JP4454352B2 - 全熱交換器 - Google Patents

全熱交換器 Download PDF

Info

Publication number
JP4454352B2
JP4454352B2 JP2004088451A JP2004088451A JP4454352B2 JP 4454352 B2 JP4454352 B2 JP 4454352B2 JP 2004088451 A JP2004088451 A JP 2004088451A JP 2004088451 A JP2004088451 A JP 2004088451A JP 4454352 B2 JP4454352 B2 JP 4454352B2
Authority
JP
Japan
Prior art keywords
total heat
heat exchange
exchange membrane
heat exchanger
humidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004088451A
Other languages
English (en)
Other versions
JP2005276627A (ja
JP2005276627A5 (ja
Inventor
隆 川鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004088451A priority Critical patent/JP4454352B2/ja
Publication of JP2005276627A publication Critical patent/JP2005276627A/ja
Publication of JP2005276627A5 publication Critical patent/JP2005276627A5/ja
Application granted granted Critical
Publication of JP4454352B2 publication Critical patent/JP4454352B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、全熱交換器に関する。より具体的には、本発明は燃料電池から排出されるガスで供給されるガスを加湿する全熱交換器に関する。
固体高分子型燃料電池システムでは、固体高分子膜を良好に湿潤させるために、高露点ガスを供給する必要がある。このため、排ガス中の水分と熱を全熱交換器で回収する燃料電池システムが開発されている。
燃料電池システムに適用可能な全熱交換器としては、加湿側のガスと被加湿側のガスとの間に、全熱交換膜を介在させる形態が知られている(たとえば、特許文献1参照)。
特開平6−194093号公報
従来の全熱交換器は、加湿側のガスが全熱交換膜に接触する面積は、被加湿側のガスが全熱交換膜に接触する面積と等しくなっている。一般に、全熱交換器に供給される被加湿側のガスは加圧された状態を保っているが、排気系はその一端が大気に連通しており、加湿側のガスは加圧状態を保っていないため、被加湿側のガスは加湿側のガスよりも高圧となる。
このため、被加湿側のガスと加湿側のガスとの差圧により全熱交換膜が加湿側のガスの方へ押されて変形し、加湿ガス中の水分回収に支障を来す可能性があった。
また、加湿ガス中の水分回収については改良の余地があった。
本発明はこうした課題に鑑みてなされたものであり、その目的は、燃料電池から排出されるガスで燃料電池に供給されるガスをより効果的に加湿することのできる全熱交換器の提供にある。
本発明のある態様は、燃料電池のアノード又はカソードに供給される供給ガスと、前記供給ガスが前記燃料電池で消費された後、前記燃料電池から排出される排出ガスとの間に全熱交換膜を介在させて前記供給ガスを加湿する全熱交換器であって、前記排出ガスが前記全熱交換膜と接触する領域の接触面積の方が前記供給ガスが前記全熱交換膜と接触する領域の接触面積よりも小さいことを特徴とする。
また、本発明の他の態様、燃料電池のアノード又はカソードに供給される供給ガスと、前記供給ガスが前記燃料電池で消費された後、前記燃料電池から排出される排出ガスとの間に全熱交換膜を介在させて前記供給ガスを加湿する全熱交換器であって、前記排出ガスが前記全熱交換膜と接触する領域の容積が、前記供給ガスが前記全熱交換膜と接触する領域の容積より小さいことを特徴とする。
上記いずれの態様によっても、全熱交換器内の排出ガスの流速に対する全熱交換器内の供給ガスの流速の相対速度を遅くすることができ、供給ガスが全熱交換膜と接触する時間をより長くすることができる。これにより、排出ガスから供給ガスへの水分の回収をより効率的に行うことができる。
上記構成において、供給ガスが全熱交換膜と接触する領域の接触面積を排出ガスが全熱交換膜と接触する領域の接触面積よりも大きくするために、前記全熱交換膜の一方の面と接触する前記排出ガスが流れる加湿流路を形成する複数の加湿側リブと、前記全熱交換膜の他方の面と接触する前記供給ガスが流れる被加湿流路を形成する複数の被加湿側リブと、を有し、前記複数の加湿側リブの前記全熱交換膜上の総面積が、前記複数の被加湿側リブの前記全熱交換膜上の総面積よりも大きくてもよい。この場合、前記加湿側リブの数が前記被加湿側リブの数と等しく、前記各加湿側リブが前記全熱交換膜と圧着する面積が、前記各被加湿側リブが前記全熱交換膜と圧着する面積よりも大きくてもよい。また、前記各加湿側リブが前記全熱交換膜と圧着する面積が前記各加湿側リブが前記全熱交換膜と圧着する面積と等しく、前記加湿側リブの数が前記被加湿側リブの数よりも多くてもよい。さらに、 前記複数の加湿側リブの間隔が前記複数の被加湿側リブの間隔より短くてもよい。さらに、前記加湿流路の前記全熱交換膜と垂直方向の高さが、前記被加湿流路の前記全熱交換膜と垂直方向の高さより小さくてもよい。
これによれば、全熱交換膜が加湿側のガスの方へ押されて変形することを抑制することができる。
なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。
本発明の全熱交換器によれば、燃料電池から排出されるガスで燃料電池に供給されるガスをより効果的に加湿することができる。
図1は、実施の形態にかかる全熱交換器10が適用された固体高分子型燃料電池システム20の全体構成を示す。固体高分子型燃料電池システム20は、炭化水素系の燃料ガスを改質して得られる水素ガスと、反応空気とを固体高分子型燃料電池30に供給し、水素と反応空気に含まれる酸素との電気化学反応を利用して直流の電力を発生する。
固体高分子型燃料電池30は、図2に示すセル31(単電池)が複数積層してモジュールとして構成されたものである。各セル31は、高分子イオン交換膜などの固体高分子電解質膜32と、この固体高分子電解質膜32の対向面にそれぞれ接合されたアノード33及びカソード34と、アノード33に接して配置されたアノード基材35と、カソード34に接して配置されたカソード基材36とを有する。
アノード33およびカソード34は、白金を担持したカーボンを主成分とし、ガスまたは水を拡散可能な拡散経路を有する。これらのアノード33及びカソード34内で、後述する電気化学反応が行われる。
アノード基材35には、アノード33に接する側に、アノード側ガスとしての水素ガスを流動させるアノード側ガス流路37が形成される。また、カソード基材36には、カソード34に接する側にカソード側ガスとしての空気または酸素ガスを流動させるカソード側ガス流路38が形成される。
このように構成されたセル31において、アノード基材35のアノード側ガス流路22を経てアノード33内に導入された水素ガスは、アノード33内で酸化してプロトン(H+)となり、このプロトンは、固体高分子電解質膜32中を移動してカソード34へ至り、カソード34内で、カソード基材36のカソード側ガス流路38を経て導入された空気中の酸素と電気化学反応して還元され、水に変化する。この電気化学反応に伴い、アノード33とカソード34間に直流電力が発生する。
水素ガスは、燃料ガス系統40から供給される炭化水素系の燃料ガスを水蒸気改質法により改質装置42で改質することにより得られる。燃料ガス系統40から供給される燃料ガスの一部は、改質装置42の熱源の燃料として用いられる。改質装置42で得られた水素ガスは、バブラ44により加温及び加湿が施された後、固体高分子型燃料電池30に供給される。
一方、反応空気は、ブロア51で取り込まれた後、後述する全熱交換器10にて熱及び湿度分(水分)が付与される。その後、反応空気はバブラを兼ねるメイン水タンク52にを通過することにより加温及び加湿が施された後、固体高分子型燃料電池30の各セル31におけるカソード基材36のカソード側ガス流路38へ適量が供給される。
固体高分子型燃料電池30の各セル31は、冷却水により冷却される。この冷却水としては、メイン水タンク52に貯留された水が利用され、循環ポンプ62がメイン水タンク52に貯留された水を固体高分子型燃料電池30に供給する。
メイン水タンク52は、各セル31を冷却した冷却水と、固体高分子型燃料電池30の各セル31におけるカソード基材36を拡散して透過した、カソード34にて生成された水と、固体高分子電解質膜32に供給された過剰な加湿水とを集水する。また、メイン水タンク52は、固体高分子型燃料電池30のカソード34から固体高分子電解質膜32を経てアノード33へ逆拡散しアノード基材35を透過した水を集水する。
また、メイン水タンク52内に貯留された水が不足した場合には、上水系統60から水が補給される。この場合、上水系統60から供給される水は、サブ水タンク63に一旦貯留された後、給水ポンプ64の作動及び給水電磁弁65の弁操作により適量がメイン水タンク52に送られる。
上記固体高分子型燃料電池30にて反応に供されなかった未使用水素ガスは、改質装置42供給され熱源の燃料として利用される。
一方、固体高分子型燃料電池30にて酸素が消費された反応空気は排出空気となり、且つ、固体高分子型燃料電池30にて発生した水を水蒸気として多量に含む。この排出空気が有する熱量と水分の一部は、全熱交換器10により回収され反応空気に付与される。全熱交換器10を通過した排出空気は排気ダクト74に導かれ、外気に排出される。
全熱交換器10により排出ガスの水分を回収することにより、排気ダクト74を経て外気へ排出される水分が減少し、メイン水タンク52における加湿量が低減されるので、固体高分子型燃料電池システム20における水の消費量の低減が図られている。また、排出空気の熱が、全熱交換器10により反応空気に回収されることから、反応空気の温度が上昇し、固体高分子型燃料電池30における電気化学反応を効率よく実施できる。
なお、固体高分子型燃料電池30にて発生した直流電力は、DC/DCコンバータ82により所定電圧(たとえば24V)の直流電力に変換された後、DC/ACインバータ81によって交流電力(たとえば100V)に変換される。DC/ACインバータ81で変換された交流電力は出力端85へ出力される。また、上記DC/DCコンバータ82で変換された所定電圧の直流電力は、制御装置90などの電源として利用される。
制御装置90は、固体高分子型燃料電池システム20の各種制御を実施する。つまり、制御装置90は、固体高分子型燃料電池30、ブロア51、循環ポンプ62、給水ポンプ64、給水電磁弁65、DC/ACインバータ81及びDC/DCコンバータ82等との間で電気信号を送受信して、これらの各種機器を制御する。
(実施例1)
図3及び図4は、実施例1の全熱交換器10の正面図及び背面図をそれぞれ示し、図5は、全熱交換器10の側面図を示す。また、図6は、図3〜図5に示したA−A線上の断面図を示す。全熱交換器10は、加湿用プレート100、全熱交換膜110および被加湿用プレート120を有する。
加湿用プレート100は、固体高分子型燃料電池30と接続する開口102及び排気ダクト74と接続する開口104を有する。加湿用プレート100の全熱交換膜110側の面には、複数のリブ106により仕切られた凹状の複数の溝が設けられている。
一方、被加湿用プレート120は、ブロア51と接続する開口122及び固体高分子型燃料電池30と接続する開口124を有する。被加湿用プレート120の全熱交換膜110側の面には、複数のリブ126により仕切られた凹状の複数の溝が設けられている。
全熱交換膜110は、加湿用プレート100と被加湿用プレート120との間に狭持され、加湿用プレート100のリブ106及び被加湿用プレート120のリブ126が全熱交換膜110に圧着することにより、加湿用プレート100及び被加湿用プレート120に加湿流路108及び被加湿流路128がそれぞれ形成される。なお、実施例1の全熱交換器10では、リブ106の高さH、すなわち、加湿流路108の深さは、リブ126の高さH’、すなわち、被加湿流路128の深さと等しくなっている。
加湿流路108には、開口102から流入した排出空気が流れ込み、排出空気が全熱交換膜110と接触することにより、排出空気の熱及び水分の回収が行われる。熱及び水分の回収が行われた排出空気は開口104を経由して排気ダクト74に送られる。
一方、被加湿流路128には、開口122から流入した反応空気が流れ込み、反応空気が全熱交換膜110と接触することにより、反応空気が加温湿される。加温湿された反応空気は開口124から空気供給ライン53に送られる。具体的には、全熱交換器10により加温湿がされる前の反応空気は、酸素を21%程度含み、露点は季節により変動するが通常30℃以下であるが、酸素濃度約10%、露点60〜70℃の排出空気からの熱および水分回収により、加温湿後の反応空気の露点は約50〜60℃程度に上昇する。
全熱交換膜110には、PPS(ポリフェニレンサルファイド)不織布シートの両側に親水性シートをラミネートした構造が例示される。
加湿用プレート100のリブ106の数と被加湿用プレート120のリブ126の数は同じであるが、加湿用プレート100のリブ106の1本あたりが全熱交換膜110に接触する面積は、被加湿用プレート120のリブ126の1本あたりが全熱交換膜110に接触する面積よりも大きくなっている。すなわち、加湿用プレート100の複数のリブ106が全熱交換膜110に接触する総面積は、被加湿用プレート120の複数のリブ126が全熱交換膜110に接触する総面積よりも大きくなっている。言い換えると、加湿流路108内で排出空気が全熱交換膜110と接触する領域の接触面積の方が被加湿流路128内で反応空気が全熱交換膜110と接触する領域の接触面積よりも小さい。このような構成により、加湿流路108内で排出空気が全熱交換膜110と接触する領域の接触面積が被加湿流路128内で反応空気が全熱交換膜110と接触する領域の接触面積と等しい場合に比べると、加湿流路108を流れる排出空気の流速に対する被加湿流路128を流れる反応空気の流速の相対速度が遅くなる。
このため、全熱交換器10における排出空気から反応空気への熱及び水分の回収がより効率よく行うことができ、固体高分子型燃料電池システム20のエネルギー効率を高めることができる。
また、加湿流路108の断面積が小さくすることにより、加湿流路108内の排出空気の圧力を増加させることができ、排出空気より高圧な反応空気によって全熱交換膜110が加湿流路108側にしなって変形することが防止される。
なお、リブ106の高さHを、リブ126の高さH’よりも低くすることにより、被加湿流路128を流れる反応空気の流速を、加湿流路108を流れる排出空気の流速に対して相対的により遅くすることができ、全熱交換器10における排出空気から反応空気への熱及び水分の回収をさらに効率よく行うことができる。また、加湿流路108の断面積がより小さくなるので、加湿流路108内の排出空気の圧力をより増加させることができ、全熱交換膜110の変形防止効果を向上させることができる。
(実施例2)
図7は、実施例2の全熱交換器10の断面図を示す。実施例2の全熱交換器10は、実施例1と基本的な構成は同様である。実施例2の全熱交換器10では、加湿用プレート100のリブ106の1本あたりが全熱交換膜110に接触する面積と、被加湿用プレート120のリブ126の1本あたりが全熱交換膜110に接触する面積とは等しいが、加湿用プレート100のリブ106の数は被加湿用プレート120のリブ126の数より多くなっている。このような構成によっても、加湿流路108内で排出空気が全熱交換膜110と接触する領域の接触面積の方が被加湿流路128内で反応空気が全熱交換膜110と接触する領域の接触面積よりも小さくなるので、排出空気から反応空気への熱及び水分の回収がより効率よく行うことができ、また、全熱交換膜110の変形を防止することができる。
(実施例3)
図8は、実施例3の全熱交換器10に用いられる加湿用プレート100のリブ106の構造を示す斜視図を示す。また、図9は、実施例3の全熱交換器10に用いられる被加湿用プレート120のリブ126の構造を示す斜視図を示す。実施例3の全熱交換器10では、リブ106及びリブ126が円柱状である。このため、加湿流路108及び被加湿流路128は、実施例1又は2のような溝状ではなく、点在するリブ106及びリブ126によりそれぞれ排除される領域となる。
加湿用プレート100のリブ106の配置及び数は、被加湿用プレート120のリブ126と同様であるが、加湿用プレート100の各リブ106を形成する円柱の底面積は、被加湿用プレート120の各リブ126を形成する円柱の底面積よりも大きくなっている。
このような構成によっても、加湿流路108内で排出空気が全熱交換膜110と接触する領域の接触面積の方が被加湿流路128内で反応空気が全熱交換膜110と接触する領域の接触面積よりも大きくなるので、全熱交換器10における熱及び水分の回収をより効率よく行うことができ、また、全熱交換膜110の変形を防止することができる。
(実施例4)
図10は、実施例4の全熱交換器10に用いられる加湿用プレート100のリブ106の構造を示す斜視図を示す。被加湿用プレート120の構成は、図9と同様である。実施例4では、加湿用プレート100の各リブ106を形成する円柱の底面積は、被加湿用プレート120の各リブ126を形成する円柱の底面積と等しいが、加湿用プレート100のリブ106の数は、被加湿用プレート120のリブ126の数よりも多い。
このような構成によっても、加湿流路108内で排出空気が全熱交換膜110と接触する領域の接触面積の方が被加湿流路128内で反応空気が全熱交換膜110と接触する領域の接触面積よりも大きくなるので、全熱交換器10における熱及び水分の回収をより効率よく行うことができ、また、全熱交換膜110の変形を防止することができる。
(実施例5)
図11は、実施例5の全熱交換器10の斜視図を示す。図12は、実施例5の全熱交換器10における図11のB−B線上の断面図を示す。実施例5の全熱交換器10は、加湿用プレート100と被加湿用プレート120の間に全熱交換膜110を狭持した積層構造となっている。実施例1と同様に、各加湿用プレート100にはリブ106が形成され、加湿用プレート100と全熱交換膜110との間に加湿流路108が設けられている。また、被加湿用プレート120にはリブ126が形成され、被加湿用プレート120と全熱交換膜110との間に被加湿流路128が設けられている。
実施例5の全熱交換器10の積層構造の端部にあたる加湿用プレート100aと、被加湿用プレート120cでは、片方の面において全熱交換膜110と圧着し、片方の面において熱および水分の回収が行われる。これに対し、積層構造の中間部分の加湿用プレート100b,100c及び被加湿用プレート120a,120bでは、その両面において全熱交換膜110と圧着し、両面で熱および水分の回収が行われる。これにより、熱および水分の回収をより効率的に行うことができる。
実施例5の全熱交換器10の各加湿用プレート100のリブ106の数と各被加湿用プレート120のリブ126の数は同じであるが、各加湿用プレート100のリブ106の1本あたりが全熱交換膜110に接触する面積は、各被加湿用プレート120のリブ126の1本あたりが全熱交換膜110に接触する面積よりも大きくなっている。すなわち、各加湿用プレート100のリブ106が全熱交換膜110に接触する総面積は、各被加湿用プレート120のリブ126が全熱交換膜110に接触する総面積よりも大きくなっている。これにより、加湿流路108を流れる排出空気の流速に対する被加湿流路128を流れる反応空気の流速の相対速度をより遅くすることができる。
このため、全熱交換器10における排出空気から反応空気への熱及び水分の回収がより効率よく行うことができ、固体高分子型燃料電池システム20のエネルギー効率を高めることができる。
また、加湿流路108の断面積を小さくすることにより、加湿流路108内の排出空気の圧力を増加させることができ、排出空気より高圧な反応空気によって全熱交換膜110が加湿流路108側にしなって変形することが防止される。
図13は、実施例5の各加湿用プレート100のマニホールド101の構造を示す。加湿用プレート100のマニホールド101には、固体高分子型燃料電池30側の排出空気ライン72が貫通している。排出空気ライン72の下部には、開口部103が設けられており、開口部103から排出空気ライン72を流れる排出空気が吐出する。マニホールド101の上部に各加湿流路108に至る流路105が設けられており、マニホールド101の底面から流路105の底面の高さGまで、マニホールド101内に排出空気に含まれる水107が滞留する。このように、各加湿用プレート100のマニホールド101を貫通する排出空気ライン72をマニホールド101に貯留した水107中に存在させることにより、各加湿用プレート100に供給される排出空気に含まれる水分量を均一にすることができ、全熱交換器10を加湿用プレート100、全熱交換膜110及び被加湿用プレート120からなる積層構造とした場合の排出空気から反応空気への熱及び水分の回収をより効率的に行うことができる。
本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
たとえば、上述の実施例5の形態では、実施例2のように、各加湿用プレート100のリブ106の1本あたりが全熱交換膜110に接触する面積と、各被加湿用プレート120のリブ126の1本あたりが全熱交換膜110に接触する面積とを等しくし、各加湿用プレート100のリブ106の数を各被加湿用プレート120のリブ126の数より多くしてもよい。また、実施例3のように、各加湿用プレート100及び各被加湿用プレート120の同位置に同数の円柱状のリブ106及びリブ126をそれぞれ設け、各リブ106の底面積を各リブ126の底面積よりも大きくしてもよく、実施例4のように、各加湿用プレート100の各リブ106を形成する円柱の底面積は、各被加湿用プレート120の各リブ126を形成する円柱の底面積と等しくし、各加湿用プレート100のリブ106の数を、各被加湿用プレート120のリブ126の数よりも多くしてもよい。
また、上記各実施例においては、加湿用プレート及び被加湿用プレートに設けられたリブが全熱交換膜と面接触することにより、全熱交換膜が保持されているが、全熱交換膜を保持する形態はこれに限られない。たとえば、リブを球状あるいは円柱状に形成し、リブと全熱交換膜とを点接触あるいは線接触させることにより、全熱交換膜を保持してもよい。この場合には、加湿用プレートに設けるリブの数を被加湿用プレートに設けるリブの数より多くしたり、加湿用プレートに設けるリブのサイズを被加湿用プレートに設けるリブのサイズより大きくすることにより、加湿流路の容積を被加湿流路の容積より大きくすることができる。これによっても、上記実施例と同様に、加湿流路内の排出空気の圧力を増加させることができ、排出空気より高圧な反応空気によって全熱交換膜が加湿流路側にしなって変形することが防止される。
また、上記実施例の説明においては、全熱交換器10によって排出空気から反応空気に熱及び水分を回収しているが、全熱交換器10を水素ガス供給系に設ける構成も可能であることはいうまでもない。
実施の形態にかかる全熱交換器が適用された燃料電池システムの全体構成を示す図である。 固体高分子型燃料電池のセルの構成を示す図である。 実施例1の全熱交換器の正面図である。 実施例1の全熱交換器の背面図である。 実施例1の全熱交換器の側面図である。 実施例1の全熱交換器の断面図である。 実施例2の全熱交換器の断面図である。 実施例3の全熱交換器に用いられる加湿用プレートのリブの構造を示す斜視図である。 実施例3の全熱交換器に用いられる被加湿用プレートのリブの構造を示す斜視図である。 実施例4の全熱交換器に用いられる加湿用プレートのリブの構造を示す斜視図である。 実施例5の全熱交換器の斜視図を示す図である。 実施例5の全熱交換器における図11のB−B線上の断面図を示す図である。 実施例5の各加湿用プレートのマニホールドの構造を示す。
符号の説明
10 全熱交換器、20 固体高分子型燃料電池システム、30 固体高分子型燃料電池、31 セル、32 固体高分子電解質膜、33 アノード、34 カソード、35 アノード基材、36 カソード基材、37 アノード側ガス流路、38 カソード側ガス流路、90 制御装置、100 加湿用プレート、106 リブ、108 加湿流路、120 加湿用プレート、126 リブ、128 被加湿流路。

Claims (7)

  1. 燃料電池のアノード又はカソードに供給される供給ガスと、前記供給ガスが前記燃料電池で消費された後、前記燃料電池から排出される排出ガスとの間に全熱交換膜を介在させて前記供給ガスを加湿する全熱交換器であって、
    前記排出ガスが前記全熱交換膜と接触する領域の接触面積の方が前記供給ガスが前記全熱交換膜と接触する領域の接触面積よりも小さいことを特徴とする全熱交換器。
  2. 燃料電池のアノード又はカソードに供給される供給ガスと、前記供給ガスが前記燃料電池で消費された後、前記燃料電池から排出される排出ガスとの間に全熱交換膜を介在させて前記供給ガスを加湿する全熱交換器であって、
    前記排出ガスが前記全熱交換膜と接触する領域の容積が、前記供給ガスが前記全熱交換膜と接触する領域の容積より小さいことを特徴とする全熱交換器。
  3. 前記全熱交換膜の一方の面と接触する前記排出ガスが流れる加湿流路を形成する複数の加湿側リブと、
    前記全熱交換膜の他方の面と接触する前記供給ガスが流れる被加湿流路を形成する複数の被加湿側リブと、
    を有し、
    前記複数の加湿側リブの前記全熱交換膜上の総面積が、前記複数の被加湿側リブの前記全熱交換膜上の総面積よりも大きいことを特徴とする請求項1又は2に記載の全熱交換器。
  4. 前記加湿側リブの数が前記被加湿側リブの数と等しく、
    前記各加湿側リブが前記全熱交換膜と圧着する面積が、前記各加湿側リブが前記全熱交換膜と圧着する面積よりも大きいことを特徴とする請求項3に記載の全熱交換器。
  5. 前記各加湿側リブが前記全熱交換膜と圧着する面積が前記各被加湿側リブが前記全熱交換膜と圧着する面積と等しく、
    前記加湿側リブの数が前記被加湿側リブの数よりも多いことを特徴とする請求項3に記載の全熱交換器。
  6. 前記複数の加湿側リブの間隔が前記複数の被加湿側リブの間隔より短いことを特徴とする請求項3に記載の全熱交換器。
  7. 前記加湿流路の前記全熱交換膜と垂直方向の高さが、前記被加湿流路の前記全熱交換膜と垂直方向の高さより小さいことを特徴とする請求項1乃至6のいずれか1項に記載の全熱交換器。
JP2004088451A 2004-03-25 2004-03-25 全熱交換器 Expired - Fee Related JP4454352B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088451A JP4454352B2 (ja) 2004-03-25 2004-03-25 全熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088451A JP4454352B2 (ja) 2004-03-25 2004-03-25 全熱交換器

Publications (3)

Publication Number Publication Date
JP2005276627A JP2005276627A (ja) 2005-10-06
JP2005276627A5 JP2005276627A5 (ja) 2006-07-20
JP4454352B2 true JP4454352B2 (ja) 2010-04-21

Family

ID=35176060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088451A Expired - Fee Related JP4454352B2 (ja) 2004-03-25 2004-03-25 全熱交換器

Country Status (1)

Country Link
JP (1) JP4454352B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285598A (ja) * 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd 熱交換器
JP4651639B2 (ja) * 2007-04-12 2011-03-16 パナソニック株式会社 加湿器
JP2009026623A (ja) * 2007-07-20 2009-02-05 Panasonic Corp 燃料電池用ガスの加湿装置
JP5157293B2 (ja) * 2007-07-20 2013-03-06 パナソニック株式会社 燃料電池用ガスの加湿装置
JP2010044989A (ja) * 2008-08-18 2010-02-25 Panasonic Corp 燃料電池用ガスの加湿装置

Also Published As

Publication number Publication date
JP2005276627A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
JP6660472B2 (ja) 燃料電池システム用の一体型水分離器を備えた加湿器、それを備えた燃料電池システムおよび乗り物
JP2899709B2 (ja) 溶融炭酸塩型燃料電池発電装置
EP1176651B1 (en) Fuel cell
JP2007227377A (ja) 加湿が組み入れられた燃料電池
US20060204807A1 (en) Fuel cell
JP6893310B2 (ja) 水素システム
JP4632917B2 (ja) 固体高分子形燃料電池
JPH10284096A (ja) 固体高分子電解質型燃料電池
JPH09283162A (ja) 固体高分子型燃料電池
JP2002170584A (ja) 固体高分子形燃料電池
JP3477926B2 (ja) 固体高分子電解質型燃料電池
KR101127004B1 (ko) 내부 막가습기를 포함하는 연료전지 스택
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP4454352B2 (ja) 全熱交換器
JP2002260708A (ja) 燃料電池積層構造体
JP2010129482A (ja) 燃料電池用セパレータ、燃料電池スタック及び燃料電池システム
JPH06119931A (ja) 燃料電池の加湿システム装置
JP4844582B2 (ja) 燃料電池及び燃料電池システム
JP2008047395A (ja) 燃料電池
JPH0935737A (ja) 固体高分子電解質型燃料電池
JP4672120B2 (ja) 燃料電池装置及び燃料電池装置の運転方法。
JP2007234314A (ja) 燃料電池システム
JP5653867B2 (ja) 燃料電池
US20220376281A1 (en) Fuel cell membrane humidifier and fuel cell system having same
JP4970007B2 (ja) 表面活性剤を使用したpem燃料電池スタックの水管理

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4454352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees