、特許文献1(米国特許第5173279号公報)において、生石灰を消化する水にエチレングリコールやジエチレングリコール等のグループから選択した添加剤を添加することで、少なくとも比表面積25m2/g以上の水酸化カルシウムを製造する方法が開示されている。
ところで、消石灰はOH基を有するので、もともと帯電し易く、凝集し易いという特性を持つ。消石灰を含む排ガス処理剤を使用している焼却処理施設において、粉体の凝集性ないしこれから派生する流動性の悪いことに起因して、しばしば、貯蔵タンク内での棚つり、切り出し部における詰まり、移送中の配管内での付着・堆積、閉塞や煙道への投入口付近での固化閉塞を起こしやすいという問題があった。この問題は、高比表面積消石灰の適用による飛灰・ダスト量の軽減(消石灰の使用量の軽減に起因する)により、幾分解消したかに見えたが、酸性ガス排出量の規制強化に伴う消石灰投入量の増加、新規施設での建設費削減による移送配管の小径化などから、前述の問題は極めて深刻になってきている。
また、従来の工業用石灰(例えば、JIS特号消石灰)に比べ、ゆるみ見かけ密度が小さい高比表面積消石灰の適用により、輸送車両の積載能力の低下による輸送費の増、及び貯蔵タンクの有効容量減などの問題も生じる。更に、微細な粒子からなる高比表面積消石灰を用いた場合、排ガス集塵用のバグフィルターに負担をかけ、圧損が大きくなり故障の原因にもなる。
このような問題に対し、例えば、特許文献2(特開2000−63116号公報)では、酸性ガス成分の効率的な除去と配管詰まりや排出不良の解消を目的に45m2/g以上の比表面積、0.4g/cm3以上のゆるみ見掛け密度、及び0.7g/cm3以上の固め見掛け密度を有する水酸化カルシウムが開示されている。この水酸化カルシウムは粉砕と圧密造粒処置の処理を単独装置で施すことによって製造されると提案されている。
更に、特許文献3(特開2002−255597号公報)では、特許文献2に記載の発明の問題としてゆるみ見掛け密度と固め見かけ密度を高くしすぎると消石灰の酸性ガス処理能力が低下することを指摘した上で、貯蔵性と輸送性とに優れ、かつ酸性ガスの処理能力が優れた高反応性消石灰を提案している。この高反応性消石灰は、比表面積が45〜70m2/gの範囲内、ゆるみ見掛け密度が0.25〜0.45g/cm3の範囲内、そして固め見掛け密度が0.45〜0.68g/cm3の範囲内にあり、ゆるみ見掛け密度に対する固め見掛け密度の比が1.01以上であることを特徴としている。
他方、特許文献4(特許第3379649号公報)では、比表面積が30m2/gより大きい乾燥した高比表面積の水酸化カルシウム粒子を開示している。この粒子は、粒度が32μm未満の粒子の第1の部分及び粒度が32μmを超える粒子の第2の部分を含有し、32μmでのテーリング(32μmの開口を有する篩を通過しない粒子)のwt%が20〜50(望ましくは30〜40)の範囲にある混合物の形をしており、100〜400Åの範囲の直径を有する孔からなる窒素脱着孔体積が0.1cm3/gより大きい(特許文献4、請求項1参照)。このような粒度分布(特に32μmでのテーリング30〜40%)及び窒素脱着孔体積を有する混合物は、優れた流動性及び容易な投与性を有し、利用性(特に煙霧処理の効率)が良くなる、と説明されている。
また特許文献4では、水酸化カルシウム粒子の流動性が40〜50の範囲にあることを開示している(特許文献4、請求項9参照)。ここでの流動性とは、アルパインシフターと呼ばれる吸引型の乾式篩を用いた場合の15秒以内に篩を通過した90μm未満の部分の重量と90μm未満の部分の全重量の間の比に対応する。
米国特許No.5173279号公報 特開2000−63116号公報 特開2002−255597号公報 特許第3379649号公報
特許文献2又は特許文献3の提案に対する本発明者の研究によれば、貯蔵性は解消できるものの、排出性や輸送性に関し、ゆるみ見掛け密度と固め見かけ密度を規定、ないし、これらのパラメータから算出される圧縮度を規定しても、配管閉塞のトラブルを回避できないことが判明した。また、いずれの方法も目的の特性を得るために粉砕装置ないし解砕装置を必要とし製造上の煩雑性を増すこととなる。
また特許文献4に記載の水酸化カルシウム粒子を使用しても、配管閉塞のトラブルを充分には回避できないことが判明した。本発明者の研究によれば、配管内付着・閉塞等は、移送中の小径粒子の凝集肥大化が起因となり、これらの粒子は製造時に生成した凝集粒子とは異なり、前記凝集肥大化粒子がストラクチャーとして成長し付着、堆積を経て閉塞を引き起こすと考えられる。特許文献4の流動性の測定に用いた吸引型篩では、小径粒子が凝集することなく通過しやすいので、まず、配管付着の評価法としては妥当性を欠く。さらに32μm未満の粒子の第1の部分と32μmを超える粒子の第2の部分の混合物であることは、製造上、分級工程と混合工程を必要とするためコスト増となり、かつ、煩雑である。
そこで本発明は、廃棄物等の燃焼排ガス中に含まれる酸性物質の除去に関し、酸性ガスとの高反応性および飛灰・ダストの発生量減少など高比表面積水酸化カルシウムの特性を有し、貯蔵タンクからの排出トラブルおよび配管閉塞トラブルを回避でき、新規で輸送性に優れた高比表面積消石灰を提供することを目的とする。
粉体である高比表面積消石灰の輸送性を論理的に解明するのは困難であり、従来から輸送性と相関のあるパラメータを特定することはできていない。本発明者は実際に配管を作り、実験により高比表面積消石灰の配管内付着・閉塞等を研究した。その結果、配管内付着・閉塞等は移送中の小径粒子の凝集肥大化が起因となることに着目し、粒子が細かくなくて所定値以上に粗ければ、配管内等での粒子の凝集を抑制することができ、もって輸送性が向上することを知見した。
具体的には請求項1の発明は、水酸化カルシウムを主成分とする窒素吸着比表面積が35m2/g以上の高比表面積消石灰であって、粒径40μm〜200μmの範囲の粒子の平均粒径が75μm以上であり、粒径40μm〜200μmの範囲の粒子を45wt%以上含み、パウダーテスタで測定される凝集度が50%以下であることを特徴とする。
請求項2の発明は、請求項1に記載の高比表面積消石灰において、粒径40μm未満の粒子の平均粒径が10μm以上であることを特徴とする。
請求項3の発明は、水酸化カルシウムを主成分とする窒素吸着比表面積が35m 2 /g以上の高比表面積消石灰であって、粒径40μm〜200μmの範囲の粒子の平均粒径が75μm以上であり、粒径40μm〜200μmの範囲の粒子を45wt%以上含み、前記凝集度(%)をゆるみ見かけ密度(g/cm 3 )で割った値、すなわち商が150以下であることを特徴とする。
請求項4の発明は、請求項3に記載の高比表面積消石灰において、粒径40μm未満の粒子の平均粒径が10μm以上であることを特徴とする。
請求項5の発明は、請求項3または4に記載の高比表面積消石灰において、パウダーテスタで測定される凝集度が50%以下であることを特徴とする。
請求項6の発明は、生石灰を消化し、水酸化カルシウムを主成分とする窒素吸着比表面積が35m2/g以上の高比表面積消石灰を製造する方法において、微晶質ないし隠微晶質の石灰石の焼成温度および焼成時間を、製造される生石灰のCO 2 量が4.0重量%以下になるように調整して焼成した生石灰の粒径を0.5mm以下に調整する粒度調整工程と、水との消化反応を遅延させる添加剤を用いて生石灰を消化する消化工程とを備え、消化機、又は消化機及び熟成機による前記消化工程の後、粉砕、分級、圧密造粒のいずれの工程をも備えないことを特徴とする。
請求項1の発明によれば、高比表面積消石灰の粒子が粗いので、配管内等で他の粒子と接触・衝突しても、接触面積が小さいため凝集・成長が少なく、また質量が重く慣性力があることと相俟って配管内等に付着・堆積することも少ない。したがって輸送性に優れた高比表面積消石灰が得られる。また、高比表面積消石灰の輸送性に影響を与えるのは、粒子の凝集度であるが、請求項1の発明によれば、粒子の凝集度をパラメータにすることで輸送性を簡単に把握することができる。また、凝集度を50%以下にすることで、配管閉鎖トラブルを回避することができる。
請求項2の発明によれば、粒径40μm未満の粒子の平均粒径を10μm以上にすることでバグフィルターの繊維間に高比表面積消石灰の粒子が詰まるのを抑制することができる。
凝集度(%)をゆるみ見かけ密度(g/cm3)で割った値も輸送性と相関がある。請求項3の発明によれば、商を150以下にすることで配管閉鎖トラブルを回避することができる。
請求項6の発明によれば、高比表面積で且つ所定値以上に粗い消石灰を製造することができる。また製造工程も簡略化される。
以下本発明の高比表面積消石灰の一実施形態を説明する。水酸化カルシウムのBET法による高比表面積消石灰の窒素吸着比表面積は35m2/g以上、好ましくは40m2/g以上である。粒径40μm〜200μmの範囲の粒子の平均粒径は75μm以上、好ましくは80μm以上で、粒径40μm〜200μmの範囲の粒子を45wt%以上、好ましくは50wt%以上含む。
発明者らの知見に基づけば、消石灰の配管内で付着が発端となる閉塞現象は、微細な粒子の衝突により凝集した粒子が配管内面に付着・堆積し成長、または、配管内面に付着した微細な粒子が続いて通過する粒子と凝集・成長が繰り返し起き、配管が閉塞する。一方、製造時に凝集している比較的粗い粒子は、他の粒子と接触・衝突しても、接触面積が小さいため凝集・成長は極めて小さく、また、質量が重く慣性力があること相俟って、配管が閉塞に至ることは少ない。
また、高比表面積消石灰を構成する水酸化カルシウムのうち、数ミクロン程度の平均粒径を持つ粒子は、サブミクロン程度の自形あるいは半自形の水酸化カルシウム結晶の凝集体である。製造時に凝集している比較的粗い粒子(数十ミクロンの平均粒径を持つ)は、前記凝集体が凝集成長したものである。これは発明者らが電子顕微鏡のSEM像にて検鏡した結果に基づいている。このような構造から、比較的粗い凝集粒子が消石灰の粒度構成の中で多少、多くなっても高比表面積は維持される。これらの知見を背景とし、発明者らはさまざまな粒度分布の高比表面積消石灰に関し、配管内へ付着を調査した結果、粒径40μm〜200μmの範囲の粒子の平均粒径が75μm以上で、粒径40μm〜200μmの範囲の粒子を45wt%以上、好ましくは50wt%以上含むことが、配管閉塞を生じさせないための好ましい条件であるとの結論に至った。
高比表面積消石灰粒径40μm未満の粒子の平均粒径は10μm以上である。従来の特号消石灰および高非表面積消石灰の平均粒径は10μm以下、ないし場合によっては5μm以下であり、このような粒径であるとバグフィルターの繊維間に詰まり、圧損が目立ち、トラブルの原因となりやすい。
従来公知のパウダーテスタで測定される高比表面積消石灰の凝集度が50%以下、好ましくは45%以下であることが重要である。これは以下の理由に基づく。従来公知のパウダーテスタでのホッパーからの排出や配管での輸送性評価は、圧縮度、凝集度、流動性指数等のパラメータの中で、配管内での粒子衝突や内壁への衝突付着の現象ないし、振動とエアーレーションを伴うホッパー排出を考慮すると、振動篩を使用して評価する凝集度が好適である。後述する具体例(表3、表4)によれば、配管内の付着量は、凝集度が50%以下であると極端に低減する。このため凝集度をパウダーテスタで測定し、凝集度が50%以下の高比表面積消石灰を選択してもよい。
従来公知のパウダーテスタで測定される凝集度(%)をゆるみ見かけ密度(g/cm3)で割った値、すなわち商が150以下にすることが重要である。貯蔵タンクの有効利用、配管輸送の観点から、ゆるみ見かけ密度を大きくすることは有効であるが、大きすぎても反応性、流動性の観点から好ましくない。凝集度もゆるみ見かけ密度も、消石灰粒子の平均粒径と粒度分布に関係のある特性であることは間違いないが、一方、凝集度は、消石灰粒子あるいは凝集粒子の表面活性にも依存し、ゆるみ見かけ密度は平均粒径と粒度分布および一次粒子(すなわち凝集する前の粒子)など複雑な要因によって決まる。発明者らは、後述する具体例(表3、表4)に示すように、凝集度(%)とゆるみ見かけ密度(g/cm3)と配管内の付着量の関係を調査したところ、凝集度(%)をゆるみ見かけ密度(g/cm3)で割った値、すなわち商が150を越えると配管付着量が急激に上昇することを見出した。
ところで、水酸化カルシウムと酸性ガスの反応は消石灰粒子の細孔の径ないし容積に代表される多孔性に大きく依存することは一般的である。細孔は塩化水素との反応生成物である塩化カルシウムと硫黄酸化物との反応生成物である亜硫酸カルシウムの生成により、閉塞し反応が進まなくなり、この際、塩化カルシウムよりもむしろ難水溶性の亜硫酸カルシウムの閉塞が深刻である。亜硫酸カルシウムの閉塞に対して、J.Adanezら(Thermochimica Acta 277(1996)151-164)は、80Å以下の孔は反応を妨害し、一方、100Å以上で広く分布したものは活性および硫酸化能が高いと報告している。
発明者らの知見によれば、ガス吸着によるBJH法により一般に測定が可能な1〜1500Å程度の高比表面積消石灰の細孔直径における細孔容積は、サブミクロン程度の自形あるいは半自形の水酸化カルシウム結晶である一次粒子の細孔ないし表面くぼみで決定され、極端な圧密、極端な不消和状態など大幅な高比表面積消石灰の消化プロセスが異なることがなければ、製造時に生成した一次粒子の凝集粒子が数ミクロン程度の平均粒径を持つ凝集粒子であっても、あるいは、数十μmから百μm程度の凝集粒子であっても(比較的弱い力で連なった、ないし、点ないし線の接触で3次元的に凝集成長した)、大きく細孔容積に変化は無いと理解し、かつ、後述の具体例でもこの知見を確認するに至った。比較的細かい粒径40μm未満の粒子の1500Å以下の細孔直径の細孔容積は0.15cm3/g以上であり、粒径40μm〜200μmの範囲の粒子の1500Å以下の細孔直径における細孔容積が0.12cm3/g以上の値を示す、すなわち、いずれの粒径でも、極端な細孔容積の違いをもたない高比表面積消石灰が提供された。
本発明の高比表面積消石灰の製造方法の一実施形態を説明する。これまで高反応消石灰ないし高反応水酸化カルシウムで粒度などを規定した提案(例えば特開2000−63116号公報、特許第3379649号公報)では、粒度の異なる水酸化カルシウムを混合、ないし、分級、粉砕工程が必要である。また、従来の工業用消石灰の製造設備においても、粒度規定を満足させるために、分級、粉砕工程を有している。これらの工程を有することは、コスト増につながり、製造が煩雑になるだけでなく、増産時の制約にもなる。微晶質ないし隠微晶質の石灰石を焼成温度および焼成時間を製造される生石灰のCO2量が4.0wt%以下になるように調整して焼成し、その上で、生石灰の粒径を予め0.5mm以下、好ましくは0.2mm以下に粉砕し、従来公知の添加剤を加えた消化水をよく混合させて消化することが重要である。発明者らの知見によれば、前記の粒径に調整することで生石灰の消化反応を遅延させ、微細なひだや空孔をもつ高比表面積粒子を生成させるための添加剤入り消化水と生石灰の反応を均一に進行させることができる。具体的には、前記の粒度のように細かい粒度にすることで、粒度の違いによる不均一反応の解消、添加剤の均一分散不足による不均一反応の解消、および、消石灰生成後の極端な凝集肥大化が回避でき、これら一連の操作・作用により、分級・粉砕・圧密造粒せずに本発明の特徴を有する高比表面積消石灰を製造できる。これらの操作は、生石灰の粒度および分級・粉砕の省略などの新規の操作を除けば、先に発明者が提案した特開平11−92138号公報の方法などを適用することが有利である。なお、消化反応を起こさせる消化機には、生石灰と消化水を供給し攪拌羽根等で強制混合する乾式消化機が用いられても良いし、添加剤と消化水との混合液に生石灰を投入する湿式消化機が用いられてもよい。また消化機の後段には、消化反応時間を長くとり、未反応の消石灰を減らすべく、消石灰を攪拌する熟成機が設けられても良い。
以下に実施例により本発明を更に詳細に説明する。なお、実施例記載する特性値の測定は以下の試験測定器により実施した。
(1)粒度分布は、マイクロトラック (日機装製9320−HRA)で測定した。
(2)ゆるみ見掛け密度、凝集度は、粉体の測定で一般的に用いられるパウダーテスタ粉体特性測定装置(ホソカワミクロン製PT−N)で測定した。測定はホソカワミクロン製PT−Nの説明書に沿って行なわれた。具体的には、粒子のゆるみ見掛け密度及び固め見掛け密度の平均を算出し、この平均値に応じた目開きを有する上段篩、中段篩及び下段篩を、振動台の上にセットする。次に2gの粒子を静かに上段の篩の上に載せる。次に振動台を1mmの振幅で、粒子のゆるみ見掛け密度、固め見掛け密度及び圧縮度から算出された時間だけ振動させる。各篩に残留した粒子を計量し、下記の計算式から凝集度を求める。
(上段の篩に残った粉体重)/2g×100…(a)
(中段の篩に残った粉体重)/2g×100×3/5…(b)
(下段の篩に残った粉体重)/2g×100×1/5…(c)
上記3つの計算値の合計をもって凝集度(%)とする。
(3)比表面積は、モノソーブ全自動表面積測定装置(ユアサアイオニクス製MS−18)で測定した。
(4)BJH法による細孔分布、細孔容積は、自動細孔分布測定装置(Micromeritics TriStar 3000)で測定した。
隠微晶質に属する岡山県で産出された石灰石をメルツ炉で焼成し、製造した石灰の乾式粉砕品について、ホソカワミクロン製高速攪拌型混合装置を用いて、濃度100重量%のジエチレングリコールを供給しながら攪拌し、連続式消化反応装置で消化し高比表面積消石灰を製造した。消石灰の製造例を比較例と発明例を併記して表1に示す。
発明例4〜9では、生石灰の最大粒径が0.5mm以下、CO2量が4wt%以下のものを用いた。比較例1及び3では、生石灰の最大粒径が0.5mmより大きく、比較例2では、CO2量が4wt%より大きいものを用いた。
Figure 0004462885
製造した消石灰の品質例を表2に示す。
発明例4〜9では、比表面積が35m2/g以上、粒径40μm未満の粒子の平均粒径が10μm以上、粒径40〜200μm未満の粒子の平均粒径が75μm以上、粒径40〜200μm未満の粒子の割合が45wt%以上であった。比較例1〜3では、粒径40〜200μm未満の粒子の平均粒径が75μm未満、粒径40〜200μm未満の粒子の割合が45wt%未満であった。また比較例1及び2では、粒径40μm未満の粒子の平均粒径が10μm未満になった。
Figure 0004462885
製造した消石灰の品質例を表3に示す。
発明例4〜9では、凝集度が50%以下、凝集度をゆるみ見掛け密度で割った値が150以下であった。比較例1〜3では、凝集度が50%を超え、凝集度をゆるみ見掛け密度で割った値が150を超えた。また発明例4〜9及び比較例1〜3いずれも、粒径40μm未満の粒子の1500Å以下の細孔直径における細孔容積が0.15cm3/g以上、及び粒径40〜200μmの粒子の1500Å以下の細孔直径における細孔容積が0.12cm3/g以上であった。
Figure 0004462885
〔付着率確認試験〕
付着率確認試験は消石灰切り出し/気送供給機として、松下産業製スラッドバルブS−330Nを用いて、前記供給機にトウタク製の50Aフレキシブル配管(TACSD−C−50A)を接続し、前記配管の有効水平部として30mを確保し、先端にテトロンフェルト材質の簡易バグフィルター(200mmφ×6m)を取り付け、消石灰の捕集部とした。試験は、投入気送量がほぼ30kg/hr程度、固気比0.3程度になるような条件下で各消石灰に対し10分間の気送終了後、バグフィルター内の消石灰捕集量(A)を測定し、その後、5分間消石灰を投入せずにブロー運転を行いながら、3人の測定員にて配管10mに付き150回ハンマーで軽く叩き、配管内面付着物を落とし、バグフィルターに捕集させた。この捕集量(B)と前記Aより、(B−A)×100/Bを付着率として簡易的に定義した。付着率確認試験の結果を表4に示す。
表4の付着率と表3の凝集度を比較すると、凝集度が50%以下の発明例は、凝集度が50%を越える比較例に比べ明らかに付着率は低い。また、ゆるみ見掛け密度のみでは付着率の良否を判定できないものの、(凝集度%)/(ゆるみ見掛け密度g/cm3)では、150以下の発明例は明らかに付着率は低い。
Figure 0004462885
以上の実施例および発明例における酸性ガス除去性能と同一時期におけるバグフィルター差圧の平均値を表5にまとめて示す。
発明例4,5,6では、HCl除去率及びSO2除去率がいずれも良好で、また粗い粒子を使用したにも拘わらず、バグフィルターの差圧も上がらなかった。
Figure 0004462885

Claims (6)

  1. 水酸化カルシウムを主成分とする窒素吸着比表面積が35m2/g以上の高比表面積消石灰であって、粒径40μm〜200μmの範囲の粒子の平均粒径が75μm以上であり、粒径40μm〜200μmの範囲の粒子を45wt%以上含み、パウダーテスタで測定される凝集度が50%以下であることを特徴とする高比表面積消石灰。
  2. 粒径40μm未満の粒子の平均粒径が10μm以上であることを特徴とする請求項1に記載の高比表面積消石灰。
  3. 水酸化カルシウムを主成分とする窒素吸着比表面積が35m 2 /g以上の高比表面積消石灰であって、粒径40μm〜200μmの範囲の粒子の平均粒径が75μm以上であり、粒径40μm〜200μmの範囲の粒子を45wt%以上含み、前記凝集度(%)をゆるみ見かけ密度(g/cm 3 )で割った値、すなわち商が150以下であることを特徴とする高比表面積消石灰。
  4. 粒径40μm未満の粒子の平均粒径が10μm以上であることを特徴とする請求項3に記載の高比表面積消石灰。
  5. パウダーテスタで測定される凝集度が50%以下であることを特徴とする請求項3または4に記載の高比表面積消石灰。
  6. 生石灰を消化し、水酸化カルシウムを主成分とする窒素吸着比表面積が35m2/g以上の高比表面積消石灰を製造する方法において、
    微晶質ないし隠微晶質の石灰石の焼成温度および焼成時間を、製造される生石灰のCO 2 量が4.0重量%以下になるように調整して焼成した生石灰の粒径を0.5mm以下に調整する粒度調整工程と、
    水との消化反応を遅延させる添加剤を用いて生石灰を消化する消化工程と、を備え、
    消化機、又は消化機及び熟成機による前記消化工程の後、粉砕、分級、圧密造粒のいずれの工程をも備えないことを特徴とする高比表面積消石灰の製造方法。
JP2003337793A 2003-09-29 2003-09-29 高比表面積消石灰及びその製造方法 Expired - Lifetime JP4462885B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337793A JP4462885B2 (ja) 2003-09-29 2003-09-29 高比表面積消石灰及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337793A JP4462885B2 (ja) 2003-09-29 2003-09-29 高比表面積消石灰及びその製造方法

Publications (3)

Publication Number Publication Date
JP2005104754A JP2005104754A (ja) 2005-04-21
JP2005104754A5 JP2005104754A5 (ja) 2006-11-16
JP4462885B2 true JP4462885B2 (ja) 2010-05-12

Family

ID=34533513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337793A Expired - Lifetime JP4462885B2 (ja) 2003-09-29 2003-09-29 高比表面積消石灰及びその製造方法

Country Status (1)

Country Link
JP (1) JP4462885B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170255A1 (en) * 2017-03-17 2018-09-20 Graymont (Pa) Inc. Calcium hydroxide-containing compositions and associated systems and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246524A1 (en) * 2006-06-02 2009-10-01 National University Corporation Tohoku University Porous calcium oxide particulate and porous calcium hydroxide particulate
JP5306739B2 (ja) * 2008-08-18 2013-10-02 宇部マテリアルズ株式会社 消石灰及びその製造方法
CN115779658B (zh) * 2022-11-07 2023-10-24 北京首创环境科技有限公司 一种飞灰-消石灰复合浆液脱硫剂及其制备方法与应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170255A1 (en) * 2017-03-17 2018-09-20 Graymont (Pa) Inc. Calcium hydroxide-containing compositions and associated systems and methods
US10369518B2 (en) 2017-03-17 2019-08-06 Graymont (Pa) Inc. Calcium hydroxide-containing compositions and associated systems and methods
US10610825B2 (en) 2017-03-17 2020-04-07 Graymont (Pa) Inc. Calcium hydroxide-containing compositions and associated systems and methods
US10874982B2 (en) 2017-03-17 2020-12-29 Graymont (Pa) Inc. Calcium hydroxide-containing compositions and associated systems and methods
US11344844B2 (en) 2017-03-17 2022-05-31 Graymont (Pa) Inc. Calcium hydroxide-containing compositions and associated systems and methods

Also Published As

Publication number Publication date
JP2005104754A (ja) 2005-04-21

Similar Documents

Publication Publication Date Title
JP5799955B2 (ja) 酸性成分除去剤の製造方法および気体中の酸性成分除去方法
CN113149042B (zh) 高活性氧化镁的制备方法
KR102397117B1 (ko) 고도로 다공질인 미세 분상 소석회 조성물의 제조 방법 및 그로부터 얻어진 생성물
WO2021193668A1 (ja) バイオマス灰の改質方法、バイオマス灰のセメント原料化システム、及び改質バイオマス灰
JP4462885B2 (ja) 高比表面積消石灰及びその製造方法
JP5045226B2 (ja) 酸性成分除去剤およびその製造方法
JP2016529094A (ja) 塗料飽和したアルカリ土類金属炭酸塩の再利用
JP3273907B2 (ja) 排ガス処理剤の製造方法
JP2022044542A (ja) バイオマス灰粉粒物、セメント混練体、セメント混練体の製造方法、
CN114599449A (zh) 用于烟气处理设备的石灰基吸附剂和制造所述石灰基吸附剂的工艺
KR101297988B1 (ko) 비표면적이 높은 고농도 액상소석회 제조방법
JP2008068250A (ja) 酸性成分除去剤およびその製造方法
JP2000063116A (ja) 新規水酸化カルシウム、その製造方法及びそれを有効成分とする酸性ガス処理剤
WO2022050407A1 (ja) セメント製造方法、セメント混練体の製造方法、バイオマス灰粉粒物
CN201791470U (zh) 一种中小型燃煤锅炉干法悬浮床式烟气脱硫系统
CN111422893B (zh) 一种消石灰吸收剂的制备方法及相关的消石灰吸收剂
JP2005104754A5 (ja)
CN1594185A (zh) 一种粉煤灰增白的方法
JP2002114543A (ja) 高反応性水酸化カルシウムの製造方法
JP3979550B2 (ja) 高効率酸性ガス処理剤の性能判定方法
JPH11197445A (ja) 排ガス処理剤およびその製造方法
JP2000350920A (ja) 排煙脱硫用炭酸カルシウム及びこれを用いた脱硫方法
JPH101374A (ja) 無定形炭素及び珪酸カルシウム水和物からなる多孔質複合成形体及びその製造方法
JP2014214083A (ja) ブルーサイト由来の水酸化マグネシウムスラリーの製造方法
JP3214088B2 (ja) 脱硫材の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term