JP4455275B2 - 多重インバータのモータ制御装置 - Google Patents

多重インバータのモータ制御装置 Download PDF

Info

Publication number
JP4455275B2
JP4455275B2 JP2004312296A JP2004312296A JP4455275B2 JP 4455275 B2 JP4455275 B2 JP 4455275B2 JP 2004312296 A JP2004312296 A JP 2004312296A JP 2004312296 A JP2004312296 A JP 2004312296A JP 4455275 B2 JP4455275 B2 JP 4455275B2
Authority
JP
Japan
Prior art keywords
motor
inverter
loss
bearing
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312296A
Other languages
English (en)
Other versions
JP2006129575A (ja
Inventor
順二 井上
圭輔 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004312296A priority Critical patent/JP4455275B2/ja
Publication of JP2006129575A publication Critical patent/JP2006129575A/ja
Application granted granted Critical
Publication of JP4455275B2 publication Critical patent/JP4455275B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/07Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
    • H02P2207/073Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings wherein only one converter is used, the other windings being supplied without converter, e.g. doubly-fed induction machines

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

この発明は、複数のインバータにより単一の三相ブラシレスモータを駆動する多重インバータのモータ制御装置に関するものである。
従来から、三相ブラシレスモータ等のモータを駆動制御するモータ制御装置が知られている。このモータ制御装置は、PWM制御などモータを駆動制御するためのインバータ回路を備え、このインバータ回路のスイッチング素子のON・OFF動作により駆動電流のPWMデューティを制御するものである。このようなモータ制御装置では、1つのモータに同一の三相電機子巻線を2組設け、これらに三相電機子巻線に対応したそれぞれ同一のインバータ回路を個別に接続し、これらの三相電機子巻線に通電する駆動電流を各インバータ回路で個々に制御するものがある。そして、これら2つのインバータ回路のPWMデューティ、又は、平均出力電流の絶対値が小さいいわゆる小負荷運転時においては、1つのインバータ回路で1組の三相電機子巻線に通電し、インバータ回路でのスイッチング損失を低減するようにしている(例えば、特許文献1参照)。
特開2003−174790号公報
しかしながら、三相ブラシレスタイプのモータは回転子が転がり軸受けによって軸支されており、低回転時にはこの転がり軸受けの軸受け損失は低く良好なものとなるが、モータ回転数が上昇するに伴い前記転がり軸受けによる軸受け損失が増大するという問題がある。また、磁気軸受けを用いて高回転時における軸受け損失を低くすると、低回転時の軸受け損失が増大してしまうという問題がある。
具体的には、図10〜図12において各々横軸を回転数(rpm)とし、図10は縦軸を軸受け損失、図11は縦軸をインバータ損失、さらに、図12は縦軸をモータ(MOT)損失として示すように、前記転がり軸受けのみを用いた場合には、モータ回転数が上昇するのに伴って、転がり軸受けの軸受け損失が2次曲線を描いて上昇し、この軸受け損失の上昇に伴い、インバータ損失も上昇してモータ全体の損失も上昇する。
一方、磁気軸受けのみを用いた場合は、図13〜図15において各々横軸を回転数(rpm)とし、図13は縦軸を軸受け損失、図14は縦軸をインバータ損失、さらに、図15は縦軸をモータ損失として示すように、高回転域での軸受け損失が減少し、これに伴って、モータ全体の損失も減少するが、低回転域での損失が前述した転がり軸受けのみを用いた場合よりも増加してしまうのである。
そこで、この発明は、駆動可能なモータ回転数の全域に渡って効率よくモータを駆動することができる多重インバータのモータ制御装置を提供するものである。
上記の課題を解決するために、請求項1に記載した発明は、複数のインバータ回路(例えば、実施の形態における第一インバータ3、第二インバータ4)により単一のモータ(例えば、実施の形態におけるモータM)を駆動する多重インバータのモータ制御装置において、前記モータは機械的軸受け(例えば、実施の形態における転がり軸受け18)と磁気軸受けとにより回転子(例えば、実施の形態における回転子14)が支持可能であると共に、モータ回転数が所定値以下の場合には機械的軸受けによりモータの回転子を支持し、モータ回転数が前記所定値を超えて、且つ、前記複数のインバータ回路のうち一のインバータ回路の上限トルクよりも前記モータの要求トルクが低い場合には、前記一のインバータ回路の制御により前記モータの駆動および回生を行うと共に、前記一のインバータ回路以外の他のインバータ回路の制御による磁気軸受けによって前記回転子を支持し、モータ回転数が前記所定値を超えて、且つ、前記一のインバータ回路の上限トルクよりも前記要求トルクが高い場合には、前記一のインバータ回路の制御により前記モータの駆動および回生を行うと共に、前記他のインバータ回路の制御による前記磁気軸受けによって前記回転子を支持しつつ前記他のインバータ回路の制御によって前記モータの駆動および回生を行うことを特徴とする。
このように構成することで、低回転領域で機械的軸受けを用い、高回転領域でインバータ制御により磁気軸受けを用いることができる。
請求項2に記載した発明は、前記所定値は、機械的軸受けと磁気軸受けの損失を比較することで決められることを特徴とする。
このように構成することで、駆動可能なモータ回転数の全領域に渡って機械的軸受けと磁気軸受けとの内、損失が低い方の軸受けを常に選択してモータの回転子を支持することができる。
請求項1に記載した発明によれば、低回転領域で機械的軸受けを用い、高回転領域でインバータ制御により磁気軸受けを用いることができるため、モータの回転数に対して最適な軸受けを用いてモータの運転効率を向上させることができる効果がある。
請求項2に記載した発明は、請求項1の効果に加え、モータの全回転領域に渡って機械的軸受けと磁気軸受けとの内、常に損失が低い方の軸受けを選択してモータの回転子を支持することができるため、モータ全体の損失を低減してモータの運転効率をさらに向上させることができる効果がある。
次に、この発明の実施の形態を図面に基づいて説明する。
図1はモータ制御ユニットのシステム構成を示したものである。同図において、1は三相ブラシレスタイプのモータMをPWM(Pulse Width Modulation)制御によって制御するモータ制御ユニットを示している。このモータ制御ユニット1は、直流電源であるバッテリ2から電力が供給される第一インバータ(インバータ回路)3と第二インバータ(インバータ回路)4とを備え、モータMに設けられた2組の三相電機子巻線5に駆動電流を通電するものである。前記第一インバータ3と第二インバータ4とは、前記バッテリ2に対してそれぞれ並列に接続されており、平滑コンデンサ6を共有している。この平滑コンデンサ6によって前記バッテリ2の電圧が平滑化され、このバッテリ電圧に重畳するノイズが除去されることとなる。
一方、前記モータMは2組の三相電機子巻線5であるU,V,W相巻線5U,5V,5WとR,S,T相巻線5R,5S,5Wとで構成されている。前記U,V,W相巻線5U,5V,5WとR,S,T相巻線5R,5S,5Wとは、各相がそれぞれ3つの巻線6を並列接続したものである。前記各U,V,W相巻線5U,5V,5WとR,S,T相巻線5R,5S,5Wとには、前者の駆動電流を制御する前記第一インバータ3と、後者の駆動電流を制御する前記第二インバータ4とがそれぞれ接続されている。
前記第一インバータ3と第二インバータ4とは前記U,V,W相巻線5U,5V,5W、R,S,T相巻線5R,5S,5Wの各相に対応した3組のアーム7U,7V,7Wとアーム7R,7S,7Tとを各々有しており、各アーム7U,7V,7W,7R,7S,7Tは、前記バッテリ2のプラス端子に接続された高電位側IGBT(Insulated Gate Bipolar Transistor)8と、バッテリ2のマイナス端子に接続された低電位側IGBT9と、これら高電位側IGBT8、低電位側IGBT9にそれぞれ接続されたダイオード10とで構成されている。そして、前記高電位側IGBT8と低電位側IGBT9とはバッテリ2に対して直列に接続されている。ここで、前記ダイオード10は高電位側IGBT8と低電位側IGBT9とのそれぞれのコレクタ−エミッタ間にエミッタからコレクタに向けて順方向となるように接続されている。
さらに、前記第一インバータ3と第二インバータ4とには、ゲート制御回路11が接続されている。このゲート制御回路11は、前記高電位側IGBT8と低電位側IGBT9とに向けてゲート信号を出力しこれらのPWMデューティを制御するものである。前記ゲート制御回路11には駆動指令回路(ECU)12が接続され、この駆動指令回路12からの制御信号に基づいて前記第一インバータ3と第二インバータ4とを制御している。
前記駆動指令回路12は、モータトルクセンサS1、モータ回転数センサS2又は他のセンサ類からの検出信号に基づいて後述する図3に示す駆動・回生制御領域マップを検索して各第一インバータ3と第二インバータ4とのPWMデューティを求めている。前記第二インバータ4は、モータMの駆動、回生制御に加え、磁気回路で後述する回転子14を支持するいわゆる磁気軸受けとしてモータMを機能させるための制御を行うものであり、前記ゲート制御回路11から出力されるゲート信号に基づいて駆動、回生電流と磁気軸受け用の電流とをR,S,T相巻線5R,5S,5Tに対して適宜通電するようになっている。尚、前記駆動指令回路12とゲート制御回路11とを一体的に構成しても良い。
図2はモータMを模式的に示したものである。同図に示すように、前記モータMは、リング状の固定子13とこの固定子13の内側に回転可能に設けられた回転子14とで構成されている。前記固定子13にはこの内周面から径方向内側に向けて突出して形成された18個のティース15が等間隔に配置されている。そして、これらのティース15にはそれぞれU相巻線16U、V相巻線16V、W相巻線16W、R相巻線16R、S相巻線16S、T相巻線16Tが順次巻回され、前記U相巻線16UとR相巻線16Rとの機械角が60度となるように配置されている。そして、図3に示すように、前記固定子13の内側に配置された回転子14の側面には水平方向に延出するシャフト17が設けられ、このシャフト17の端部が転がり軸受け(機械的軸受け)18に回転自在に支持されている。
図4は縦軸をトルク(Nm)、横軸を回転数(rpm)とした場合のモータMの駆動制御領域19と回生制御領域20との第一、第二インバータ3,4の制御領域を示したマップである。前記駆動制御領域19は、モータMの回転数が低いときに最大駆動トルクとなり、この最大駆動トルクがバッテリ電圧と各相巻線の誘起電圧が等しくなる回転数aまで一定の値になる。そして、さらに回転数を上昇させると最大駆動トルクは徐々に傾斜が緩くなる曲線を描いて低下し、最大回転数cでトルクが0となる。一方、前記回生制御領域20は、前記駆動制御領域19と上下対象に形成されており、低回転域で最大回生トルクとなる。そして、この最大回生トルクは回転数0から回転数aまで一定の値となり、回転数aよりもさらに回転数を上昇させるとこの最大回生トルクが徐々に減少して最大回転数cに至り0となる。
ところで、前記駆動制御領域19内と回生制御領域20内には、前述した従来の図10と図13の転がり軸受け18の損失と磁気軸受けの損失とが等しくなる回転数bよりも低回転領域(図4中、(1)で示す)では転がり軸受け18によって前記回転子14を軸支するように設定されている。このとき、前記第一インバータ3と第二インバータ4とでは前記モータMの駆動、回生を行うようになっている。一方、前記回転数bよりも高回転領域(図4中、(2)と(3)で示す)では磁気軸受けを用いて前記回転子14を軸支するように設定されており、この時、第二インバータ4では磁気軸受けの制御を行っている。
さらに、前記回転数bよりも高回転領域で、モータMの要求トルクが低い領域(図4中、(2)で示す)ではモータMの駆動、回生を第一インバータ3で行い、磁気軸受けの駆動制御を第二インバータ4で行うようになっている。そして、第一インバータ3で駆動できる上限トルク(図4中、一点鎖線で示す)よりもトルクが大きい領域(図4中、(3)で示す)では、第一インバータ3でモータMの駆動、回生を行い、第二インバータ4で磁気軸受け駆動制御とモータMの駆動・回生とが同時に行われるようになっている。
図5は縦軸を軸受け損失、横軸を回転数(rpm)とした場合の回転数に対するモータMの軸受け損失を示したものである。前述した回転数bよりも低回転数領域では転がり軸受け18による損失が生じている。一方、前記回転数bよりも高回転数領域では磁気軸受けによる損失が生じており、その分だけ前記転がり軸受け18の損失特性よりも特性が緩やかな傾斜となっている。
また、図6は縦軸をインバータ損失、横軸を回転数(rpm)とした場合の回転数に対するインバータ損失の変化を示したものである。回転数bよりも低回転数領域では転がり軸受け18の損失に対応して第一インバータ3のインバータ損失が生じている。そして、前記回転数bよりも高回転領域では、まず回転数bで転がり軸受け18に回転子14による荷重が掛からなくなりインバータ損失が急に減少し、ここから回転数が上昇しても軸受け損失は一定の値となる。
そして、図7は縦軸をモータM全体の損失であるモータ損失、横軸を回転数(rpm)とした場合の回転数に対するモータ損失の変化を示している。前記モータ損失は回転数bよりも低回転領域で磁気軸受けを使用したときよりも損失が低減し、高回転領域では転がり軸受けを使用したときよりも損失が低減している。
図8は、縦軸をトルク(Nm)、横軸を回転数(rpm)とした場合の、転がり軸受け18と磁気軸受けとを組み合わせて使用した場合のモータ損失マップを示している。例えば、図8と同じ縦軸と横軸を有し、転がり軸受け18のみを使用した場合のモータ損失マップを示す図9と比較すると、図8に示す回転数bよりも低回転領域では、転がり軸受け18を使用した場合と同様に、モータ損失が低くなる領域が広範囲に配置されている。一方、回転数bよりも高回転領域では、転がり軸受けを用いた場合よりもモータ損失の低い領域が広範囲に配置されている。
したがって、上述の実施の形態によれば、モータMの低回転領域で転がり軸受け18を使用し、一方、高回転領域で第二インバータ4を制御することによって磁気軸受けを使用することができるため、前記モータMの回転数に対して最適な軸受けを使用してモータMの運転効率を向上させることができる。
そして、モータMの全回転領域に渡って転がり軸受けと磁気軸受けとの内、常に損失が低い方の軸受けを選択して回転子14を支持することができるため、モータM全体の損失を低減してモータMの運転効率をさらに向上させることができる。
尚、上記実施の形態ではインバータと三相電機子巻線とを2組設けてある場合について説明したが、3組以上であってもよく、この場合、磁気軸受けを2組以上のインバータで駆動制御してもよい。また、本願発明のモータ制御装置は様々な分野に用いられるモータに適用可能であるが、とりわけ、モータ回転数が変動する頻度の高い、ハイブリッド車や電気自動車等の車両に用いた場合には、低損失の回転域が広がることで商品性を向上できると共に、モータの運転効率が向上することで航続距離を伸ばすことができる点で有利となる。
本発明の実施の形態におけるモータシステムの回路図である。 本発明の実施の形態におけるモータの概略説明図である。 本発明の実施の形態における図2のA−A線に沿う断面図である。 本発明の実施の形態における制御領域を示すグラフである。 本発明の実施の形態における軸受け損失を示すグラフである。 本発明の実施の形態におけるインバータ損失を示すグラフである。 本発明の実施の形態におけるモータ損失を示すグラフである。 本発明の実施の形態における損失マップである。 本発明の実施の形態におけるインバータ損失を示すグラフである。 従来の機械的軸受けを用いた場合の図5に相当する軸受け損失を示すグラフである。 従来の機械的軸受けを用いた場合の図6に相当するインバータ損失を示すグラフである。 従来の機械的軸受けを用いた場合の図7に相当するモータ損失を示すグラフである。 従来の磁気軸受けを用いた場合の図5に相当する軸受け損失を示すグラフである。 従来の磁気軸受けを用いた場合の図6に相当するインバータ損失を示すグラフである。 従来の磁気軸受けを用いた場合の図7に相当するモータ損失を示すグラフである。
符号の説明
3 第一インバータ(インバータ回路)
4 第二インバータ(インバータ回路)
18 転がり軸受け(機械的軸受け)
14 回転子

Claims (2)

  1. 複数のインバータ回路により単一のモータを駆動する多重インバータのモータ制御装置において、
    前記モータは機械的軸受けと磁気軸受けとにより回転子が支持可能であると共に、モータ回転数が所定値以下の場合には機械的軸受けによりモータの回転子を支持し、
    モータ回転数が前記所定値を超えて、且つ、前記複数のインバータのうち一のインバータ回路の上限トルクよりも前記モータの要求トルクが低い場合には、前記一のインバータ回路の制御により前記モータの駆動および回生を行うと共に、前記一のインバータ回路以外の他のインバータ回路の制御による磁気軸受けによって前記回転子を支持し、
    モータ回転数が前記所定値を超えて、且つ、前記一のインバータ回路の上限トルクよりも前記要求トルクが高い場合には、前記一のインバータ回路の制御により前記モータの駆動および回生を行うと共に、前記他のインバータ回路の制御による前記磁気軸受けによって前記回転子を支持しつつ前記他のインバータ回路の制御によって前記モータの駆動および回生を行うことを特徴とする多重インバータのモータ制御装置。
  2. 前記所定値は、機械的軸受けと磁気軸受けの損失を比較することで決められることを特徴とする請求項1に記載の多重インバータのモータ制御装置。
JP2004312296A 2004-10-27 2004-10-27 多重インバータのモータ制御装置 Expired - Fee Related JP4455275B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312296A JP4455275B2 (ja) 2004-10-27 2004-10-27 多重インバータのモータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312296A JP4455275B2 (ja) 2004-10-27 2004-10-27 多重インバータのモータ制御装置

Publications (2)

Publication Number Publication Date
JP2006129575A JP2006129575A (ja) 2006-05-18
JP4455275B2 true JP4455275B2 (ja) 2010-04-21

Family

ID=36723658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312296A Expired - Fee Related JP4455275B2 (ja) 2004-10-27 2004-10-27 多重インバータのモータ制御装置

Country Status (1)

Country Link
JP (1) JP4455275B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231153A1 (ko) * 2021-04-28 2022-11-03 주식회사 코베리 전동기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231153A1 (ko) * 2021-04-28 2022-11-03 주식회사 코베리 전동기

Also Published As

Publication number Publication date
JP2006129575A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4605274B2 (ja) 車両
JP4396644B2 (ja) 内燃機関の始動制御装置
JP4353304B2 (ja) モータ駆動制御装置
JP2007159353A (ja) 界磁巻線式同期発電電動機
JP4561865B2 (ja) 同期電動機の駆動装置
JP2005051898A (ja) 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP5412750B2 (ja) 動力装置
JP4062260B2 (ja) 2相変調モータ制御装置
JP2017121161A (ja) スイッチトリラクタンスモータの制御装置
JP3934130B2 (ja) ハイブリッド車両のモータ制御装置
JP2006304441A (ja) 同期モータ制御装置
JP4455275B2 (ja) 多重インバータのモータ制御装置
JP2006129668A (ja) モータ制御装置
US11855568B2 (en) Motor driving device and method for controlling same
JP3931734B2 (ja) 電気負荷駆動装置
JP6015346B2 (ja) 3相交流モータの制御装置及び制御方法
JP4406244B2 (ja) 負荷駆動装置およびそれにおける制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP5673068B2 (ja) 車両駆動装置
JP5115202B2 (ja) モータ駆動装置
JP2018157651A (ja) インバータ制御装置及びインバータ制御方法
CN109831140B (zh) 开关磁阻马达的控制装置
JP5531238B2 (ja) モータ駆動用電源装置
JP2020162202A (ja) 車両駆動装置
KR100598809B1 (ko) 환경 차량의 전동기 제어방법
JP2015095978A (ja) 車両の電磁音制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees