JP4451230B2 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
JP4451230B2
JP4451230B2 JP2004188105A JP2004188105A JP4451230B2 JP 4451230 B2 JP4451230 B2 JP 4451230B2 JP 2004188105 A JP2004188105 A JP 2004188105A JP 2004188105 A JP2004188105 A JP 2004188105A JP 4451230 B2 JP4451230 B2 JP 4451230B2
Authority
JP
Japan
Prior art keywords
gas
nozzle
temperature
base material
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004188105A
Other languages
English (en)
Other versions
JP2005256160A (ja
Inventor
和憲 尾鍋
隆 斉藤
直二 鹿島
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP2004188105A priority Critical patent/JP4451230B2/ja
Publication of JP2005256160A publication Critical patent/JP2005256160A/ja
Application granted granted Critical
Publication of JP4451230B2 publication Critical patent/JP4451230B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、CVD(Chemical Vapor Deposition) 法(化学気相堆積法)により基材上に超電導薄膜あるいは誘電体薄膜などの薄膜を成膜する際に用いる成膜装置に関する。
例えば、超電導薄膜は、電力ケーブル、マグネット、エネルギー貯蔵、発電機、医療機器、電流リード、超電導デバイス等の分野で利用され、誘電体薄膜はさまざまな電子デバイス用基材に利用される。この超電導薄膜あるいは誘電体薄膜などの薄膜は、CVD法により合成(以下、「成膜」という場合もある。)され、このような薄膜を合成する成膜処理を行う装置としては、CVD反応炉の加熱方式により内熱式(コールドウォール)成膜装置と外熱式(ホットウォール)成膜装置の2つに分けることができる。
この内熱式は、基材裏面からの伝熱を主体として基材を加熱する方法であり、一方、外熱式は反応炉全体を加熱することで外部からの輻射熱を主体として基材を加熱する方法である。図10及び図11に、それぞれの方法による成膜装置を示す。
図10は、従来技術の内熱式成膜装置の概念構造を示す概略図である。図10に示す内熱式成膜装置は、反応炉410内に基材412を載置するための載置台411が設けられている。載置台411には基材加熱ヒータ413が埋め込まれており、載置台411に載置された基材412を所定の処理温度に加熱する。また、反応炉410は排気管414を介して真空ポンプ415に接続されており、真空ポンプ415により反応炉410内を排気口417を通じて真空排気すると共に、載置台411に対向した状態で反応炉410の上部に設けられたガスノズル422から原料ガスを反応炉410内に噴出(供給)し、高温に加熱された基材412の表面に、気相成長法(CVD法)によって薄膜を形成する。このガスノズル422は、母材を気化させる気化器420と反応炉410とを接続する配管である輸送路429の出口端部に形成され、保温ヒータ421によって気化器420および輸送路429と共に周囲が全体的に覆われている。なお、図10において排気管414の途中に設けてある416は圧力計を示す。
一方、図11は、従来技術の外熱式成膜装置の概念構造を示す概略図である。図11に示す外熱式成膜装置は、反応炉510内に基材512を載置するための載置台511が設けられている。また、反応炉510の周囲には全体的に基材加熱ヒータ513が配置されており、載置台511に載置された基材512を所定の処理温度に加熱する。また、反応炉510は、排気管514を介して真空ポンプ515に接続されており、真空ポンプ515により反応炉510内を排気口517を通じて真空排気すると共に、載置台511に対向した状態で反応炉510の上部に設けられたガスノズル522から原料ガスを反応炉510内に噴出(供給)し、高温に加熱された基材512の表面に、気相成長法(CVD法)によって薄膜を形成する。このガスノズル522は、母材を気化させる気化器520と反応炉510とを接続する配管である輸送路529の出口端部に形成され、保温ヒータ521によって気化器520および輸送路529と共に周囲が全体的に覆われている。なお、図11において排気管514の途中に設けてある516は圧力計を示す。
また、図12及び図13に、長尺状の基材をその長手方向に移動させながら、該基材上に成膜処理を行う成膜装置の概念構造を示す概略図である。図12は、従来技術の長尺基材用の成膜装置のうち単独の気化器を備える成膜装置を例示し、また図13は3段に気化器を備える成膜装置を例示している。
図12に示す成膜装置は、母材631を貯溜する収納容器630と、これらの収納容器630にそれぞれ接続された母材供給器635とを備えている。前記母材631は、前記収納容器630と前記母材供給器635との接続経路中にそれぞれ設けられた輸送手段633により、それぞれの接続管632および634を介して前記母材供給器635へそれぞれ送られる。また、前記母材供給器635の母材供給部636より供給されたそれぞれの母材631を気化し、接続する反応炉610内に設置された基材612の表面に対して吹き付け、超電導薄膜や誘電体薄膜を形成する。
また、前記成膜装置は、気相成長法(CVD法)により内蔵する基材上に成膜処理を行う反応炉610と、この反応炉610に母材を気化して生成した原料ガスをそれぞれ供給するための気化器620と、この気化器620で気化された原料ガスを前記反応炉610内に設置された基材612の表面に対して吹き付けるガスノズル622とを備えており、このガスノズル622は隔壁625により周囲が覆われている。前記反応炉610は、内部に設置された基材612に対する温度制御を行う温度制御手段613a,613bを備えている。また、前記反応炉610は、排気口615を介して真空ポンプ(図示せず)に接続されており、真空ポンプにより反応炉610内を真空排気するようになっている。
そして、前記ガスノズル622から反応炉610内に原料ガスが導入され、適温に加熱された基材612上に吹付けられて基材612の表面上で気相反応することにより、前記基材612の表面上に薄膜が形成される。
図13に示す3段に気化器を備える成膜装置は、母材631a〜631cをそれぞれ貯溜する収納容器630a〜630cと、これらの収納容器630a〜630cにそれぞれ接続された母材供給器635a〜635cとを備えている。前記母材631a〜631cは、前記収納容器630a〜630cと前記母材供給器635a〜635cとの接続経路中にそれぞれ設けられた輸送手段633a〜633cにより、それぞれの接続管632a〜632cおよび634a〜634cを介して前記母材供給器635a〜635cへそれぞれ送られる。また、前記母材供給器635a〜635cの母材供給部636a〜636cより供給されたそれぞれの母材631a〜631cを気化し、接続する反応炉610内に設置された基材612の表面に対して吹き付け、超電導薄膜や誘電体薄膜を形成する。
また、前記成膜装置は、気相成長法(CVD法)により内蔵する基材上に成膜処理を行う反応炉610と、この反応炉610に母材を気化して生成した原料ガスをそれぞれ供給するための気化器620a〜620cと、この気化器620a〜620cで気化された原料ガスを前記反応炉610内に設置された基材612の表面に対して吹き付けるガスノズル622とを備えており、このガスノズル622は隔壁625により周囲が覆われている。前記反応炉610は、内部に設置された基材612に対する温度制御を行う温度制御手段613a,613bを備えており、それぞれ温度制御が可能な連続する三つの領域よりなる三段式のリアクタ構造となっている。また、前記反応炉610は、排気口615を介して真空ポンプ(図示せず)に接続されており、真空ポンプにより反応炉610内を真空排気するようになっている。
そして、前記ガスノズル622から反応炉610内に原料ガスが導入され、適温に加熱された基材612上に吹付けられて基材612の表面上で気相反応することにより、前記基材612の表面上に薄膜が形成する。
このCVD法では、Y(DPM)、Cu(DPM)、Ba(DPM)といった有機金属錯体を原料とする場合が多い。ここで、DPMはジピバロイルメタン((CHCCOCHCOC(CH)を示す。これらの粉末原料は、直接加熱して昇華させる場合や、THF(テトラヒドロフラン:CO)などの有機溶媒に溶解したものを原料とし加熱して気化させ、前記粉末原料を気体に変換させる場合があるが、いずれの場合も、220〜250℃に加熱することで原料を気体にする必要がある。また、気体にした原料の析出を防止するために、気化器と反応炉を接続する配管である輸送路(429,529)部分も220〜250℃に保温する必要がある。
また、原料ガスは、輸送路(429,529)の出口端部(反応炉(410,510)との接続部付近)に形成されたガスノズル(422,522)より反応炉(410,510)内部に導入され基材(412,512)上に吹き付けられるが、原料ガスの流速を上げるためにガスノズル(422,522)は出口端で絞りをいれたノズル構造にする場合が多い。そして、基材(412,512)の加熱温度は、合成する薄膜材料により様々であるが、400〜850℃に加熱する場合が多い(例えば、特許文献1及び特許文献2参照)。
特許文献1には、酸化物超電導体の原料ガスを化学反応させて基材表面に酸化物超電導薄膜を堆積させるCVD反応を行うリアクタと、該リアクタ内に原料ガスを供給する原料ガス供給機構と、該リアクタ内のガスを排気するガス排気機構と、前記リアクタ内に酸素ガスを供給する酸素ガス供給源とが備えられた酸化物超電導導体の製造装置において、前記ガス排気機構に排気ガス中の酸素濃度を測定する酸素濃度計測装置が接続され、前記酸素ガス供給源に流量調整機構が接続され、この流量調整機構と前記酸素濃度計測装置に、前記酸素濃度計測装置の計測結果に基づいて流量調整機構を調整し、リアクタへ送る酸素ガスの供給量を調整する制御機構が、接続されてなることを特徴とする酸化物超電導導体の製造装置が開示されている。
また特許文献2には、移動中のテープ状の基材表面に原料ガスを化学反応させて薄膜を堆積させるCVD反応を行うリアクタと、前記リアクタに前記原料ガスを供給するガス拡散部と、前記リアクタ内のガスを排気する排気口に接続された排気管とが少なくとも備えられてなるCVD反応装置であり、前記リアクタには、基材導入部と反応生成室と基材導出部とが隔壁により区画されて形成され、前記リアクタを覆って前記リアクタ全体を加熱する主ヒータと、前記主ヒータの内側に設けられ、前記隔壁により区画された前記反応生成室全体を覆って前記反応生成室を加熱する補助ヒータとが備えられていることを特徴とするCVD反応装置が開示されている。
特開平09−052701号公報 特開2001−73151号公報
しかしながら、Y(DPM)、Cu(DPM)、Ba(DPM)といった有機金属錯体は、一般的に融点が高いため気体にし難い一方、再析出し易く、しかも分解し易い材料である。例えば、Ba(DPM)原料は、230℃程度に加熱すると気体にすることができるが、輸送路温度が200℃以下になるとほとんどが配管内壁で再析出してしまうとともに、260℃以上になると分解したものが配管内壁に付着する。したがって、気化器〜輸送路〜ガスノズルに至る保温温度は材料に応じて精密な制御が必要であり、Ba(DPM)の場合では220〜250℃の範囲に制御する必要がある。
一方、従来技術の各成膜装置においては、ガスノズル部分でしばしば析出物が生じる問題があった。この析出物は時間経過とともに粗大化し、ガスノズルを塞ぐ傾向にあるため、原料ガスの吹き出しに異常が生じ、合成を継続できなくなる。したがって、定期的な洗浄作業により復帰させる方法が一般的であるが、この方法では、連続的な長時間合成を行うことができないものとなる。
この析出物の生成は、図11に示す外熱式構造の成膜装置において顕著である。これは、ガス保温温度(220〜250℃)と反応温度(400〜850℃)が大きく異なり、その温度境界部に位置するガスノズル522部分の温度を精密に制御することが難しいことに原因すると考えられる。すなわち、ガスノズル522部分の温度は、220〜250℃に制御する必要があるが、隣接する基材加熱ヒータ513の影響を受けて、例えば、400℃以上の高温度になってしまい、この位置で原料ガスの一部が分解し、析出してしまうと考えられる。
一方、図10に示す内熱式構造の成膜装置の場合では、ガスノズル422と基材412との距離を近づけた場合に同様な問題が生じる。
また図12及び図13に示す成膜装置はいずれも図11に示す外熱式構造に相当し、数時間〜30時間程度までは連続してCVD成膜運転を継続できるが、それ以上継続して成膜を行うとノズル部分が析出物によってつまってしまい、運転を継続できない問題が生じる。
本発明は、上記事情に鑑みてなされたものであり、ガスノズル部分での原料ガスの分解を抑制するために、ガスノズル部分を精密に恒温(保温または冷却)制御できる構造とした成膜装置を提供することを目的とする。また、本発明は、ガスノズル部分で析出物が生じないようにした成膜装置を提供することを他の目的とする。
本発明に係る成膜装置は、気相成長法(通称、CVD反応)により基材上に成膜処理を行う反応炉、母材を気化して原料ガスを生成する気化器、前記気化器から前記反応炉へ前記原料ガスを導く輸送路、及び、前記輸送路の一端に配され、前記基材の被成膜面に対して前記原料ガスを放出する吐出手段を少なくとも備えてなる成膜装置であって、前記反応炉内の成膜雰囲気の温度を制御するために前記反応炉に設けた第一温度制御手段と前記母材を気化させるために前記気化器に設けた第二温度制御手段に加えて、前記吐出手段の中を通過する原料ガスの温度を制御するために前記吐出手段に設けた第三温度制御手段を有するとともに、前記吐出手段が原料ガス輸送路の先端に設けられて前記反応炉内部に連通したガスノズルであり、前記第三温度制御手段が前記ガスノズル先端より先方に突出してガスノズルの周囲を覆うノズル被覆部を備えるノズル恒温装置であり、前記ノズル被覆部の先端面から引っ込んだ位置に前記ガスノズルの先端部を位置させてなり、前記ノズル恒温装置が前記ガスノズルの温度制御を行うことにより前記ガスノズルを通過する原料ガスの温度制御を行うことを特徴としている。
これにより、反応炉と輸送路と吐出手段部分とが、それぞれ個別に独立して適切に温度制御することができるので、温度が下がり過ぎて薄膜原料が配管内壁や吐出手段部分で再析出してしまったり、温度が上がり過ぎて薄膜原料が分解して配管内壁や吐出手段部分に付着してしまったりすることを抑制することができることになる。
更に、ガスノズルの先端部が、ノズル被覆部内に埋もれるように、ノズル被覆部の先端面から引っ込んだ状態となっていて、前記第三温度制御手段が前記ガスノズルの温度制御を行い、前記ガスノズルを通過する原料ガスの温度制御を行うので、ガスノズルの先端部分で原料ガスが分解して析出物が生じることなく、原料ガスの吹き出しを確実に行うことが出来る。
かかる構成の成膜装置において、前記吐出手段はその先端にガス誘導路を備え、前記第三温度制御手段は該ガス誘導路の温度も制御する構成が好ましい。
これにより、吐出手段の先端は勿論のこと、吐出手段の先端より吹き出された直後のガス誘導路まで適切に温度制御することができるので、吐出手段と外部空間との境界部分までが確実に温度制御され、吐出手段の先端部分である前記境界部分に析出物が生じることなく、確実に原料ガスを吹き出して均一な薄膜を基材上に堆積させることができることになる。
また、かかる構成の成膜装置において、前記ガス誘導路は、その内形断面がストレート状である形態が望ましい。
これにより、基材が小さいものであったり、細幅のものであったりした場合に、確実に所望の範囲に限定して原料ガスを吹き付け、基材に薄膜を堆積させることが出来るものとなる。
さらに、かかる構成の成膜装置において、前記ガス誘導路は、その内形断面がテーパー状としてもよい。
これにより、基材が大きく大面積のものであった場合に、一度に広範囲に原料ガスを吹き付け、基材に薄膜を堆積させることが出来るものとなる。
さらにまた、かかる構成の成膜装置において、前記ガス誘導路は、分岐構造を備える形態としても構わない。
これにより、基材が帯状のものであった場合に、連続して少しずつ原料ガスを吹き付け、基材に厚膜を形成させたり、また、基材が広幅のものであったりした場合に、一度に均一に原料ガスを吹き付け、基材に薄膜を堆積させることが出来る。
本発明に係る吐出手段は、気相成長法により内蔵する基材上に成膜処理を行う反応炉内へ、原料ガスを導く輸送路の一端に配され、前記基材の被成膜面に対して前記原料ガスを放出する吐出手段であって、通過する原料ガスの温度を制御する温度制御手段を具備したことを特徴とする。
これにより、吐出手段の先端付近の温度制御を局所的にあるいは効果的に行うことが出来ない成膜装置であっても、装置全体の設計を変更することなく後から吐出手段を取り付けるだけで、吐出手段の先端付近の温度制御を簡単に行うことができ、原料が配管内壁や吐出手段部分で析出してしまったり、原料が分解して配管内壁や吐出手段部分に付着してしまったりすることを抑制することができるものとなる。
しかも、析出物が生じたとしても、析出物は温度制御の感度が鈍くなるおそれのある吐出手段の先端部分に生じるものとなるので、析出物のクリーニングは吐出手段だけを交換すれば容易に行うことが可能なものとなり、クリーニングが完了するまで成膜装置を停止させる必要が無くなるので、ひいては効率の良い作業を行うことが出来る。
本発明に係る他の成膜装置は、長手方向に移動する長尺状の基材上に成膜処理を行う反応炉内へ原料ガスを導く輸送路の一端に配され、前記基材の被成膜面に対して前記原料ガスを放出する吐出手段と、前記吐出手段の中を通過する原料ガスの温度を制御する温度制御手段とを少なくとも備えてなる成膜装置であって、複数個の前記吐出手段を備え、該吐出手段を前記基材の長手方向に並べて配置し、吐出手段ごとに設けた前記温度制御手段を個別に制御することを特徴としている。
これにより、薄膜原料が配管内壁や吐出手段部分で析出してしまったり、薄膜原料が分解して配管内壁や吐出手段部分に付着してしまったりすることが抑制されるので、長尺状の基材であっても連続して長時間にわたって薄膜の形成作業を行うことができることになる。
本発明によれば、反応炉に第一温度制御手段を設け、気化器に第二温度制御手段を設け、吐出手段に第三温度制御手段を設け、制御温度の異なる輸送路と反応炉の接続部の温度を精密に制御するために、吐出手段としてガスノズルを設け、ガスノズルの先端部を、ノズル被覆部内に埋もれるように、ノズル被覆部の先端面から引っ込んだ状態とし、前記第三温度制御手段が前記ガスノズルの温度制御を行い、前記ガスノズルを通過する原料ガスの温度制御を行うので、ガスノズルの先端部分で原料ガスが分解して析出物が生じることなく、原料ガスの吹き出しを確実に行うことが出来る。したがって、原料ガスの分解などによる詰まりが生じなくなり、長時間安定した薄膜の形成作業が可能な成膜装置の提供が可能となる。
また、吐出手段部分の温度を、析出物が生じない温度範囲に制御した状態で、基材上に薄膜を成長させることができるので、付着物の析出が少なく、メンテナンス性に優れた吐出手段を備えた成膜装置の提供も本発明はもたらす。
以下、本発明の一実施の形態について、図面に基づき説明する。図1は、本発明の実施の形態に係る成膜装置の構造の一例を説明する概略断面図であり、図2は、この成膜装置に具備される吐出手段を示す概略底面図である。
図1に示す成膜装置Iは外熱式装置であり、図中、符号10は反応炉、符号12は基材、符号13は第一温度制御手段としての基材加熱ヒータ、符号14は排気管、符号15は真空ポンプ、符号17は排気口、符号20は気化器、符号21は第二温度制御手段としての原料ガス保温ヒータ、符号22は吐出手段としてのガスノズル、符号26は第三温度制御手段としてのノズル恒温装置、をそれぞれ示す。
図1に示すように成膜装置Iは、CVD反応を行なうための反応炉10と、母材を気化する気化器20と、前記気化器20で気化され生成した原料ガスを前記反応炉10内に設置された基材12の被成膜面に対して吹き付けるガスノズル22と、前記反応炉10内に設置された基材12に対する温度制御を行う基材加熱ヒータ13と、前記気化器20で気化された原料ガスが前記ガスノズル22より吹き出されるまでの原料ガス輸送路29に対する温度制御を行う保温ヒータ21と、基材加熱ヒータ13および原料ガス保温ヒータ21とは別に、前記ガスノズル22の先端付近の温度制御を独立して行うノズル恒温装置26を具備する。
反応炉10の内部には、薄膜を生成させる基材12を載置するための載置台11が設けられている。また、反応炉10の周囲には、基材加熱ヒータ13が全体的に配置されている。前記基材加熱ヒータ13に通電し反応炉10を昇温させると、載置台11上に載置された基材12は、基材加熱ヒータ13によって所望温度に加熱できるように構成されている。
また、載置台11の底面(反応炉10の底壁)には、排気口17が設けられており、この排気口17は真空引き管14を介して真空ポンプ15に接続されている。真空ポンプ15を動作させ、反応炉10内を真空雰囲気にした後、反応炉10内に原料ガスを導入する(吹き出す)と、基材12の被成膜面に向かって吹き付けられた原料ガスは、基材上で反応して薄膜を形成し、未反応ガス及びCVD反応で生じた副生成物は、排気口17を通って真空ポンプ15で排出されるようになっている。その際、反応炉10内は、圧力計16によって所定の真空度を維持するよう管理される。
気化器20は、母材を気化して、載置台11に対向した状態で反応炉10の上部に設けられたガスノズル22から反応炉10内に吹き出される原料ガスを生成する。気化器20で気化され生成した原料ガスは、輸送路29を介してガスノズル22から反応炉10内に吹き出し(供給)し、高温に加熱された基材12の被成膜面に、CVD反応によって薄膜を形成する。
このガスノズル22は、母材を気化させる気化器20と反応炉10とを接続する配管である輸送路29の出口端部に配置され、その基端側が保温ヒータ21によって気化器20および輸送路29と共に周囲が全体的に覆われているとともに、先端側がノズル恒温装置26によって周囲が全体的に覆われている。
保温ヒータ21は、温度検出センサー(図示せず)の出力に基づいて気化器20を一定温度に加熱、保持するようになっている。なお気化器20の壁温分布を均一にするために、気化器20の壁はアルミニウム等の熱伝導度の高い金属材料で形成されている。
また、ノズル恒温装置26は、図2に示すように、ガスノズル22の周囲に取り付けるノズル被覆部24と、このノズル被覆部24に対して恒温媒体を供給する恒温媒体循環ポンプ27と、ノズル被覆部24と恒温媒体循環ポンプ27との間に恒温媒体が循環するように搬送する恒温媒体循環管28とを具備する。
このノズル被覆部24は、ガスノズル22の周囲を覆うことで温度制御するものであり、原料ガスがガスノズル22の先端より吹き出された直後のガス誘導路25を含めてガスノズル22の先端部が露出しないよう全体的に覆っている。このガス誘導路25とは、ガスノズル22の内部のガス流路23ではなく、ガスノズル22の外部であってガスノズル22の先端から延長された空間部分のガス流路をいう。本実施形態では、ガス誘導路25は、ガスノズル22の先端よりガス流路23を通った原料ガスが真っ直ぐに吹き出されるストレート状に形成されている。
また、ガスノズルは、反応炉10の雰囲気に直接さらされないようにすることが重要である。
したがって、ガスノズル22の先端部は、ノズル被覆部24内に埋もれたように、ノズル被覆部24の端面から引っ込んだ状態となっている。これにより、ガスノズル22の先端部分で原料ガスが分解して析出物が生じることなく、原料ガスの吹き出しを確実に行うことが出来る。
また、ノズル被覆部24内には、耐熱シリコン油等の液体の恒温媒体が納められており、恒温媒体循環ポンプ27と温度調節装置(図示せず)を動作させることによって、恒温媒体循環管28を介してノズル被覆部に供給され、循環するようになっている。この恒温媒体は、目的とする設定温度によりいくつか選ぶことができる。例えば、設定温度が100℃以下であれば水、また、同温度が100〜200℃であればシリコン系油、さらに、同温度が200〜250℃であれば特殊なシリコン系油を用いる。
したがって、ガスノズル22とその周囲に取り付けたノズル被覆部24との間で熱交換し、ガスノズル22の温度が所定の温度範囲となるように精密に温度制御されるものとなる。これにより、温度が下がり過ぎて原料が配管内壁やガスノズル部分で析出してしまったり、温度が上がり過ぎて原料が分解して配管内壁やガスノズル部分に付着してしまったりすることを抑制することができることになる。
上記構成の成膜装置における成膜方法は、以下のように行われる。まず、成膜対象である基材12は反応炉10内に設置され、第一温度制御手段である基材加熱ヒータ13によって加熱されている。そして、CVD法を用いた成膜を行うにあたっては、ガスノズル22の先端付近を、原料ガスが吹き出された直後のガス誘導路25を含めて第三温度制御手段であるノズル恒温装置26によって温度制御を行い、第二温度制御手段である保温ヒータ21によって保温された原料ガスをガスノズル22から反応炉10内に吹き付け(供給し)、基材12上で原料ガスを反応させて基材12の被成膜面の上に薄膜を形成する。これにより、薄膜を基材12上に均一に成長させることが出来る。その際、未反応ガス及びCVD反応で生じた副生成物は、排気口17により反応炉外へ排出される。
なお、ノズル恒温装置26は、上述のようにノズルの外周面に取り付け可能な構造のものとしても良いが、輸送路29自体を2重管構造とし、この2重管構造輸送路内に恒温媒体を循環させるようにしても良い。
また、ガス誘導路は、ガスノズル口の形状や成膜する基材の形状によって、いくつかの構造から選ぶことができる。図3は、本発明に係る他の実施の形態に係る成膜装置の構造を説明する概略断面図である。
図3に示す成膜装置IIも外熱式装置であり、図中、符号100は反応炉、符号112は基材、符号115は真空ポンプ、符号117は排気口、符号120は気化器、符号121は第二温度制御手段としての保温ヒータ、符号122は吐出手段としてのガスノズル、符号126は第三温度制御手段としてのノズル恒温装置、符号130は第一温度制御手段としての基材加熱ヒータ、をそれぞれ示す。
図3に示すように成膜装置IIは、CVD反応を行なうための反応炉100と、母材を気化する気化器120と、前記気化器120で気化され生成した原料ガスを前記反応炉100内に設置された基材112の被成膜面に対して吹き付けるガスノズル122と、前記反応炉100内に設置された基材112に対する温度制御を行う基材加熱ヒータ130と、前記気化器120で気化された原料ガスが前記ガスノズル122より吹き出されるまでの原料ガス輸送路129に対する温度制御を行う保温ヒータ121と、基材加熱ヒータ130および保温ヒータ121とは別に、前記ガスノズル122の先端付近の温度制御を独立して行うノズル恒温装置126を具備する。
そして、この成膜装置IIは前記成膜装置Iと比べて、ノズル恒温装置126のノズル被覆部124におけるガス誘導路125が、テーパー状に形成されている点で異なる以外、互いに同様の構成をしている。しかしながら、このガス誘導路の形状相違により、ガスノズル122の先端より原料ガスが、拡散して吹き出されるようになる。その結果、広い面積の基材に成膜が容易になる。
したがって、この成膜装置IIは、ガスノズル122とその周囲に取り付けたノズル恒温装置126のノズル被覆部124との間で熱交換し、ガスノズル122の温度が所定の温度範囲となるように精密に温度制御されるものとなる。これにより、温度が下がり過ぎて原料が配管内壁やガスノズル部分で析出してしまったり、温度が上がり過ぎて原料が分解して配管内壁やガスノズル部分に付着してしまったりすることを抑制することができることになる。また、ガスノズル122の先端がノズル被覆部124の端面から引っ込んだ状態となっているので、原料がガスノズル122の先端部分で分解して析出物が生じることなく、原料ガスの吹き出しを確実に行うことが出来る。
また、図4は、本発明に係るさらに他の実施の形態に係る成膜装置の構造を説明する概略断面図である。
図4に示す成膜装置IIIも外熱式装置であり、図中、符号200は反応炉、符号212は基材、符号215は真空ポンプ、符号217は排気口、符号220は気化器、符号221は第二温度制御手段としての保温ヒータ、符号222は吐出手段としてのガスノズル、符号226は第三温度制御手段としてのノズル恒温装置、符号230は第一温度制御手段としての基材加熱ヒータ、をそれぞれ示す。
図4に示すように成膜装置IIIは、CVD反応を行なうための反応炉200と、母材を気化する気化器220と、この気化器220で気化され生成した原料ガスを前記反応炉200内に設置された基材212の被成膜面に対して分岐して吹き付ける複数のガス流路223を有するガスノズル222と、前記反応炉200内に設置された基材212に対する温度制御を行う基材加熱ヒータ230と、前記気化器220で気化された原料ガスが前記ガスノズル222より吹き出されるまでの原料ガス輸送路229に対する温度制御を行う保温ヒータ221と、基材加熱ヒータ230および保温ヒータ221とは別に、前記ガスノズル222の先端付近の温度制御を独立して行うノズル恒温装置226を具備する。
そして、この成膜装置IIIは前述した成膜装置Iおよび成膜装置IIと比べて、ノズル恒温装置226のノズル被覆部224が、原料ガスを複数に分岐して吹き出す分岐構造を有するガスノズル222の先端を個々に覆う構造となっている点で異なる以外、互いに同様の構成をしている。しかしながら、このノズル被覆部224の構造の相違により、ガスノズル222の各ガス流路223が満遍なく均一に温度制御されようになる。その結果、広い面積の基材に均一に成膜でき、原料ガスの供給量を増加させることが可能となる。
したがって、この成膜装置IIIは、ガスノズル222の各ガス流路223とその周囲に取り付けたノズル恒温装置226のノズル被覆部224との間で熱交換し、ガスノズル222の各ガス流路223の温度が所定の温度範囲となるように精密に温度制御されるものとなる。これにより、温度が下がり過ぎて原料が配管内壁やガスノズル部分で析出してしまったり、温度が上がり過ぎて原料が分解して配管内壁やガスノズル部分に付着してしまったりすることを抑制することができることになる。また、ガスノズル222の先端がノズル被覆部224の端面から引っ込んだ状態となっているので、原料がガスノズル222のいずれのガス流路223の先端部分においても分解して析出物が生じることなく、原料ガスの吹き出しを確実に行うことが出来る。
また、ガスノズルを多段に設け、これらのガスノズルを第三温度制御手段としてのノズル恒温装置によって一括して、又は個別に保温しながら、基板上に原料ガスを吹き付けて成膜を行う多段ノズル式の成膜装置を構成することもできる。ノズル恒温装置の構造は、用いる原料ガス種の数に応じて、図5に示す一系統のノズル恒温装置や図6に示す多系統のノズル恒温装置のうちから適宜選択することができる。
図5は、本発明に係る多段ノズル式の成膜装置の第1の例を示す概略構成図である。この多段ノズル式の成膜装置も外熱式装置であり、図5中、符号310は反応炉、311は載置台、312は基材、316は第一温度制御手段としての基材加熱ヒータ、320a〜320cは気化器、321a〜321cは第二温度制御手段としての保温ヒータ、322a〜322cは吐出手段としてのガスノズル、325a〜325cはガス誘導路、326は第三温度制御手段としてのノズル恒温装置、329a〜329cは原料ガス輸送路である。
図5に示す成膜装置は、CVD反応を行なうための反応炉310と、それぞれ異なる母材を気化する3段に配置された気化器320a〜320cと、それぞれの気化器320a〜320cで気化され生成し原料ガス輸送路329a〜329cを通して送られた原料ガスを前記反応炉310内に設置された基材312の被成膜面に対して吹き付けるテーパー状に形成されたガス誘導路325a〜325cを有するガスノズル322a〜322cと、前記反応炉310内に設置された基材312に対する温度制御を行う基材加熱ヒータ316と、それぞれの気化器320a〜320cで気化された原料ガスが前記ガスノズル322a〜322cより吹き出されるまでの原料ガス輸送路329a〜329cに対する温度制御を行う保温ヒータ321a〜321cと、基材加熱ヒータ316および保温ヒータ321a〜321cとは別に、それぞれのガスノズル322a〜322cの先端付近の温度制御を独立して行うノズル恒温装置326を備えて構成されている。
ノズル恒温装置326は、詳細は図示していないが、図5に示すように、3段に配置されたそれぞれのガスノズル322a〜322cの先端付近を一括して覆うノズル被覆部と、このノズル被覆部に対してシリコン系油などの恒温媒体を供給する恒温媒体循環ポンプと、ノズル被覆部と恒温媒体循環ポンプとの間に恒温媒体が循環するように搬送する恒温媒体循環管とを備えて構成されている。
図5に示す成膜装置は、ガスノズル322a〜322cの先端付近にノズル恒温装置326を設けたことにより、ガスノズル322a〜322cの周囲と高温媒体との間で熱交換し、ガスノズル322a〜322cの温度が所定の温度範囲となるように精密に温度制御されるものとなる。これにより、温度が下がり過ぎて原料が配管内壁やガスノズル部分で析出してしまったり、温度が上がり過ぎて原料が分解して配管内壁やガスノズル部分に付着するのを防止でき、長時間安定して成膜を行うことができる。
また図6は、本発明に係る多段ノズル式の成膜装置の第2の例を示す概略構成図である。この多段ノズル式の成膜装置は、前述した図5に示す第1の例とほぼ同様の構成要素を備えて構成され、同一の構成要素には同一符号を付してある。前述した図5に示す第1の例では、3段に配置されたそれぞれのガスノズル322a〜322cの先端付近を1系統のノズル恒温装置326によって一括保温する構成としたが、図6に示す第2の例では、それぞれのガスノズル322a〜322c毎に独立して保温する3系統のノズル恒温装置327a〜327cを設けたことを特徴としている。この3系統のノズル恒温装置327a〜327cは、それぞれ温度制御が可能な連続する三つの領域よりなる三段式のリアクタ構造となっている。
図6に示す成膜装置は、それぞれのガスノズル322a〜322cの先端付近に、それぞれ温度制御が可能な3系統のノズル恒温装置327a〜327cを設けたことにより、それぞれのガスノズル322a〜322cの温度が所定の温度範囲となるように精密に温度制御されるものとなる。これにより、温度が下がり過ぎて原料が配管内壁やガスノズル部分で析出してしまったり、温度が上がり過ぎて原料が分解して配管内壁やガスノズル部分に付着するのを防止でき、長時間安定して成膜を行うことができる。
また、長尺状の基材をその長手方向に移動させながら、該基材上に成膜処理を行う成膜装置は、例えば図7及び図8に示すような構成とすることが出来る。図7は、本発明に係る長尺基材用成膜装置の第1の例を示す概略構成図である。
図7に示す長尺基材用成膜装置は、母材331a〜331cをそれぞれ貯溜する収納容器330a〜330cと、前記収納容器330a〜330cにそれぞれ接続された母材供給器335a〜335cとを備えている。前記母材331a〜331cは、前記収納容器330a〜330cと前記母材供給器335a〜335cとの接続経路中にそれぞれ設けられた輸送手段333a〜333cにより、それぞれの接続管332a〜332cおよび334a〜334cを介して前記母材供給器335a〜335cへそれぞれ送られる。また、前記母材供給器335a〜335cの母材供給部336a〜336cより供給されたそれぞれの母材331a〜331cを気化し、接続する反応炉310内に設置された基材312の被成膜面に対して吹き付け、例えば超電導薄膜または誘電体薄膜を形成する。
前記長尺基材用成膜装置は、気相成長法(CVD法)により内蔵する基材上に成膜処理を行う反応炉310と、前記反応炉310に母材を気化して生成した原料ガスをそれぞれ供給するための3個の気化器320a〜320cと、これらの気化器320a〜320cで気化された原料ガスを前記反応炉310内に設置された基材312の被成膜面に対して吹き付ける吐出手段として機能する3つのガスノズル322a〜322cとを備えている。これらのガスノズル322a〜322cは、個別に隔壁325a〜325cにより周囲が覆われている。
反応炉310は、長手方向に移動するように内部に設置された長尺状の基材312に対する温度制御を行う第一温度制御手段としての加熱ヒータ313a,313bを備えており、それぞれ温度制御が可能な連続する三つの領域よりなる三段式のリアクタ構造となっている。また、この反応炉310は、排気口315を介して真空ポンプ(図示せず)に接続されており、真空ポンプにより反応炉310内を真空排気するようになっている。
また、気化器320a〜320cは、図示しないが、第二温度制御手段としての保温ヒータを備えている。
そして、前記ガスノズル322には、ノズル恒温装置326が具備され、個々に温度制御が可能であり、母材供給器335a〜335cから送液された母材を気化器320a〜320cで気化し、気化した原料ガスを適温に保持しながら反応炉310内に設置され適温に加熱された基材312の被成膜面に対して吹き付け、基材312の被成膜面上で気相反応させる。これにより、長尺状の基材312をその長手方向に移動させながら、この基材312の被成膜面上に、例えば超電導または誘電体の薄膜を成膜させる。
また図8は、本発明に係る長尺基材用成膜装置の第2の例を示す概略構成図である。この長尺基材用成膜装置は、前述した図7に示す長尺基材用成膜装置とほぼ同様の構成要素を備えて構成され、同一の構成要素には同一符号を付してある。
図8に示す長尺基材用成膜装置では、前記ガスノズル322に、それぞれノズル恒温装置327a〜cが具備され、個々に温度制御が可能であり、母材供給器335a〜335cから送液された母材を気化器320a〜320cで気化し、気化した原料ガスを適温に保持しながら反応炉310内に設置され適温に加熱された基材312の被成膜面に対して吹き付け、基材312の被成膜面上で気相反応させる。これにより、長尺状の基材312をその長手方向に移動させながら、この基材312の被成膜面上に、例えば超電導または誘電体の薄膜を成膜させる。
次に、本発明に係る成膜装置を用いる酸化物超電導導体の製造方法を説明する。
本発明の成膜装置を用いる酸化物超電導体の製造方法は、酸化物超電導体の構成元素を含む母材を気化器で気化させ、その原料ガスを反応炉内に導いて反応させ、基板上に酸化物超電導薄膜を成膜して酸化物超電導導体を製造する方法において、前記気化器から前記反応炉へ前記原料ガスを導く輸送路の一端に配された吐出手段に接して設けられた温度制御手段によって、前記吐出手段の中を通過する原料ガスから析出物が生じないように原料ガスの温度を制御しながら酸化物超電導薄膜を成膜することを特徴としている。
本発明の成膜装置を用いる製造方法において、長手方向に移動する長尺基材上に酸化物超電導薄膜を成膜して長尺の酸化物超電導導体を製造する場合は、前述した図7又は図8に示す本発明の長尺基材用成膜装置を用い、反応炉310に設けた第一温度制御手段としての基材加熱ヒータ313a,313bによって反応炉310内の成膜雰囲気の温度を制御し、気化器320a〜320cに設けた第二温度制御手段としての気化保温ヒータ321a〜321cによって母材331a〜331cを気化させる温度を制御し、さらに吐出手段としてのガスノズル322a〜322cに接して設けられた第三温度制御手段としてノズル恒温装置326,327a〜327cによってガスノズル322a〜322cの中を通過する原料ガスから析出物が生じないように原料ガスの温度を制御しながら酸化物超電導薄膜を成膜することによって実施することが望ましい。

酸化物超電導薄膜を構成する酸化物超電導体としては、YBaCu、YBaCu、YBaCuなる組成、あるいは(Bi,Pb)CaSrCu、(Bi,Pb)CaSrCuなる組成、あるいは、TlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い酸化物超電導体が挙げられるが、これら以外の酸化物系の超電導体を用いてもよい。
また基材としては、銀、銀合金、銅、銅合金、ハステロイなどの金属製基材や、これらの金属製基材の表面に酸化イットリウムなどの酸化物からなる中間層を成膜した基材を用いることが好ましい。基材の形状は限定されず、製造する酸化物超電導導体の用途等によって適宜選択可能であり、例えば、長尺テープ状の基材などが使用可能である。
母材331a〜331cは、基板上に成膜する酸化物超電導薄膜の材質に応じて適宜選択して用いることができ、例えば、YBaCuなる組成の酸化物超電導薄膜を成膜する場合には、Y(DPM)、Cu(DPM)、Ba(DPM)といった有機金属錯体を原料とする場合が多い。ここで、DPMはジピバロイルメタン((CHCCOCHCOC(CH)を示す。これらの粉末原料は、直接加熱して昇華させる場合や、THF(テトラヒドロフラン:CO)などの有機溶媒に溶解したものを原料とし加熱して気化させ、前記粉末原料を気体に変換させる場合があるが、いずれの場合も、220〜250℃に加熱することで原料を気体にする。
図7に示す長尺基材用成膜装置を用いて、長尺テープ状の基材表面に酸化物超電導薄膜を成膜して酸化物超電導導体(テープ線材)を製造する方法を説明する。
まず、反応炉310内に基材312を長手方向に移動可能に配置し、第一温度制御手段としての基材加熱ヒータ313a,313bによって反応炉310内の成膜雰囲気の温度を制御し、気化器320a〜320cに設けた第二温度制御手段としての気化保温ヒータ321a〜321cによって母材331a〜331cを気化させる温度を制御する。さらにガスノズル322a〜322cに接して設けられた第三温度制御手段としてのノズル恒温装置326によってガスノズル322a〜322cの中を通過する原料ガスから析出物が生じないように原料ガスの温度を制御しながら、それぞれの気化器320a〜320cから原料ガスを反応炉310内に導入する。反応炉310内は図示しない排気手段により所定の真空度に保たれている。
ガスノズル322a〜322cから反応炉310内に導入された原料ガスは、高温に加熱された基材の被成膜面に接して熱分解及び酸化反応を生じ、基材表面に酸化物超電導体からなる酸化物超電導薄膜が成膜される。長尺の基材312を所定速度で移動させつつ、その表面に酸化物超電導薄膜を成膜することで、長尺テープ状の酸化物超電導導体(テープ線材)が製造される。
この酸化物超電導体の製造方法は、ガスノズル322a〜322cに接して設けられたノズル恒温装置326によって、ガスノズル322a〜322cの中を通過する原料ガスから析出物が生じないように原料ガスの温度を制御しながら酸化物超電導薄膜を成膜することによって、析出物の除去作業の頻度を減らし、長時間安定した薄膜の形成作業が可能となり、長尺テープ状線材などの長尺の酸化物超電導導体を効率よく製造することができる。
また、図8に示す長尺基材用成膜装置を用いて、酸化物超電導導体(テープ線材)を製造する場合、前述した方法と同じく、反応炉310内に基材312を長手方向に移動可能に配置し、第一温度制御手段としての基材加熱ヒータ313a,313bによって反応炉310内の成膜雰囲気の温度を制御し、気化器320a〜320cに設けた第二温度制御手段としての気化保温ヒータ(図6の符号321a〜321c参照)によって母材331a〜331cを気化させる温度を制御する。さらにガスノズル322a〜322cに接して設けられた第三温度制御手段としてのノズル恒温装置326によってガスノズル322a〜322cの中を通過する原料ガスから析出物が生じないように原料ガスの温度を制御しながら、それぞれの気化器320a〜320cから原料ガスを反応炉310内に導入する。反応炉310内は図示しない排気手段により所定の真空度に保たれている。ただし、図8に示す装置では、各ガスノズル322a〜322cの温度をノズル恒温装置327a〜327cによって個別に制御できることから、3つの気化器320a〜320cにそれぞれ異なる母材331a〜331cを入れ、各ガスノズルガスノズル322a〜322c毎に個別に原料ガスの温度を制御することができる。
この酸化物超電導体の製造方法は、ガスノズル322a〜322cに接して設けられたノズル恒温装置327a〜327cによって、ガスノズル322a〜322cの中を通過する原料ガスから析出物が生じないように原料ガスの温度を制御しながら酸化物超電導薄膜を成膜することによって、析出物の除去作業の頻度を減らし、長時間安定した薄膜の形成作業が可能となり、長尺テープ状線材などの長尺の酸化物超電導導体を効率よく製造することができる。また、各ガスノズル322a〜322cの温度をノズル恒温装置327a〜327cによって個別に制御することで、3つの気化器320a〜320cにそれぞれ異なる母材331a〜331cを入れて酸化物超電導導体の成膜が可能なので、基材と酸化物超電導薄膜との間に拡散防止層などの中間層を形成するなど、種々の形態の酸化物超電導導体の製造に適用できる。
[比較例]
図13に示す従来技術の長尺基材用成膜装置を用い、表1に示す作製条件でAgテープ基材上にYBaCuからなる酸化物超電導薄膜を成膜して長尺テープ状の酸化物超電導導体(YBCOテープ線材)を作製した。この比較例では、ガスノズルの先端付近をノズル恒温装置によって保温しなかった。母材はY(DPM)、Cu(DPM)及びBa(DPM)とをTHFに溶解させたTHF原料溶液を用いた。
Figure 0004451230
この結果、約30時間でノズル部の詰まりが生じ、実験を継続できなくなったため、得られたYBCOテープ線材の長さは90mに留まった。
得られたYBCOテープ線材の長手方向の臨界電流密度(Jc)を測定し、結果を図9に示す。図9のグラフに示す通り、YBCOテープ線材の臨界電流密度(Jc)は長手方向に対して徐々に劣化する傾向が認められた。
[実施例1]
図7に示す本発明に係る長尺基材用成膜装置を用い、表2に示す作製条件でAgテープ基材上にYBaCuからなる酸化物超電導薄膜を成膜して長尺テープ状の酸化物超電導導体(YBCOテープ線材)を作製した。この実施例1では、ガスノズルの先端付近をノズル恒温装置によって一括して保温した。ノズル恒温装置用の恒温媒体としてはシリコン油を用い、ノズル先端付近を235℃に保温した。母材はY(DPM)、Cu(DPM)及びBa(DPM)とをTHFに溶解させたTHF原料溶液を用いた。
Figure 0004451230
この結果、1本の長さ100mのYBCOテープ線材を作製でき、30時間以上にわたり問題なく連続運転が可能であった。また、引き続き同様な条件で5本の100m線材を作製することができ、ノズル部の洗浄など行わないで延べ約200時間のCVD成膜運転が可能であった。さらに、200時間の成膜実験後、ノズル部を目視で確認した結果、ほとんど汚れや原料付着は認められなかったため、さらに長時間の連続運転が可能であると考えられる。
作製した6本のYBCOテープ線材の超電導特性を測定したところ、6本の線材の特性は殆ど同じであり、長手方向に対する特性劣化傾向も認められたかった。得られたYBCOテープ線材の長手方向の臨界電流密度(Jc)を図9に示す。
[実施例2]
図8に示す本発明に係る長尺基材用成膜装置を用い、表3に示す作製条件でAgテープ基材上にYBaCuからなる酸化物超電導薄膜を成膜して長尺テープ状の酸化物超電導導体(YBCOテープ線材)を作製した。この実施例2では、ガスノズルの先端付近を3系統のノズル恒温装置によってそれぞれ個別に保温した。ノズル恒温装置用の恒温媒体としてはシリコン油を用いた。反応室No.1でCuの先行成膜を、No.2及びNo.3反応室でYBaCuからなる酸化物超電導薄膜の成膜を行った。母材はY(DPM)、Cu(DPM)及びBa(DPM)とをTHFに溶解させたTHF原料溶液を用いた。
Figure 0004451230
この結果、1本の長さ100mのYBCOテープ線材を作製でき、100時間にわたり問題なく連続運転が可能であった。
作製したYBCOテープ線材の超電導特性を測定したところ、この線材の臨界電流密度(Jc)は、従来の製法である比較例1で作製した線材に比べ約1.5倍に改善された。得られたYBCOテープ線材の長手方向の臨界電流密度(Jc)を図9に示す。
本発明の実施形態に係る成膜装置の構造を説明する概略断面図である。 図1に示す成膜装置に具備されたノズル恒温装置を示す概略底面図である。 本発明の他の実施形態に係る成膜装置の構造を説明する概略断面図である。 本発明の他の実施形態に係る成膜装置の構造を説明する概略断面図である。 本発明の他の実施形態に係る成膜装置の構造を説明する概略構成図である。 本発明の他の実施形態に係る成膜装置の構造を説明する概略構成図である。 本発明の他の実施形態に係る成膜装置の構造を説明する概略構成図である。 本発明の他の実施形態に係る成膜装置の構造を説明する概略構成図である。 実施例の結果を示すグラフである。 従来技術の内熱式成膜装置の概念構造を示す概略図である。 従来技術の外熱式成膜装置の概念構造を示す概略図である。 従来技術の長尺基材用の成膜装置のうち単独の気化器を備える成膜装置を示す概略構成図である。 従来技術の長尺基材用の成膜装置のうち3段に気化器を備える成膜装置を示す概略構成図である。
符号の説明
10,100,200,310…反応炉、12,112,212,312…基材、13,130,230,313a,313b…基材加熱ヒータ(第一温度制御手段)、15,115,215…真空ポンプ、16,116,216…圧力計、17,117,217…排気口、20,120,220,320a〜320c…気化器、21,121,221,321a〜321c…気化保温ヒータ(第二温度制御手段)、22,122,222,322a〜322c…ガスノズル(吐出手段)、23,123,223…ガス流路、24,124,224…ノズル被覆部、25,125,225,325a〜325c…ガス誘導路、26,126,226,326,327a〜327c…ノズル恒温装置(第三温度制御手段)、27…恒温媒体循環ポンプ、28…恒温媒体循環管、29,129,229…輸送路、330a〜330c…収納容器、331a〜331c…母材、333a…母材供給ポンプ(輸送手段)、335a…母材供給器。

Claims (5)

  1. 気相成長法により基材上に成膜処理を行う反応炉、母材を気化して原料ガスを生成する気化器、前記気化器から前記反応炉へ前記原料ガスを導く輸送路、及び、前記輸送路の一端に配され、前記基材の被成膜面に対して前記原料ガスを放出する吐出手段を少なくとも備えてなる成膜装置であって、前記反応炉内の成膜雰囲気の温度を制御するために前記反応炉に設けた第一温度制御手段と前記母材を気化させるために前記気化器に設けた第二温度制御手段に加えて、前記吐出手段の中を通過する原料ガスの温度を制御するために前記吐出手段に設けた第三温度制御手段を有するとともに、
    前記吐出手段が原料ガス輸送路の先端に設けられて前記反応炉内部に連通したガスノズルであり、前記第三温度制御手段が前記ガスノズル先端より先方に突出してガスノズルの周囲を覆うノズル被覆部を備えるノズル恒温装置であり、前記ノズル被覆部の先端面から引っ込んだ位置に前記ガスノズルの先端部を位置させてなり、前記ノズル恒温装置が前記ガスノズルの温度制御を行うことにより前記ガスノズルを通過する原料ガスの温度制御を行うことを特徴とする成膜装置。
  2. 前記吐出手段はその先端にガス誘導路を備え、前記第三温度制御手段は該ガス誘導路の温度も制御することを特徴とする請求項1記載の成膜装置。
  3. 前記ガス誘導路は、その内形断面がストレート状であることを特徴とする請求項2に記載の成膜装置。
  4. 前記ガス誘導路は、その内形断面がテーパー状であることを特徴とする請求項2に記載の成膜装置。
  5. 前記ガス誘導路は、分岐構造を備えることを特徴とする請求項3又は4記載の成膜装置。
JP2004188105A 2004-02-13 2004-06-25 成膜装置 Expired - Fee Related JP4451230B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188105A JP4451230B2 (ja) 2004-02-13 2004-06-25 成膜装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004037236 2004-02-13
JP2004188105A JP4451230B2 (ja) 2004-02-13 2004-06-25 成膜装置

Publications (2)

Publication Number Publication Date
JP2005256160A JP2005256160A (ja) 2005-09-22
JP4451230B2 true JP4451230B2 (ja) 2010-04-14

Family

ID=35082179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188105A Expired - Fee Related JP4451230B2 (ja) 2004-02-13 2004-06-25 成膜装置

Country Status (1)

Country Link
JP (1) JP4451230B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118408A1 (ja) * 2010-03-24 2011-09-29 積水化学工業株式会社 プラズマ処理装置
US20120180725A1 (en) * 2011-01-17 2012-07-19 Furukawa Electric Co., Ltd. Cvd apparatus

Also Published As

Publication number Publication date
JP2005256160A (ja) 2005-09-22

Similar Documents

Publication Publication Date Title
US7387811B2 (en) Method for manufacturing high temperature superconducting conductors using chemical vapor deposition (CVD)
US8268386B2 (en) Method for manufacturing high-temperature superconducting conductors
KR101200360B1 (ko) 층상 초전도체 필름의 제조방법
JP5015408B2 (ja) 高電流被覆高温超伝導テープの製造方法
US7910155B2 (en) Method for manufacturing high temperature superconducting conductor
WO1996028585A1 (en) Showerhead discharge assembly for delivery of source reagent vapor to a substrate, and cvd process
CN111441015A (zh) 沉积装置、沉积设备及其操作方法
JP4451230B2 (ja) 成膜装置
JP2007521392A (ja) 多層膜高温超伝導(hts)コートテープを製造する有機金属気相成長(mocvd)プロセス、および装置
JP3741861B2 (ja) Cvd反応装置
JP3741860B2 (ja) 酸化物超電導導体の製造装置および製造方法
JP3913314B2 (ja) Cvd用液体原料供給装置
JP3392299B2 (ja) Cvd用原料溶液気化装置
JP3657427B2 (ja) Cvd用液体原料供給装置
JP3808250B2 (ja) Cvd反応装置及び酸化物超電導体の製造方法
JP3756322B2 (ja) 酸化物超電導導体の製造装置および製造方法
JP3817123B2 (ja) Cvd装置
JP4112314B2 (ja) 酸化物超電導導体製造cvd反応装置用液体原料供給装置及び酸化物超電導導体の製造方法
JP3939486B2 (ja) Cvd用液体原料供給装置
JP4263546B2 (ja) Cvd用液体原料供給装置、cvd装置、及び酸化物超電導体の製造方法
KR20030078203A (ko) 유기금속화학증착장치용 반응기의 가스분사장치
JPS63307277A (ja) 金属酸化物薄膜作製用の光mocvd装置
US5882412A (en) Vertical two chamber reaction furnace
JP3342785B2 (ja) 酸化物超電導導体の製造装置および製造方法
JPS63307276A (ja) 超伝導体薄膜作製用のmocvd装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees