JP4447469B2 - プラズマ発生装置、オゾン発生装置、基板処理装置、及び半導体デバイスの製造方法 - Google Patents

プラズマ発生装置、オゾン発生装置、基板処理装置、及び半導体デバイスの製造方法 Download PDF

Info

Publication number
JP4447469B2
JP4447469B2 JP2004564541A JP2004564541A JP4447469B2 JP 4447469 B2 JP4447469 B2 JP 4447469B2 JP 2004564541 A JP2004564541 A JP 2004564541A JP 2004564541 A JP2004564541 A JP 2004564541A JP 4447469 B2 JP4447469 B2 JP 4447469B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
plasma
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004564541A
Other languages
English (en)
Other versions
JPWO2004061929A1 (ja
Inventor
徳芳 佐藤
武志 谷口
寛 真瀬
修逸 藤井
民也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Publication of JPWO2004061929A1 publication Critical patent/JPWO2004061929A1/ja
Application granted granted Critical
Publication of JP4447469B2 publication Critical patent/JP4447469B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • C01B13/115Preparation of ozone by electric discharge characterised by the electrical circuits producing the electrical discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/10Dischargers used for production of ozone
    • C01B2201/12Plate-type dischargers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/22DC, AC or pulsed generators

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、プラズマ発生装置、オゾン発生装置、及び基板処理装置に係り、特に、大気圧下で非定常放電を起こしてプラズマ及びオゾンを発生するのに適した装置に関する。
基板処理装置は、半導体基板又はガラス基板などの基板に成膜したり、膜を改質したりするなどの処理を行う装置である。この成膜、改質などの処理にオゾンが利用されることが多い。このオゾンを発生する方式として、最も一般的なものが無声放電を用いた方式がある。
大気圧下の放電では、通常、非定常放電(非アーク放電、非熱プラズマ)を用いる。非定常放電を用いるのは、大気圧における放電破壊(点弧)が、グロー放電からアーク放電を経て装置の熱的破壊まで進展する恐れがあるので、定常放電が困難であことに由来する。無声放電は、誘電体を挿入した電極間に電圧を印加する際に、大気放電下で観察される放電現象であり、誘電体の挿入により非定常放電となる。この放電を利用してオゾンを発生する。この無声放電を利用したオゾン発生装置は、具体的には、第21図に示すように、一対の平行平板電極1、1のうちいずれか一方(第21図(a))、または両方(第21図(b))に誘電体2を設け、電極1、1間に交流高電圧を印加することにより、大気圧下の電極間1、1で間欠的にプラズマ放電させる。この放電雰囲気中に酸素Oもしくは乾燥空気を流して、プラズマの高エネルギー電子を利用してオゾンOを生成し、混合ガス(O+O)を取り出すものである。
また、オゾンを発生するために、無声放電の一種である沿面放電を用いる場合もある。沿面放電は、第22図に示すように、誘電体3を挟んで一方に面電極となる誘電電極4、もう一方に線電極となる放電電極5を設ける。この両電極4、5間に交流高圧電源6から交流高電圧を印加すると、放電電極5と誘電体3の間で放電する。この放電雰囲気7中に酸素Oもしくは乾燥空気を供給することでオゾンOを発生させることができる。
上述した無声放電方式は、電源としては10〜10000Hzの高電圧AC電源でよく、放電部も電極間に誘電体を挿入したり、誘電体に電極を埋め込んだりするという簡単な構造で良いため、オゾン発生装置に専ら利用されている。
この無声放電に関連する従来技術としては、例えば特許文献1に記載の技術が知られている。これは、電極対間に、導電体の全面に絶縁体を被覆して形成した粒状体を充填し、粒状体中の導電体が小さい電極を構成し、絶縁体が誘電体バリアを構成する。誘電体バリア放電により、粒状体と粒状体との間隙でガスがプラズマ化する。粒状体の間隙が小さいため、酸素や窒素などの放電開始電圧の大きいガスであっても、極めて小さい印加電力で均質なグロー放電を発生させることができ、プラズマ及びオゾンを発生することができる。
特許文献1:特開平8−321397号公報
しかしながら、上述した特許文献1に記載の無声放電を利用したオゾン発生装置は、導電体の全面に絶縁体を被覆して電極間に充填しなければならないため、構造が複雑である。また、誘電体バリア放電であって、放電電流(プラズマ密度)は誘電体の小さな静電容量により制限されるので、小さな印加電圧で安定に放電させることはできても、放電エネルギー密度を大きくすることはできない。したがって、高効率でプラズマを生成することも、高効率でオゾンを発生することもできない。また、上記したような電極間に導電体で被覆された誘電体を充填する構成であるため、取り扱いも容易でない。
なお、無声放電に代えて短パルス放電やRF放電方式を採用することも考えられるが、短パルス放電は、10〜1000puls/sの高電圧短パルス発生器が必要となるので、電源が高価となり、しかも高度なパルス圧縮技術を必要とする。また、RF放電は、無声放電の高周波化したものであり、高周波電源(13.56MHz)を必要とするうえ、放電電流を制限する容量を放電電極(以下、電極部ともいう)が兼ねているため、放電電極形状に制約され、多様な形状のプラズマ源を形成することができない。また、短パルス放電及びRF放電に共通して言えることは、装置が大型化し、プラズマ源の大面積化が困難である点である。
本発明の課題は、放電電流制限用の容量を放電電極と切り離すことによって、上述したような従来技術の問題点を解決して、簡単な構造でありながら、プラズマを高効率に発生することが可能なプラズマ発生装置及び基板処理装置を提供することにある。また、本発明の課題は、オゾンを高効率に発生することが可能なオゾン発生装置及び基板処理装置を提供することにある。また、本発明の課題は、取り扱いが容易なプラズマ発生装置、オゾン発生装置、及び基板処理装置を提供することにある。
第1の発明は、複数の電極からなる電極部と、この電極部と直列に接続され電荷を蓄積する電荷蓄積部と、前記電極部と電荷蓄積部間に交流電圧を印加する交流電源とを有し、この交流電源により前記電極部と電荷蓄積部間に交流電圧を印加することにより、電極部の複数の電極間に間欠的に放電を生じさせてプラズマを発生させることを特徴とするプラズマ発生装置である。
電極部に印加される交流電圧が放電開始電圧を越えると、電極間は短絡状態と同様になり、電極部は放電を開始してプラズマを発生するが、電極部と直列に電荷蓄積部が接続されているので、その放電は、電荷蓄積部への電荷を蓄積する時間だけ成立し、電荷蓄積が完了すると停止する。これにより電極間に誘電体を挿入しなくても、電荷蓄積部によって放電電流が制限され、間欠放電を生じさせることになる。
電極間は、短絡状態となって大電流放電を起こすので、無声放電と比べて放電エネルギー密度が大きくなり、大気圧下でもプラズマを高効率に形成できる。
また、電極部の複数の電極間に生じる放電は自己消弧放電となって間欠的となり、アーク放電となる前に消弧するので電極部へのダメージを低減することができる。
また、放電電流は、電極部に直列接続した電荷蓄積部によって制限されるので、電荷蓄積部を独立して持たず放電電流が電極部によって制限されるものと異なり、電極部の電極形状の制約がなくなる。
なお、放電により発熱する電極部を構成する複数の電極は、放熱性に優れる金属電極が好ましい。また、電荷蓄積部は電荷を蓄積し、蓄積した電荷を放電するだけでよいため、簡易なコンデンサで構成することができる。また、電源は安価な交流電源で構成することができる。
第2の発明は、複数の電極からなる電極部と、この電極部と直列に接続され電荷を蓄積する電荷蓄積部と、前記電極部と電荷蓄積部間に交流電圧を印加する交流電源とを有し、この交流電源により前記電極部と電荷蓄積部間に交流電圧を印加することにより、電極部の複数の電極間に間欠的に放電を生じさせ、この放電雰囲気中に酸素原子を含むガスを供給することによりオゾンを発生させることを特徴とするオゾン発生装置である。
第2の発明は、第1の発明にて生じさせたプラズマを用いてオゾンを発生するようにしたものであり、オゾンを高効率に発生することができる。
第3の発明は、第1の電極と、第1の電極の周囲に設けられた絶縁体又は誘電体と、絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、第1の電極と対向する第3の電極と、第2の電極と第3の電極間に電圧を印加する電源とを有し、この電源により第2の電極と第3の電極間に電圧を印加することにより、第1の電極と第3の電極間に放電を生じさせてプラズマを発生させることを特徴とするプラズマ発生装置である。第2の電極と第3の電極間には交流電圧を印加するのが好ましい。
第1の電極の周囲に絶縁体又は誘電体を設け、その周囲に第2の電極を設けることで、第3の電極と対になる電極部の第1の電極をユニット化しているので、電極部の取り扱いが容易になる。また、装置をコンパクト化できる。
また、第2の電極と第3の電極電間に電圧が印加されることにより、第1の電極と第3の電極間に生じる電圧が放電開始電圧を越えると、第1の電極と第3の電極間は短絡状態となって大電流放電を起こし、プラズマを高効率に形成できる。
第4の発明は、第3の発明において、前記絶縁体または誘電体を介在させた第1の電極と第2の電極により電荷を蓄積する電荷蓄積部が形成されることを特徴とするプラズマ発生装置である。第1の電極と第2の電極との間に絶縁体または誘電体を介在させて電荷蓄積部を構成するので、ユニット構造を簡素化できる。
第5の発明は、第3の発明において、前記第2の電極と第3の電極間に交流電圧を印加することにより、第1の電極と第3の電極間にパルス放電を生じさせ間欠的にプラズマを発生させることを特徴とするプラズマ発生装置である。パルス放電を生じさせるので、プラズマ発生の際、電極部へのダメージをより低減することが可能になる。
第6の発明は、第3の発明において、前記プラズマは大気圧下で発生させることを特徴とするプラズマ発生装置である。プラズマを大気圧下で発生させても、電極ユニットを構成する第1の電極と第2の電極との間に絶縁体又は誘電体が介在しているので、第1の電極と第3の電極間に生じる放電がグロー放電からアーク放電を経て装置の熱的破壊まで進展することを防止できる。
第7の発明は、第3の発明において、前記電極ユニットは複数設けられることを特徴とするプラズマ発生装置である。電極ユニットを複数設けて、各電極ユニットを構成する第1の電極を第3の電極と対向させることで、電極部を多極化することができる。電極部を多極化することによって、任意形状のプラズマ源を形成することができる。また、放電回路を低インピーダンス化できるので、高プラズマ密度で大面積のプラズマ源を実現できる。
第8の発明は、第3の発明において、前記電極ユニットは第3の電極の周囲に複数設けられることを特徴とするプラズマ発生装置である。電極ユニットを複数設けて多極化しても、複数の電極ユニットを第3の電極の周囲に設けるので、装置をコンパクト化できる。
第9の発明は、第3の発明において、、前記第3の電極の第1の電極と対向する部分に凸部又は凹部又は開孔を設けたことを特徴とするプラズマ発生装置である。対向する部分に凸部又は凹部又は開孔を設けると、対向する部分に電荷が集中して放電が容易になり、プラズマをより高効率に形成できる。
第10の発明は、第3の発明において、前記第1の電極を棒状としたことを特徴とするプラズマ発生装置である。電極を棒状として電荷の集中をはかるようにしたので、第1の電極と第3の電極間の放電が容易になり、プラズマをより高効率に形成できる。
第11の発明は、第3の発明において、前記第1の電極を筒状としたことを特徴とするプラズマ発生装置である。第1の電極を筒状とすることにより、第1の電極の筒内を通して、プラズマを生成する原料ガスを供給したり、プラズマによって生成されたガスを取り出したりすることができる。
第12の発明は、第3の発明において、前記絶縁体または誘電体、または/および第2の電極を筒状としたことを特徴とするプラズマ発生装置である。絶縁体または誘電体、または/および第2の電極を筒状とすると、電極ユニットを筒で覆う多重構造にできるので、装置をよりコンパクト化できる。
第13の発明は、第3の発明において、少なくとも前記第1の電極または/および第3の電極を金属製としたことを特徴とするプラズマ発生装置である。電極を金属製とすると、第1の電極と第3の電極間の放電により生じた熱を逃すことが容易になる。
第14の発明は、第3の発明において、前記前記第1の電極または/および第3の電極を冷媒にて冷却するよう構成したことを特徴とするプラズマ発生装置である。電極を冷却すると、放電によって発生する熱を効率良く逃がすことできる。
第15の発明は、第1の電極と、第1の電極の周囲に設けられた絶縁体又は誘電体と、絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、第1の電極と対向する第3の電極と、第2の電極と第3の電極間に電圧を印加する電源とを有し、この電源により第2の電極と第3の電極間に電圧を印加することにより、第1の電極と第3の電極間に放電を生じさせ、この放電雰囲気中に酸素原子を含むガスを供給することによりオゾンを発生させることを特徴とする基板処理装置である。電極ユニットを用いるので装置の組み立てが容易になり、オゾンを高効率に発生できるコンパクトな装置が得られる。
第16の発明は、基板を処理する処理室と、プラズマを発生させるプラズマ発生装置とを有し、プラズマ発生装置により発生させたプラズマに処理ガスを晒すことにより得た反応物を用いて基板を処理する基板処理装置において、前記プラズマ発生装置は、第1の電極と、第1の電極の周囲に設けられた絶縁体又は誘電体と、絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、第1の電極と対向する第3の電極と、第2の電極と第3の電極間に電圧を印加する電源とを有し、第2の電極と第3の電極間に電圧を印加することにより、第1の電極と第3の電極間に放電を生じさせプラズマを発生させるよう構成されることを特徴とする基板処理装置である。電極ユニットを用いるので装置の組み立てが容易になり、プラズマを高効率に発生して基板の処理を改善できるコンパクトな装置が得られる。
第17の発明は、基板を処理する処理室と、オゾンを発生させるオゾン発生装置とを有し、オゾン発生装置により発生させたオゾンを用いて基板を処理する基板処理装置において、前記オゾン発生装置は、第1の電極と、第1の電極の周囲に設けられた絶縁体又は誘電体と、絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、第1の電極と対向する第3の電極と、第2の電極と第3の電極間に電圧を印加する電源とを有し、第2の電極と第3の電極間に電圧を印加することにより、第1の電極と第3の電極間に放電を生じさせ、この放電雰囲気中に酸素原子を含むガスを供給することによりオゾンを発生させるよう構成されることを特徴とする基板処理装置である。電極ユニットを用いるので装置の組み立てが容易になり、オゾンを高効率に発生して基板の処理を改善できるコンパクトな装置が得られる。
第18の発明は、第1の電極と、第1の電極の周囲に設けられた絶縁体又は誘電体と、絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、第1の電極と対向する第3の電極とを有し、第2の電極と第3の電極間に電圧を印加することにより、第1の電極と第3の電極間に放電を生じさせプラズマを発生させる工程と、このプラズマに処理ガスを晒すことにより得た反応物を用いて基板を処理する工程と、を有することを特徴とする半導体デバイスの製造方法である。電極ユニットを用いてプラズマを高効率に発生させて基板の処理を改善し、高品質の半導体デバイスを製造できる。
第19の発明は、第18の発明において、前記プラズマ発生工程では、前記第2の電極と第3の電極間に交流電圧を印加することにより、第1の電極と第3の電極間にパルス放電を生じさせ間欠的にプラズマを発生させることを特徴とする半導体デバイスの製造方法である。パルス放電によりプラズマを発生させるので、プラズマ発生の際、電極部へのダメージをより低減することができる。
第20の発明は、第18の発明において、前記基板を処理する工程では、放電を生じさせた雰囲気中に酸素原子を含むガスを晒すことにより得たオゾンを用いて基板を処理することを特徴とする半導体デバイスの製造方法である。オゾンを高効率に発生させて基板の処理を改善し、高品質の半導体デバイスを製造できる。
第21の発明は、第18の発明において、前記処理とは、基板または基板上に形成された薄膜の表面改質を行う処理であることを特徴とする半導体デバイスの製造方法である。プラズマを高効率に発生させることができるので、優れた表面改質を行うことができる。
第22の発明は、第18の発明において、前記処理とは、基板上にCVD膜を形成する処理であることを特徴とする半導体デバイスの製造方法である。プラズマを高効率に発生させることができるので、優れたCVD膜形成を行うことができる。
第23の発明は、第18の発明において、前記処理とは、基板上に形成された膜をエッチングする処理であることを特徴とする半導体デバイスの製造方法である。プラズマを高効率に発生させることができるので、優れた膜エッチングを行うことができる。
第24の発明は、第18の発明において、前記処理とは、基板を洗浄する処理であることを特徴とする半導体デバイスの製造方法である。プラズマを高効率に発生させることができるので、優れた基板洗浄を行うことができる。
第25の発明は、基板にガスを供給して基板を処理する工程と、第1の電極と、第1の電極の周囲に設けられた絶縁体又は誘電体と、絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、第1の電極と対向する第3の電極とを有し、第2の電極と第3の電極間に電圧を印加することにより、第1の電極と第3の電極間に放電を生じさせプラズマを発生させる工程と、このプラズマを用いて基板処理の際に生じる排気ガスを分解する工程と、を有することを特徴とする半導体デバイスの製造方法である。プラズマを高効率に発生させることができるので、優れた排気ガス分解を行うことができる。
第26の発明は、複数の電極からなる電極部と、この電極部と直列に接続され電荷を蓄積する電荷蓄積部と、前記電極部及び電荷蓄積部に設けられた交流電源に接続される端子とを備えた放電器であって、前記端子を介して前記電極部と電荷蓄積部間に交流電圧を印加することにより、電極部の複数の電極間に間欠的に放電を生じさせてプラズマを発生させるためのプラズマ放電器である。第1の電極の周囲に絶縁体又は誘電体を設け、その周囲に第2の電極を設けることで、第3のの電極と対になる電極部の第1の電極をユニット化しているので、電極部の取り扱いが容易になる。また、第2の電極と第3の電極電間に交流電圧が印加されることにより、第1の電極と第3の電極間に生じる交流電圧が放電開始電圧を越えると、第1の電極と第3の電極間は短絡状態となって大電流放電を起こし、プラズマを高効率に形成できる。
第27の発明は、第1の電極と、第1の電極の周囲に設けられた絶縁体又は誘電体と、絶縁体または誘電体の周囲に設けられた第2の電極とからなるプラズマ発生用の電極ユニットである。電極ユニットを構成する第1の電極を第3の電極に対向させて、第3の電極と第2の電極間に電圧を印加すると、第1の電極と第3の電極間に放電が生じてプラズマを発生させることができる。プラズマを発生させる第3の電極以外の部品がユニット化されているので、取り扱いが容易になる。
第28の発明は、複数の電極からなる電極部と、この電極部と直列に接続され電荷を蓄積する複数の電荷蓄積部と、前記電極部と複数の電荷蓄積部間とで形成される複数の直列接続部を並列に接続した回路に対して交流電圧を印加する交流電源とを有し、この交流電源により前記電極部と複数の電荷蓄積部間とで形成される複数の直列接続部を並列に接続した回路に対して交流電圧を印加することにより、電極部の複数の電極間に間欠的に放電を生じさせてプラズマを発生させることを特徴とするプラズマ発生装置である。
第1図は、実施の形態によるプラズマ発生装置の等価回路図である。
第2図は、実施の形態による印加電圧とプラズマ注入電力の関係を示す図である。
第3図は、実施の形態による容量結合電極の構成図であって、(a)は縦断面図、(b)は斜視図である。
第4図は、実施の形態による容量結合電極を複数並べた多極化の構成例を示す図である。
第5図は、実施の形態による容量結合電極を複数並べた多極化プラズマ発生装置の全体構成図である。
第6図は、実施の形態による多極化配列例の平面図である。
第7図は、実施の形態による多極化配列例の平面図である。
第8図は、実施の形態による多極化配列例の断面図である
第9図は、実施の形態による対向電極と浮遊電極とから構成される電極部の説明図であり、(a)は対向電極の背面図、(b)は電極部の側面図である。
第10図は、実施の形態によるガス導入法を示す説明図である。
第11図は、実施の形態によるガス導入法を示す説明図である。
第12図は、実施の形態によるガス導入法を示す説明図である。
第13図は、実施の形態によるガス導入法を示す説明図である。
第14図は、実施の形態による縦型拡散装置の反応炉の構成図である。
第15図は、実施の形態による縦型CVD装置の反応炉の構成図である。
第16図は、実施の形態によるCVD枚葉装置の反応炉の構成である。
第17図は、実施の形態による洗浄装置の構成図である。
第18図は、実施の形態による枚葉式のエッチング装置の構成図である。
第19図は、オゾンを用いたエッチング(アッシング)原理図である。
第20図は、実施の形態による排ガス処理装置を備えるCVD枚葉装置例の構成である。
第21図は、従来例の無声放電方式の原理図である。
第22図は、従来例の沿面放電の原理図である。
第23図は、実施の形態の変形例による容量結合電極を複数並べた多極化の構成例を示す図である。
第24図は、第4図の多極化プラズマ発生装置の等価回路図である。
10 電極部
11、12 電極
13 消弧コンデンサ(電荷蓄積部)
15 交流電源
20 電極ユニット
21 第1の電極
22 絶縁体
23 第2の電極
34 対向電極(第3の電極)
以下に本発明の実施の形態を説明する。
第1図はプラズマ発生装置の原理を説明する等価回路図を示す。
プラズマ発生装置は、対向する2つの電極11、12から構成される電極部10と、この電極部10と直列に接続され電荷を蓄積する電荷蓄積部としての消弧コンデンサ13(容量C)と、電極部10及び消弧コンデンサ13の直列回路の両端に接続される端子14、14と、端子14、14を介して電極部10と消弧コンデンサ13間に交流電圧を印加する交流電源15と、この交流電源15と並列に接続され電源電圧を安定化して電源を補助する電源補助用コンデンサ16(容量C)とを有する。2つの電極11、12は例えば金属電極で構成される。金属としては銅やステンレス等を用いることができる。金属電極11、12間には誘電体は存在しない。金属電極11、12間には大気が存在してコンデンサ(容量C)を構成し、金属電極11、12間で放電を起こすようになっている。交流電源15は高電圧AC電源で構成され、そのAC電圧は、放電ギャップGの大きさによっても異なるが、例えば数kV程度以上、AC周波数は50〜10000Hzである。交流電源15により電極部10と消弧コンデンサ13間に交流電圧を印加することにより、電極部10の電極11、12間に間欠的に放電が生じてプラズマを発生する。
間欠放電が生じる原理を、印加電圧とプラズマ注入電力(放電電流に対応する)を示す第2図を用いて説明する。第2図(a)の縦軸は電極11、12間に供給される高電圧AC電源15からの印加電圧、(b)の縦軸は電極11、12間に注入されるプラズマ注入電力Pをそれぞれ示す。横軸は共に時間を示す。印加電圧Vが電極11、12間の放電開始電圧±Vよりも小さい場合はプラズマ注入電力Pはゼロを維持する。放電開始電圧±Vを越えると、放電開始と共に電極11、12間は短絡状態と同様になり、大電流が流れる。その電流により消弧コンデンサ13への電荷の蓄積が開始される。この消弧コンデンサ13がフルチャージされると、電流はそれ以上流れなくなり、放電が停止する。つまり、消弧コンデンサ13への電荷蓄積時間だけ放電が成立する間欠放電となる。
電極11、12からなる電極部10とそれに直列に接続した消弧コンデンサ13とからなる放電回路では、電極11、12間の放電破壊(点弧)後、消弧コンデンサ13の電圧が上昇し、充電完了とともに速やかに消弧する自己消弧放電を行うことができる。これにより交番電圧を印加すると、半サイクル毎に短パルス放電を繰り返すことになる。放電回路抵抗がゼロであれば、電極11、12間に注入される電力は、消弧コンデンサ13の充電エネルギーと等しくなる。したがって、消弧コンデンサ13に蓄積される電荷蓄積機能を高くすれば、電極11、12間に注入される電力を大きくでき、放電エネルギー密度を高めることができる。
上述したように、大気圧下におかれる放電回路の電極を、電極部10と消弧コンデンサ13との直列回路で構成したので、交流電圧を印加するだけで、グロー放電からアーク放電へ切り替わる前に消弧する自己消弧放電となり、電極部10へのダメージが少ない。また、電極11、12間に誘電体が存在せず、放電開始時に電極11、12間は短絡状態となり、素速い大電流放電を実現できるため、無声放電よりも放電エネルギー密度が大きく、大気圧下でプラズマを高効率に形成できる。
また、電極部10に接続された消弧コンデンサ13の静電容量によって放電電流が制限され、プラズマ源となる電極部10はその制約から解放されるので、放電電流制限用の静電容量を決定するために電極11、12の形状が制約されるということがなくなる。したがって、放電電流を制限する静電容量が電極形状によって決定されるRF放電方式と比べて、プラズマ源の設計自由度を高くすることができる。
また、上述した電極部10の電極11、12間に間欠的に放電を生じさせる放電回路を組込んだ装置において、放電雰囲気中に酸素原子Oを含むガスを供給することによりオゾンOを発生させるオゾン発生装置を構成することができる。
このように、上述した自己消弧放電方式は、電極部10と消弧コンデンサ13とを直列接続するようにして構成しているが、その具体的な構成は、電極部10の電極と消弧コンデンサ13とを別体としてもよいが、電極部10の電極と消弧コンデンサ13とを一体化して構成することも可能である。
第3図は、そのような電極部10を構成する一方の電極12と消弧コンデンサ13とを一体化して構成した電極ユニットの構成図を示す。ここで電極ユニットを容量結合電極(Capacitive Coupling Electrode)という。容量結合電極20は、浮遊電極21、絶縁体22、及び接地電極23から構成された容量Cが、浮遊電極21に結合されているという意味である。第3図(a)は容量結合電極20の縦断面図、(b)は斜視図である。容量結合電極20は、第1の電極としての浮遊電極21と、浮遊電極21の周囲に設けられた絶縁体22と、絶縁体22の周囲に設けられた第2の電極としての接地電極23とから構成される。具体的には、中心部に、放電回路全体から電気的に浮いた状態となる金属製で棒状をした浮遊電極21を芯材として配置し、これを取り囲む形で筒状に絶縁体22を巻き、更に絶縁体22の外側を金属製で筒状の接地電極23で巻いた構成である。絶縁体22は誘電体としてもよく、また電解液を含む紙や布などで構成してもよい。浮遊電極21が電極部10を構成する一方の電極となり、浮遊電極21、絶縁体22、及び接地電極23から構成された容量Cをもつコンデンサが、前述した消弧コンデンサ13となる。このように電極部を構成する一方の電極と消弧コンデンサとを一体化して構成したので、コンパクトな容量結合電極20を作成することができる。
容量結合電極の具体例を示すと、所定の長さを有するφ2mmの銅棒に、誘電体としてシリコーン熱収縮チューブを巻き付け、その上に銅箔を巻く。100kHzで消弧コンデンサ容量は20pFである。なお、誘電体としてシリコーン熱収縮チューブの他に、テフロン熱収縮チューブを用いてもよい。
この容量結合電極20を用いて、プラズマ発生装置、オゾン発生装置、プラズマ/オゾン発生装置を具備する基板処理装置を構成することができ、さらに上記プラズマ発生装置を用いて基板処理を行う半導体デバイスの製造方法を実施できる。
上述した容量結合電極20は、これを複数本並べて多極化することができる。一般的に容量結合電極20を単体で使用することはなく、容量結合電極20を複数本並列にならべてプラズマ発生装置が構成される。
第4図は、そのような多極化したプラズマ発生装置の基本構成例を示す。その概要は、放電によって放電電極に熱が発生するため、この熱を逃がすために各浮遊電極21と、これに共通の対向電極34とは冷媒36に接している。特に、このプラズマ発生装置を利用して酸素OからオゾンOを生成する場合、電極34、21を冷却することは、生成したオゾンを熱分解せずにすむため、特に有効となる。なお、第4図では基本構成例としているため、装置全体の外形が省かれている。以下詳述する。
プラズマ発生装置は、中間部に絶縁ブロック31、上部に上部冷媒用ジャケット32、下部に下部冷媒用ジャケット33をそれぞれ有する。絶縁ブロック31には、上述した構成の容量結合電極20が複数本、起立して取り付けられる。絶縁ブロック31は、金属製の共通接地電極35で覆われ、その共通接地電極35で複数の容量結合電極20の接地電極23が並列接続される。また、絶縁ブロック31はPFC(パーフルオロカーボン)などの絶縁体で構成され、その下部に冷媒36で満たされた下部冷媒用ジャケット33が設けられる。複数の容量結合電極20は、容量結合電極20を構成する各浮遊電極21の一端21aが絶縁ブロック31の上面より、共通の対向電極34との間に形成される放電空間37に突出し、他端21bが下部冷媒用ジャケット33の冷媒36に接触するように、絶縁ブロック31に埋め込まれる。浮遊電極21は下部冷媒用ジャケット33内の冷媒36で冷却されるようになっている。絶縁ブロック31の上面より突出した各浮遊電極21の一端21aは面一になるように高さ調整される。対向電極34と絶縁体ブロック31との間に形成されて、内部に複数の浮遊電極21が面一に突出している放電空間37は直状に形成される。上部冷媒用ジャケット32は、内部が冷媒36で満たされている。上部冷媒用ジャケット32は、突出した浮遊電極21の一端21aと対向して配置される。上部冷媒用ジャケット32の全面が金属製の対向電極34で構成され、対向電極34は、上部冷媒用ジャケット32内の冷媒で冷却されるようになっている。
対向電極34と接地電極23との間に高電圧AC電源15が接続され、この高電圧AC電源15に並行に電源補助用コンデンサ16が接続される。高電圧AC電圧を安定して印加するために、電源補助用コンデンサ16の容量Cは、容量結合電極20の消弧コンデンサ容量をCとし、ΣCを並列接続した消弧コンデンサ容量の総和としたとき、次のようにするとよい。
Figure 0004447469
高電圧AC電源15により対向電極34及び接地電極23間に高電圧AC電圧を印加することにより、対向電極34と浮遊電極21との間の各放電ギャップGに放電を生じさせて、プラズマを発生させる。このとき対向電極34及び浮遊電極21に熱が発生するが、発熱する電極34、21は、冷媒36と接触させることにより冷却される。対向電極34及び浮遊電極21を金属製とすると、冷却による除熱が容易となる。
第24図は第4図の多極化プラズマ発生装置の等価回路図である。プラズマ発生装置は、対向する1つの共通電極11と、複数の個別電極12(12a〜12e)から構成される電極部10と、この電極部10を構成する複数の個別電極12と直列に接続され電荷を蓄積する複数の電荷蓄積部としての消弧コンデンサ13(13a〜13e)(容量C)と、電極部10及び消弧コンデンサ13の直列接続部を並列に接続した回路の両端に接続される端子14、14と、端子14、14を介して電極部10と消弧コンデンサ13間に交流電圧を印加する交流電源15と、この交流電源15と並列に接続され電源電圧を安定化して電源を補助する電源補助用コンデンサ16(容量C0)とを有する。一つの共通電極11及び複数の個別電極12は例えば金属電極で構成される。金属としては銅やステンレス等を用いることができる。金属電極11、12間には誘電体は存在しない。金属電極11、12間には大気が存在してコンデンサ(容量Cg)を構成し、金属電極11、12間で放電を起こすようになっている。交流電源15は高電圧AC電源で構成され、そのAC電圧は、放電ギャップGの大きさによっても異なるが、例えば数kV程度以上、AC周波数は50〜10000Hzである。交流電源15により電極部10と消弧コンデンサ13間に交流電圧を印加することにより、電極部10の複数の電極11、12間に間欠的に放電が生じてプラズマを発生する。
第5図に上述した多極化プラズマ発生装置を、オゾン発生装置に適用した具体的な構成図を示す。
オゾン発生装置は、前述した上下部冷媒用ジャケット32、33及び絶縁ブロック31を収容する容器30を有する。対向電極34は、上部冷媒用ジャケット32の全面ではなく、浮遊電極21との対向面のみに共通に設けられて、容器30から取り出されて容器30外に設けた高電圧AC電源用の一方の端子38に接続される。また、共通接地電極35も、絶縁ブロック31の周囲ではなく、絶縁ブロック31の内部で、各容量結合電極20の接地電極23を並列接続する形で設けられ、容器30から取り出されて容器30外に設けた高電圧AC電源用の他方の端子39に接続される。容器30には、直線状の放電空間37に通じるOを供給する供給口41と、オゾンを排出する排出口42とが設けられる。また、上部冷媒用ジャケット32に冷媒供給口43が設けられ、下部の冷媒用ジャケット33に冷媒排出口44が設けられ、上部冷媒用ジャケット32及び下部冷媒用ジャケット33を容器30の外でコイル状の冷媒配管45により接続することにより、純水等の冷媒36を循環させるようになっている。
共通の対向電極34に接続された端子38と、容量結合電極20の接地電極23に共通接地電極35を介して接続された端子39間に高電圧AC電源を接続し、各浮遊電極21と対向電極34間で放電を起こさせる。端子38、39間に電圧をかけていくと、第2図で説明したように放電開始電圧で電極34、21間に放電が起こる。しかし、この放電は容量結合電極20に取り付けられている消弧コンデンサへの充電が完了すると共に終了する。第5図の様に多極化されている場合、放電は各々の電極34、21間で相前後して発生し、一定の時間経過後消弧する。放電ギャップG間にバラツキがあるためである。供給口41から酸素Oまたは乾燥空気を放電空間37に供給すると、放電空間37で酸素Oは効率よくオゾン混合ガス(O+O)に変えられて、容器30の排出口42から排出される。この実施の形態によれば、容量結合電極20を多数用いて多極化することで、大面積プラズマ源を実現できる。また、容量結合電極20を並列接続するので、放電回路を低インピーダンス化でき、高密度大面積プラズマ源を実現できる。したがって、オゾンを高効率で発生できる。
また、この実施の形態によれば、突出して配置した浮遊電極21と、これに対向する対向電極34の対向部とで構成される複数の点状配列電極部を直線状あるいは面状に展開している。無声放電やRF放電では、並行平板電極間に一箇所でも歪みや曲りが生じて電荷の集中しやすり狭い場所があると、そこに電荷が集中して放電が偏り、プラズマが不均一になるのが避けられなかった。これに対して、実施の形態では、むしろ逆に、各容量結合電極単位で対向電極の対向部との点状電極部に電荷を集中させて放電を偏らせ、そこでプラズマを高効率で生成し、多極化して直線状あるいは面状に配列することにより、トータルで均一なプラズマを形成している。したがって、無声放電やRF放電のように並行平板電極を要求されず、共通の対向電極34にたとえ歪みや曲りが生じても、各電極部で大電流放電を確保できるため、高密度大面積プラズマ源を実現できる。
なお、冷媒36は、冷媒の介在により電極34、21間を短絡させないように純水などの絶縁性の高い物質を利用するか、冷媒36と電極34、冷媒36と浮遊電極21との間に絶縁体などを介在させてて、電極34、21に直接冷媒36を触れないようにするなどの工夫が必要となる。図示例ではそれぞれの冷媒用ジャケット32及び33と接する電極34、21を結ぶ冷媒配管45をコイル状にすることで、冷媒にリアクタンス成分を持たせ、高周波的に絶縁性を持たせようとしている。また、オゾンを生成するための原料ガスは酸素Oが支配的になるが、酸素Oが100%である必要はなく、乾燥した空気、あるいは酸素Oにプラズマ安定化のためにArやNなどの不活性ガスを含ませてもよい。
ところで、複数の容量結合電極20の並べ方には、第4図及び第5図に示されているように、ガスの流れる方向に沿って、複数の容量結合電極20を起立させ、頭の高さを揃えて直線的に並べる方法もある。しかし、この並べ方に限定されない。例えば、更に面的な広がりを持たせて配列したり、複数の容量結合電極20を倒して同一平面上に配列することも考えられる。そのような種々の配列の具体例を第6図〜第8図に示す。
第6図は、面的な広がりを持たせた容量結合電極配列の平面図である。起立させた容量結合電極20を縦横揃えて碁盤目状に並べている。これによれば放電領域を面状に拡大することができ、より高密度大面積プラズマ源を実現できる。
第7図も、面的な広がりを持たせた容量結合電極配列の平面図であるが、起立させた複数の容量結合電極20を横一列に複数列並べ、各列の容量結合電極20間の隙間を埋めるように、隙間に対応する相隣る列の容量結合電極20の位置をずらしたものである。一の容量結合電極20部を擦り抜けても、必ずガスは他の容量結合電極20部を通過することになるので、より高密度大面積プラズマ源を実現できる。
第8図は、同一平面状に配列した容量結合電極配列の平面図である。なお、この場合、容量結合電極20の面的配列に止まらず、容量結合電極20を積層することで立体的配列に拡張することも可能である。
容量結合電極20をその軸方向を径方向に保持する筒状容器50を有する。筒状容器50の中央部に円形の内側冷媒用ジャケット52、その外側に同心状に輪形の絶縁ブロック51、その外側に同心状に輪形の外側冷媒用ジャケット53がそれぞれ配設される。輪形の絶縁ブロック51には、円形の内側冷媒用ジャケット52を中心として、複数本の容量結合電極20が放射状に配置されている。また、内側冷媒用ジャケット52の外周に筒状の共通対向電極54が設けられて、高電圧AC電源用の一端子38に接続される。輪形の絶縁ブロック51の内部には、各容量結合電極20を構成する接地電極23を並列接続した共通接地電極55が設けられて、高電圧AC電源用の他端子39に接続される。共通対向電極54は内側冷媒用ジャケット52によって、また容量結合電極20の浮遊電極21は外側冷媒用ジャケット53によってそれぞれ冷却される。
なお、各電極54、55から高電圧AC電源用の端子38、39への接続ラインは、便宜上、図面に描かれているが、実際には図面には描かれていない容器端部に設けたガスの導入口側もしくは導出口側に接続配置することになる。上記共通対向電極54と絶縁ブロック51との間に形成され、浮遊電極21の一端21aが突出しているガスの通る放電空間57は輪形ないし、奥行のある筒形をしている。オゾン発生装置として使用する場合、供給される酸素Oは、第8図の紙面に対して垂直方向に放電空間57を通過することになる。本実施例では、第5図の構成と単に容量結合電極20の並び方が異なるだけ、動作その他は第5図と同じである。
本実施例による容量結合電極の配列例は、複数の容量結合電極を放射状配列することによって、プラズマ発生装置ないしオゾン発生装置を、ガス供給配管と同じ円筒状に形成することができるので、装置をコンパクト化するうえで重要であると考えられる。
なお、容量結合電極20の配置方法としては、上述した放射状の他に、螺旋状や層状に配列することも可能である。また、共通対向電極54は、これを内部から冷却しない場合は、筒状ではなく、中実の棒状としてもよい。この場合、棒状の共通対向電極54の端部を冷媒に接触させて、棒状共通対向電極54を外部から冷却するとよい。また、この実施例の場合でも、紙面に現われている容量結合電極20を、第6図又は第7図に示すように立体的に配列することも可能である。また、図示する容量結合電極20を棒状とはせずに、紙面と垂直方向に延びる平板状にして、容器50を筒状にすることも可能である。また、容量結合電極20は、棒状のままとして、これを立体的配列とせず、同一面に一重配列とすることにより、容器50を奥行のない偏平な構成としてもよい。
上述した実施の形態では、浮遊電極21と対向して配置した共通の対向電極、34、54を、いずれも対向部のみならず対向電極全面を平坦な面で構成したが、平坦面に限定されない。例えば、対向部を凹条または凸状に形成したり、あるいは開孔を設けたりしてもよい。
第9図は、そのような凹凸部を持つ対向電極64の例を示したものである。第9図(a)は対向電極64を浮遊電極21側からながめた背面図、第9図(b)は対向電極64の断面図と浮遊電極21を横からながめた側面図である。対向電極64の浮遊電極21に最も近い対向部に、共通の対向電極64を貫通する開孔65や、半球状の球面状突起66、棒状突起67、中央部が凹んだリング状突起68を設けたりすることができる。凹凸など何もない平坦面からの放電は起こりにくいが、対向部に意図的に上述した開孔65や突起66〜68を作成し、この部分から放電させることで、開孔65や突起66〜68に電荷を集中させることができ、対向電極64側からの放電が容易になる。したがって、プラズマを一層高効率で生成できる。
上述した実施の形態では、放電空間37へのガスの導入方向が直線状ないし一方向に流れる場合について説明した。しかし、容量結合電極20の浮遊電極21を筒状として浮遊電極21内にガスの流路を形成したり、あるいは前述したように対向電極64に電荷集中用の開孔65を設けたりした場合には、ガスの導入方向に変化を持たせて、非直線上にガスを流れるようにすることも可能である。第10図ないし第13図はそのようなガスの導入方向の変形例を示したものである。なお、これらの図において、容量結合電極20は、便宜上、多極化配列のうちの一つを抜き出して描いてある。
第10図は、浮遊電極24を筒状に形成して内部に流路25を持たせ、浮遊電極24を通してオゾンOなどの反応物としての生成ガスを取り出すようにしたものである。基本的な構成は第5図と同じであり、異なる点は、上述したように浮遊電極24を筒状に形成した点である。また、容量結合電極20を構成する反対側の浮遊電極24の下端24bを下部冷媒用ジャケット33を貫通するように延在させ、浮遊電極24の上端に形成されている放電空間37とは別に、延在先に生成ガスを流す下部空間71を形成した点である。この下部空間71は、絶縁ブロック31とで下部冷媒用ジャケット33を形成する第2の絶縁ブロック72で容器下壁30bを囲むことによって形成する。
放電ギャップGを含む浮遊電極24上の放電空間37に原料ガスである酸素Oを導入し、放電ギャップGで生成ガスであるオゾンOを生成し、生成されたオゾンOを筒状浮遊電極24を通して浮遊電極24下の下部空間71に流し、装置から取り出す。この場合は、多極配列のとき、原料ガスである酸素の一部がオゾンOとともに導出されてしまうので、酸素Oがプラズマに触れる回数が減るけれども、その代わりに、生成オゾンOは速やかに導出されるので、生成オゾンOが異物や熱によって分解を起こす可能性が低減する。
第11図は、構成は第10図と同じであるが、筒状浮遊電極24を通して原料ガスである酸素Oを供給するようにしている点で異なる。浮遊電極24下の下部空間71に原料ガスを流して、浮遊電極24を通して放電空間37に導入する。放電ギャップGを含む浮遊電極24上の放電空間37には生成ガスOが流れる。この場合は、原料ガスである酸素Oの大半が電極34、24間に導入されるので、酸素Oがプラズマに触れる回数が増えるけれども、その代わりに、生成オゾンOは異物や熱による分解をひき起こす可能性も高まる。
第12図は、対向電極34の対向部に開孔65を設けて、対向電極34を通して原料を放電空間37に供給するようにしている。
基本的な構成は第5図と同じであり、異なる点は、上述したように対向電極34に電荷を集中させる開孔65を設けて、この開孔65を、原料ガスを放電空間37に導入する流路とに兼用にした点である。開孔65から原料ガスを放電空間37に導入するために、容器30の上壁30aと容量結合電極20を設けた絶縁ブロック31との間の空間に、下面が対向電極34となる冷媒用ジャケット32を設け、冷媒用ジャケット32と上壁30aとの間に上部空間73を形成し、冷媒用ジャケット32と絶縁ブロック31との間に放電空間37を形成する。
対向電極34側から原料ガスを供給する場合、上部空間73に原料ガスである酸素Oを導入し、対向電極34に設けた開孔65を介して放電空間37に供給する。第11図に示す実施例と同様に、原料ガスのプラズマに触れる回数が増える代わりに、生成オゾンOの熱や異物による分解も起こりやすい。
第13図は、構成は第12図と同じであるが、対向電極34の対向部に開孔65を設けて、対向電極34側へ生成ガスを排出するようにしている点で異なる。対向電極34側へ生成ガスを排出する場合、開孔65を介して上部空間73から生成ガスであるオゾンOを含む混合ガス(O+O)を排出する。第10図に示す実施例と同様に、原料ガスのプラズマに触れる回数が減る代わりに、生成オゾンOの熱や異物による分解も起こりにくい。
上述したプラズマ発生装置は、いずれもコンパクトであり、構成(設計)の自由度が高いため、拡散装置、縦型CVD装置、枚葉CVD装置、洗浄装置、エッチング装置(アッシング装置)、排ガス処理装置など種々の装置に容易に取り付けることができる。次に、そのような適用例について説明する。
第14図は、オゾン酸化を行う縦型拡散装置の反応炉80の構成例を示す。反応炉80は、複数の基板Wを積載したボート90が挿入されて挿入口がシールキャップ91によって密閉される反応管81と、反応管81の外周に設けられて基板Wを加熱するヒータ82と、反応管81にガスを供給するガス供給管83と、反応管81内の雰囲気を排気する排気管84とを備える。反応管81に通じるガス供給管83に実施例のオゾン発生装置100が設けられる。
ガス供給管83から酸素Oがオゾン発生装置100に供給されると、プラズマ雰囲気に曝されてオゾンOが生成され、オゾン発生装置100から排出される。排出されたオゾンOは反応管81内に供給されて、反応管81内で加熱された基板Wの表面をオゾン酸化して、排気管84から排気される。オゾン酸化の終了した基板Wはボート90とともに反応管81より引き出される。
オゾン発生装置100は、コンパクトなため、反応管81の近傍に設置することができる。オゾンOは、ガス供給管83内でも自己分解が起き、酸素Oに変化してしまうが、反応管81の近傍にオゾン発生装置100を設置することができると、オゾンOの供給段階でのオゾン消費を極力減らすことができる。また、オゾン発生装置100の構成の自由度が高いため、例えばHOガスを生成する外部燃焼装置(いわゆる外燃BOX)のような形で、オゾン発生装置100を直接反応管81に取り付けることも可能となる。本装置では、実施例のオゾン発生装置を用いているので、複数の基板を有効にオゾン酸化することができる。
第15図は、縦型CVD装置の反応炉80の構成例を示す。基本的構成は第14図と同じである。異なる点は、ガス供給管83に、原料ガス供給ライン85と酸素供給ライン86とから構成された混合ガス供給系89が接続されている点である。原料ガス供給ライン85に流れる原料ガスは、酸素供給ライン86に流れるオゾンOと合流して反応管81内に供給されるように構成されている。なお、合流部近くの原料ガス供給ライン85及び酸素供給ライン86にそれぞれ逆止弁87、88が設けられている。
CVDの酸化剤としてオゾンガスを使用するために、酸素供給ライン86に実施例のオゾン発生装置100が取り付けられる。この場合でも、第14図で説明したとおり、反応管81の近傍にオゾン発生装置100を配置しても構わないし、他のガスと同様に、メンテナンス性の見地から、反応炉80へ電力等を供給するユーティリティ側に設置しても構わない。本装置では、実施例のオゾン発生装置を用いているので、複数の基板にCVD膜を有効に形成することができる。
オゾンOを利用して基板Wを処理する本装置は、もっとも典型的な例として、CVD法によるTEOSとオゾンOとを用いたSiO膜の形成に使用される。また、これ以外にAl(CHとオゾンOとを交互に供給して1原子層づつ成膜していくALD法によるAl膜などの形成にも使用される。また、これら以外の処理例として、基板W上に形成したTa膜やZrO膜やHfO膜などのHigh−k(高誘電体)膜や、電極材料として使われるRuO膜などの膜をオゾンを用いて改質(膜中からC、H等を酸化力で抜き取る)する場合にも使用される。
第16図は、CVD枚葉装置の反応炉の構成例を示す。混合ガス供給系89の構造は、第15図と同様であり、異なる点は、反応炉110がホットウォールバッチ式ではなく、コールドウォール枚葉式である点である。反応炉110は、炉を構成する反応室111内に、ヒータを有するサセプタ112上に基板Wが加熱可能に載置され、サセプタ112上のシャワープレート113から、混合ガス供給系89から導入される混合ガスが基板W上に供給され、排気口114から排気されるようになっている。本装置では、実施例のオゾン発生装置を用いているので、枚葉基板にCVD膜を有効に形成することができる。
第17図は、オゾン用いた洗浄装置の構成例を示す。給水ライン122からフィルタ123に導入した水を充填剤124を通して濾過する。一方、酸素供給ライン121から導入した酸素Oを実施例のオゾン発生装置100を通してオゾンOを発生させる。このオゾンOをフィルタ123に導入することで、充填剤124で濾過された水にオゾンOを溶解させてオゾン水を作成し、これを反応管や反応室、配管などの被洗浄対象120に供給して、汚れを除去する。本装置では、実施例のオゾン発生装置を用いているので洗浄効果を向上できる。
第18図は、枚葉式のエッチング装置の構成例を示す。基本構成は第16図と同様であり、異なる点は、原料ガス供給ラインと逆止弁を取り去った点で、オゾン発生装置100からオゾンOを反応室111内の基板Wに供給することにより、基板W表面をエッチングする。エッチング例としてはアッシングがある。アッシングの原理を第19図に示す。ヒータを有するサセプタ112上に基板Wを載置して、加熱する。基板Wの表面には、酸化膜Qを介してレジスト膜Rが形成されている。この基板W上のレジスト膜RをオゾンOを用いて除去する。オゾンOを熱によって分解し、酸素Oと原子状酸素Oに分かれる。この原子状酸素Oは活性が高いため、レジスト膜Rを炭酸ガスCOと水HOとに分解する。また、オゾンOは分解して酸素Oになるため、特別な除害装置などを必要としないメリットがある。本装置では、実施例のオゾン発生装置を用いているのでエッチング効果を向上できる。
第20図は、プラズマを利用した排ガス処理装置を備えるCVD枚葉装置例の構成図である。原料ガス供給ライン85から反応室111内にTEOS(Tetraethoxysilane)やTRIES(Triethoxysilane)が供給され、これらの未反応ガスが排気口114から排出される。この排気口114に接続した排気管115に実施例のプラズマ発生装置100を設ける。ポンプ116で反応室111内を真空引きして、プラズマ発生装置100に未反応ガスを通過させることにより、TEOS(Tetraethoxysilane)やTRIES(Triethoxysilane)の未反応ガスをプラズマで分解し、安全な形で排出させる。安全な形としてはSi粉末又は、これを酸化したSiOである。これによってポンプ116へのダメージを軽減することができ、ポンプ寿命を伸ばすことができる。本装置では、実施例のプラズマ発生装置を用いているので排ガス処理効果を向上できる。
(実施の形態の効果)
実施の形態によれば、電極間に誘電体が挿入されていないので、放電エネルギー密度が高く、大気圧下で高効率なプラズマを発生できる。電極間に誘電体が介在する無声放電よりも一放電当たりの放電エネルギー密度は10〜1000倍とすることが可能である。また、電極部に消弧コンデンサを直列接続ししたので、グロー放電からアーク放電へ切り替わる前に消弧する間欠放電となるので、電極部に誘電体が挿入されていなくても、電極部のダメージを低減できる。したがって、装置へのダメージが少なく、スパッタリングによる汚染も発生しない。
また、実施の形態によれば、金属電極の一方をユニット化した容量結合電極で構成し、これを用いて多極化プラズマ源を形成できるので、設計の自由度が高い。容量結合電極の配列により、例えば、第4図〜第8図のような多様な形状をもつ高効率大面積のプラズマ源を形成することができる。
また、共通対向電極と多極化した容量結合電極との間でそれぞれ個別に放電させるので、平行平板電極のように放電を空間に一様に発生させることが難しくなるというような不具合がなくなり、大きな空間でも放電を一様に発生させることが容易となる。したがって、大面積高密度プラズマの発生が容易で、オゾン発生効率を高めることができる。特に、容量結合電極同士間の絶縁破壊を避けるように容量結合電極を配置すると、容量結合電極同志間の放電(横方向の放電)を防止できるので、放電が偏ることなく、より均一なプラズマを得ることができる。
また、放電電極を金属電極とし、金属電極を冷媒で冷却するようにしたので、電極の除熱が容易であり、オゾンを低温で生成することができ、したがって生成したオゾンの熱による再分解を有効に阻止することができる。本方式を利用したオゾン発生器では、1.0gO/W・hrの効率でオゾンを生成することができた。これは従来の無声放電の効率0.22gO/W・hrの約5倍と高効率である。このときの本方式のオゾン発生器の条件は、放電ギャップ1.0mm、容量結合電極は、銅棒(φ2mm)にシリコーン熱収縮チューブを介して銅箔を巻きつけて構成し、消弧コンデンサ容量は20pF(at 100kHz)である。また、電極数は20個、O流量は10slm、高電圧AC電圧は50Hz、10kVppである。
(変形例)
上述した実施の形態では、対向電極と容量結合電極間に交流電圧を印加するようにしたが、直流電流を印加するようにしてもよい。第23図は、そのような場合の変形例を示し、(a)はプラズマ発生装置全体の概略構成図、(b)は1極のプラズマ注入電力図、(c)は1極の等価回路図をそれぞれ示す。
第23図(a)に示すように、複数の容量結合電極20を、各浮遊電極21の一端が対向電極34と対向するように配列して、装置を多極化する。複数の容量結合電極20の各接地電極23を接地するが、これと同様に、各浮遊電極21の他端を放電用抵抗Rを介して接地する。これにより消弧コンデンサ13と放電用抵抗Rとが並列接続されて、消弧コンデンサ容量Cに蓄積される蓄積電荷が放電用抵抗Rを介して放電する放電回路が形成される(第23図(c))。対向電極34と接地間に直流高圧電源DCを接続して直流高電圧を印加する。直流高圧電源DCには電源補助用コンデンサCが並列接続される。
直流高圧電源DCから対向電極34、浮遊電極21間に放電開始電圧を越える直流高電圧を加えると、放電開始と共に電極34、21間は短絡状態と同様になり、大電流が流れる。これにより対向電極34と各容量結合電極20間ではランダムに点弧し各放電ギャップGにプラズマPLが生成される。一方、電流により消弧コンデンサ13への電荷の蓄積が開始される。この消弧コンデンサ13がフルチャージされると、電流はそれ以上流れなくなり、放電が停止する。つまり、消弧コンデンサ13への電荷蓄積時間だけ放電が成立する直流パルス放電となる。消弧コンデンサ容量Cに蓄積した電荷は放電用抵抗Rによって放電する。この放電により、電極34、21間の電圧が増大して再点弧が可能になる。1つの容量結合電極20の再点弧の周期はτ≒CRである(第23図(b))。ここでCRは蓄積電荷放電の時定数である。
電源に直流電源DCを用いると、プラズマ電位に対して電極の電位を固定できるので、特にイオン種の加減速を必要とするプロセスに適用すると有利である。ただし、この場合、注入電力の1/2は無駄に消費される。すなわち消弧コンデンサ13に蓄えられた静電エネルギーは放電用抵抗Rによってジュール熱になる。
このように自己消弧放型容量結合電極を用いる本発明の方式は、放電時定数回路を設けることにより直流パルス運転が可能であり、これは無声放電方式にはない特徴であり、この点からも設計の自由度が高いものである。
本発明によれば、簡単な構造でありながら、無声放電と比べて放電エネルギー密度が大きく、プラズマを高効率に発生することができる。また放電エネルギー密度が大きいので、オゾンを高効率に発生することができる。したがって、プラズマ発生装置やオゾン発生装置装置の容積を縮小できる。また、放電エネルギー密度が大きくなっても、自己消弧放電となるので、電極部へのダメージを低減できる。また、電極をユニット化すると、取り扱いが容易になる。

Claims (8)

  1. 複数の電極からなる電極部と、
    この電極部と直列に接続され電荷を蓄積する電荷蓄積部と、
    前記電極部と前記電荷蓄積部とで形成される直列接続回路に対して交流電圧を印加して前記電極部の複数の前記電極間に放電を生じさせてプラズマを発生させる交流電源と、を有し、
    前記電荷蓄積部は、前記電極部の複数の前記電極間に生じる放電を間欠させるように構成されている
    ことを特徴とするプラズマ発生装置。
  2. 複数の電極からなる電極部と、
    この電極部と直列に接続され電荷を蓄積する電荷蓄積部と、
    前記電極部と前記電荷蓄積部とで形成される直列接続回路に対して交流電圧を印加して前記電極部の複数の前記電極間に放電を生じさせてプラズマを発生させ、この放電雰囲気中に酸素原子を含むガスが供給されることによりオゾンを発生させる交流電源とを有し、前記電荷蓄積部は、前記電極部の複数の前記電極間に生じる放電を間欠させるように構成されている
    ことを特徴とするオゾン発生装置。
  3. 第1の電極と、
    前記第1の電極の周囲に設けられた絶縁体又は誘電体と、
    前記絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、
    前記第1の電極と対向する第3の電極と、前記第2の電極と第3の電極間に電圧を印加する電源とを有し、
    この電源により前記第2の電極と第3の電極間に電圧を印加することにより、前記第1の電極と第3の電極間に放電を生じさせてプラズマを発生させる
    ことを特徴とするプラズマ発生装置。
  4. 第1の電極と、前記第1の電極の周囲に設けられた絶縁体又は誘電体と、前記絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、前記第1の電極と対向する第3の電極と、前記第2の電極と第3の電極間に電圧を印加する電源とを有し、この電源により前記第2の電極と第3の電極間に電圧を印加することにより、前記第1の電極と第3の電極間に放電を生じさせ、この放電雰囲気中に酸素原子を含むガスを供給することによりオゾンを発生させる
    ことを特徴とする基板処理装置。
  5. 基板を処理する処理室と、プラズマを発生させるプラズマ発生装置とを有し、前記プラズマ発生装置により発生させたプラズマに処理ガスを晒すことにより得た反応物を用いて基板を処理する基板処理装置において、
    前記プラズマ発生装置は、
    第1の電極と、前記第1の電極の周囲に設けられた絶縁体又は誘電体と、前記絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、前記第1の電極と対向する第3の電極と、前記第2の電極と第3の電極間に電圧を印加する電源とを有し、前記第2の電極と第3の電極間に電圧を印加することにより、前記第1の電極と第3の電極間に放電を生じさせプラズマを発生させるよう構成される
    ことを特徴とする基板処理装置。
  6. 基板を処理する処理室と、オゾンを発生させるオゾン発生装置とを有し、前記オゾン発生装置により発生させたオゾンを用いて基板を処理する基板処理装置において、
    前記オゾン発生装置は、
    第1の電極と、前記第1の電極の周囲に設けられた絶縁体又は誘電体と、前記絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、前記第1の電極と対向する第3の電極と、前記第2の電極と第3の電極間に電圧を印加する電源とを有し、前記第2の電極と第3の電極間に電圧を印加することにより、前記第1の電極と第3の電極間に放電を生じさせ、この放電雰囲気中に酸素原子を含むガスを供給することによりオゾンを発生させるよう構成される
    ことを特徴とする基板処理装置。
  7. 第1の電極と、前記第1の電極の周囲に設けられた絶縁体又は誘電体と、前記絶縁体または誘電体の周囲に設けられた第2の電極とからなる電極ユニットと、前記第1の電極と対向する第3の電極とを有し、前記第2の電極と第3の電極間に電圧を印加することにより、前記第1の電極と第3の電極間に放電を生じさせプラズマを発生させる工程と、
    このプラズマに処理ガスを晒すことにより得た反応物を用いて基板を処理する工程と、
    を有する
    ことを特徴とする半導体デバイスの製造方法。
  8. 複数の電極からなる電極部と、
    この電極部と直列に接続され電荷を蓄積する複数の電荷蓄積部と、
    前記電極部と複数の電荷蓄積部間とで形成される複数の直列接続部を並列に接続した回路
    に対して交流電圧を印加して前記電極部の複数の前記電極間に放電を生じさせてプラズマを発生させる交流電源とを有し、
    前記電荷蓄積部は、前記電極部の複数の前記電極間に生じる放電を間欠させるように構成されている
    ことを特徴とするプラズマ発生装置。
JP2004564541A 2002-12-27 2003-12-26 プラズマ発生装置、オゾン発生装置、基板処理装置、及び半導体デバイスの製造方法 Expired - Lifetime JP4447469B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002379963 2002-12-27
JP2002379963 2002-12-27
PCT/JP2003/016887 WO2004061929A1 (ja) 2002-12-27 2003-12-26 プラズマ発生装置、オゾン発生装置、基板処理装置、及び半導体デバイスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2004061929A1 JPWO2004061929A1 (ja) 2006-05-18
JP4447469B2 true JP4447469B2 (ja) 2010-04-07

Family

ID=32708417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004564541A Expired - Lifetime JP4447469B2 (ja) 2002-12-27 2003-12-26 プラズマ発生装置、オゾン発生装置、基板処理装置、及び半導体デバイスの製造方法

Country Status (4)

Country Link
US (1) US7514377B2 (ja)
JP (1) JP4447469B2 (ja)
AU (1) AU2003292678A1 (ja)
WO (1) WO2004061929A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7966969B2 (en) * 2004-09-22 2011-06-28 Asm International N.V. Deposition of TiN films in a batch reactor
JP4540519B2 (ja) * 2005-03-28 2010-09-08 富士機械製造株式会社 洗浄装置、液晶表示器の基板洗浄装置及び液晶表示器組付装置
US7305311B2 (en) * 2005-04-22 2007-12-04 Advanced Energy Industries, Inc. Arc detection and handling in radio frequency power applications
WO2007014473A1 (de) * 2005-08-03 2007-02-08 Ozonia Ag Ozongenerator
CA2516499A1 (en) 2005-08-19 2007-02-19 Atlantic Hydrogen Inc. Decomposition of natural gas or methane using cold arc discharge
US7771672B2 (en) * 2005-12-17 2010-08-10 Airinspace B.V. Air purification device
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US8003058B2 (en) * 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices
US8217299B2 (en) 2007-02-22 2012-07-10 Advanced Energy Industries, Inc. Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch
EP2139302B1 (en) * 2007-03-28 2013-09-25 Mitsui Engineering & Shipbuilding Co., Ltd. High-voltage plasma producing apparatus
US7629256B2 (en) * 2007-05-14 2009-12-08 Asm International N.V. In situ silicon and titanium nitride deposition
US8857371B2 (en) * 2007-08-31 2014-10-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation Apparatus for generating dielectric barrier discharge gas
US8142608B2 (en) * 2007-09-11 2012-03-27 Atomic Energy Council—Institute of Nuclear Energy Research Atmospheric pressure plasma reactor
JP5693807B2 (ja) 2008-01-22 2015-04-01 東京エレクトロン株式会社 基板処理装置用の部品及び皮膜形成方法
US20110000432A1 (en) * 2008-06-12 2011-01-06 Atomic Energy Council - Institute Of Nuclear Energy Research One atmospheric pressure non-thermal plasma reactor with dual discharging-electrode structure
US8044594B2 (en) 2008-07-31 2011-10-25 Advanced Energy Industries, Inc. Power supply ignition system and method
US8395078B2 (en) * 2008-12-05 2013-03-12 Advanced Energy Industries, Inc Arc recovery with over-voltage protection for plasma-chamber power supplies
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
GB2466664B (en) 2009-01-06 2015-04-01 Perlemax Ltd Plasma microreactor apparatus, sterilisation unit and analyser
PL2648209T3 (pl) 2009-02-17 2018-06-29 Solvix Gmbh Urządzenie zasilające do obróbki plazmowej
DE102010031568B4 (de) 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung und Verfahren zum Löschen von Arcs
US8552665B2 (en) 2010-08-20 2013-10-08 Advanced Energy Industries, Inc. Proactive arc management of a plasma load
DE102010044252B4 (de) 2010-09-02 2014-03-27 Reinhausen Plasma Gmbh Vorrichtung und Verfahren zur Erzeugung einer Barriereentladung in einem Gasstrom
DE102011050631A1 (de) 2011-05-25 2012-11-29 Hochschule für Angewandte Wissenschaft und Kunst - Hildesheim/Holzminden/Göttingen Vorrichtungen zur Erzeugung elektrischer Entladungen geringer Energie, insbesondere zur Bekämpfung von Haarläusen
EP2717657A4 (en) * 2011-06-03 2014-11-12 Wacom CVD DEVICE AND CVD FILM MANUFACTURING METHOD
US8987158B2 (en) 2012-11-16 2015-03-24 Victor Insulators, Inc. Friable-resistant dielectric porcelain
CN206100590U (zh) * 2013-04-08 2017-04-12 珀金埃尔默健康科学股份有限公司 装置、非感应式耦合等离子体装置、等离子体、套件、仪器、反应器、振荡器、系统和火炬电极组合件
KR101614028B1 (ko) * 2013-05-27 2016-04-20 가부시키가이샤 아도테쿠 프라즈마 테쿠노로지 마이크로파 플라즈마 발생장치의 공동 공진기
TWI486996B (zh) * 2013-12-04 2015-06-01 Ind Tech Res Inst 電漿裝置及電漿裝置的操作方法
JP6339029B2 (ja) * 2015-01-29 2018-06-06 東京エレクトロン株式会社 成膜装置
DE102016209097A1 (de) * 2016-03-16 2017-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasmadüse
RU2634012C1 (ru) * 2016-11-29 2017-10-23 Общество с ограниченной ответственностью "Истра-Озон" Устройство защиты генератора озона от пожара
CN107509297B (zh) * 2017-08-17 2024-03-26 福州美美环保科技有限公司 一种等离子发生器的组装结构
CN111033701B (zh) * 2017-09-13 2023-08-04 株式会社国际电气 基板处理装置、半导体器件的制造方法以及记录介质
CN109831866B (zh) * 2017-11-23 2023-10-20 核工业西南物理研究院 一种双环电极共面放电等离子体发生装置
KR102701320B1 (ko) * 2019-08-13 2024-08-29 한국핵융합에너지연구원 NOx 또는 오존 발생 방법, NOx 및 오존 발생양 제어 방법 및 이를 위한 플라즈마 장치
CN215925072U (zh) * 2020-09-24 2022-03-01 株式会社国际电气 基板处理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003787B1 (ko) * 1988-09-14 1994-05-03 후지쓰 가부시끼가이샤 박막 형성장치 및 방법
JP2957068B2 (ja) 1993-10-22 1999-10-04 積水化学工業株式会社 基板の表面処理方法
JP3078466B2 (ja) 1995-05-24 2000-08-21 松下電工株式会社 大気圧プラズマ発生装置及びその装置を用いた大気圧プラズマ発生方法
JPH09241007A (ja) * 1996-03-08 1997-09-16 Ebara Corp オゾン発生方法及び装置
US20030010453A1 (en) * 1998-03-18 2003-01-16 Jyunichi Tanaka Plasma processing apparatus and plasma processing method
WO2003005392A1 (en) * 2001-06-29 2003-01-16 Korea Atomic Energy Research Institute Self bouncing arc switch
US7274015B2 (en) * 2001-08-08 2007-09-25 Sionex Corporation Capacitive discharge plasma ion source
JP2005509255A (ja) * 2001-11-02 2005-04-07 プラズマゾル・コーポレイション 非熱プラズマスリット放電装置
JP2003209212A (ja) 2002-01-16 2003-07-25 Mori Engineering:Kk マガジン方式プラズマクリーニングシステム
CA2516499A1 (en) * 2005-08-19 2007-02-19 Atlantic Hydrogen Inc. Decomposition of natural gas or methane using cold arc discharge

Also Published As

Publication number Publication date
AU2003292678A1 (en) 2004-07-29
AU2003292678A8 (en) 2004-07-29
JPWO2004061929A1 (ja) 2006-05-18
US7514377B2 (en) 2009-04-07
US20060189168A1 (en) 2006-08-24
WO2004061929A1 (ja) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4447469B2 (ja) プラズマ発生装置、オゾン発生装置、基板処理装置、及び半導体デバイスの製造方法
CN111508809B (zh) 霍尔效应增强电容耦合等离子体源、消除系统及真空处理系统
JP5694543B2 (ja) プラズマ発生装置、cvd装置およびプラズマ処理粒子生成装置
KR100476136B1 (ko) 대기압 플라즈마를 이용한 표면처리장치
JP5025614B2 (ja) 大気圧プラズマ処理方法
KR100488348B1 (ko) 플라즈마 프로세스 챔버 및 시스템
KR101379701B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP2014094863A (ja) オゾン発生装置、及び、オゾン発生方法
JP2007059385A (ja) 無駄な放電を防止するための電極構造の大気圧プラズマ発生装置
KR102510329B1 (ko) 활성 가스 생성 장치 및 성막 처리 장치
KR101337047B1 (ko) 상압 플라즈마 장치
KR100988291B1 (ko) 평행 평판형 전극 구조를 구비하는 대기압 플라즈마 표면처리 장치
JP5813388B2 (ja) プラズマ発生装置およびcvd装置
JP3907425B2 (ja) 誘導結合プラズマ処理装置
JP4950763B2 (ja) プラズマ生成装置
JP2006318762A (ja) プラズマプロセス装置
JPH0226804A (ja) 酸素原子発生方法および装置
KR100988290B1 (ko) 평행 평판형 전극 구조를 구비하는 대기압 플라즈마표면처리 장치
KR100760651B1 (ko) 처리가스 공급관을 구비하는 기판 표면처리장치
KR20040033987A (ko) 플라즈마 프로세스 챔버
JPH0480723B2 (ja)
JPH03151022A (ja) 排ガス処理装置
KR20080046944A (ko) 상압 플라즈마 처리 장치
KR101371521B1 (ko) 관형 플라즈마 구조물을 포함한 회전 원통 구조 플라즈마 분말 처리 장치
EP4349456A1 (en) Exhaust gas treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4447469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term