JP4462419B2 - エンジン排気系の異常検出装置 - Google Patents

エンジン排気系の異常検出装置 Download PDF

Info

Publication number
JP4462419B2
JP4462419B2 JP2004361629A JP2004361629A JP4462419B2 JP 4462419 B2 JP4462419 B2 JP 4462419B2 JP 2004361629 A JP2004361629 A JP 2004361629A JP 2004361629 A JP2004361629 A JP 2004361629A JP 4462419 B2 JP4462419 B2 JP 4462419B2
Authority
JP
Japan
Prior art keywords
engine
air
sensor
abnormality
exhaust system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004361629A
Other languages
English (en)
Other versions
JP2006170014A (ja
Inventor
貴洋 阿部
浩市 寺田
浩二 宮本
広行 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004361629A priority Critical patent/JP4462419B2/ja
Publication of JP2006170014A publication Critical patent/JP2006170014A/ja
Application granted granted Critical
Publication of JP4462419B2 publication Critical patent/JP4462419B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明はエンジン排気系の異常検出装置に係わり、特に、エンジン排気系の漏れ等を検出するエンジン排気系の異常検出装置に関する。
近年、自動車等の排気ガスに関する規制は、益々強化される傾向にあり、排気ガスを浄化するために三元触媒等の装置が広く採用されている。自動車にこれらの排気ガス浄化装置が備えられていたとしても、エンジンの排気系に漏れ等の異常がある場合には、それらの浄化装置を通過しない排気ガスが大気に放出されることになるので、所期の目的を達成することはできない。そこで、エンジン排気系の漏れ等の異常を検出する異常検出装置の必要性が高くなっている。
特開2002−317678号公報には、内燃機関の排気系異常検出装置が記載されている。この異常検出装置では、排気系の異常の有無を検出する際に、理論空燃比よりもリッチな混合気を強制的にエンジンに供給し、この時のエンジン排気中の酸素濃度をセンサにより測定する。このように、混合気を強制的にリッチにしたとき、センサにより測定される酸素濃度がリッチな混合気に対応した酸素濃度とならない場合には、エンジン排気系に異常があると判定される。
特開2002−317678号公報
しかしながら、特開2002−317678号公報に記載された異常検出装置では、異常検出を行う際に混合気を強制的にリッチにする必要があるため、この空燃比のリッチ化により燃料が浪費され、また、排気ガスの清浄性が悪化するという問題がある。さらに、混合気を強制的にリッチにすると、それにより一時的にエンジンの出力トルクが増大するので、トルクショックが発生し、自動車の乗り心地が悪化するという問題がある。
本発明は、検出のためにエンジンの運転状態を変更することなく、異常を検出することができるエンジン排気系の異常検出装置を提供することを目的としている。
上述した課題を解決するために、エンジンのシリンダ内で燃焼される混合気の空燃比に対応する量を検出するように、エンジン排気系に設けられると共にジルコニア素子を備えたセンサと、このセンサを、エンジン停止後、所定時間センサのジルコニア素子を加熱するヒーターへの通電を継続させるセンサ制御手段と、エンジン停止直前に、理論空燃比の混合気によってエンジンが運転されていた場合において、エンジン停止後、センサによって検出される空燃比に対応する量が、リーン空燃比に対応する所定の閾値に到達するまでの時間が所定時間よりも短い場合に、エンジン排気系の漏れ異常と判定する異常判定手段と、この異常判定手段が異常ありと判定すると警告を発する警告手段と、を有することを特徴としている。
このように構成された本発明においては、混合気の空燃比に対応する量である酸素濃度等を検出するセンサが、センサ制御手段によって、エンジン停止後所定時間作動される。異常判定手段は、エンジン停止後、センサによって検出される空燃比に対応する量に基づいて、エンジン排気系における異常の有無を判定する。この異常判定手段が異常ありと判定した場合には、警告手段によって、例えば、エンジンを次に始動したとき、エンジン排気系に異常がある旨の警告が発せられる。
また、本発明においては、センサによって検出される空燃比に対応する量である酸素濃度等が、リーン空燃比に対応する所定の値に達するまでの時間によってエンジン排気系の異常を検出する。即ち、エンジン排気系に漏れ等の異常がある場合には、大気がエンジン排気系の出口以外からもエンジン排気系内に侵入するので、センサによって検出される値がリーン空燃比に対応する所定の値に達するまでの時間が短くなる
このように構成された本発明によれば、エンジン排気系の異常を検出するために、エンジンに供給する混合気を一時的にリッチにする等、エンジンの運転状態を変更する必要がないので、燃料が浪費されたり、トルクショックを発生させたりすることなくエンジン排気系の異常を検出することができる。
また、本発明によれば、エンジンの運転状態を変更することなくエンジン排気系の異常を検出することができる
さらに、本発明において、好ましくは、異常判定手段は、エンジン停止時にセンサによって検出された空燃比に対応する量に、所定の値を加えることによって、所定の閾値を決定する。
このように構成された本発明によれば、エンジン停止時の空燃比に対応する量に応じて閾値が設定されるので、異常の有無の判定結果に対するエンジン停止時の空燃比のバラツキによる影響を少なくすることができる。
また、本発明において、好ましくは、異常判定手段は、エンジン停止時にエンジンのシリンダ内に吸入される空気量を増加させる。
このように構成された本発明においては、エンジン停止時にシリンダ内に吸入される空気量が増加されるため、圧縮工程におけるクランクシャフトの回転に対する抵抗となる。このため、エンジン停止時にクランクシャフトの回転数は急激に低下する。
このように構成された本発明によれば、エンジン停止時にクランクシャフトの回転数が急激に低下して、シリンダ内に新たに吸入された空気が、排気系に設けられたセンサに到達する量が少なくなるので、新しい空気のセンサ測定値に対する影響が少なくなる。このため、より正確にエンジン排気系の異常の有無を判定することができる。
本発明のエンジン排気系の異常検出装置によれば、検出のためにエンジンの運転状態を変更することなく、エンジン排気系の異常を検出することができる。
次に、添付図面を参照して、本発明の実施形態を説明する。
図1は、本発明の実施形態によるエンジン排気系の異常検出装置を備えたエンジンの概略断面図である。ここでは、4気筒直噴ガソリンエンジンに本実施形態のエンジン排気系の異常検出装置を適用した場合について説明する。図1に示すように、エンジン1は、上方に燃焼室2を構成するシリンダ3と、このシリンダ3内で往復運動するピストン4と、このピストン4に連結されたコネクティングロッド6と、このコネクティングロッド6に連結されたクランクシャフト8と、を有する。さらに、エンジン1は、燃焼室2に開口した吸気ポート10と、この吸気ポート10を開閉する吸気弁12と、吸気ポート10に接続された吸気マニホールド14と、吸気マニホールド14を介して吸気ポート10から導入される空気量を調整するスロットル弁16と、導入される空気量を測定するエアフローセンサ18と、を有する。また、吸気弁12は、可変動弁機構12aによって開閉されるように構成されている。
また、エンジン1は、燃焼室2に開口した排気ポート20と、この排気ポート20を開閉する排気弁22と、排気ポート20に接続された排気マニホールド24と、この排気マニホールド24に接続された排気管26と、を有する。また、排気弁22は、可変動弁機構22aによって開閉されるように構成されている。さらに、排気マニホールド24の、各シリンダ3(1つのみ図示)からの排気が集合された部分には、センサであるリニアO2センサ28が設けられている。また、排気管26の途中には触媒コンバータ30が設けられ、この触媒コンバータ30の下流側の排気管26には、ラムダO2センサ32が設けられている。なお、排気ポート20、排気マニホールド24、排気管26、及び触媒コンバータ30は、エンジン1の排気系を構成する。
また、エンジン1は、燃焼室2内に燃料を噴射するインジェクタ34と、このインジェクタ34に燃料を送り込む高圧ポンプ36と、燃料を燃料タンク(図示せず)から高圧ポンプ36に送り込む燃料供給系38と、を有する。さらに、エンジン1は、燃焼室2内の混合気に点火する点火プラグ40と、この点火プラグ40に接続された点火回路42と、を有する。
さらに、エンジン1は、エンジン制御ユニット(ECU)44を有し、エンジン制御ユニット44は、エンジン回転数センサ46、アクセル開度センサ48、エアフローセンサ18、リニアO2センサ28、ラムダO2センサ32等の検出信号に基づいて、エンジンの作動を制御する。また、エンジン制御ユニット44は、エンジン排気系の異常を検出するために、リニアO2センサ28を制御するセンサ制御手段であるリニアO2センサ制御部50と、リニアO2センサ28の出力信号に基づいて、エンジン排気系の異常の有無を判定する異常判定手段52と、を内蔵している。さらに、エンジン1は、異常判定手段52がエンジン排気系に異常ありと判定すると、その旨を使用者に警告する警告手段54を有する。なお、エンジン1において、リニアO2センサ28、リニアO2センサ制御部50、異常判定手段52、及び警告手段54は、本発明の実施形態によるエンジン排気系の異常検出装置を構成する。
エンジン制御ユニット44は、アクセル開度センサ48によって測定されたアクセル開度に基づいて、スロットル弁16を開閉させるように構成されている。スロットル弁16の開閉により増減される吸入空気量は、エアフローセンサ18によって測定され、測定された信号はエンジン制御ユニット44に送られる。スロットル弁16を通って吸入された空気は、吸気マニホールド14の入口端に形成されたサージタンク14aを通って吸気マニホールド14に入り、吸気マニホールド14で4つに分岐されて各シリンダ3(1つのみ図示)に導入されるように構成されている。
各燃焼室2(1つのみ図示)内で燃焼された排気ガスは、各燃焼室2の排気ポート20に接続された排気マニホールド24の各入口端から排気マニホールド24に入り、排気マニホールド24内で合流されて、排気管26に導かれるように構成されている。リニアO2センサ28は、排気マニホールド24の合流部よりも下流の部分に配置されており、排気マニホールド24内を流れる排気ガス中の酸素濃度を測定するように構成されている。リニアO2センサ28は、ジルコニア素子(図示せず)をヒーター(図示せず)によって加熱して所定温度に維持し、排気ガス中の酸素濃度に応じた起電力を発生させるように構成されている。リニアO2センサ28の出力信号は、排気ガス中の酸素濃度にほぼ比例し、エンジン制御ユニット44に送られてエンジン制御及びエンジン排気系の異常検出に使用される。
排気マニホールド24を通過した排気ガスは、排気管26に入り、排気管26の途中に配置された触媒コンバータ30で浄化されて大気に放出されるように構成されている。触媒コンバータ30は、CO、HC、NOxを浄化する三元触媒を、排気浄化用触媒として備えている。
ラムダO2センサ32は、触媒コンバータ30の下流の排気管26に設けられており、触媒コンバータ30によって浄化された排気ガス中の酸素濃度を検出するように構成されている。ラムダO2センサ32の出力信号は、所定の酸素濃度を境に急激に変化するように構成されている。即ち、ラムダO2センサ32は、理論空燃比よりもリッチな混合気を燃焼させた場合に生成される排気ガスの酸素濃度では、約1ボルトの電圧を出力し、理論空燃比よりもリーンな混合気を燃焼させた場合に生成される排気ガスの酸素濃度では、約0ボルトの電圧を出力するように構成されている。従って、ラムダO2センサ32の出力信号により、シリンダ3に供給されている混合気が、理論空燃比に対してリッチであるか、リーンであるかを判別することができる。
次に、エンジン1の作用を説明する。まず、エンジン1のアイドリング状態において、運転者がアクセルペダル(図示せず)を踏むと、アクセルペダルの動きをアクセル開度センサ48が検出して、エンジン制御ユニット44に信号を送る。アクセル開度センサ48からの信号を受けると、エンジン制御ユニット44は、開度を大きくする方向にスロットル弁16を作動させる。吸気弁12の可変動弁機構22aは、吸気工程となる所定のタイミングで、吸気弁12を開放する。吸気工程では、ピストン4がシリンダ3内で下降し、吸気弁12の開放により、スロットル弁16を介して空気がシリンダ3の中に導入される。スロットル弁16を通過した空気の量は、エアフローセンサ18によって検出され、エンジン制御ユニット44に送られる。
また、吸気工程において、燃料供給系38、高圧ポンプ36、及びインジェクタ34を介して、燃料がシリンダ3内に噴射される。通常運転時においては、インジェクタ34によって噴射される燃料の量は、シリンダ3内の混合気が理論空燃比である14.7になるように、エンジン制御ユニット44によって制御される。クランクシャフト8が回転してピストン4が上昇に転じると、吸気工程から圧縮工程に移り、点火回路42が所定のタイミングで点火プラグ40に火花を発生させ、燃焼室2内の混合気を燃焼させる。
混合気が燃焼される燃焼行程では、燃焼室2内の混合気が燃焼により膨張して、ピストン4を押し下げ、コネクティングロッド6を介してクランクシャフト8に回転力を作用させる。クランクシャフト8が回転してピストン4が上昇に転じると、燃焼工程から排気工程に移り、排気工程では、所定のタイミングで排気弁の可変動弁機構22aが排気弁22を開放させる。排気弁22が開放されると、燃焼室2内での混合気の燃焼によって生成された排気ガスが、排気ポート20を介して排気マニホールド24に排出される。排気マニホールド24内を流れる排気ガス中の酸素濃度は、リニアO2センサ28によって測定され、出力信号がエンジン制御ユニット44に送られる。
シリンダ3内にリーン混合気、即ち、理論空燃比よりも燃料が少ない混合気が吸入されていた場合には、燃焼によって消費される酸素量が少ないので、リニアO2センサ28によって測定される酸素濃度は高くなる。逆に、シリンダ3内にリッチ混合気が吸入されていた場合には、リニアO2センサ28によって測定される酸素濃度は低くなる。従って、排気ガス中の酸素濃度は、エンジンのシリンダ3内で燃焼される混合気の空燃比に対応した量となる。
排気マニホールド24を通過した排気ガスは、排気管26の途中に設けられた触媒コンバータ30に入り、排気ガス中のCO、HC、NOxが除去され、浄化されて、大気に放出される。触媒コンバータ30を通過した排気ガス中の酸素濃度は、ラムダO2センサ32によって検出される。ラムダO2センサ32の検出信号は、エンジン制御ユニット44に入力される。ラムダO2センサ32の出力信号は、シリンダ3内にリッチ混合気が吸入されていた場合には、酸素濃度が低いので約1ボルトとなり、シリンダ3内にリーン混合気が吸入されていた場合には、酸素濃度が高いので約0ボルトになる。従って、ラムダO2センサ32の出力信号は、シリンダ3内に理論空燃比の混合気が吸入されていた場合を境界に、ほぼ二値的に変化する。
図2は、点火プラグ40による点火のタイミングと、リニアO2センサ28付近の排気ガスの圧力変動を示すグラフである。上記の説明では、エンジン1の単一のシリンダ3における各工程を説明したが、エンジン1は4気筒であるため、クランクシャフト8が2回転する間に、各気筒で1回ずつ合計4回の燃焼行程が所定の順序で行われる。
図2の上段のグラフは点火信号を示しており、4つのパルス波が、各気筒の点火に対応している。図2の中段のグラフは、リニアO2センサ28付近の排気ガスの圧力変動を示すグラフであり、各気筒の点火と同期して圧力が変動していることがわかる。図2に示した圧力変動のグラフは、エンジン1を低負荷、低回転で運転した場合のものであり、この場合には、排気管内の圧力が、大気圧よりも低い負圧になる瞬間があることがわかる。また、エンジン1を高負荷、高回転で運転した場合には、排気管内の圧力は全体に高くなり、負圧となる瞬間も存在しなくなる。図2の下段のグラフは、リニアO2センサ28によって測定される酸素濃度を示すグラフであり、エンジン排気系に異常がない場合には、クランクシャフト8の回転角にかかわらずほぼ一定値となる。
次に、エンジン制御ユニット44による空燃比の制御作用を説明する。エンジン回転数センサ46で測定されたエンジン回転数、アクセル開度センサ48で測定されたアクセル開度、エアフローセンサ18で測定された吸入空気量、及びリニアO2センサ28及びラムダO2センサ32で測定された酸素濃度の各信号は、エンジン制御ユニット44に入力される。エンジン制御ユニット44は、エンジン回転数、アクセル開度、吸入空気量等の情報に基づいて、負荷及び回転数等のエンジンの運転状態を判断し、各運転状態について予め決められている基準燃料噴射量を求める。次に、エンジン制御ユニット44は、リニアO2センサ28及びラムダO2センサ32で測定された酸素濃度等に基づいて、基準燃料噴射量を補正して実際の燃料噴射量を決定する。エンジン制御ユニット44は、決定された燃料噴射量に基づいてインジェクタ34に信号を送り、所定量の燃料をシリンダ3内に噴射させる。
次に、図3を参照して、燃料噴射量の補正手順を説明する。図3は、燃料噴射量の補正量を算出する手順を示すブロック図である。まず、図3のステップS1において、エンジン制御ユニット44は、エンジンの運転状態に応じて適切な目標空燃比を設定する。この目標空燃比は、通常の走行状態においては、理論空燃比である14.7に設定され、高負荷、高回転状態でエンジンが運転されている場合には、理論空燃比よりもリッチな値に設定される。また、減速時、上述した高回転状態よりも更に回転数が高い状態でエンジンが運転されている場合には燃料噴射がカットされる。次に、設定された目標空燃比は、ステップS2において、ラムダO2センサ32の出力等に基づいて補正される。この補正については後述する。ステップS3では、ステップS2で補正された目標空燃比と、リニアO2センサ28の出力信号に基づいて求められた実際の混合気の空燃比の偏差が計算される。次いで、ステップS4では、ステップS3で求めた空燃比の偏差に基づいて、基準燃料噴射量を補正すべき量(フロントF/B補正量)が計算される。
一方、ステップS5においては、ステップS4で計算された補正量が、エンジンの運転状態毎に所定回数分平均され、各運転状態毎の平均値は、ステップS6において運転状態毎に学習値としてメモリ(図示せず)に記憶される。この運転状態毎の学習値は、次に基準燃料噴射量を決定するときに加味され、次に燃料噴射量を決定する際には、学習値を加味した燃料噴射量が、その運転状態における基準燃料噴射量として採用される。即ち、学習値を加味して基準燃料噴射量を決定することにより、補正前の基準燃料噴射量によって得られる空燃比が、目標空燃比に近づくので、ステップS4において計算される補正量は減少する。
次に、ラムダO2センサ32による補正を説明する。まず、ステップS8において、ラムダO2センサ32の出力信号と、ステップS7で設定される理論空燃比である目標空燃比に対応する信号が比較される。ステップS9では、ステップS8における比較結果に基づいて、先に説明したステップS2において目標空燃比を補正する補正量(リヤF/B補正量)が計算される。即ち、ステップS8において、ラムダO2センサ32によって測定された空燃比が理論空燃比よりもリーンであると判定された場合には、従前のリヤF/B補正量を所定量増加させた量を新たなリヤF/B補正量とする。また、ステップS8において、リッチであると判定された場合には、従前のリヤF/B補正量を所定量減少させた量を新たなリヤF/B補正量とする。ステップS10においては、ステップS9で計算された補正量が、エンジンの運転状態毎に所定回数分平均され、各運転状態毎の平均値は、ステップS11において運転状態毎に学習値としてメモリ(図示せず)に記憶される。
次に、図4及び図5を参照して、本発明の実施形態によるエンジン排気系の異常検出装置の作用を説明する。図4は、本発明の実施形態によるエンジン排気系の異常検出装置の作用を示すアルゴリズムであり、図5は、その検出原理を説明するグラフである。
本発明の実施形態によるエンジン排気系の異常検出装置による異常検出は、エンジン1を停止させる際に実行される。エンジン1を搭載した車両が停車され、イグニッションスイッチ(図示せず)がOFFにされると、図4に示す異常検出アルゴリズムが起動される。なお、通常の車両では、イグニッションスイッチ(図示せず)がOFFにされると、エンジン制御ユニット44の電源もOFFにされるが、本実施形態のエンジン排気系の異常検出装置を搭載した車両では、イグニッションスイッチがOFFにされた後も、所定時間、エンジン制御ユニット44への通電が継続される。
まず、図4のステップS41において、エンジン制御ユニット44の異常判定手段52によって、エンジン排気系の異常を検出することができる条件が成立しているか否かが判断される。具体的には、(1)エンジン冷却水の水温、(2)車速、(3)燃料カット状態の運転を終えた後、所定時間が経過しているか、及び(4)燃料増量状態の運転を終えた後、所定時間が経過しているか、の条件に基づいて判断される。
エンジン冷却水の水温は、エンジン冷却水の水温計(図示せず)により測定され、エンジン制御ユニット44に入力される。エンジン冷却水の温度が所定温度以下の場合には、エンジン排気系の異常検出を行う条件を満たしていないと判断される。本実施形態においては、エンジン冷却水の温度が80゜C以下の場合には、エンジン排気系の異常検出を行う条件を満たしていないと判断される。また、車速は、車両に搭載された車速計(図示せず)によって測定され、車速がゼロ、即ち、停車していない場合には、エンジン排気系の異常検出を行う条件を満たしていないと判断される。
また、燃料カット状態の運転を終えた後、又は燃料増量状態の運転を終えた後、所定時間が経過しているかについては、エンジン制御ユニット44のメモリ(図示せず)に記憶されている、エンジン制御の履歴に基づいて判断される。本実施形態においては、燃料カット状態の運転を終えた後、又は燃料増量状態の運転を終えた後、5秒以上経過していない場合には、エンジン排気系の異常検出を行う条件を満たしていないと判断される。この条件は、エンジン停止の直前において、理論空燃比の混合気によってエンジンが運転されていた場合に、エンジン排気系の異常検出が行われるようにするために設定されている。
以上の条件の何れかが満足されていない場合には、図4のアルゴリズムの処理を終了し、エンジン制御ユニット44への通電がOFFにされる。
ステップS41の条件が全て満足されている場合には、ステップS42の処理に移行する。ステップS42では、エンジン制御ユニット44の異常判定手段52は、スロットル弁16に信号を送り、スロットル弁16を全開にする。イグニッションスイッチがOFFにされた後スロットル弁16が全開にされると、惰力によって回転しているエンジン1の吸気ポート10から多量の空気が吸入されるので、吸入工程の後、圧縮工程に移行したピストン4には大きな空気圧が作用し、クランクシャフト8の回転が抑制される。
次に、ステップS43では、エンジン制御ユニット44のリニアO2センサ制御部50によって、リニアO2センサ28の作動が継続される(エンジン1の運転中もリニアO2センサ28は作動されている)。具体的には、リニアO2センサ28を構成するジルコニア素子(図示せず)を加熱するヒーター(図示せず)への通電を継続し、イグニッションスイッチOFF後もリニアO2センサ28によって酸素濃度が測定できるようにする。
イグニッションスイッチOFF後、惰力により回転されるクランクシャフト8の回転数は、急速に低下する。クランクシャフト8の回転数は、エンジン回転数センサ46によって測定され、エンジン制御ユニット44に入力される。本実施形態において、エンジン制御ユニット44の異常判定手段52は、回転数が300rpm以下になると、エンジン停止と判断する。ステップS44では、エンジン1停止と判断された時点におけるリニアO2センサ28の出力値をメモリ(図示せず)に記憶する。エンジン停止直後にリニアO2センサ28によって測定される初期酸素濃度は、ステップS41の条件が満たされているため、理論空燃比の混合気が燃焼されている場合の酸素濃度にほぼ一致する。さらに、異常判定手段52は、この初期酸素濃度よりも濃度が所定量高い酸素濃度を閾値として設定する。
図5に示すように、エンジン停止後、リニアO2センサ28によって測定される酸素濃度は、大気中の酸素が拡散して排気管26内に次第に侵入するので、時間の経過と共に高くなる。従って、リニアO2センサ28によって測定される酸素濃度は、理論空燃比よりもリーンな混合気を燃焼させた場合と同様に変化する。ステップS45では、異常判定手段52は、リニアO2センサ28によって時々刻々測定される酸素濃度を、ステップS44で設定した酸素濃度の閾値と比較する。本実施形態においては、異常判定手段52は、酸素濃度を4msec毎に閾値と比較している。また、設定される酸素濃度の閾値は、エンジン停止時に測定された初期酸素濃度が、理論空燃比である空燃比14.7の混合気が燃焼された場合の酸素濃度に等しい場合には、空燃比約18の混合気を燃焼させた排気ガスに対応した酸素濃度に設定される。異常判定手段52は、リニアO2センサ28によって時々刻々測定された酸素濃度が閾値に到達するまでの時間を測定する。さらに、酸素濃度が閾値に到達すると、異常判定手段52はリニアO2センサ制御部50に信号を送り、リニアO2センサ28への通電を終了させる。
エンジン排気系に異常がない場合には、大気に開放されている排気管26の出口のみから空気中の酸素が拡散することによって酸素濃度が上昇する。この場合には、リニアO2センサ28によって測定される酸素濃度が、酸素濃度の閾値に到達するまでの時間は約1分である。これに対して、エンジン排気系に異常がある場合には、排気管26の出口以外から侵入した酸素によっても酸素濃度が上昇するので、酸素濃度は速く上昇し、酸素濃度は、10秒程度で閾値に到達する。本実施形態のエンジン排気系の異常検出装置では、この差を利用してエンジン排気系の異常を検出している。
ステップS46では、異常判定手段52は、ステップS45で測定された酸素濃度が閾値に到達するまでの経過時間と、所定の経過時間閾値とを比較する。経過時間が所定の経過時間閾値よりも短い場合にはステップS47へ進み、長い場合にはステップS48へ進む。本実施形態においては、経過時間閾値は、20秒に設定されている。この経過時間閾値は、約20〜30秒に設定するのが良く、また、適用するエンジンの排気系の構造に合わせて適宜変更することができる。
ステップS47において、異常判定手段52は、エンジン排気系に異常ありと判定し、その旨を示す故障情報をエンジン制御ユニット44のメモリ(図示せず)に記憶させ、1回の異常検出処理を終了する。一方、ステップS48においては、異常判定手段52は、エンジン排気系に異常なしと判定し、正常情報をメモリ(図示せず)に記憶させ、1回の異常検出処理を終了する。メモリ(図示せず)に故障情報が記憶されている場合には、警告手段54によって、運転者がイグニッションスイッチを次回ONにしたとき、エンジン排気系に異常があることが運転席の表示パネル(図示せず)に表示され、エンジン排気系の異常が運転者に報知される。
本発明の実施形態のエンジン排気系の異常検出装置によれば、検出のためにエンジンの運転状態を変更することなく、エアの吸い込み、排気漏れ等のエンジン排気系の異常を検出することができる。
また、上述した実施形態では、エンジン停止時の酸素濃度を測定し、この酸素濃度に基づいて酸素濃度の閾値を設定しているので、エンジン停止直前の混合気の空燃比により、異常検出の結果が影響を受けることがない。
さらに、上述した実施形態では、エンジン停止時にスロットル弁を開き、イグニッションスイッチOFF後のクランクシャフトの回転を抑制しているので、イグニッションスイッチOFF後に導入される新しい空気によるリニアO2センサの測定値への影響を抑制することができる。
以上、本発明の好ましい実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態では、本発明のエンジン排気系の異常検出装置をガソリンエンジンに適用していたが、本発明は、ディーゼルエンジン等、種々のエンジンに適用することができる。
また、上述した実施形態では、酸素濃度が所定の閾値に到達するまでの経過時間により、異常の有無を判定していたが、変形例として、酸素濃度等の空燃比に対応する量が、リーン空燃比に対応する値に変化する際の所定時間当たりの変化量、例えば、図5の酸素濃度のグラフの傾きに基づいて異常の有無を判定することもできる。
さらに、上述した実施形態では、酸素濃度が所定の閾値に到達するまでの経過時間を測定し、その経過時間を経過時間閾値と比較することにより、異常の有無を判定していたが、変形例として、酸素濃度等の空燃比に対応する量が、所定の経過時間閾値内で閾値に到達したか否かに基づいて異常の有無を判定することもできる。この構成によれば、イグニッションスイッチOFFの後、所定の経過時間内に必ず酸素濃度等の測定を終了させ、リニアO2センサ等の作動を停止させることができる。
また、上述した実施形態では、エンジン停止時の酸素濃度に基づいて、酸素濃度の閾値を設定していたが、酸素濃度の閾値は、一定の値に予め設定しておいても良い。エンジン停止時の酸素濃度は、理論空燃比の混合気に対応した酸素濃度に概ね等しいので、この構成によってもエンジン排気系の異常の有無を検出することができる。
さらに、上述した実施形態では、クランクシャフトの回転数が300rpm以下になった瞬間をエンジン停止と判断し、この時点の酸素濃度を基準に異常の有無を判定しているが、イグニッションスイッチOFF時等、他の時点を基準に異常の有無を判定しても良い。なお、本明細書において、エンジン停止とは、イグニッションスイッチをOFFにした時点近傍を意味するものとする。
本発明の実施形態によるエンジン排気系の異常検出装置を備えたエンジンの概略断面図である。 点火プラグによる点火のタイミングと、リニアO2センサ付近の排気ガスの圧力変動を示すグラフである。 燃料噴射量の補正量を算出する手順を示すブロック図である。 本発明の実施形態によるエンジン排気系の異常検出装置の作用を示すアルゴリズムである。 本発明の実施形態によるエンジン排気系の異常検出装置の検出原理を説明するグラフである。
符号の説明
1 エンジン
2 燃焼室
3 シリンダ
4 ピストン
6 コネクティングロッド
8 クランクシャフト
10 吸気ポート
12 吸気弁
12a 可変動弁機構
14 吸気マニホールド
16 スロットル弁
18 エアフローセンサ
20 排気ポート
22 排気弁
22a 可変動弁機構
24 排気マニホールド
26 排気管
28 リニアO2センサ
30 触媒コンバータ
32 ラムダO2センサ
34 インジェクタ
36 高圧ポンプ
38 燃料供給系
40 点火プラグ
42 点火回路
44 エンジン制御ユニット(ECU)
46 エンジン回転数センサ
48 アクセル開度センサ
50 リニアO2センサ制御部
52 異常判定手段
54 警告手段

Claims (3)

  1. エンジンのシリンダ内で燃焼される混合気の空燃比に対応する量を検出するように、エンジン排気系に設けられると共にジルコニア素子を備えたセンサと、
    このセンサを、エンジン停止後、所定時間上記センサのジルコニア素子を加熱するヒーターへの通電を継続させるセンサ制御手段と、
    エンジン停止直前に、理論空燃比の混合気によってエンジンが運転されていた場合において、エンジン停止後、上記センサによって検出される空燃比に対応する量が、リーン空燃比に対応する所定の閾値に到達するまでの時間が所定時間よりも短い場合に、上記エンジン排気系の漏れ異常と判定する異常判定手段と、
    この異常判定手段が異常ありと判定すると警告を発する警告手段と、
    を有することを特徴とするエンジン排気系の異常検出装置。
  2. 上記異常判定手段は、エンジン停止時に上記センサによって検出された空燃比に対応する量に、所定の値を加えることによって、上記所定の閾値を決定する請求項1記載のエンジン排気系の異常検出装置。
  3. 上記異常判定手段は、エンジン停止時に上記エンジンのシリンダ内に吸入される空気量を増加させる請求項1又は2に記載のエンジン排気系の異常検出装置。
JP2004361629A 2004-12-14 2004-12-14 エンジン排気系の異常検出装置 Expired - Fee Related JP4462419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361629A JP4462419B2 (ja) 2004-12-14 2004-12-14 エンジン排気系の異常検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361629A JP4462419B2 (ja) 2004-12-14 2004-12-14 エンジン排気系の異常検出装置

Publications (2)

Publication Number Publication Date
JP2006170014A JP2006170014A (ja) 2006-06-29
JP4462419B2 true JP4462419B2 (ja) 2010-05-12

Family

ID=36671044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361629A Expired - Fee Related JP4462419B2 (ja) 2004-12-14 2004-12-14 エンジン排気系の異常検出装置

Country Status (1)

Country Link
JP (1) JP4462419B2 (ja)

Also Published As

Publication number Publication date
JP2006170014A (ja) 2006-06-29

Similar Documents

Publication Publication Date Title
US7681565B2 (en) Air/fuel ratio control system for internal combustion engine
JP4877610B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US20060059894A1 (en) Air-fuel ratio control system and method
JP5176911B2 (ja) セタン価判定装置
US7885757B2 (en) Degradation determination apparatus and degradation determination system for oxygen concentration sensor
US20070271905A1 (en) Exhaust purification catalyst warm-up system of an internal combustion engine and method of the same
JP4815407B2 (ja) 内燃機関の運転制御装置
US6684869B2 (en) System and method for detecting an air leak in an engine
JP2016223406A (ja) 触媒診断装置
US6568246B1 (en) System and method for detecting an air leak in an exhaust system coupled to an engine
US6729305B2 (en) Fuel injection amount control apparatus and method for internal combustion engine
JP2002047983A (ja) 内燃機関の高圧燃料供給システムの異常診断装置
JP4462419B2 (ja) エンジン排気系の異常検出装置
US8065910B2 (en) Abnormality determination apparatus and method for oxygen sensor
JP2006233781A (ja) 内燃機関の触媒診断装置
US9528460B2 (en) Fuel injection apparatus
JP4269593B2 (ja) 内燃機関の2次空気供給制御装置
JP2006170016A (ja) エンジン排気系の異常検出装置
JP4872793B2 (ja) 内燃機関の制御装置
JP2006170015A (ja) エンジン排気系の異常検出装置
JPH0821282A (ja) 空燃比センサの異常検出装置
US20040255575A1 (en) Failure detecting apparatus for exhaust secondary air supply system
JP2008014248A (ja) 内燃機関の燃料噴射制御装置
JP4232373B2 (ja) エンジンの排気浄化装置
JPH10184436A (ja) 内燃機関の燃料性状検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees