JP4442505B2 - 変形可能ミラー装置、変形ミラー板 - Google Patents

変形可能ミラー装置、変形ミラー板 Download PDF

Info

Publication number
JP4442505B2
JP4442505B2 JP2005129576A JP2005129576A JP4442505B2 JP 4442505 B2 JP4442505 B2 JP 4442505B2 JP 2005129576 A JP2005129576 A JP 2005129576A JP 2005129576 A JP2005129576 A JP 2005129576A JP 4442505 B2 JP4442505 B2 JP 4442505B2
Authority
JP
Japan
Prior art keywords
flexible member
mirror surface
shape
deformable mirror
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005129576A
Other languages
English (en)
Other versions
JP2006155850A (ja
Inventor
青木  直
正裕 山田
隆博 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005129576A priority Critical patent/JP4442505B2/ja
Priority to TW094125355A priority patent/TW200617420A/zh
Priority to KR1020077001878A priority patent/KR20070038120A/ko
Priority to PCT/JP2005/013934 priority patent/WO2006011594A1/ja
Priority to US11/572,160 priority patent/US7874688B2/en
Publication of JP2006155850A publication Critical patent/JP2006155850A/ja
Application granted granted Critical
Publication of JP4442505B2 publication Critical patent/JP4442505B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0948Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for detection and avoidance or compensation of imperfections on the carrier, e.g. dust, scratches, dropouts

Description

本発明は、ミラー面の変形が可能な変形可能ミラー装置に関する。
光ディスク記録媒体についての記録及び/又は再生を行う光ディスク装置では、対物レンズによりレーザ光を光ディスク記録媒体の記録層に合焦して、信号の記録再生を行うようにされている。
このように対物レンズを介してレーザ光を照射する場合、光ディスク記録媒体の記録面から記録層までのカバー層の厚さ(カバー厚)によっては、球面収差が生じることが知られている。すなわち、対物レンズを含む光ディスク装置の光学系の構成としては、対応する光ディスク記録媒体に想定されるカバー厚の値に応じて球面収差が最小となるように設計されていることから、カバー厚が想定値と異なる場合には球面収差が生じてしまうことになる。
このことから、従来より光ディスク記録媒体のカバー厚にムラがある場合には、球面収差が生じることが知られている。
また、近年においては、光ディスク記録媒体の高記録密度化を図るために記録層を多層化しているものがあるが、このように記録層を多層化する場合は、当然各記録層に対するカバー厚は異なるようにされることから、基準となる記録層以外の記録層の記録再生時には球面収差が生じることになる。
球面収差が生じている場合、結像性能が悪化して信号の記録再生性能も悪化することから、これを補正する何らかの手段が必要となる。
従来において、このような光ディスク記録媒体のカバー厚の差に起因して生じる球面収差の補正を図る技術としては、光学系が備えるミラーの面形状を変形させて行うようにしたものがある(下記特許文献参照)。
つまり、下記特許文献1に示す変形可能ミラーは、表面にミラー面を形成した変形プレートと、この変形プレートの裏側の数カ所を加圧する圧電アクチュエータとを設け、各圧電アクチュエータに印加する電圧を変化させることで、上記ミラー面を球面収差を補正できる所望の形状に変化させるようにしている。
また、下記特許文献2に示す変形可能ミラーは、ミラー面を表面に形成した可撓性部材と、その下部に所定形状の参照面を形成した上で、参照面に対して可撓性部材を吸着する、或いは吸着を解除するようにして、2つの所望の形状を得るようにしている。つまり、参照面の形状として、吸着された際のミラー面の形状が球面収差を補正できる形状となるように設定しておくことで、球面収差の補正が可能となる。
特開平5−151591号公報 特開平9−152505号公報
しかしながら、上記した従来例のうち、圧電アクチュエータを備える例では、ミラー面の所定の形状を得るにあたって圧電アクチュエータは複数必要であり、構成が複雑化し、また回路規模としてもその分大型化してしまう。
例えば、近年の高密度ディスクに対応する場合、レーザビーム径は例えば4mm程度となっており、この範囲内で複数の圧電アクチュエータを構成するとなると、その実現は非常に困難なものとなる。
また、参照面を設ける例では、複数のアクチュエータを備える場合よりも回路の縮小化を図ることができるが、この場合は吸着/解放状態での2つの形状しか得ることができない。
これによっては、記録層が3層以上形成された光ディスクに対して有効に球面収差補正を行うことができなくなってしまう。
そこで、本発明では以上のような問題点に鑑み、変形可能ミラー装置として以下のように構成することとした。
つまり、表面にミラー面が形成されると共に、上記表面とは逆側の裏面側において、最外周部にリブ状のフレーム部が形成され、且つ上記フレーム部を除く変形可能領域において上記ミラー面の中央部から外周方向にかけて断面厚が階段状に薄くなる断面形状パターンが与えられていると共に、上記変形可能領域内における最外周部分に断面厚が最薄となる肉薄部が形成された可撓性部材を備える。 また、上記可撓性部材に形成された上記階段状の上記断面形状パターンにおける中央部に形成された凸部又は上記フレーム部に対し駆動力を印加して、上記ミラー面の形状を変形させる駆動手段を備えるようにしたものである。
上記構成のように、ミラー面が形成される可撓性部材において、所要の断面形状パターンが与えられた変形可能領域が形成されていれば、可撓性部材に対する所定の一様な駆動力の印加に応じて、所望の変形形状が得られるようにすることができる。
このように所定の一様な駆動力の印加に応じて、可撓性部材として所望の変形形状を得ることができれば、従来のように複数の圧電アクチュエータを設けて部分的に異なる駆動力を印加するといった複雑な構成を採らずとも、可撓性部材を所望の形状に変形させることができる。
また、上記可撓性部材の上記断面形状パターンによっては、印加される駆動力のレベルに応じて段階的に所望の変形形状が得られるようにすることも可能となる。
このように駆動力のレベルに応じて可撓性部材として段階的に所望の形状を得ることができれば、例えば参照面に吸着させて所望の変形形状を得る場合とは異なり、ミラー面の変形形状は2種以上を得ることができる。
また、本発明の可撓性部材には、上記断面形状パターンが与えられた変形可能領域内の最外周部分において、断面厚が最薄となる肉薄部が形成されているが、このことにより、所望の変形形状を得るにあたって必要な可撓性部材の変形範囲を縮小化することができる。
このようにして本発明によれば、ミラー面が形成された可撓性部材に対する所定の一様な駆動力の印加に応じ、可撓性部材として所望の変形形状が得られるので、例えば従来のように複数の圧電アクチュエータを設けて部分的に異なる駆動力を印加するといった複雑な構成を採らずとも、可撓性部材を所望の形状に変形させることができる。
これによれば、変形可能ミラー装置として回路規模の大型化を防止でき、また複数の圧電アクチュエータが不要となることで回路製造コストの削減も図られる。
また、本発明によれば、上記可撓性部材は、印加される駆動力のレベルに応じて段階的に所望の変形形状を得ることもできるので、ミラー面の変形形状は2種以上とすることができる。これによれば、記録層が3層以上となる場合にも、光学系の設計の基準とされた記録層以外のすべての記録層において有効に球面収差補正を行うことができる。
さらに本発明では、可撓性部材における所要の断面形状パターンが与えられた変形可能領域内の最外周部分において、断面厚が最薄となる肉薄部を形成するようにしていることで、所望の変形形状を得るにあたって必要な可撓性部材の変形範囲を縮小化することができる。
以下、発明を実施するための最良の形態(以下実施の形態とする)について説明していく。
先ずは、図1を参照して、本発明における各実施の形態(第1〜第5の実施の形態)の変形可能ミラー装置が備えられる光ディスク装置の光学系の構成について説明する。
先ず、図1においては、光ディスク80が示されている。
実施の形態においては、この光ディスク80として、例えばブルーレイディスク(Blu-ray Disc)等の高記録密度ディスクを想定しており、例えば対物レンズ71の開口率NA=0.85、レーザ波長405nmにより記録再生が行われる。
また、この場合の光ディスク80は、図示するようにして例えば3つの記録層を有するものとされる。
先ず、光ディスク80においてレーザ光が照射される面(記録面)から最も近い位置に、第1記録層81が形成される。この場合、記録面から第1記録層81まで間隔は、例えば0.075mmとされる。すなわち、第1記録層81までのカバー厚は、0.075mmとなる。
そして、この第1記録層81から所定間隔ごとに、第2記録層82、第3記録層83が形成されている。
これら第1記録層81、第2記録層82、第3記録層83の各記録層の間隔は、例えば25μmとされる。従って第2記録層81のカバー厚は0.100mm、第3記録層83のカバー厚は0.125mmとなっている。
このような実施の形態で想定する光ディスク80に対する信号の読み出し/書き込みを行うための光学系として、この図では対物レンズ71、偏光ビームスプリッタ72、1/4波長板73、変形可能ミラー装置(1,20,30,40,45,50)、半導体レーザLD、グレーティング74、ビームスプリッタBS、コリメータレンズCL、マルチレンズ76、ディテクタ77、フロントモニタ78が示されている。
この光学系において、半導体レーザLDから射出されたレーザ光は、グレーティング74、コリメータレンズCLを介してビームスプリッタBSに入射する。ビームスプリッタBSに入射したレーザ光の一部は、レーザ出力のモニタ用に備えられたフロントモニタ78に導かれる。
また、ビームスプリッタBSにて反射されたレーザ光は、コリメータレンズCLを透過してS偏光により偏光ビームスプリッタ72に入射する。偏光ビームスプリッタ72は、S偏光を反射しP偏光を透過するようにされる。従って、S偏光により入射したレーザ光はこの偏光ビームスプリッタ72にて反射されて1/4波長板73に入射する。そして、1/4波長板73を透過することで円偏光に変換される。
1/4波長板73にて円偏光とされたレーザ光は、実施の形態としての変形可能ミラー装置(1,20,30,40,45,50)のミラー面において反射する。そして、この反射光は再び1/4波長板73を透過することでP偏光に変換され、これによって偏光ビームスプリッタ72においては反射されず、対物レンズ71に入射することになる。
対物レンズ71は、図示されない2軸機構によって少なくとも光ディスク80に対して接離する方向に変位可能に保持され、上記した偏光ビームスプリッタ72からの入射光を第1記録層81、第2記録層82、第3記録層83のいずれかに選択的に合焦することが可能に構成される。
一方、光ディスク80の記録層からの反射光は、対物レンズ71、偏光ビームスプリッタ72を透過して1/4波長板73に入射される。そして、1/4波長板73を透過した反射光は円偏光に変換され、変形可能ミラー装置にて反射されることで再び1/4波長板73に入射する。
入射した円偏光による反射光は、1/4波長板73を透過することでS偏光に変換され、これによって偏光ビームスプリッタ72において反射されて、コリメータレンズCLに導かれる。
コリメータレンズCLを透過した光ディスク80からの反射光の一部は、ビームスプリッタBSを透過し、マルチレンズ76を介してディテクタ77に導かれる。ディテクタ77では反射光が電気信号に変換され、これによって各種の情報信号を得ることができる。
ところで、上記のようにして光ディスク80に複数の記録層が形成される場合、光ディスク装置の光学系としては、例えば最も記録面に近い第1記録層81に対する合焦時に、球面収差量が最小となるように設計されている。すなわち、上記例によれば、第1記録層81の例えばカバー厚0.075mmに対応させて球面収差量が最小となるように設計される。
しかしながら、上記もしたように、第2記録層82、第3記録層83となるにつれて、カバー厚は厚くなるようにされることから、これら第2記録層82、第3記録層83の合焦時には球面収差量は増大する傾向となってしまう。
そこで、本発明においては、以下の各実施の形態において説明するように、図1に示されるようにして備えられる変形可能ミラー装置のミラー面を変形させることで、レーザ光を調整して上記のような第2、第3記録層の合焦時における球面収差補正が可能となるようにする。
<第1の実施の形態>

図2は、本発明における第1の実施の形態としての変形可能ミラー装置1の構成を示した断面図である。
第1の実施の形態の変形可能ミラー装置1は、ミラー面の形状を変形するにあたって可撓性部材に印加する駆動力を気体や液体による圧力とし、上記可撓性部材は、断面形状が異なるようにされた部分が形成されて強度分布パターンが与えられたことによって、部分的に変形態様についての状態が異なるようにされている。
図2において、第1の実施の形態としての変形可能ミラー装置1は、図示するように可撓性部材2、反射膜3、基板4、上部電極8、下部電極9を少なくとも備えて構成される。
先ず、図示する基板4に対しては、2つの円柱状の溝が形成されて、第1空間5と第2空間7とが形成されている。そして、これら第1空間5と第2空間7とは、図示する流路6によって連結されている。
そして、基板4に対しては、上記第1空間5、第2空間7を覆うようにして可撓性部材2が接合される。
この場合の基板4と可撓性部材2との接合は、例えば陽極接合等により、上記第1空間5と第2空間7の密閉性が確保できる程度に強固に行われる。
このように密閉された第1空間5、第2空間7は、気体又は液体で満たすようにしておく。
可撓性部材2は、弾性体であり、可撓性を有する。
この可撓性部材2における、上記基板4との接合面とは逆側の面には、例えばアルミニウム等による反射膜3が膜付けされている。つまり、このような可撓性部材2に膜付けされた反射膜3が、当該変形可能ミラー装置1のミラー面となる。
なお、可撓性部材2に対する反射膜3の膜付けは、例えばスパッタ法等により行われればよい。
ここで、本明細書において、このように可撓性部材に対し少なくともミラー面が形成されたものを、変形ミラー板と称する。
そして、可撓性部材2の上記第1空間5と接する面に対しては、この可撓性部材2における上記第1空間5と接する部分について、強度分布が与えられるようにして図示する強度分布パターン2aが形成されている。
ここで、このような可撓性部材2に対して形成される強度分布パターン2aについて、図4の斜視図を参照して説明しておく。
図4において、この場合の強度分布パターン2aとしては、図示するように可撓性部材2における反射膜3とは逆側の面に対し、第1空間5側に凸となるようにされたパターンを、例えば上記のように円柱状とされる第1空間5の中心軸Cを中心とした同心円状に形成している。
これによって可撓性部材2の断面形状は、図2に示したように部分的に凸となる場所が形成される。つまり、この場合の可撓性部材2は、このように凸となる部分において、他の部分とは変形態様についての状態が異なる部分が形成されているもので、これによって可撓性部材2は所定の強度分布を持つようにされている。
なお、他の視点から見れば、上記のように凸となる部分が形成されることにより、後述するように可撓性部材2に対して圧力(駆動力)が印加された場合、ミラー面は部分的に変形曲率が異なるようにされることになる。
図2において、可撓性部材2における、上記第2空間7と接する面に対しては、例えば第2空間7の円形形状と同様に円形形状とされた上部電極8が固着されている。この上部電極8としては、可撓性を有する電極材料が採用される。
そして、この上部電極8とは対向する面となる、基板4における第2空間7と接する面に対しては、同様に例えば円形形状による下部電極9が固着されている。
その上で、これら上部電極8と下部電極9とに対して駆動電圧を印加するための駆動回路10が設けられる。
上記構成による第1の実施の形態としての変形可能ミラー装置1におけるミラー面の変形動作について、次の図3を参照して説明する。
なお、この図3においても図2と同様に変形可能ミラー装置1の断面図を示している。
先ず、変形可能ミラー装置1において、反射膜3によるミラー面を変形するにあたっては、駆動回路10により上部電極8と下部電極9とに駆動電圧が印加される。
このように駆動電圧が印加された上部電極8と下部電極9との間では、静電気力による吸引力が発生する。そして、これに応じては、図示するように可撓性部材2における上部電極8が固着された部分が、基板4に対して固着された下部電極9側に撓むようにして変形する動作が得られる。
このような変形に伴い、これら上部電極8と下部電極9とが設けられた第2空間7と、他方の第1空間5との間では、圧力差が生じることとなるが、これら2つの空間は流路6によって連結されているため、第2空間7にて上昇した分の圧力は、強度分布パターン2aが形成された可撓性部材2の第1空間5と接する面に対して印加され、可撓性部材2を反射膜3側(ミラー面側)に凸となるように押し上げることで、第1空間5と第2空間7との内部圧力バランスがとられることになる。
このような動作により、可撓性部材2における上記強度分布パターン2aが形成された面に対しては、第2空間7の縮小に応じた所定の圧力が一様に印加されることになる。
ここで、可撓性部材2に対しては、強度分布パターン2aが形成されていることで、上記のように第2空間7の縮小に応じて所定の圧力が一様に印加されることによっては、その強度分布に応じた所望の変形形状が得られることになる。すなわち、このような強度分布パターン2aの形成パターンによって、上記のように一様に印加される圧力に応じて得られる可撓性部材2の変形形状を決定できるものである。
これによれば、上記強度分布パターン2aの形成パターンによっては、上記のような所定の一様な圧力(駆動力)の印加に応じて得られる可撓性部材2の変形形状を、球面収差を補正することができる所定形状となるように設定することが可能となる。つまり、ミラー面の形状を球面収差補正が可能な形状に変形させることができる。
また、上記構成によれば、上部電極8と下部電極9との間で生じる吸引力は、これら上部電極8と下部電極9とに印加する電圧レベルによって変化させることが可能となる。すなわち、強度分布パターン2aが形成された面に対して印加する圧力は、駆動回路10が供給する駆動電圧レベルを制御することで段階的に変化させることができる。
そして、上記可撓性部材2の構成によれば、上記強度分布パターン2aの形成のしかたにより、このように段階的に変化される印加圧力に応じて、段階的に異なる所定の変形形状を得るようにするといったことも可能となる。すなわち、このような可撓性部材2の構成によれば、各電極に印加する駆動電圧レベル(すなわち可撓性部材2に印加される圧力レベル)に応じて、少なくとも無変形状態、第1の変形状態、第2の変形状態の3通りの形状を得ることができる。
そして、この際、上記のように段階的に変化される駆動電圧レベル(印加圧力)に応じて、各記録層での球面収差補正に必要なミラー面の変形形状が得られるように上記強度分布パターン2aの形成パターンが設定されれば、3以上の記録層に対応して有効に球面収差補正を行うことのできる変形可能ミラー装置1を実現できる。
このようにして第1の実施の形態の変形可能ミラー装置1(変形ミラー板)によれば、可撓性部材2に対して印加される所定の一様な駆動力に応じて、所望の変形形状を得ることができるので、球面収差補正が可能となるミラー面の変形形状を得るにあたって、例えば従来のように可撓性部材の複数箇所を複数の圧電アクチュエータにより駆動するといった構成を採る必要はなくなる。
すなわち、先の図2を参照してわかるように、実施の形態の場合の駆動アクチュエータは、上部電極8、下部電極9を駆動するための駆動回路10の1つのみとすることができ、球面収差補正にあたっての制御はこの駆動回路10に対する制御のみを行えばよく、従って簡易な構成で且つ単純な制御により球面収差補正を行うことができる。
また、上記もしているように、実施の形態によれば、上部電極8と下部電極9とに供給されるべき電圧レベルが段階的に変化されるように駆動回路10に対する制御を行うことで、ミラー面の変形形状として例えば2種以上を得ることも可能となり、これによって光ディスク80に形成された第1記録層81〜第3記録層83のように3以上の記録層が形成される場合にも、各層での球面収差補正に必要なミラー面の形状を得ることが可能となる。
つまり、記録層が3以上形成される場合にも、光学系の設計の基準とされた記録層以外の他のすべての記録層において有効に球面収差補正を行うことができるものである。
なお、実施の形態において、上記のようにミラー面の所定の変形形状を得るにあたっての上記強度分布パターン2aの設定としては、上記第2空間7の縮小に応じて可撓性部材2に印加される圧力に応じて得られる変形形状を、例えばFEM(Finite Element Method:有限要素法)シミュレーションツール等を用いてシミュレーションした結果に基づいて割り出すことができる。
ここで、図5を参照して、第1の実施の形態の変形可能ミラー装置1の製造方法の一例を示しておく。
先ず、図5(a)に示すようにして、ガラス基板104a上の所定位置に対して、流路6となる複数の溝を形成する。この流路6としては、ガラス基板104a上に流路加工用のマスクパターンを形成した上で、エッチングにより形成するものとすればよい。
そして、このように所定位置に流路6が形成されたガラス基板104aの全面に対して、例えばアルミニウム等による電極材料を膜付けし、所定位置に対してマスクパターンを形成後、エッチングにより図示する下部電極9を形成する。なお、電極材料の膜付けには、スパッタ法を採用できる。
さらに、このように流路6と下部電極9とが形成されたガラス基板104aに対しては、次の図5(b)に示すようにして、Si基板104bを、例えば陽極接合等により接合する。この際、Si基板104bとしては、先の図2において示した第1空間5、第2空間7が形成されるようにして、円柱状の穴部を形成しておくようにされる。
これらガラス基板104aとSi基板104bとが結合されたものが、図2に示した基板4に相当する。
また、図5(c)に示すようにして、反射膜3を具備した可撓性部材2を、Si基板104b上に例えば陽極接合によって接合する。
先の図2においても説明したように、可撓性部材2における第1空間5に接する部分に対しては、強度分布パターン2aが形成される。また、可撓性部材2の第2空間7と接する部分に対しては上部電極8が形成される。図示は省略したが、この図5(c)に示す可撓性部材2に対しては、予め、上記のようにSi基板104bに対して接合された際に、第1空間5の円柱軸の中心と上記強度分布パターン2aの中心とが一致するように強度分布パターン2aが形成され、同様に上部電極8としても、上記のようにSi基板104bに対して接合された際に第2空間7内に収まる位置となるように形成される。
なお、上部電極8としても、先の下部電極9の場合と同様に、例えばアルミニウム等の電極材料をスパッタ法等により膜付けした後、エッチングにより形成するものとすればよい。
また、図2においても述べたが、反射膜3は、可撓性部材2に対してアルミニウム等をスパッタ法等により膜付けして形成するものとすればよい。
その上で、このようにガラス基板104a、Si基板104b、反射膜3を具備した可撓性部材2の結合体を、図5(c)中の破線により示すように所定寸法により切り出すことで、変形可能ミラー装置1としてのユニットを製造することができる。
このようにして第1の実施の形態の変形可能ミラー装置1の構成によれば、その製造工程としても、膜付けやエッチング、接合といった半導体製造プロセスを利用して製造することが可能となるので、高精度で且つ大量生産が比較的容易となる。
また、半導体製造プロセスが利用可能となることで、変形可能ミラー装置1としても小型化が可能となり、製造コストとしても比較的低コストに抑えることができる。
<第2の実施の形態>

続いては、図6に示される断面図を参照して、本発明における第2の実施の形態としての変形可能ミラー装置20について説明する。
第2の実施の形態としての変形可能ミラー装置20は、第1の実施の形態では上部電極8と下部電極9との間の吸引力によりミラー面変形のための圧力(駆動力)を得るようにしていたものを、図示する圧電素子21の変形によりこれを得るようにしたものである。
なお、図6において、既に図2にて説明した部分については同一の符号を付して説明を省略する。
図6において、変形可能ミラー装置20においては、可撓性部材2は第1空間5のみを覆うようにして基板4と接合される。
そして、一方の第2空間7側に対しては、この第2空間7のみを覆うようにして弾性導電板22が基板4に対して接合される。
この弾性導電板22としては、弾性体とされて可撓性を有し、且つ導電性を有する材質とされればよい。また、これら基板4と弾性導電板22の接合としても、第2空間7の密閉性が確保されるように強固に行われる。
なお、ここでは可撓性部材2を第1空間5のみを覆うように接合したが、可撓性部材2として導電性を有する材質を選定した場合は、図2の場合と同様に第1空間5と第2空間7との双方を覆うように接合することができる。
そして、上記弾性導電板22における、第2空間7と接する側とは逆側の面、つまりミラー面と同側となる面に対しては、図示するように圧電素子21が固着される。この圧電素子21としては、例えば第2空間7の円形形状と同様に円形形状とされ、且つ第2空間7の直上となる位置に対して固着される。
その上で、上記弾性導電板22と圧電素子21に対しては、それぞれに駆動回路10からの配線が接続され、これによって圧電素子21に対する駆動電圧が印加されるようになっている。
このような第2の実施の形態としての変形可能ミラー装置20においては、ミラー面の変形にあたり、駆動回路10によって圧電素子21に電圧を印加するようにされる。これによって圧電素子21は、駆動回路10により印加された電圧の極性に応じて伸縮するようにされる。
このように圧電素子21が伸縮することによっては、この圧電素子21が固着された弾性導電板22としても、ミラー面側に凸となる方向、或いはミラー面とは逆側に凹となる方向に撓むようにして変形する。
圧電素子21の動作によって弾性導電板22がミラー面とは逆側に凹となる方向に変形された場合は、先の図2にて説明した場合と同様に、可撓性部材2の強度分布パターン2aが形成された面をミラー面側に押し上げる圧力が印加され、これによってミラー面は凸方向に変形する。
また、弾性導電板22がミラー面側に凸となる方向に変形された場合は、第2空間7は拡大する傾向となり、図2の場合とは逆に可撓性部材2における強度分布パターン2aが形成された面をミラー面とは逆側に吸引する圧力が印加される。これにより、この場合のミラー面としては、凹となる方向にも変形するようにされる。
このように、圧電素子21の伸縮力に応じた圧力を印加する第2の実施の形態の構成では、第1の実施の形態では凸方向にしかミラー面を変形できなかったものを、凹凸双方向に変形させることができる。
また、このようにミラー面を凹方向に変形させる場合としても、可撓性部材2に形成される強度分布パターン2aとして、上記のようなミラー面とは逆側に吸引する圧力の印加に応じて所定の変形形状が得られるようにそのパターンを設定することにより、球面収差を補正できる形状に変形させることができる。
さらに、この場合としても圧電素子21に印加する電圧レベルを変化させることにより、強度分布パターン2aが形成された面に印加される圧力を段階的に変化させることができ、このように段階的に変化される各圧力レベルに応じて段階的に所定の変形形状が得られるように上記強度分布パターン2aを形成することで、3つ以上の記録層が形成される場合に対応して有効に球面収差補正を行うことができる。
また、製造方法としても、先の図5において示したものとほぼ同様とすることができるので、第2の実施の形態の変形可能ミラー装置20としても高精度で大量生産が可能で、且つ装置の小型化、低コスト化が図られる。
<第3の実施の形態>

図7は、本発明における第3の実施の形態としての変形可能ミラー装置30の断面図を示している。
第3の実施の形態の変形可能ミラー装置30は、ミラー面変形のために可撓性部材2に対して印加する駆動力をボイスコイルモータによる押圧/引圧力とし、可撓性部材2の強度分布パターン2aが形成された面を直接的に押引してミラー面を変形させるように構成したのもである。
図7において、第3の実施の形態の変形可能ミラー装置30としては、基板4に対して2つの空間は形成されず、図示するように空間37のみが形成される。この空間37としても、例えば円柱状とする。
そして、この空間37の円柱の中心軸Cと、強度分布パターン2aの同心円状のパターンの中心とが一致するようにして、可撓性部材2が基板4と接合されている。
その上で、空間37内においては、図示するボイスコイルモータ31が基板4に対して固着されている。
このボイスコイルモータ31においては、その中心軸が上記した中心軸Cと一致するようにされた円柱状ヨーク32が基板4に対して固着されている。円柱状ヨーク32にはフランジ部が形成され、その上部にリング状によるマグネット34が形成される。さらにこのマグネット34と同軸上にリング状ヨーク33が形成される。
そして、この場合においては、例えば強度分布パターン2aの中心部分に形成される凸部に対して、その中心が一致するようにしてコイルホルダ36を固着している。
コイルホルダ36には、上記強度分布パターン2aの凸部が固着される側とは逆側の端部に対して、このコイルホルダ36の円周方向と同方向に駆動コイル35が巻回される。
この駆動コイル35は、図示するように駆動回路10と接続され、これによって駆動コイル35に駆動電流が供給されるようになっている。
なお、この場合、上記した円柱状ヨーク32、マグネット34、リング状ヨーク33は、上記駆動コイル35に駆動電流が流されたときに上記コイルホルダ36を上記空間37の円柱軸方向に移動させる駆動力を発生させる磁路が形成されるように構成されている。
また、この場合の基板4に対しては、流路38が形成されている。この流路38は、基板4の外界と通じ、空間37と外界との通気口として機能する。
上記構成による変形可能ミラー装置30においては、ミラー面の変形にあたり、駆動回路10によって駆動コイル35に電流を流すようにされる。これによって、この駆動コイル35が巻回されるコイルホルダ36には、このとき駆動コイル35に流される電流の極性に応じて、空間37の円柱軸方向への駆動力が発生する。
そして、このようにコイルホルダ36に円柱軸方向への駆動力が発生することで、このコイルホルダ36に固着された可撓性部材2は、強度分布パターン2aの中心部がコイルホルダ36によって直接的にミラー面側に押圧、又はミラー側とは逆側に引き込まれ、これに応じてミラー面としても凹状又は凸状に変形するようにされる。
このようにして、第3の実施の形態の構成においても、可撓性部材2に対しては、ボイスコイルモータによる押圧/引圧力が一様に印加される。
そして、この場合も強度分布パターン2aを形成して可撓性部材2に所要の強度分布を与えていることで、その形成パターンによって上記のような一様な駆動力の印加に応じて所望の変形形状を得ることができる。
すなわち、可撓性部材2に形成される強度分布パターン2aとして、上記のようなコイルホルダ36による押圧/引圧力の印加に応じて所定の変形形状が得られるようにそのパターンを設定することにより、球面収差を補正できる形状に変形させることができる。
また、この場合としても、駆動コイル35に流す電流レベルを変化させることで、強度分布パターン2aが形成された面に印加される圧力を段階的に変化させることができ、このうな段階的に変化される各駆動力レベルに応じて段階的に所定の変形形状が得られるように上記強度分布パターン2aを形成することで、3つ以上の記録層に対応して有効に球面収差補正を行うことができる。
また、特に第3の実施の形態で備えるられるようなボイスコイルモータ31としては、駆動電流の供給に応じたコイルホルダ36の駆動レスポンスが比較的早いものとされ、例えば数十kHzといった比較的高速な駆動が可能とされる。
これによれば、ミラー面の変形の応答性としても高速化が可能となり、例えばディスク80の一周内のカバー厚の変化に追従して球面収差補正を行うといった場合にも、有効に補正を行うことが可能な変形可能ミラー装置を提供できる。
ここで、例えば現状においてブルーレイディスク等の高密度ディスクでは、ディスク内でのカバー厚のムラが、ディスク一周内での球面収差が無視できる程度に精度よく抑えられるようにして製造されている。しかし、高密度ディスクの一般への普及が進むについて、いわゆる粗悪ディスクと呼ばれる低精度のディスクが流通されるようになった場合には、一周内での球面収差量が無視できないほどのカバー厚ムラが生じることも考えられる。
このような状況に対応しては、ディスク1周内で生じる球面収差を補正して記録再生性能の低下を防止することが考えられるが、近年の高密度ディスクではディスク回転速度としても高速化しているものがあるので、このためにはミラー面の変形速度も比較的高速なものとする必要がある。
このことから、上記のようにミラー面の変形速度を比較的高速なものとできる第3の実施の形態によれば、ディスク1周内でのカバー厚ムラに対応した球面収差補正動作を有効に行うことが可能な変形可能ミラー装置を提供できる。
そして、ディスク1周内でのカバー厚ムラに対応した球面収差補正動作を有効に行うことが可能となれば、粗悪ディスクに対しても記録再生性能の悪化を防止できる。また、これを換言すれば、現状よりもディスク80のカバー厚ムラの許容範囲を広げることができ、これによって光ディスク80の製造コストの削減を図ることも可能となる。
なお、他の実施の形態の構成によってもこのようなディスク一周内でのカバー厚の変化に対応した球面収差補正が可能な変形可能ミラー装置を実現できるが、特にボイスコイルモータ31を用いた第3の実施の形態によれば、応答性を早めるための特別な構成や設計が不要で実現できるというメリットがある。
また、第3の実施の形態において、図7に示した流路38の断面積や形状を最適化することで、より良好なダンピング特性を得ることができる。
<第4の実施の形態>

図8は、第4の実施の形態としての変形可能ミラー装置40の構成を示す断面図である。
第4の実施の形態の変形可能ミラー装置40は、可撓性部材2に対して断面形状の違いによる強度分布パターン2aは形成せず、上部電極41を部分的に配置して電極パターン41aを形成するものとしてる。
その上で、上記上部電極41と下部電極42との間の静電気力による吸引力を利用して可撓性部材2を直接的に変形させるように構成したものである。
図8において、この場合の可撓性部材2に対しては、先の図2において説明した強度分布パターン2aと同様に、空間43の中心軸Cを中心とした同心円状に複数の上部電極41を配置して、電極パターン41aを形成するものとしている。
そして、この電極パターン41aとしての複数の上部電極41と対向する、基板4上の面に対しては、例えば円形形状により下部電極42が形成される。
その上で、上記複数の上部電極41のそれぞれと、上記下部電極42とが駆動回路10と接続されている。また、この場合も基板4に対しては、空間43と外界との通気口として機能する流路44が形成される。
この場合としても、ミラー面の変形にあたっては駆動回路10により上部電極41、下部電極42のそれぞれに対して電圧を印加するようにされる。そして、これに応じて、上部電極41と下部電極42との間では静電気力による吸引力が発生することになる。
但し、この場合は、上記のようにして上部電極41としては複数が同心円状に配置されて電極パターン41aを形成するようにされている。これによると、駆動電圧の印加に応じては、可撓性部材2において上部電極41が位置する部分に対してのみ、上下電極間の吸引力がはたらくことになり、よって可撓性部材2においては、上部電極41が配置された部分のみ変形の強度が強くなるようにされる。すなわち、このように上部電極41が配置された部分で、他の部分とは変形態様についての状態が異なるようにされているものである。
また、他の見方をすれば、このように上下電極に対して電圧(駆動力)が印加された場合、ミラー面においては上部電極41の配置された部分が、他の部分とは変形曲率が異なるようにされていることになる。
そして、上記のように部分的に変形態様についての状態が異なるようにされるということは、第3の実施の形態としても、可撓性部材2に対して上部電極41を形成するパターン(つまり電極パターン41a)次第で、上記のように上部電極41と下部電極42に対して印加される一様な駆動電圧の印加に応じて所望の変形形状を得ることができる。
つまり、電極パターン41aの形成パターンによれば、所定の一様な駆動力の印加に応じて球面収差補正に必要なミラー面の変形形状を得ることができ、これによって可撓性部材2を駆動するアクチュエータとしてはこの場合も1つのみとすることができる。
また、この場合としても、駆動回路10により印加する電圧レベルを変化させることで、可撓性部材2に対する吸引力(駆動力)は段階的に制御することが可能であり、このうな段階的に変化される駆動力レベルに応じて段階的に所定の変形形状が得られるように上記電極パターン41aを形成することで、3つ以上の記録層に対応して有効に球面収差補正を行うことができる。
また、次の図9の断面図には、第4の実施の形態の変形例を示しておく。
なお、図8にて説明した部分と同一部分については同一符号を付して説明を省略する。
この変形例としての変形可能ミラー装置45は、図8に示した変形可能ミラー装置40の上部電極41と下部電極42とを逆転し、下部電極42側に電極パターン42aを形成したものである。
このような構成によれば、上部電極41と下部電極42との間では、下部電極42が配置された部分にのみ吸引力が発生する。すなわち、この場合の可撓性部材2としては、このように下部電極42が形成された部分において、部分的に変形態様についての状態が異なるようにされているものであり、よってこの場合は上記電極パターン42aの形成パターンにより、可撓性部材2を所望の変形形状に変化させることができる。
このようにして、変形例の構成によっても、結果的に上下電極に対する所定の一様な駆動電圧の印加に応じて、図8と同様の吸引力の発生態様を得ることができることから、所定の一様な駆動力の印加に応じて、所望の変形形状を得ることができることに変わりはない。
そして、このように図8の場合と同様の吸引力の発生態様を得ることができることで、この場合としても図8の場合と同様の効果を得ることができる。
なお、第4の実施の形態では、電極のパターニングのみによって状態の異なる部分を形成する場合を例示したが、可撓性部材2として第1〜第3の実施の形態の場合と同様に強度分布パターン2aを形成した上で、駆動力の印加の手法についてのみ、上部電極41と下部電極42との間の直接的な静電気力の印加を行う構成とすることも可能である。
<第5の実施の形態>

図10は、第5の実施の形態としての変形可能ミラー装置50の構成を示す断面図である。
第5の実施の形態の変形可能ミラー装置50は、ミラー面が形成される可撓性部材として、先の図2に示したような可撓性部材2に代えて圧電素子52を備えるものとし、所定の一様な駆動力の印加に応じて所望の変形形状を得るにあたっては、圧電素子52に分極反転パターン52aを内在させるようにしたものである。
図10において、上記圧電素子52は、例えばこの場合も円柱状とされた図示する空間51が形成された基板4に対して、この空間51を覆うようにして接合される。
また、圧電素子52の、上記基板4と接合される側とは逆側面に対しては、ミラー面兼電極53が形成される。このミラー面兼電極53としては、ミラー面と電極とを兼用できる例えばアルミニウム等を圧電素子52に対してスパッタ法等により膜付けして形成するものとすればよい。
また、圧電素子52の空間51と接する面に対しては、同じくアルミニウム等の電極材料をスパッタ法等により膜付けして、下部電極54が形成されている。
これらミラー面兼電極53と下部電極54とは、駆動回路10と接続され、これによって圧電素子52に駆動電圧が印加されるようになっている。
そして、上記したように圧電素子52に対して形成される分極反転パターン52aとしては、図2にて説明した強度分布パターン2aと同様に、例えば円柱状とされた空間51の中心軸Cを中心とした同心円状に形成するものとしている。
ここで、上記のように圧電素子52に形成される分極反転パターン52aの形成プロセスについて、次の図11の断面図を参照して説明しておく。
先ず、図11(a)に示すようにして、圧電素子52の材料となる圧電単結晶材料60を用意する。この圧電単結晶材料60としては、例えばLiNbO3(ニオブ酸リチウム)や、LiTaO3(タンタル酸リチウム)等を用いる。
なお、図示されるように、破線矢印は圧電単結晶材料60の自発分極方向を示している。
そして、図11(b)に示されるように、圧電単結晶材料60に対して電極のパターニングを行う。すなわち、圧電単結晶材料60の一方の面の全面に対して電極62を形成し、他方の面においては分極反転を行うべき部分に対応させて電極61を形成する。
その上で、図11(c)に示されるように、この場合は電極61に対しては正極性、電極62に対しては負極性の電圧を印加することで、圧電単結晶材料60の自発分極方向とは逆方向となる電圧を印加する。
この分極反転処理を行った後に、図11(d)に示されるように、圧電単結晶材料60に対して所定時間にわたる熱処理を施す。例えば、約900℃、10時間による熱処理を施す。この熱処理により、次の図11(e)に示すように、上記分極反転処理によって形成された分極反転部分の一部の分極方向が反転される。すなわち、この部分の分極方向は自発分極方向に戻され、結果的に素子の厚み方向の約半分程度が他の部分とは分極方向が異なるようにされた、分極反転パターン52aが形成される。
このように分極反転パターン52aが形成された圧電素子52では、部分的に分極方向が異なるようにされて、伸縮方向が異なるようにされた部分が内在されたものとなる。つまり、部分的に変形態様についての状態が異なるようにされている。また、ミラー面においては、圧電素子52に駆動電圧が印加された場合に部分的に変形曲率が異なるようにされるものとなる。
そして、このような分極反転パターン52aとしての、伸縮方向が異なるようにされた部分の形成パターンによって、この場合も圧電素子52に対して印加される駆動電圧としての所定の一様な駆動力の印加に応じて、所望の変形形状を得ることが可能となる。
つまり、この場合も上記分極反転パターン52aの形成パターンによれば、所定の一様な駆動力の印加に応じて球面収差補正に必要なミラー面の変形形状を得ることができ、これによってアクチュエータは1つのみとすることができる。
また、この場合も駆動回路10により印加する電圧レベルを変化させることで、可撓性部材2に対する駆動力は段階的に制御することが可能であり、このうな段階的に変化される駆動力レベルに応じて段階的に所定の変形形状が得られるように上記分極反転パターン41aを形成することで、3つ以上の記録層に対応して有効に球面収差補正を行うことができる。
なお、第4及び第5の実施の形態においても、球面収差補正が可能なミラー面の変形形状を得るにあたっての電極パターン41a、42a、及び分極反転パターン52aの設定はEFMシミュレーションツールを用いて割り出すようにすればよい。
<第6の実施の形態>

ところで、これまでにおいて説明してきた第1〜第5の実施の形態の変形可能ミラー装置としては、先の図1にて示したように、偏光ビームスプリッタ72にて反射されたレーザ光が導かれ、これを180°反射して光ディスク80に対して照射するようにされている。
しかしながら、このような光学系の構成では、光ディスク80に対し、レーザ光を直線偏光でしか照射できなくなってしまうという制限がある。
ここで、一般的に光学系の設計にあたっては、光ディスク80ごとの諸特性のバラツキが光学系に与える影響を低減したい等の理由から、光ディスク80に対しレーザ光を円偏光により照射したいという事情がある。
また、これと共に、半導体レーザLDから照射されてディテクタ77にて検出されるまでのレーザ光の利用効率を考慮すると、ディテクタ77に対しては光ディスク80からの戻り光を直線偏光により戻したいという事情もある。
このことを踏まえた上で、先の図1にて説明した光学系におけるレーザ光の偏光について再度考察してみる。
図12は、図1に示した光学系の構成における、主にレーザ光の偏光について説明するための図である。なおこの図では、図1中で破線により囲った部分の構成は省略して示している。
先ず、図中「往路」において、図1でも述べたように偏光ビームスプリッタ72に対しては、レーザ光がS偏光により入射するようにされる。偏光ビームスプリッタ72では、S偏光を反射するようにされていることで、レーザ光は1/4波長板73を透過する。この1/4波長板73を透過することによって、レーザ光は円偏光に変換され、実施の形態の変形可能ミラー装置にて180°反射される。
反射した円偏光によるレーザ光は再度1/4波長板73を透過することで、今度はP偏光に変換される。P偏光によるレーザ光は偏光ビームスプリッタ72を透過することで、対物レンズ71を介して集光されて光ディスク80の所要の記録層に合焦するようにされる。
また、図中「復路」において、光ディスク80からのP偏光による戻り光は、対物レンズ71、偏光ビームスプリッタ72を透過し、1/4波長板73を透過することで再度円偏光に変換される。そして、円偏光による反射光は実施の形態の変形可能ミラー装置にて180°反射されて再度1/4波長板73を透過することで、最後はS偏光に変換される。偏光ビームスプリッタ72ではS偏光を反射するので、反射光は図1示したコリメータレンズCLに導かれ、ビームスプリッタBSを透過してディテクタ77に導かれることになる。
従ってこのケースでは、ディテクタ77に対しては光ディスク80からの戻り光をS偏光により戻すことができる。但し、光ディスク80に対しては、円偏光ではなくP偏光としての直線偏光によりレーザ光を照射しなければならないものとなる。
ここで、光ディスク80に対してレーザ光を円偏光により照射するとした場合には、次の図13に示すように、図1に示した光学系の構成に対して1/4波長板73もう1つ追加することが考えられる。
この構成によれば、この図13中の「往路」として示されるように、図12ではP偏光のまま光ディスク80に照射されるものが、新たに追加された1/4波長板73により円偏光に変換することができ、これによって光ディスク80に対してはレーザ光を円偏光により照射することができる。
しかしながら、この場合、図中「復路」と示すように光ディスク80からの円偏光による戻り光は、追加された1/4波長板73にてS偏光に変換されてしまう。すなわち、このS偏光による戻り光は偏光ビームスプリッタ72を反射して光路外へと導かれてしまい、戻り光の検出を行うことができなくなってしまう。
このように、変形可能ミラー装置にてレーザ光を180°反射させるようにされた図1の光学系の構成においては、光の利用効率を考慮してディテクタ77に対し戻り光を直線偏光により戻そうとすると、光ディスク80には円偏光でなく直線偏光でレーザ光を照射せねばならず、逆に光ディスク80に円偏光で照射させようとすると、その戻り光をディテクタ77に正しく戻せなくなってしまうことになる。
つまり、結果的に図1に示される光学系の構成によっては、レーザ光を正しくディテクタ77に導くために、光ディスク80に対しては直線偏光(P偏光)により照射し、ディテクタ77に対しても直線偏光(S偏光)により戻さなければならないものとなっている。
光の利用効率は、光ディスク記録媒体の今後のさらなる高記録密度化を見据えると、より高くされる方が好ましいといえる。よって、光ディスク80からの戻り光は、上述のようにして直線偏光により戻せた方が今後の高記録密度化にとってより有利とすることができる。
また、これと共に、光ディスク80ごとの諸特性のバラツキが光学系に与える影響としても可能な限り除去できるに越したことはない。従って光ディスク80に対してはレーザ光を円偏光により照射できることがより好ましいものとなる。
そこで、このような光ディスク80に対する照射光とディテクタ77への戻り光との条件を満たす光学系の構成としては、次の図14に示す構成を採ることができる。
なお、この図14において、既に図1にて説明した部分と同一部分に対しては同一符号を付して説明を省略する。
先ず、この場合の光学系において、半導体レーザLDから出射されたレーザ光はグレーティング74、コリメータレンズCL1を透過して偏光ビームスプリッタ75に入射する。偏光ビームスプリッタ75に入射したレーザ光の一部は反射されて、この場合もフロントモニタ78に導かれる。
そして、偏光ビームスプリッタ75を透過したレーザ光は、図示するように反射面が45°に傾設された所謂立ち上げミラー(45°ミラー)としての変形可能ミラー装置(60,70)に入射するようにされる。そして、この立ち上げミラーにより、レーザ光は90°反射され、これが1/4波長板73と対物レンズ71とを介して光ディスク80に対して照射される。
つまり、この図14に示される構成においては、先の図1の構成では必要とされていた、変形可能ミラー装置に対してレーザ光を導くための偏光ビームスプリッタ72が省略されたものとなる。
このような光学系の構成によれば、半導体レーザLDから出射されたレーザ光は、直線偏光(P偏光)により45°ミラーに導かれ、ここにおいて反射されて1/4波長板73に導かれる。そして、1/4波長板73を透過した直線偏光によるレーザ光は円偏光に変換され、対物レンズ71を透過して光ディスク80に照射される。
さらに、光ディスク80からの反射光は、対物レンズ71を透過して再度1/4波長板73を透過することで、円偏光から直線偏光(S偏光)に変換され、45°ミラーにて反射されて偏光ビームスプリッタ75に導かれる。偏光ビームスプリッタ75ではこの戻り光が反射されてディテクタ77方向に導かれる。
このようにして図14に示される光学系の構成によれば、光ディスク80に対してはレーザ光を円偏光により照射すると共に、光ディスク80からの戻り光についてはディテクタ77に対して直線偏光により導くことができる。
但し、この図14に示されるような光学系の構成において、45°ミラーとして備えられた変形可能ミラー装置では、ミラー面におけるレーザ光の照射面(反射面)の形状は、次の図15に示されるような楕円形状となる。すなわち、図14中のZ軸方向から反射面を見た場合に、図14中Y軸方向とこれと直交する方向をX軸方向とすると、図15中のX軸方向とY軸方向との直径の比率がおよそX:Y=1:2となる楕円形状となるものである。
ここで、先の図1の構成による光学系においては、ミラー面に対するレーザ光の入射角は90°とされることから、反射面の形状は当然のことながら円形となる。そして、これに対応させてこれまでの実施の形態では、状態の異なるようにされた部分の形成パターンを同心円状としていたものである。
これに対し、図14に示した光学系の構成においては、変形可能ミラー装置でのレーザ光の反射面の形状は上記のように楕円形状となることから、これまでの実施の形態のように円形のパターンとしたままでは、球面収差補正を良好に行うことができなくなってしまう。
そこで、本発明における第6の実施の形態では、変形可能ミラー装置をこのような立ち上げミラーとして用いることを想定して、状態の異なるようにされた部分のパターンを、それぞれ同じ中心をもつ楕円の形状により形成するものとしている。
図16、図17を参照して、このような第6の実施の形態としての変形可能ミラー装置60について具体的に説明する。
なお、これらの図において、図16は変形可能ミラー装置60の構成を断面図により示している。また、図17は、変形可能ミラー装置60の備える可撓性部材2の構造について、図17(a)では先の図14に示したZ軸方向よりみた場合の構造を示し、図17(b)では断面構造を示している。
先ず、この第6の実施の形態の変形可能ミラー装置60が備える可撓性部材2としても、図17に示されるように、ミラー面となるべき面に対して反射膜3がスパッタ法等により膜付けされている。
そして、この場合の可撓性部材2としては、上記ミラー面の裏側となる面において、同じ中心Cをもつ複数の楕円部2A、2B、2C、2Dが形成されている。これら複数の楕円部2A〜2Dは、中心Cを含むようにされた楕円部2Aが最もZ軸方向への厚みがあり、次いで外周側に形成される楕円部2B、さらに外周側となる楕円部2C、さらに外周側の楕円部2Dとなるに従ってZ軸方向への厚さが薄くなるようにされている。つまり、図17(b)にも示されているように、この場合の可撓性部材2の断面形状としては、中心Cから外周方向にかけて階段状にその厚さが薄くなるような形状とされている。
そして、楕円部2Dが形成される領域より外周となる領域は、当該領域が、後述するようにして可撓性部材2に対するZ軸方向への駆動力が印加された場合にも変形されないように充分な強度を確保するための、リブ状のフレーム2Eが形成される。
さらに、このフレーム2Eの外周側に対し、先の第3の実施の形態で用いられていたものと同様の駆動コイル35が巻回されている。
ここで、この場合には、楕円部2A〜楕円部2Dまでの範囲が、変形ミラーとして変形する範囲とされる。つまり、第6の実施の形態では、これらそれぞれ厚さの異なるようにされた楕円部2A〜楕円部2Dの形成パターンによって、Z軸方向への駆動力が印加された際にミラー面として所望の変形形状が得られるようにされている。従って、この場合の可撓性部材2では、これら楕円部2A〜楕円部2Dが図示するように強度分布パターン2aを形成していることになる。
そして、これら変形可能な楕円部2A〜楕円部2Dまでの領域の外周部には、上述のようにして駆動力の印加に対しても変形しない十分な強度を持つようにされたフレーム2Eが形成されている。つまり、このフレーム2Eとしての可撓性部材2における外周部分が、このように駆動力の印加に対しても変形はせず強度が保たれることで、その分、楕円部2A〜楕円部2Dまでの可変部の変形形状としては、より理想の変形形状に合わせ易くできる。つまり、可撓性部材2の外周部が変形されてしまう場合と比較すれば、より高精度にミラー面の変形形状を理想形状に近づけることができる。
さらに、第6の実施の形態としての変形可能ミラー装置60は、この図17に示した反射膜3が膜付けされた可撓性部材2が、図16に示す構造とされるベース61に対して勘合されて成るようにされる。
このベース61は、最外周部分に図示する外周壁61aと、その内周側に内周壁61b、さらに内周側の中心C含む領域に中央凸部61cが形成されている。中央凸部61cには、中心Cを含むその中心部に、可撓性部材2の中央に形成された楕円部2Aを勘合するための凸部が形成されている。この凸部に楕円部2Aが勘合されて固着されることで、可撓性部材2はベース61により支持される。
また、外周壁61aにおける内周側部分には、リング状によるマグネット34が固着されている。そして、この外周壁61aの内周側に固着されたマグネット34と、上記内周壁61bとの間には、上記のようにして中央凸部61cの凹部において可撓性部材2が勘合された際の、この可撓性部材2における駆動コイル35が巻回されたフレーム2Eが挟み込まれるようになっている。
このとき、ベース61は高透磁率材とされることで、このベース61とマグネット34とによる磁気回路が形成されることになる。
このような構成による変形可能ミラー装置60に対しては、図示は省略したが、この場合も駆動コイル35には駆動回路10からの駆動電流が供給される。このように駆動コイル35に対して駆動電流が供給されることで、駆動コイル35が巻回されるフレーム2Eには、このとき駆動コイル35に流される電流の極性に応じたZ軸方向への駆動力が発生する。つまり、可撓性部材2に対しては、その外周部となる上記フレーム2Eにおいて一様な駆動力が印加される。
そして、このようにフレーム2EにZ軸方向への駆動力が発生することで、可撓性部材2は、ベース61に支持された中央部を頂点にミラー面側に凸、又はミラー面とは逆側に凹となるように変形する。
このとき、可撓性部材2には、上記した楕円部2A〜2Dとしての強度分布パターン2aが形成されている。つまり、この場合としても、その形成パターンによって、上記のように可撓性部材2に印加される一様な駆動力に応じて所望の変形形状を得ることができる。
また、この場合としても、駆動コイル35に流す駆動電流レベルを変化させることで、可撓性部材2に印加される圧力を段階的に変化させることができ、このうな段階的に変化される各駆動力レベルに応じて段階的に所定の変形形状が得られるように上記強度分布パターン2aを形成することで、3つ以上の記録層に対応して有効に球面収差補正を行うことができる。
また、この第6の実施の形態としても、ボイスコイルモータの原理を利用して可撓性部材2に駆動力を印加するようにされるので、先の第3の実施の形態と同様にミラー面の変形の応答性の高速化に有利となり、例えば光ディスク80の一周内のカバー厚の変化に追従して球面収差補正を行うといった場合にも、その分有利とすることができる。
その上で、この場合は強度分布パターン2aを、それぞれ同じ中心Cをもつ楕円形状により形成していることで、45°ミラーでのレーザ光の照射面の形状に応じた適正な球面収差補正を行うことが可能となる。つまり、45°ミラーとして球面収差補正を行うことのできる変形可能ミラー装置が実現できるものである。
このように45°ミラーとして球面収差補正を行うことのできる変形可能ミラー装置が実現できることで、先の図14に示す光学系の構成が実現可能となって、光ディスク80に対してはレーザ光を円偏光により照射し、ディテクタ77に対しては直線偏光による戻り光を得ることが可能となる。つまり、これによって光ディスク80のバラツキの影響が光学系に与える影響を低減し、且つレーザ光の光の利用効率の向上を図ることができる。
そして、これによれば、変形可能ミラー装置を用いて球面収差補正を行う光学系の構成として、今後の光ディスク80の高記録密度化に対してより有利な構成を実現できる。
また、先の図14に示す光学系の構成が実現可能となれば、先の図1に示した光学系の構成とする場合には2つ必要とされていたビームスプリッタの1つを省略でき、その分光学系の小型化や製造コストの削減を図ることができる。
ここで、参考として以下の図18には、このように45°ミラーとして用いることを想定した場合の変形可能ミラー装置60において、光ディスク80における各記録層81〜83での球面収差補正にあたって必要な変形形状の一例を示しておく。
この図では、ミラー面中心(中心C)からのそれぞれX軸方向、Y軸方向の距離と、それに応じたZ軸方向への変形量の数値によって、球面収差補正のために必要なミラー面の変形形状を示している。
なお、この図に示す数値としては、各記録層81〜83のカバー厚が、第1記録層81は0.075mm(75μm)、第2記録層82が0.100mm(100μm)、第3記録層83が0.125mm(125μm)とされた場合に応じたものであるとする。
さらには、この図に示される数値は、変形可能ミラー装置60が備えられる図14に示した光学系が、第2記録層82の合焦時に球面収差補正が不要となる(球面収差が最小となる)ように設計されている場合に応じたものであるとする。
先ず、図18において、白抜きはカバー厚75μm(第1記録層81)時の、薄色は100μm(第2記録層82)時の、黒色は125μm時(第3記録層83)の変形形状に対応した数値をそれぞれ示している。そして、それぞれにおいて、さらに四角印はX軸方向の、丸印はY軸方向の変形形状に応じた数値を示している。
この図を参照してわかるように、この場合のミラー面は、第2記録層82において変形量がゼロとなるようにされている。つまり、上記もしているようにこの場合の光学系では、第2記録層82の合焦時に球面収差補正が不要となるように設計されているものである。
そして、実際に補正を行うようにされる第1記録層81と第3記録層83とでは、中心Cからの同じ距離上で、概ねX軸方向とY軸方向とがX:Y=2:1の変形量となるようにされている。
これら第1記録層81、第3記録層83にて良好な球面収差補正を行うにあたっては、可撓性部材2に対する所定の駆動力の印加に応じて、この図に示されるような中心Cからの各位置での変形量が得られるように、FEMシミュレーションツールを用いて楕円部2A〜2Dの形成パターン(例えばそれぞれのZ軸方向への厚みや中心Cからの距離等)を決定するものとすればよいものである。
ここで、上記のようにして、この場合の光学系としては、光ディスク80に形成される3つの記録層のうちの中間の第2記録層82に合わせて球面収差補正が不要となるように設計するものとしているが、これによれば、第1記録層81、第3記録層83における球面収差補正量としては、共に一層分の補正量とすることができ、従ってミラー面の変形量は最小とすることができる。例えば、第1記録層81、又は第3記録層83に合わせて球面収差補正が不要となるように設計した場合、ミラー面の変形量は最大で2層分となり、その分可撓性部材2としてもより強度の強い部材を用いる等のコストアップを強いられる。これに対し、上記のように中間の第2記録層82に合わせた設計とすればこれを抑制できるものである。
なお、光ディスク80に形成される記録層が4層以上とされる場合としても、同様に中間に位置するようにされた記録層に合わせた設計とすることで、ミラー面の変形量は減少傾向とすることができる。
<第7の実施の形態>

図19は、第7の実施の形態としての変形可能ミラー装置70の構成を断面図により示している。
なお、この図において既に図16及び図17にて説明した部分については同一符号を付して説明を省略する。
第7の実施の形態としても、図14に示した45°ミラーとして球面収差補正を行うために、可撓性部材2としては先の図16に示した変形可能ミラー装置60の場合と同様の楕円部2A〜2D、及びフレーム2Eを形成するようにしている。
その上で、先の図16の変形可能ミラー装置60ではフレーム2Eとしての可撓性部材2における外周部に対して駆動力を印加するようにしていたものを、ここでは楕円部2Aとしての可撓性部材2における中心部に対して一様な駆動力を印加するように構成したものである。
先ず、この場合、可撓性部材2の中央部に形成された楕円部2Aに対しては、先の図7に示した第3の実施の形態の変形可能ミラー装置30の場合と同様のコイルホルダ36が固着されている。このコイルホルダ36には、この場合もその外周部に駆動コイル35が巻回されている。
そして、この場合には、図示するようにフレーム2Eにおいて可撓性部材2を固着するようにされたベース65が備えられる。このベース65の内部には、外周壁66aと中央凸部66bとが形成されて、図のように断面形状が略E字型とされたヨーク66が固着されている。
ヨーク66において、上記外周壁66aの内周側には、リング状によるマグネット34が固着されている。これによって外周壁66aと上記中央凸部66bとの間に磁束が供給されるようになっている。
そして、ヨーク66は、上記のようにして可撓性部材2のフレーム2Eがベース65に対して固着された際に、中央凸部66bの中心軸がミラー面の中心Cの軸上で一致するように、ベース65の形状によって位置決めされる。さらにこのとき、上記のようにベース65と可撓性部材2側とが固着された状態では、中央凸部66bとコイルホルダ36との間には所定間隔が空くようにされ、且つ、このコイルホルダ36において駆動コイル35が巻回された外周部分は、外周壁66aに固着されたマグネット34と中央凸部66bとの間に挟み込まれるようになっている。
このような構成による変形可能ミラー装置70に対しても、図示されない駆動回路10からの駆動電流が駆動コイル35に対して供給されることで、Z軸方向への駆動力が発生することになる。
そして、この場合、可撓性部材2におけるフレーム2Eに代えて、中央部の楕円部2Aの部分にこの発生した駆動力が印加される以外は、先の第6の実施の形態の場合と同様の動作が得られることになる。
また、この場合としても可撓性部材2に形成される強度分布パターン2aとして楕円形状によるパターンが形成されていることで、45°ミラーとして備えれる場合に良好に球面収差補正を行うことが可能となる。
さらに、この場合もミラー面における可変部としての楕円部2A〜楕円部2Dの外周部に対して、フレーム2Eが形成されていることにより、第6の実施の形態の場合と同様にミラー面の変形形状をより高精度に所望の変形形状に一致させることが可能とされる。
なお、この場合としても、強度分布パターン2aの形成パターンとしては、所定の駆動力の印加に応じて、先の図18に示した各記録層での補正量に対応した変形形状が得られるようにFEMシミュレーションツールを用いてシミュレーションした結果に基づいて設定される。
参考として、この第7の実施の形態としての変形可能ミラー装置70について、各記録層ごとでの変形形状について実験を行った結果を、次の図20に示しておく。
なお、この図では、カバー厚75μm時での球面収差補正量に応じた変形形状についての結果のみを示し、図中四角印はX軸方向の、また丸印はY軸方向における、それぞれ中心Cからの距離に応じたZ軸方向の変形量を示している。
また、それぞれの×印は、カバー厚75μm時における、先の図18にて示したものと同様のX軸方向、Y軸方向での変形形状についての理想値を示している。
この図に示す結果より、X軸方向、Y軸方向で共に、殆どの位置で理想値による変形形状とほぼ一致していることがわかる。そして、理想値との誤差が生じている部分としても、その誤差は最大でも0.2μm以内で収まっている。
つまりこの場合、ミラー面の変形形状は非常に高い精度で理想形状と一致しているものであり、このような結果より、変形可能ミラー装置70によれば球面収差補正を良好に行うことが可能であることが理解される。
なお、ここでは第7の実施の形態の場合の実験結果のみを示しているが、第6の実施の形態の場合としてもこの図に示す結果とほぼ同等の結果を得ることができる。
ところで、これまでに説明した第6の実施の形態と第7の実施の形態とについて、可撓性部材2におけるフレーム2E(外周部)を駆動するようにされた第6の実施の形態では、中央部がベース61に固定されるため、駆動力印加に応じたミラー中心位置のZ軸方向への変位をほぼゼロとすることができる。そして、これによって、反射されるレーザ光の光軸ズレをほぼ生じさせないようにすることができる。
これに対し、可撓性部材2における楕円部2A(中央部)を駆動する第7の実施の形態では、フレーム2Eとベース65とが固着されるので、可撓性部材2とベース65との固着面積が広くより高い剛性を得ることが可能となるから、その分可撓性部材2の固有振動数を高く設定することができるというメリットがある。つまり、これによれば、例えばディスク周回内での球面収差補正を行う場合により有利とすることができるものである。
また、これら第6及び第7の実施の形態のように、強度分布パターン2aを同じ中心をもつ楕円形状とした場合にも、可撓性部材2の製造は膜付けやエッチング等の半導体製造プロセスを利用することができるので、高精度で且つ大量生産が比較的容易となる。また、このように半導体製造プロセスが利用可能となることで、変形可能ミラー装置としても小型化が可能となり、製造コストとしても比較的低コストに抑えることができる。
なお、第6及び第7の実施の形態では、先の第3の実施の形態の場合と同様に電磁アクチュエータによって可撓性部材2に駆動力を印加する構成を例示したが、楕円形状による強度分布パターン2aを形成した可撓性部材2に対し、第1又は第2の実施の形態と同様の仕組みにより駆動力を印加する構成としても、45°ミラーとして球面収差補正を行うことができる変形可能ミラー装置を実現することができる。
また、強度分布パターン2aを形成する以外にも、先の第4の実施の形態で用いた可撓性部材2に設ける電極パターン2aとして、上部電極41或いは下部電極41を、それぞれ同じ中心をもつ楕円形状により配置することによっても、45°ミラーとして球面収差補正を行うことができる変形可能ミラー装置を実現することが可能である。
また、この場合、可撓性部材2に同様に楕円部による強度分布パターン2aを形成した上で、駆動力の印加についてのみ上部電極41と下部電極42との間の静電気力を利用するパターンも可能である。
さらには、ミラー面が形成される可撓性部材として圧電素子を用いる場合としても、第5の実施の形態での分極反転パターン52を、同様にそれぞれ同じ中心をもつ楕円形状により配置することによって、45°ミラーとして球面収差補正を行うことができる変形可能ミラー装置を実現することができる。
また、第6及び第7の実施の形態において、強度分布パターン2aとしての楕円部の数、すなわち可撓性部材2のZ軸方向の厚さについての段数は、楕円部A〜Dまでの4つとしたが、その数について特に限定するものではない。
さらに、第6及び第7の実施の形態においては、先の図17(a)にも示したように各楕円部の形状がX軸方向、Y軸方向に共に軸対称となる形状としたが、以下の事情を考慮して、X軸方向については軸対称とはならない形状を採るものとしてもよい。
図21は、変形可能ミラー装置60及び70についての、ミラー面に対するレーザ光の入射光と反射光の関係を例示的に示した図である。
先ず、図中の2本の破線M6、破線M7は、それぞれ第6の実施の形態の場合での無変形時のミラー面3の状態と、第7の実施の形態の場合での無変形時のミラー面3の状態を示している。すなわち、破線M6は、可撓性部材2における中央部を支持するようにされた構成での無変形時のミラー面3の状態を示し、破線M7は、可撓性部材2のフレーム2E(外周部)を支持するようにされた構成での無変形時のミラー面3の状態を示している。
そして、これら第6の実施の形態、第7の実施の形態の場合の無変形時のミラー面3の状態から、Z軸方向への駆動力を受けた際のミラー面3の形状を、図中の太線による実線で示している。つまり、第6の実施の形態での破線M6の状態からは、レーザ光の反射面側に凸となる変形形状となり、第7の実施の形態の破線7からは凹となる変形形状が得られていることが示されている。
先ず、破線M6の無変形時のミラー面3の状態では、レーザー光線の中心と両端の照射位置は、それぞれ図中のP6aとP6b,P6cにより示されるものとなっている。すなわち、両端の照射位置P6b,P6cは、それぞれ中心の照射位置P6aから等距離となっており、90°の反射角が得られていることが理解できる。そして、破線M7の無変形時も同様に、レーザ光線の両端の照射位置P7b,P7cは、それぞれ中心の照射位置P7aから等距離となっており90°の反射角が得られる。
従って、何れの場合も、ミラー面3の無変形時においてはレーザ光の両端の反射角は同等でレーザ光に光軸ズレが生じないことがわかる。
しかし、これら破線M6、M7の無変形時から、ミラー面3が変形された場合には、図示もされているように両端の照射位置は中心の照射位置から均等とはならず、従ってレーザ光の反射角にもズレが生じてしまうこととなる。
なお、この図では、説明のためにミラー面3を極端に変形させて描いているため、このズレは非常に大きなものとなっているが、実際に収差補正に必要な変形量としては微少なものであることから、これに伴うズレは無視できる程度に小さい。
但し、これを補正して光軸のズレを可能な限り補正するとした場合は、図中に示されるミラー面3の変形時の断面形状として、中心Cを境に上下非対称に、いわばスプーン状にミラー面3を変形させれば、反射角のズレを良好に補正することが可能となる。
そして、このとき、上記のようなスプーン状の変形形状を得るにあたっては、例えば次の図22に示されるように、可撓性部材2に形成する強度分布パターン2aとして、X軸に対して完全に軸対称となる楕円ではなく非対称となる形状によるパターンを形成すればよい。
つまり、このように第6及び第7の実施の形態の45°ミラーとしての変形可能ミラー装置において、ミラー面3の変形時のレーザ光の光軸ずれを精度良く補正するとした場合は、強度分布パターン2aを完全な楕円とはしなくてもよいものである。
なお、本発明において言う「楕円」とは、このように楕円の短軸(X軸)を境に非対称となる形状も含むものであるとする。
ここで、これまでの実施の形態で説明したように、本発明としては、表面にミラー面が形成された可撓性部材に対し、それぞれ同じ中心を持つ円又は楕円の形状により、変形態様についての状態が異なるようにされた部分を形成することによって、所要の一様な駆動力の印加に応じ、ミラー面として球面収差補正に必要な所望の変形形状を得るようにされているものである。
そして、このような変形態様についての状態が異なるようにされた部分を「同じ中心を持つ円又は楕円の形状」により形成することで、これまでの説明から明らかなように、レーザ光を180°反射する場合と90°反射する場合とのそれぞれのバリエーションに対応して、球面収差補正を良好に行うことができる変形可能ミラー装置を実現できるものである。
また、本発明のように、状態の異なる部分を同じ中心を持つ円又は楕円の形状により形成することによっては、応力が一部に集中してしまうことを防止できることで、可撓性部材の割れや疲労破壊を効果的に防止できる。
ここで、ミラー面の変形のために或る駆動力が印加される場合、可撓性部材では内部応力が発生する。そして、この際、仮に可撓性部材において応力が一点に集中するような部分があると、実施の形態のように可撓性部材が等質等方性な材質により構成される場合、この部分は急激に寸法の変化する箇所となる。
例えば、状態が異なるようにされた部分のパターンが同心でない(同じ中心を持つ円又は楕円でない)場合、各パターンは特定の方向で間隔が狭まったり広がったりすることになる。そして、この間隔が狭まった部分が、他の部分に比べて応力が集中しやすい部分となり、よって一様な駆動力の印加に対して急激に寸法が変化する部分となる。
このように応力が集中する部分があると、この部分において可撓性部材の許容応力を超える可能性が高まり、これに伴って割れが発生する可能性が高くなる。また、可撓性部材の変形が繰り返し行われることで、この部分での疲労破壊を招く虞もある。
これに対し本発明では、同じ中心を持つ円又は楕円の形状によりパターンが形成されることから、各パターンの間隔は均等で、上記のように応力が一部に集中するような部分が生じないようにすることができるので、上記した割れや疲労破壊の効果的な防止を図ることができる。
<第8の実施の形態>

続いては、第8の実施の形態について説明する。
第8の実施の形態は、可撓性部材の所定位置に対し、断面厚が最も薄くなるように形成された肉薄部を設けるようにしたものである。
なお、ここでは、先の第6及び第7の実施の形態で用いられていた可撓性部材2を例に第8の実施の形態の構成を説明する。また、第8の実施の形態としては、他の実施の形態の変形ミラー装置と可撓性部材の構成が異なるだけであるので、他の部分についての説明は省略する。
図23は、第6の実施の形態で用いられていた可撓性部材2について第8の実施の形態を適用した場合の可撓性部材2の構成を示す図であり、図23(a)はその平面図を、また図23(b)は断面図を示している。
また、図24は、第7の実施の形態の可撓性部材2について第8の実施の形態を適用した場合の可撓性部材2の構成を示す図として、同様に図24(a)は平面図を、図24(b)は断面図を示している。
これらの図のように、この場合の可撓性部材2としては、断面厚が最も厚くされて強度が確保された最外周部のフレーム2Eと、ミラー面中心C側との境界部分に対し、中心Cを中心とした楕円の形状により、断面厚が最も薄くなるようにされた肉薄部2Gが形成されるものである。
この場合、肉薄部2Gの厚さは、例えば楕円部2Dの厚さの半分程度となる0.015mm程度に設定している。
また、肉薄部2Gは全周にわたってその幅が均一となるように形成され、この場合は0.2mm程度に設定している。
上記のようにして、断面厚が最も厚くされて強度が確保された最外周部のフレーム2Eと、ミラー面中心C側との境界部分に対し、最も断面厚が薄くなるようにされた肉薄部2Gが形成されることで、この肉薄部2Gは、駆動力の印加に対して他の部分よりも変形し易い部分となる。
これにより、駆動力が印加された場合は、この肉薄部2Gにて大きな変形曲率が得られ、これによって楕円部2Dの面積を小さく設定しても、ミラー面の変形形状を所望の変形形状に一致させることが容易にできる。
また、上記のようにしてこの場合は肉薄部2Gの幅を全周にわたり均一に設定するものとしているが、このことで肉薄部2Gにおける駆動力の伝達を均一にでき、この点でより容易にミラー面の変形形状を所望の変形形状に一致させることができる。
図25は、図23及び図24に示した構成による可撓性部材2の変形形状をシミュレーションにより求めた結果を示している。
なお、この図25では、図23及び図24に示した肉薄部2Gを設けた場合の可撓性部材2についての結果と、第6の及び第7の実施の形態で説明したままの肉薄部2G無しの場合の可撓性部材2についての結果を対比して示している。図中黒三角が、図23及び図24に示した可撓性部材2についての結果を示し、黒丸が第6の及び第7の実施の形態で説明したままの可撓性部材2についての結果を示している。
この図では説明の便宜上、可撓性部材2の変形形状を、楕円の短軸方向でのミラー面の中心Cからの距離とZ軸方向への変位量との関係により示している。
また、この図に示す結果を得るにあたり、図23及び図24に示した可撓性部材2では、楕円部2A〜2Dの大きさを1/3程度にまで縮小した。
ここで、先ず前提として、この場合のミラー面に形成されるレーザスポットとしては、楕円の短軸方向(X軸方向)では中心Cからおよそ2mm程度の範囲となる。つまりこの場合、ミラー面における球面収差補正に必要な変形範囲(有効変形範囲)は、楕円の短軸上においては中心Cからおよそ2mm程度の範囲となる。
このことを踏まえると、図中黒丸により示される第6及び第7の実施の形態での肉薄部2G無しの場合の可撓性部材2では、中心Cから7mm程度の部分からなだらかに変形させていくことで、中心Cから2mm程度の変形有効範囲にて、球面収差補正に必要な変形形状を得るようにされていることがわかる。つまり換言すれば、肉薄部2G無しとされた場合、有効変形範囲として所望の変形形状を得るにあたり7mm程度の変形範囲を必要としていたものである。
これに対し、黒三角により示す肉薄部2G有りの本実施の形態の場合では、中心Cからの距離が2.4mm程度の変形範囲により、有効変形範囲にて肉薄部2G無しの場合と同様の変形形状が得られていることがわかる。
この実験結果より、肉薄部2Gを設けた場合には、有効変形範囲にて所望の変形形状を得るにあたり必要な変形範囲を、肉薄部2G無しとした場合との比較で、半径にして約1/3程度に縮小することができる。
このようにして有効変形範囲にて所望の変形形状を得るにあたり、必要な可撓性部材2の変形範囲を縮小できることで、可撓性部材2はより小型とすることができる。そして、このように可撓性部材2をより小型化できることで、変形可能ミラー装置としても小型化が図られる。
また、この図25における比較を参照して理解されるように、肉薄部2Gを設けた場合、可撓性部材2のZ軸方向への変位量としても第6及び第7の実施の形態の場合の1/3程度に縮小されているものとなる。このようにZ軸方向への変位量が縮小化されることで、例えば第7の実施の形態の駆動方法により可撓性部材2が外周部固定で中心部が駆動される構成とされた場合(図24の可撓性部材2)に、レーザ光の光軸中心ずれを有効に縮小化できるというメリットもある。
なお、上記例では第6及び第7の実施の形態としての、最外周部が最も断面が厚く、中心Cから外周にかけては階段状に断面厚が薄くなるように形成された可撓性部材2に肉薄部2Gを形成するものとした。
このような中心Cから外周にかけては階段状に厚さが薄くなるようにされた構成によれば、上記境界部分は、自ずと断面厚が最も薄くなる部分となる。換言すれば、第6及び第7の実施の形態の構成そのものによっても、最外周部と中心C側との境界部分で変形し易い部分が得られることになる。
第8の実施の形態は、このように中心Cから外周にかけては階段状に厚さが薄くなるようにされた構成に対しては、上記境界部分の厚さをより薄く形成したことによって、最外周部の強度とこの境界部分での強度の差を大きくすることができ、これによってこの境界部分をより変形し易い部分とできることを説明したものである。そして結果として、一定の駆動力の印加に対する変形強度を、より強めることができる。
ここで、第8の実施の形態としては、先の第1〜第5の実施の形態の駆動方法が採られる場合においても好適に適用できる。
第1〜第5の実施の形態で説明した可撓性部材(圧電素子52も含む)としては、先の第6及び第7の実施の形態の場合とは異なり、可撓性部材の最外周部は断面厚が最も厚くなる構成とはされていない。但し、特に第2〜第5の実施の形態の可撓性部材は、その最外周部において変形可能ミラー装置の本体側(基板4側)と接続されるものとなっており、この場合もその最外周部は所要の強度が保たれるようになっている。つまり、第2〜第5の実施の形態における可撓性部材の最外周部は、厚みが最も厚くなっている第6及び第7の実施の形態の場合と同様の最外周部であるとみなすことができる。
このことから、これら第2〜第5の実施の形態の可撓性部材についても、同様に最外周部との境界部分に肉薄部2Gが設けられることで、第6及び第7の実施の形態に適用した場合と同様の効果を得ることができる。
但し、これら何れの場合としても、厳密に言えば、上記最外周部と中心C側との境界部分は可撓性部材において断面厚が最も薄くされた部分となっている。従って、例えば仮にこの境界部分が他の部分よりも断面厚が厚くされた場合と比較すれば、この境界部分にて変形曲率を強める効果はもともと有するものであるとは言える。
しかし、この場合としても、この最外周部との境界部分の厚さをより薄くしていくことで、上記境界部分をより変形し易い部分とすることができ、結果として一定の駆動力の印加に対する変形強度をより強めることができる。
ところで、第1の実施の形態の場合、可撓性部材2は、第1空間5側と第2空間7側とを跨ぐようにして一体的に形成されたものとされているので、他の実施の形態の可撓性部材2とは異なるものとなっている。
この場合の可撓性部材2は、第1空間5を形成する基板4の内周壁と接続されて、その部分で所要の強度が確保されている。すなわち、この部分が、他の実施の形態の可撓性部材2でいうところの最外周部に相当する。
従って第1の実施の形態の場合は、この第1空間5を形成する内周壁と接続される部分と、ミラー面の中心C側との境界部分に対して、肉薄部2Gが設けられることで、他の実施の形態に肉薄部2Gを設けた場合と同様の効果を得ることができる。
なお、第8の実施の形態としては、強度分布パターン2aが楕円の形状により形成される場合を例示したので、これに応じ肉薄部2Gは楕円形状により形成する例としたが、円形とされる場合は、これに応じて肉薄部2Gとしても円形により形成する。このように強度分布パターン2aの形状と肉薄部2Gの形状を揃えることで、ミラー面の変形形状を所望の変形形状に一致させることをより容易とでき、且つこの場合も肉薄部2Gが形成されたことで、有効変形範囲にて球面収差補正のための所望の変形形状を得るにあたって必要な可撓性部材の変形範囲を縮小化することができる。
これまでの説明より、第8の実施の形態としては、第2〜第5の実施の形態及び第6〜第7の実施の形態のように、可撓性部材2がその最外周部において所要の強度が確保されている場合は、その最外周部とミラー面中心C側との境界部分において肉薄部2Gが形成されることで、この肉薄部2Gをより変形し易い部分とすることができ、結果として有効変形範囲の形状を所望の変形形状とするにあたって必要な可撓性部材の変形範囲を小さくすることができる。
また、第1の実施の形態のように可撓性部材2が第1空間5と第2空間7とを跨ぐようにして一体的に形成されていて、第1空間5を形成する基板4の内周壁と接続される部分で所要の強度が確保されている場合は、この内周壁と接続される部分とミラー面中心C側との境界部分で肉薄部2Gが形成されることで、より変形し易い部分を得ることができ、これによって有効変形範囲の形状を所望の変形形状とするにあたって必要な可撓性部材の変形範囲を小さくすることができる。
そして、このとき肉薄部2Gとしては、可撓性部材2の強度分布パターン2aが同心円状に形成される場合は中心Cを中心とした円形により形成することで、ミラー面の変形形状を所望の変形形状に一致させることをより容易とできる。また楕円状に形成される場合は中心Cを中心とした楕円の形状により形成されることで、ミラー面の変形形状を所望の変形形状に一致させることをより容易とできる。
これらを総じるに第8の実施の形態としては、可撓性部材2の強度分布パターン2aが同心円状に形成される場合は中心Cを中心とした円形により、また楕円状に形成される場合は中心Cを中心とした楕円の形状によって、その所定位置に対して断面厚を最も薄くする肉薄部が形成されることで、可撓性部材2においてより変形し易い部分を得ることができ、これによって有効変形範囲にて球面収差補正のための所望の変形形状を得るにあたって必要な可撓性部材の変形範囲を縮小化することができる。
ここで、図26、図27は、第8の実施の形態の変形例について示している。
図26は、肉薄部2Gとして、逆に反射膜3(ミラー面)側に溝を形成したことで最も断面厚が薄くなる部分を形成するようにしたものである。
さらに図27は、ミラー面側とその逆側(裏面)との両サイドから溝を形成して断面厚が最も薄くなる肉薄部2Gを形成したものである。
これらの例のように肉薄部2Gとしては断面厚が最薄となるように形成されるものであればよく、その形成の仕方について特に限定はされない。
<第9の実施の形態>

続いて、第9の実施の形態について説明する。
第9の実施の形態は、これまでの実施の形態では可撓性部材2の全面にわたって形成していた反射膜3を、その一部のみに形成するようにしたものである。
ここでは先の第8の実施の形態と同様に、第6及び第7の実施の形態の可撓性部材2を例に第9の実施の形態について説明する。
図28は、先の第6の実施の形態の可撓性部材2に対し第9の実施の形態を適用した場合の可撓性部材2の構成を示し、図29は、第7の実施の形態の可撓性部材2に対し第9の実施の形態を適用した場合の可撓性部材2の構成を示している。
なお、これらの図では可撓性部材2を表面側から見た場合の平面図を示している。
これらの図から明かなように、第9の実施の形態では、可撓性部材2の一部のみに対し反射膜3を形成するものである。この場合、反射膜3は、レーザ光が照射される部分に対応した部分にのみ形成するものとしている。
例えばレーザ光のビームスポット径がφ3mmであれば、第6及び第7の実施の形態のように45度に傾斜されて使用される変形可能ミラー装置とされた場合、レーザ光の照射部分の形状・寸法はφ4.2426×3mm程度の楕円形状となる。従って反射膜3としては、ミラー面中心Cから上記φ4.2426×3mm程度の楕円形状により形成されていれば、ミラー面として機能できると考えられる。
但し実際としては、レンズシフト分や経時変化に伴う光学系の特性変化に伴い、レーザスポットの位置は微少に変化することが予想される。そこで第9の実施の形態としては、これらの誤差を考慮したマージンを確保するため、反射膜3としてはミラー面の中心Cを中心として例えばφ6.1mm×4.3mm程度の範囲で形成するものとしている。
別の言い方をすれば、この有効部以外の部分は実質的にレーザ光を反射するミラー面として使用されない領域となることから、必要とされる部分にのみ反射膜3を形成しようとするものである。なお、ここでは上記のようにレーザ光が照射されるとして想定される部分を有効部と呼ぶ。
ここで、実施の形態で例示しているような弾性を有する可撓性部材に対し、その表面(外面)に反射膜3としての金属膜を成膜した場合、成膜時の条件によっては、可撓性部材の平面性が悪化することがある。つまりは、反射膜3の成膜に伴う内部応力をバランスさせるために可撓性部材側に反りが生じるため、反射膜成膜後の平面性が悪化してしまうものである。
このようにして、初期状態(無変形時)での可撓性部材2の平面性が確保できなければ、シミュレーション通りに理想の変形形状に一致させることが困難となってしまう。
そこで、図28及び図29に示されるようにして、可撓性部材2に対する反射膜3の成膜範囲を縮小すれば、可撓性部材2において反りが生じる部分を少なくでき、これによって反射膜3成膜後の(無変形時の)可撓性部材2の平面度を有効に向上させることができる。
図30は、このような第9の実施の形態としての変形ミラー板(可撓性部材2+反射膜3)の製造方法について説明するための図である。
なお、この図では図29に示したような第7の実施の形態の場合での可撓性部材2の構成が採られる場合の製造方法を例に挙げている。
先ず、図30(a)では、可撓性部材2の表面に対し、全面にわたって反射膜3を成膜する。この場合、可撓性部材2の材質としては合成石英が選定され、その断面厚t=0.2mm、X軸方向の長さx×Y軸方向における長さy=14mm×20mmとされる。また反射膜3はアルミニウム膜である。
なお図示は省略しているが可撓性部材2の裏面に対しては、ドライエッチング加工によって強度分布パターン2aが形成されている。
このように反射膜3が全面に成膜された可撓性部材2に対して、先ずは上述したレーザ光が照射される部分として想定される有効部にレジストを施す。その上で、剥離液にて上記有効部以外の不要部分の反射膜3を剥離する。
これにより、図30(b)に示されるようにして、中央の有効部のみに反射膜3が成膜された変形ミラー板が製造される。
図31は、図30(a)に示した全面に反射膜3が成膜された状態での可撓性部材2(変形ミラー板)の平面度について測定した結果を示している。また、図32は、図30(b)に示される一部(有効部)のみに反射膜3が形成された場合の可撓性部材2(変形ミラー板)の平面度測定結果を示している。
これらの図においては、可撓性部材2の平面度についての測定結果を3Dデータにより示している。また、これらの図では理想平面に対する可撓性部材2のZ軸方向への変位量(高度)を等高線により示し、図中の番号の値が小さいほど高度が低いことを示している。
これらの図を比較して明らかなように、図32に示される一部のみに反射膜3を形成した場合の方が、図31に示される全面にわたり反射膜3が形成された場合よりも、平面度が2倍近く向上するものとなっている。
すなわち、このことで、これまでの第1〜第8の実施の形態のように可撓性部材2の表面の全面にわたって反射膜3を形成する場合よりも、第9の実施の形態のように一部のみに反射膜3を形成した方が、可撓性部材2(変形ミラー板)の平面度を向上させることができることがわかる。
このようにして平面度の向上が図られることで、より容易に理想の変形形状に一致させることができる。
また、平面度が向上すれば、可撓性部材2の別部品への固定方法が容易となり、取り付け工数や調整工数の低減を図ることができ、製造コストの低減も図られる。さらには、良好な平面度が得られることで変形ミラー板、変形可能ミラー装置として品質の安定化を図ることができる。
なお、図31及び図32では、図29に示した可撓性部材2の構成とされる場合において、反射膜3を全面に形成した場合と有効部のみに形成した場合とについての平面度測定結果を示したが、図28に示した可撓性部材2の構成とされる場合においても同様に平面度が2倍程度向上する結果が得られる。
なお、ここでは第6及び第7の実施の形態に基づくものとして、ミラー面に得られるビームスポットの形状が楕円形状となる場合を例としたが、ビームスポットが円形状となる場合としても、同様にミラー面で得られるビームスポットの面積と、これにマージンを考慮した面積による有効部のみに反射膜3が成膜される等、一部のみに反射膜3が形成されることで、全面にわたって反射膜3が形成される場合と比較すれば可撓性部材2の反りを低減して平面度を向上させることができる。
また、このような第9の実施の形態は、先の第8の実施の形態のように肉薄部2Gが形成される場合にも好適に適用することができる。
図33は、第9の実施の形態の変形例について示している。
この変形例は、可撓性部材2の裏面にも反射膜3を成膜するようにしたものである。
つまり、このように裏面に対しても反射膜3を成膜して、反射膜3・可撓性部材2・反射膜3のサンドイッチ構造とすることで、反射膜3の成膜に伴い可撓性部材2に生じる内部応力をバランスさせ、これによって可撓性部材2の反りをコントロールさせようとするものである。
但し、この図に示されているように可撓性部材2に対して断面形状が異なる強度分布パターン2aが与えられている場合は、表裏で同質・同厚の反射膜3を形成したのでは内部応力をバランスさせることができない。そこでこの場合には、強度分布パターン2aの断面厚に応じて裏面の反射膜3の厚さを調整するか、或いは強度分布パターン2aの断面厚ごとに異なる材質の反射膜3を形成することで、反射膜3の成膜により可撓性部材2に生じる内部応力をバランスさせることができるようにされればよい。
或いは、先の第5の実施の形態のように圧電素子52を用いる場合は、断面形状が異なるようにされた部分が形成されないので、この場合には表裏で同質・同厚の反射膜(ミラー面兼電極53)を形成することで内部応力をバランスさせることができ、圧電素子52の平面度を向上させることができる。
また、第4の実施の形態の場合(図8参照)は、可撓性部材2の裏面に設けられた電極パターン41aにより状態が異なるようにされた部分を形成するようにされているので、ここにアルミニウムによる反射膜3を成膜することは所望の変形形状が得られなくなることを意味する。従ってこの場合は先の図28・図29に示したように表面の一部にのみ反射膜3を形成して平面度を向上させればよい。なお、第4の実施の形態の変形例(図9参照)では、上部電極41を可撓性部材2の裏面の全面にわたり形成できるので、この場合は上部電極41として反射膜3と同質・同厚の金属膜を形成することで可撓性部材2の平面度を向上させることができる。
なお、この図33では、可撓性部材2の表面の全面にわたって反射膜3が形成されたことに対応させて、裏面の全面にわたって反射膜3を形成する場合を例示したが、これに代え、表面の一部のみに反射膜3を形成し、裏面に対しても表面において反射膜3が形成された部分と一致する部分にのみ反射膜3を形成するように構成することもできる。このような構成とした場合にも、同様に可撓性部材2の反射膜3の成膜後の平面度を向上させることができる。
なお、本発明としてはこれまでで説明してきた各実施の形態に限定されるものではない。 例えば各実施の形態の変形可能ミラー装置としては、ブルーレイディスクのような高記録密度ディスクに対応する光ディスク装置に適用される場合を例に挙げたが、他の光ディスクであって、複数の記録層が形成された光ディスクに対応する光ディスク装置であれば好適に適用することができる。
また、単一の記録層のみであっても、1周内のカバー厚の変化に追従した球面収差補正を行う光ディスク装置であれば好適に適用できる。
また、実施の形態においては、強度分布パターン2a、電極パターン41a、42a、分極反転パターン52aは、すべて同心円状に形成するものとしたが、球面収差補正に必要な変形形状が得られるものであれば、他のパターンを形成するものとしてもよい。
但し、この場合としても、一様な駆動力の印加に応じて所望の変形形状が得られるようにされている必要はある。
また、各実施の形態において、状態の異なるようにされたパターンは円又は楕円の全周にわたって形成する場合を例示したが、その一部を切り欠く等、実際の設計においては必ずしも各パターンが円又は楕円の全周にわたって形成されなくてもよい。
また、第1、第2、第3、第6、第7の実施の形態において可撓性部材2に対して形成する強度分布パターン2aについて、第1、第2、第3の実施の形態のように強度分布パターン2aとして同心円状のパターンを形成する場合としても、第6,第7の実施の形態のような階段状に厚さを変化させたパターンを形成することができる。
逆に、第6、第7の実施の形態における同じ中心を持つ楕円の形状による強度分布パターン2aとしても、第1、第2、第3の実施の形態の場合のように階段状としないパターンにより形成することができる。
また、各実施の形態において、可撓性部材2に対して形成する強度分布パターン2aとしては、例示したような凸部を形成する以外にも、例えば可撓性部材2の所定位置に材質の異なる部分を混在させるようにすることによっても形成することができる。
但し、その場合には、例えば異なる材質が所定の位置に所定の割合で含まれるように可撓性部材2を形成する必要があり、製造工程が複雑化し、製造コストが増大する可能性がある。
これに対し凸部を形成する実施の形態の手法によれば、可撓性部材2は同一材質とすることができ、強度分布パターン2aとしてはエッチングによって形成することが可能となるので、その分低コストで実現できるというメリットがある。
本発明における第1〜第5の実施の形態としての変形可能ミラー装置が備えられる光ディスク装置の光学系の構成について例示した図である。 本発明における第1の実施の形態としての変形可能ミラー装置の構成について示した断面図である。 第1の実施の形態としての変形可能ミラー装置の構成を示す断面図として、ミラー面が変形した状態を示した断面図である。 第1の実施の形態の変形可能ミラー装置が備える可撓性部材の構成を示す斜視図である。 第1の実施の形態としての変形可能ミラー装置の製造方法の一例について説明するための図である。 本発明における第2の実施の形態としての変形可能ミラー装置の構成について示した断面図である。 本発明における第3の実施の形態としての変形可能ミラー装置の構成について示した断面図である。 本発明における第4の実施の形態としての変形可能ミラー装置の構成について示した断面図である。 第4の実施の形態の変形可能ミラー装置の変形例の構成について示した断面図である。 本発明における第5の実施の形態としての変形可能ミラー装置の構成について示した断面図である。 分極反転パターンの形成プロセスの一例について説明するための図である。 図1に示した光学系の構成における、主にレーザ光の偏光について説明するための図である。 図1に示した光学系の構成に対して1/4波長板をさらに追加した場合のレーザ光の偏光について説明するための図である。 本発明における第6及び第7の実施の形態としての変形可能ミラー装置が備えられる光学系の構成について例示した図である。 第6及び第7の実施の形態としての変形可能ミラー装置におけるレーザ光の反射面(照射面)の形状を例示した図である。 第6の実施の形態としての変形可能ミラー装置の構成について示した断面図である。 第6及び第7の実施の形態の変形可能ミラー装置が備える可撓性部材の構造について説明するための図である。 第6及び第7の実施の形態の変形可能ミラー装置における、ミラー面の変形形状の理想値の一例について示した図である。 第7の実施の形態としての変形可能ミラー装置の構成について示した断面図である。 第7の実施の形態の変形可能ミラー装置により得られるミラー面の変形形状と理想値とを対比して示した図である。 第6及び第7の実施の形態としての変形可能ミラー装置における、ミラー面に対するレーザ光の入射光と反射光の関係を例示的に示した図である。 可撓性部材に形成する強度分布パターンの一例を示した図である。 第8の実施の形態を第6の実施の形態に適用した場合の変形可能ミラー装置が備える、主に可撓性部材の構成について説明するための図である。 第8の実施の形態を第7の実施の形態に適用した場合の変形可能ミラー装置が備える、主に可撓性部材の構成について説明するための図である。 第8の実施の形態としての変形可能ミラー装置が備える可撓性部材の変形形状をシミュレーションにより求めた結果を示す図である。 第8の実施の形態としての変形可能ミラー装置が備える可撓性部材の変形例としての構成を示した断面図である。 第8の実施の形態としての変形可能ミラー装置が備える可撓性部材の、他の変形例としての構成を示した断面図である。 第9の実施の形態を第6の実施の形態に適用した場合の変形可能ミラー装置が備える、主に変形ミラー板の構成について説明するための図である。 第9の実施の形態を第7の実施の形態に適用した場合の変形可能ミラー装置が備える、主に変形ミラー板の構成について説明するための図である。 第9の実施の形態の変形可能ミラー装置が備える変形ミラー板の製造工程について説明するための図である。 可撓性部材の表面の全面にわたって反射膜を形成した場合の平面度測定結果を示す図である。 可撓性部材の表面の一部のみに反射膜を形成した場合の平面度測定結果を示す図である。 第9の実施の形態の変形例の構成について説明するための図である。
符号の説明
1、20、30、40、45、50、60、70 変形可能ミラー装置、2 可撓性部材、2a 強度分布パターン、3 反射膜(ミラー面)、4 基板、5 第1空間、6 流路、7 第2空間、8、41 上部電極、9、42、54 下部電極、10 駆動回路、21、52 圧電素子、22 弾性導電板、31 ボイスコイルモータ、32 円柱状ヨーク、33 リング状ヨーク、34 マグネット、35 駆動コイル、36 コイルホルダ、37、43、51 空間、38、44 流路、41a、42a 電極パターン、52a 分極反転パターン、53 ミラー面兼電極、61 ベース、61a 外周壁、61b 内周壁、61c 中央凸部、65 ベース、66 ヨーク、66a 外周壁、66b 中央凸部、2A〜2D 楕円部、2E フレーム、2G 肉薄部、71 対物レンズ、BS ビームスプリッタ、72、75 偏光ビームスプリッタ、73 1/4波長板、74 グレーティング、76 マルチレンズ、77 ディテクタ、78 フロントモニタ、LD 半導体レーザ、CL,CL1,CL2 コリメータレンズ、80 光ディスク、81 第1記録層、82 第2記録層、83 第3記録層、104a ガラス基板、104b Si基板、

Claims (6)

  1. 表面にミラー面が形成されると共に、上記表面とは逆側の裏面側において、最外周部にリブ状のフレーム部が形成され、且つ上記フレーム部を除く変形可能領域において上記ミラー面の中央部から外周方向にかけて断面厚が階段状に薄くなる断面形状パターンが与えられていると共に、上記変形可能領域内における最外周部分に断面厚が最薄となる肉薄部が形成された可撓性部材と、
    上記可撓性部材に形成された上記階段状の上記断面形状パターンにおける中央部に形成された凸部又は上記フレーム部に対し駆動力を印加して、上記ミラー面の形状を変形させる駆動手段と
    を備える変形可能ミラー装置。
  2. 上記駆動手段は、
    上記可撓性部材に対して電磁力に基づく上記駆動力を印加して上記ミラー面を変形させるように構成されている
    請求項1に記載の変形可能ミラー装置。
  3. 上記駆動手段は、
    上記可撓性部材の上記中央部に形成された凸部に対して固着されたコイルホルダを有するボイスコイルモータを備え、このボイスコイルモータを駆動して上記コイルホルダによって上記可撓性部材に対して直接的に押圧/引圧力を印加することで、上記ミラー面を変形させるように構成される
    請求項に記載の変形可能ミラー装置。
  4. 記駆動手段は、
    上記フレーム部に駆動コイルが巻回されると共に上記中央部に形成された凸部が固定された上記可撓性部材について、上記駆動コイルに駆動電流を流すことで発生する電磁力に基づき、上記可撓性部材の外周部に対して押圧/引圧力を印加することで、上記ミラー面を変形させるように構成されている
    請求項に記載の変形可能ミラー装置。
  5. 上記ミラー面は、上記可撓性部材の一部のみに形成されている請求項1に記載の変形可能ミラー装置。
  6. 上記ミラー面は、上記可撓性部材の裏面に対しても形成されている請求項1に記載の変形可能ミラー装置。
JP2005129576A 2004-07-30 2005-04-27 変形可能ミラー装置、変形ミラー板 Expired - Fee Related JP4442505B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005129576A JP4442505B2 (ja) 2004-07-30 2005-04-27 変形可能ミラー装置、変形ミラー板
TW094125355A TW200617420A (en) 2004-07-30 2005-07-27 Deformable mirror equipment, deformable mirror plate
KR1020077001878A KR20070038120A (ko) 2004-07-30 2005-07-29 변형 가능한 미러 장치 및 변형 가능한 미러판
PCT/JP2005/013934 WO2006011594A1 (ja) 2004-07-30 2005-07-29 変形可能ミラー装置、変形ミラー板
US11/572,160 US7874688B2 (en) 2004-07-30 2005-07-29 Deformable mirror device, deformable mirror plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004223018 2004-07-30
JP2004319123 2004-11-02
JP2005129576A JP4442505B2 (ja) 2004-07-30 2005-04-27 変形可能ミラー装置、変形ミラー板

Publications (2)

Publication Number Publication Date
JP2006155850A JP2006155850A (ja) 2006-06-15
JP4442505B2 true JP4442505B2 (ja) 2010-03-31

Family

ID=35786340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129576A Expired - Fee Related JP4442505B2 (ja) 2004-07-30 2005-04-27 変形可能ミラー装置、変形ミラー板

Country Status (5)

Country Link
US (1) US7874688B2 (ja)
JP (1) JP4442505B2 (ja)
KR (1) KR20070038120A (ja)
TW (1) TW200617420A (ja)
WO (1) WO2006011594A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602722B2 (ja) * 2004-09-10 2010-12-22 オリンパス株式会社 可変形状鏡
JP2007304123A (ja) * 2006-05-08 2007-11-22 Sony Corp 変形可能ミラー装置
JP4595879B2 (ja) * 2006-05-10 2010-12-08 ソニー株式会社 変形可能ミラー装置
JP4211816B2 (ja) * 2006-08-09 2009-01-21 船井電機株式会社 形状可変ミラーの製造方法
JP2008310925A (ja) * 2007-06-18 2008-12-25 Sony Corp 変形可能ミラー装置、光ピックアップ、光学ドライブ装置
KR101484527B1 (ko) * 2007-08-06 2015-01-21 삼성전기주식회사 액상 광학체를 이용하는 가변 초점 광학 장치 및 그 제작방법들
US8894227B2 (en) * 2008-01-30 2014-11-25 The Regents Of The University Of California Method and apparatus for correcting optical aberrations using a deformable mirror
JP5025538B2 (ja) * 2008-03-21 2012-09-12 三菱電機株式会社 形状可変ミラーおよびその形状可変ミラーを用いたレーザ加工装置
JP2011070052A (ja) * 2009-09-28 2011-04-07 Sony Corp 変形可能ミラー装置、信号処理装置
CN102063913B (zh) 2009-11-12 2013-12-18 日立民用电子株式会社 变形镜致动器和光盘装置
WO2011074319A1 (ja) * 2009-12-14 2011-06-23 株式会社ニコン デフォーマブルミラー、照明光学系、露光装置、およびデバイス製造方法
WO2012116995A1 (en) * 2011-02-28 2012-09-07 Micronic Mydata AB Adaptive optics device and method
FR2974425B1 (fr) * 2011-04-19 2014-06-27 Centre Nat Etd Spatiales Dispositif de correction d'au moins une aberration d'evolution connue a miroir deformable
JP5564471B2 (ja) * 2011-07-25 2014-07-30 日立コンシューマエレクトロニクス株式会社 焦点が可変なミラーおよび光ピックアップ
EP2708308A1 (de) * 2012-09-14 2014-03-19 Trumpf Laser Marking Systems AG Laserbearbeitungsvorrichtung
JP5979073B2 (ja) * 2013-04-24 2016-08-24 株式会社デンソー 可変焦点型光学装置
DE102013008646B4 (de) 2013-05-21 2020-06-10 Lt-Ultra Precision Technology Gmbh Adaptiver Spiegel für eine Laserbearbeitungsvorrichtung
US9476764B2 (en) * 2013-09-10 2016-10-25 Taiwan Semiconductor Manufacturing Co., Ltd. Wavefront adjustment in extreme ultra-violet (EUV) lithography
US9405204B2 (en) 2013-09-18 2016-08-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of overlay in extreme ultra-violet (EUV) lithography
WO2017050926A1 (en) * 2015-09-23 2017-03-30 Carl Zeiss Smt Gmbh Optical imaging arrangement with a piezoelectric device
US10299567B2 (en) 2016-03-09 2019-05-28 Scott D. Usher Mirror with zone of selected magnification and discretionary illumination
US10831018B2 (en) * 2017-12-08 2020-11-10 Texas Instruments Incorporated Methods and apparatus for increasing efficiency and optical bandwidth of a microelectromechanical system piston-mode spatial light modulator
US10365473B1 (en) * 2018-04-06 2019-07-30 King Fahd University Of Petroleum And Minerals Electro-magnetic actuation rotational adaptive mirror
CA3121895A1 (en) * 2019-01-18 2020-07-23 Alcon Inc. Controlling the position of the focal point of a laser beam
US11828930B2 (en) * 2019-08-27 2023-11-28 Ii-Vi Delaware, Inc. Variable radius mirror

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7511634A (nl) * 1975-10-03 1977-04-05 Philips Nv Electromagnetisch bestuurbare zwenkspiegelinrich- ting.
US4160184A (en) * 1978-01-09 1979-07-03 The Singer Company Piezoelectric actuator for a ring laser
US4488789A (en) * 1981-12-21 1984-12-18 North American Philips Corporation Electromagnetically deflectable device
JPH03296008A (ja) * 1990-04-16 1991-12-26 Toshiba Corp ミラー装置
JPH05157903A (ja) * 1991-12-06 1993-06-25 Nippondenso Co Ltd 可変焦点凹面鏡
US5291337A (en) * 1992-10-21 1994-03-01 Zenith Products Corp. Device for adjusting the magnification of a flexible mirror and a method of making the same
JP2973272B2 (ja) * 1994-05-10 1999-11-08 オムロン株式会社 可変光学面及び光スキャニングシステム
JPH08334708A (ja) * 1995-06-08 1996-12-17 Mitsubishi Heavy Ind Ltd 形状可変鏡
JP3420894B2 (ja) * 1996-08-09 2003-06-30 シャープ株式会社 変形可能ミラー
JPH10188319A (ja) * 1996-12-26 1998-07-21 Sharp Corp 変形可能ミラーおよびその変形可能ミラーを用いた光記録再生装置
US6464363B1 (en) * 1999-03-17 2002-10-15 Olympus Optical Co., Ltd. Variable mirror, optical apparatus and decentered optical system which include variable mirror, variable-optical characteristic optical element or combination thereof
US6661561B2 (en) * 2001-03-26 2003-12-09 Creo Inc. High frequency deformable mirror device
JP3970098B2 (ja) * 2002-06-07 2007-09-05 オリンパス株式会社 収差補正装置
JP2004079117A (ja) * 2002-08-21 2004-03-11 Olympus Corp 情報記録再生装置
JP2004347753A (ja) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd 形状可変ミラー素子及び形状可変ミラー素子の製造方法並びに形状可変ミラーユニット並びに光ピックアップ
CN100594399C (zh) * 2003-11-06 2010-03-17 松下电器产业株式会社 可变形镜
JP4602722B2 (ja) * 2004-09-10 2010-12-22 オリンパス株式会社 可変形状鏡

Also Published As

Publication number Publication date
TWI309310B (ja) 2009-05-01
KR20070038120A (ko) 2007-04-09
WO2006011594A1 (ja) 2006-02-02
TW200617420A (en) 2006-06-01
US7874688B2 (en) 2011-01-25
US20070165312A1 (en) 2007-07-19
JP2006155850A (ja) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4442505B2 (ja) 変形可能ミラー装置、変形ミラー板
JP2007304123A (ja) 変形可能ミラー装置
KR20020030728A (ko) 조립된 렌즈, 광학 헤드, 및 이들을 갖춘 광학 기록가능플레이어
JP2011070052A (ja) 変形可能ミラー装置、信号処理装置
JP2008310925A (ja) 変形可能ミラー装置、光ピックアップ、光学ドライブ装置
JP4595879B2 (ja) 変形可能ミラー装置
CN100432742C (zh) 可变形镜器件和可变形镜板
JP2006154765A (ja) ミラー素子及びミラーアレイ
JP3970098B2 (ja) 収差補正装置
JP4096746B2 (ja) 光ピックアップ装置のフォーカス及びトラッキング制御方法
JP2004152446A (ja) 光ピックアップ装置及び液晶素子
JP2004079117A (ja) 情報記録再生装置
EP1926097A1 (en) Optical pickup device
JP4581969B2 (ja) 液晶デバイスおよび光ピックアップ
JP5564471B2 (ja) 焦点が可変なミラーおよび光ピックアップ
JP3767836B2 (ja) 変形可能ミラー及びその製造方法
JPH07296406A (ja) ミラー駆動装置
JP2008140437A (ja) レンズ駆動装置
JP2004233410A (ja) 波面収差補正装置および光ピックアップ
JP3775672B2 (ja) 変形可能ミラー
JP2002373448A (ja) 光ディスク装置及びその光学素子の作製方法
JP2004109843A (ja) 波面収差補正装置および光ピックアップ
JP3552873B2 (ja) 変形可能ミラー
TW202328712A (zh) 形狀可變鏡、雷射加工裝置及形狀可變鏡之製造方法
JP2006154201A (ja) 光学ユニット及び該光学ユニットを備えた光ヘッド装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees