JP4435278B2 - Precision temperature control device and precision temperature control method - Google Patents

Precision temperature control device and precision temperature control method Download PDF

Info

Publication number
JP4435278B2
JP4435278B2 JP2009228074A JP2009228074A JP4435278B2 JP 4435278 B2 JP4435278 B2 JP 4435278B2 JP 2009228074 A JP2009228074 A JP 2009228074A JP 2009228074 A JP2009228074 A JP 2009228074A JP 4435278 B2 JP4435278 B2 JP 4435278B2
Authority
JP
Japan
Prior art keywords
temperature
heat medium
cooling
flow path
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009228074A
Other languages
Japanese (ja)
Other versions
JP2010043855A (en
Inventor
正一 小林
万寿男 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2009228074A priority Critical patent/JP4435278B2/en
Publication of JP2010043855A publication Critical patent/JP2010043855A/en
Application granted granted Critical
Publication of JP4435278B2 publication Critical patent/JP4435278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Control Of Temperature (AREA)

Description

本発明は精密温度調整装置及び精密温度調整方法に関する。   The present invention relates to a precision temperature adjustment device and a precision temperature adjustment method.

通常、半導体装置の製造工程等の精密加工分野では、その殆どが温度及び湿度が制御されたクリーンルーム内に設置されている。
しかし、近年、精密加工分野でも、従来よりも更に加工精度の高い精密加工等が要求される工程が出現しつつある。
かかる高い精密加工等が要求される工程では、通常、クリーンルームの温度変化よりも更に小さな温度変化の環境であることが要求される。このため、高い精密加工等が要求される工程は、精密な温度管理がなされている空間ユニット内に設けられる。
この様な空間ユニットの温度調整に用いられる温度調整装置としては、例えば下記特許文献1に図13に示す温度調整装置が記載されている。
図13に示す温度調整装置には、圧縮機100、三方弁102、凝縮器104、膨張弁106、冷却器108及び加熱器110が設けられており、冷却器108を具備する冷却流路と加熱器110を具備する加熱流路とが設けられている。
かかる冷却器108と加熱器110とによって、ファン112から吹き出す温度調整対象の空気流の温度が調整される。
Usually, in the precision processing field such as the manufacturing process of semiconductor devices, most of them are installed in a clean room in which temperature and humidity are controlled.
However, in recent years, in the precision processing field, processes requiring precision processing with higher processing accuracy than before have been emerging.
In a process that requires such high precision processing, it is usually required that the temperature change environment is smaller than that of a clean room. For this reason, a process requiring high precision processing or the like is provided in a space unit in which precise temperature management is performed.
As a temperature adjusting device used for adjusting the temperature of such a space unit, for example, the temperature adjusting device shown in FIG.
The temperature control apparatus shown in FIG. 13 includes a compressor 100, a three-way valve 102, a condenser 104, an expansion valve 106, a cooler 108, and a heater 110, and a cooling flow path including the cooler 108 and heating. And a heating channel provided with a vessel 110.
The cooler 108 and the heater 110 adjust the temperature of the air flow to be adjusted from the fan 112.

この図13に示す温度調整装置では、圧縮機100で圧縮された高温の熱媒体を三方弁102によって、冷却流路と加熱流路とに分配する。冷却流路側に分配された高温の熱媒体は、凝縮器104で冷却される。この冷却された熱媒体は、膨張弁106によって断熱的に膨張されて冷却され、冷却器108に供給される。冷却器108では、ファン112から吹き出す温度調整対象の空気流を冷却しつつ吸熱して昇温された熱媒体は圧縮機100に供給される。
一方、加熱流路側に分配された高温の熱媒体は加熱器110に供給され、冷却器108で冷却された温度調整対象の空気流を加熱して所望の温度に調整する。この様に、加熱器110において、温度調整対象の空気流を加熱しつつ放熱して降温された熱媒体は、膨張弁106及び冷却器108を通過して圧縮機100に供給される。
In the temperature adjusting device shown in FIG. 13, the high-temperature heat medium compressed by the compressor 100 is distributed to the cooling channel and the heating channel by the three-way valve 102. The high-temperature heat medium distributed to the cooling channel side is cooled by the condenser 104. The cooled heat medium is adiabatically expanded and cooled by the expansion valve 106, and is supplied to the cooler 108. In the cooler 108, the heat medium that has been heated to absorb the temperature while cooling the air flow to be temperature-adjusted blown from the fan 112 is supplied to the compressor 100.
On the other hand, the high-temperature heat medium distributed to the heating flow path side is supplied to the heater 110, and the air flow to be temperature-adjusted cooled by the cooler 108 is heated and adjusted to a desired temperature. As described above, the heating medium that is radiated and cooled while heating the air flow to be temperature adjusted in the heater 110 passes through the expansion valve 106 and the cooler 108 and is supplied to the compressor 100.

特開昭51−97048号公報JP-A 51-97048

図13に示す温度調整装置では、圧縮機100で圧縮された高温の熱媒体の全量が膨張弁106を通過して断熱的に膨張されて冷却され、冷却器108に供給されるため、ファン112から吹き出す温度調整対象の空気流を冷却する冷却エネルギー量は一定である。
一方、三方弁102によって加熱流路側に分配する高温の熱媒体の流量を調整することによって、冷却器108で冷却された温度調整対象の空気流に対する加熱器110での加熱量を調整できる。
従って、冷却器108及び加熱器110を通過する温度調整対象の空気流の温度を調整でき、空間ユニット内の温度管理を狭い温度範囲で行うことは可能である。
In the temperature adjusting device shown in FIG. 13, the entire amount of the high-temperature heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108. The amount of cooling energy for cooling the air stream to be temperature-adjusted blown out from the air is constant.
On the other hand, by adjusting the flow rate of the high-temperature heat medium distributed to the heating flow path side by the three-way valve 102, the heating amount in the heater 110 with respect to the air flow to be temperature-adjusted cooled by the cooler 108 can be adjusted.
Therefore, it is possible to adjust the temperature of the air flow to be temperature-adjusted that passes through the cooler 108 and the heater 110, and to manage the temperature in the space unit in a narrow temperature range.

しかし、図13に示す温度調整装置では、圧縮機100で圧縮された高温の熱媒体の全量が膨張弁106を通過して断熱的に膨張されて冷却され、冷却器108に供給されるため、ファン112から吹き出す温度調整対象の空気流に対する温度調整は、専ら加熱器110に供給する圧縮機100で圧縮された高温の熱媒体の再加熱によって行われる。
従って、図13に示す温度調整装置で採用された温度制御方式では、加熱に使用した熱媒体も冷却流路に流すため、加熱できる熱量は圧縮機の動力による熱量のみとなり、冷却器108及び加熱器110に対する負荷変動への対応が困難となっている。
このため、冷却器108及び加熱器110を通過する温度調整対象の空気流の設定温度を大幅に高くする場合、温度調整対象の空気流の温度が設定温度に到達しなかったり、設定温度に到達するまでに著しく時間がかかることがある。
この様な、図13に示す温度調整装置の加熱量不足を補うべく、図14に示す様に、補助電気ヒータ114を設けることが考えられるが、エネルギー的に無駄である。
そこで、本発明では、温度調整対象の流体に対する加熱能力が不足する従来の温度調整装置の課題を解決し、温度調整対象の流体に対する加熱能力を向上できると共に、省エネルギーを図ることができる精密温度調整装置及び精密温度調整方法を提供することにある。
However, in the temperature adjusting device shown in FIG. 13, the entire amount of the high-temperature heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108. The temperature adjustment for the air flow to be adjusted from the fan 112 is performed by reheating the high-temperature heat medium compressed by the compressor 100 supplied to the heater 110 exclusively.
Therefore, in the temperature control method adopted in the temperature adjusting device shown in FIG. 13, the heat medium used for heating is also passed through the cooling flow path, so the amount of heat that can be heated is only the amount of heat generated by the power of the compressor. It is difficult to respond to load fluctuations on the device 110.
For this reason, when the set temperature of the air flow subject to temperature adjustment passing through the cooler 108 and the heater 110 is significantly increased, the temperature of the air flow subject to temperature adjustment does not reach the set temperature or reaches the set temperature. It may take a long time to complete.
In order to make up for such a shortage of heating amount of the temperature adjusting device shown in FIG. 13, it is conceivable to provide the auxiliary electric heater 114 as shown in FIG. 14, but this is wasteful in terms of energy.
Therefore, the present invention solves the problems of the conventional temperature adjustment device that lacks the heating ability for the fluid whose temperature is to be adjusted, and can improve the heating ability for the fluid whose temperature is to be adjusted, and can also save energy. It is to provide an apparatus and a precise temperature control method.

本発明者らは、前記課題を達成するには、冷却流路と加熱流路とを設けること、冷却流路の冷却手段及び加熱流路の加熱手段を通過する温度調整対象の流体に対する冷却量と加熱量とを変更可能な分配手段を設けること、加熱流路の加熱能力を向上すべく、低温の部分から温度の高い部分へ熱を移動できるヒートポンプ手段を設けること、及び加熱流路の加熱手段によって温度調整対象の流体に加えられる加熱量と冷却流路の冷却手段によって温度調整対象の流体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくすることが有効であると考え検討した。その結果、下記に示す様に、前記課題を解決する手段を見出した。   In order to achieve the above-mentioned problems, the present inventors provide a cooling channel and a heating channel, a cooling amount for the temperature adjustment target fluid that passes through the cooling unit of the cooling channel and the heating unit of the heating channel. Providing a distribution means capable of changing the heating amount and heating amount, providing a heat pump means capable of transferring heat from a low-temperature part to a high-temperature part in order to improve the heating capacity of the heating flow path, and heating the heating flow path Considering that it is effective to reduce the amount of heat that cancels each other out of the amount of heating applied to the fluid subject to temperature adjustment by the means and the amount of cooling applied to the fluid subject to temperature adjustment by the cooling means in the cooling channel did. As a result, as shown below, the present inventors have found a means for solving the above problems.

すなわち、本発明者らは、前記課題を解決する手段として、圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が供給される加熱手段を具備する加熱流路と、前記高温の第1熱媒体の残余部が供給される凝縮手段と、前記凝縮手段で冷却された第1熱媒体が第1膨張手段で断熱的に膨張して更に冷却されて供給される冷却手段とを具備する冷却流路とが設けられ、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に調整するように、前記高温の第1熱媒体が加熱流路と冷却流路とに分配され、且つ前記加熱流路と冷却流路との各々を通過した第1熱媒体が合流して圧縮機に再供給される精密温度調整装置であって、前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する第1制御部と、前記圧縮機の回転数を制御する回転数制御手段が設けられ、前記第1制御部によって制御される高温の第1熱媒体の分配比率が、前記加熱手段によって温度調整対象の流体に加えられる加熱量と冷却手段によって温度調整対象の流体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくできる分配比率となるように、前記回転数制御手段を介して圧縮機の回転数を変更する第2制御部とが設けられている精密温度調整装置を提供できる。   That is, the present inventors, as means for solving the above problems, are a heating flow path comprising heating means to which a part of the high-temperature first heat medium compressed and heated by a compressor is supplied, and the high temperature Condensing means to which the remaining portion of the first heat medium is supplied, and cooling means to which the first heat medium cooled by the condensing means is adiabatically expanded by the first expansion means and further cooled and supplied. Provided with a cooling flow path, and the high temperature first heat medium includes a heating flow path and a cooling flow path so as to adjust a temperature adjustment target fluid passing through the heating means and the cooling means to a predetermined temperature. And a high temperature discharged from the compressor, wherein the first heat medium that has passed through each of the heating flow path and the cooling flow path joins and is re-supplied to the compressor. A part of the first heat medium is distributed to the heating flow path side, and the high-temperature first heat is distributed. A distribution means for distributing the remainder of the body to the cooling flow path side and changing a distribution ratio of the high-temperature first heat medium distributed to the heating flow and the cooling flow path; and for releasing heat by the heating means. A heat pump means comprising a heat absorbing means for absorbing heat from the second heat medium, which is an external heat source, after the first heat medium that has been adiabatically expanded by the second expansion means after being cooled by the second expansion means, and the distribution means. Controlling and adjusting the distribution ratio of the high temperature first heat medium distributed to the heating flow path and the cooling flow path to control the temperature adjustment target fluid passing through the heating means and the cooling means to a predetermined temperature. And a rotation speed control means for controlling the rotation speed of the compressor, the distribution ratio of the high temperature first heat medium controlled by the first control section is adjusted by the heating means. The amount of heat applied to the subject fluid and the cooling means A second control unit that changes the rotational speed of the compressor via the rotational speed control means so as to obtain a distribution ratio that can reduce the amount of heat that cancels each other out of the cooling amount applied to the fluid to be adjusted; The provided precise temperature control device can be provided.

また、本発明者らは、前記課題を解決する手段として、圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が供給される加熱手段を具備する加熱流路と、前記高温の第1熱媒体の残余部が供給される凝縮手段と、前記凝縮手段で冷却された第1熱媒体が第1膨張手段で断熱的に膨張して更に冷却されて供給される冷却手段とを具備する冷却流路と、前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段とが設けられ、前記加熱流路と冷却流路との各々を通過した第1熱媒体が合流して圧縮機に再供給される精密温度調整装置を用い、前記加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御しつつ、前記高温の第1熱媒体の分配比率を、前記加熱手段によって温度調整対象の流体に加えられる加熱量と冷却手段によって温度調整対象の流体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくできる分配比率となるように、前記圧縮機の回転数を変更する精密温度調整方法を提供できる。   Further, as a means for solving the above problems, the inventors of the present invention have a heating flow path provided with a heating means to which a part of a high temperature first heat medium compressed and heated by a compressor is supplied, and the high temperature Condensing means to which the remaining portion of the first heat medium is supplied, and cooling means to which the first heat medium cooled by the condensing means is adiabatically expanded by the first expansion means and further cooled and supplied. Distributing a cooling flow path and a part of the high temperature first heat medium discharged from the compressor to the heating flow path side, and distributing a remaining portion of the high temperature first heat medium to the cooling flow path side. And a distribution means capable of changing a distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, and a second expansion means after the heat is released and cooled by the heating means. The first heat medium, which has been expanded adiabatically and further cooled, absorbs heat from the second heat medium, which is an external heat source. A heat pump means comprising a heat absorption means, and using a precision temperature adjustment device in which the first heat medium that has passed through each of the heating flow path and the cooling flow path is joined and re-supplied to the compressor, The distribution ratio of the high temperature first heat medium distributed to the heating flow path and the cooling flow path is adjusted, and the temperature adjustment target fluid passing through the heating means and the cooling means is controlled to a predetermined temperature, while the high temperature The distribution ratio of the first heat medium can be reduced by the amount of heat that cancels each other out of the heating amount applied to the temperature adjustment target fluid by the heating unit and the cooling amount applied to the temperature adjustment target fluid by the cooling unit. It is possible to provide a precise temperature adjustment method for changing the rotation speed of the compressor so as to obtain a distribution ratio.

本発明者らが提供した課題を解決する手段において、下記の好ましい態様を上げることができる。
第2制御部では、高温の第1熱媒体の加熱手段又は冷却手段への分配比率を5〜15%の範囲となるように、回転数制御手段を介して圧縮機の回転数を制御すること、特に、高温の第1熱媒体の分配比率を、温度調整対象の流体に対して加熱側の場合、高温の第1熱媒体の95〜85%を加熱手段に分配し且つ残余の高温の第1熱媒体の5〜15%を冷却手段に分配する範囲となるように、他方、前記温度調整対象の流体に対して冷却側の場合、高温の第1熱媒体の95〜85%を冷却手段に分配し且つ残余の高温の第1熱媒体の5〜15%を加熱手段に分配する範囲となるように、回転数制御手段を介して圧縮機の回転数を制御することによって、精密温度調整装置の省エネルギーを図りつつ、精密温度調整装置を安定して運転できる。この回転数制御手段としては、インバータを好適に用いることができる。
In the means for solving the problems provided by the present inventors, the following preferred embodiments can be raised.
The second control unit controls the rotation speed of the compressor via the rotation speed control means so that the distribution ratio of the high temperature first heat medium to the heating means or the cooling means is in the range of 5 to 15%. In particular, when the distribution ratio of the high temperature first heat medium is on the heating side with respect to the fluid to be adjusted, 95 to 85% of the high temperature first heat medium is distributed to the heating means and the remaining high temperature first heat medium is distributed. On the other hand, in the case where the temperature adjustment target fluid is on the cooling side so that 5 to 15% of the heat medium is distributed to the cooling means, 95 to 85% of the high temperature first heat medium is cooled. Precise temperature adjustment by controlling the rotational speed of the compressor through the rotational speed control means so that 5 to 15% of the remaining high temperature first heat medium is distributed to the heating means. The precise temperature control device can be stably operated while saving energy of the device. As this rotation speed control means, an inverter can be suitably used.

また、冷却流路の凝縮手段に供給されて高熱の第1熱媒体を冷却する冷却媒体とヒートポンプ手段の吸熱手段に供給される第2熱媒体とを、同一熱媒体とし、前記凝縮手段に供給されてから前記吸熱手段に供給することによって、凝縮手段で除去された高温の第1熱媒体の熱を有効利用でき好ましい。
この第2熱媒体としては、外部から加熱又は冷却されることなく供給された第2熱媒体を用いることが、省エネルギーの観点から好ましい。
更に、分配手段から第1熱媒体が合流されるまでの流路のうち、冷却流路を含む流路と加熱流路及びヒートポンプ手段を含む流路との各々を流路的に独立して設けることによって、温度調整対象の流体の温度調整幅を広くできる。この加熱流路を含む流路には、加熱手段、第2膨張手段及び吸熱手段が設けられ、冷却流路を含む流路には、凝縮手段、第1膨張手段及び冷却手段が設けられている。
In addition, the cooling medium supplied to the condensing means of the cooling flow path to cool the high-heat first heat medium and the second heat medium supplied to the heat absorbing means of the heat pump means are made the same heat medium and supplied to the condensing means Then, it is preferable that the heat of the high-temperature first heat medium removed by the condensing means can be effectively utilized by supplying the heat absorbing means.
As the second heat medium, it is preferable from the viewpoint of energy saving to use the second heat medium supplied without being heated or cooled from the outside.
Further, among the flow paths from the distribution means to the first heat medium being joined, each of the flow path including the cooling flow path and the flow path including the heating flow path and the heat pump means is provided independently as a flow path. As a result, the temperature adjustment range of the temperature adjustment target fluid can be widened. The flow path including the heating flow path is provided with a heating means, a second expansion means and a heat absorption means, and the flow path including the cooling flow path is provided with a condensation means, a first expansion means and a cooling means. .

ここで、加熱流路と冷却流路とに高温の第1熱媒体を分配する分配手段としては、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更可能な分配手段を用いることによって、温度調整対象の流体の温度調整を更に一層精密調整できる。
かかる加熱流路と冷却流路とに高温の第1熱媒体を分配する分配手段としては、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更可能な分配手段を用いることによって、温度調整対象の流体の温度調整を更に一層精密調整できる。
この「実質的に連続して変更可能な分配手段」とは、分配手段として二方弁又は比例三方弁を用い、二方弁又は比例三方弁がステップ制御で駆動が制御されているとき、二方弁又は比例三方弁は微視的にはステップ的に駆動されているものの、全体的には連続的に駆動されている場合を含むことを意味する。
Here, as the distribution means for distributing the high temperature first heat medium to the heating flow path and the cooling flow path, the distribution ratio of the high temperature first heat medium distributed to the heating flow path and the cooling flow path is substantially set. By using the distribution means that can be changed continuously, the temperature adjustment of the fluid to be temperature-adjusted can be adjusted more precisely.
As a distribution means for distributing the high temperature first heat medium to the heating flow path and the cooling flow path, the distribution ratio of the high temperature first heat medium distributed to the heating flow path and the cooling flow path is substantially continuous. By using the changeable distribution means, the temperature adjustment of the temperature adjustment target fluid can be adjusted more accurately.
This “substantially changeable distribution means” means that a two-way valve or a proportional three-way valve is used as the distribution means, and when the two-way valve or the proportional three-way valve is driven by step control, This means that the three-way valve or the proportional three-way valve is microscopically driven stepwise, but includes a case where it is driven continuously as a whole.

また、分配手段として、加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記高温の第1熱媒体を比例分配する比例三方弁を用いることによって、圧縮機から吐出された高温の第1熱媒体の分配比率をスムーズに変更できる。
或いは、分配手段として、高温の第1熱媒体を加熱流路側と冷却流路側とに分岐する分岐配管と、前記分岐配管の各々に設けた二方弁とを具備し、制御部として、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御すると共に、前記加熱流路側に分配される高温の第1熱媒体と冷却流路側に分配される高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記二方弁の各々の開度を調整する制御部とすることによっても、圧縮機から吐出された高温の第1熱媒体の分配比率をスムーズに変更できる。
更に、冷却流路の凝縮手段には、高温の第1熱媒体を冷却する液状媒体を供給し、圧縮機の吐出側の圧力を一定に保持するように、前記凝縮手段に供給する前記液状媒体の供給量を制御する冷媒制御手段を設けることによって、凝縮手段に無駄に冷却媒体を流すことを防止できる。
また、温度調整対象の流体を、空気流である場合、冷却手段に吹き付けられて低湿度化された空気流が加熱手段に吹き付けられるように、前記冷却手段と加熱手段とを配設することによって、温度調整対象の空気流の除湿も併せて行うことができる。
他方、この場合、加熱手段に吹き付けられて昇温された空気流を冷却手段に吹き付けるように、前記加熱手段と冷却手段とを配設することによって、空気流の温度調整の精度を更に向上できる。
Further, as a distribution means, the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is the amount of the high temperature first heat medium discharged from the compressor. By using the proportional three-way valve for proportionally distributing the high temperature first heat medium so as to be equal, the distribution ratio of the high temperature first heat medium discharged from the compressor can be changed smoothly.
Alternatively, the distribution unit includes a branch pipe that branches the high-temperature first heat medium into the heating flow path side and the cooling flow path side, and a two-way valve provided in each of the branch pipes, The distribution ratio of the high-temperature first heat medium distributed to the flow path and the cooling flow path is adjusted to control the temperature adjustment target fluid passing through the heating means and the cooling means to a predetermined temperature, and the heating flow The total amount of the high temperature first heat medium distributed to the road side and the high temperature first heat medium distributed to the cooling flow path side is equal to the amount of the high temperature first heat medium discharged from the compressor. The distribution ratio of the high-temperature first heat medium discharged from the compressor can also be changed smoothly by using a control unit that adjusts the opening of each two-way valve.
Further, the liquid medium for supplying the liquid medium for cooling the high-temperature first heat medium to the condensing means of the cooling channel and supplying the liquid medium to the condensing means so as to keep the pressure on the discharge side of the compressor constant. By providing the refrigerant control means for controlling the supply amount, it is possible to prevent the cooling medium from flowing unnecessarily to the condensing means.
In addition, when the fluid whose temperature is to be adjusted is an air flow, the cooling means and the heating means are arranged so that the air flow reduced in humidity by being blown to the cooling means is blown to the heating means. In addition, dehumidification of the air flow to be temperature adjusted can also be performed.
On the other hand, in this case, the accuracy of the air flow temperature adjustment can be further improved by disposing the heating means and the cooling means so as to blow the air flow heated by the heating means to the cooling means. .

本発明者らが提案した精密温度調整装置及び精密温度調整方法によれば、加熱流路の加熱手段と冷却流路の冷却手段との各々に、圧縮機から吐出された高温の第1熱媒体が供給される。更に、分配手段によって、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を変更して、加熱手段と冷却手段とを通過する温度調整対象の流体に対する加熱量と冷却量とを容易に調整できる。
かかる精密温度調整装置及び精密温度調整方法では、ヒートポンプ手段を設けている。このヒートポンプ手段は、低温の部分から温度の高い部分へ熱を移動できる手段であるため、圧縮機によって圧縮されて加熱された高温の第1熱媒体(温度の高い部分)のうち、加熱流路の加熱手段で熱を放出して冷却してから第2膨張手段で断熱的に膨張して更に冷却した第1熱媒体を、ヒートポンプ手段を構成する吸熱手段によって、外部熱源の第2熱媒体(温度の低い部分)から吸熱し昇温して圧縮機に戻すことができる。
このため、本発明者らが提案した精密温度調整装置及び精密温度調整方法によれば、圧縮機から吐出される高温の第1熱媒体(温度の高い部分)には、圧縮機による圧縮動力エネルギーに、ヒートポンプ手段によって外部熱源の第2熱媒体(温度の低い部分)から吸熱されたエネルギーを加えることができ、高温の第1熱媒体が供給される加熱手段の加熱能力を向上できる。
従って、本発明者らが提案した精密温度調整装置及び精密温度調整方法では、加熱手段と冷却手段とを通過する温度調整対象の流体の微小な負荷変動は、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を微小調整することによって迅速に対応でき、温度調整対象の流体に対して精密な温度調整を図ることができる。
また、加熱手段と冷却手段とを通過する温度調整対象の流体の設定温度を大幅に高くする場合でも、高温の第1熱媒体の分配比率を冷却流路よりも加熱流路に分配する分配比率を大幅に高くすることによって、温度調整対象の流体を所定温度に調整できる。
しかも、本発明者らが提案した精密温度調整装置及び精密温度調整方法において、圧縮機の回転数を変更して、高温の第1熱媒体の分配比率を調整し、加熱手段によって温度調整対象の流体に加えられる加熱量と冷却手段によって温度調整対象の流体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくできる。このため、ヒートポンプ手段を設けたことと相俟って更に一層の省エネルギーを図ることができる。
この様に、本発明者らが提案した精密温度調整装置及び精密温度調整方法では、補助電気ヒータ等の補助ヒータの不要化或いは小型化を図っても、温度調整対象の流体を所定温度に精密に調整でき、且つ省エネルギーを図ることができる。
According to the precise temperature adjusting device and the precise temperature adjusting method proposed by the present inventors, the high-temperature first heat medium discharged from the compressor to each of the heating means of the heating channel and the cooling means of the cooling channel. Is supplied. Further, the distribution means changes the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, so that the heating amount and the cooling for the temperature adjustment target fluid passing through the heating means and the cooling means are changed. The amount can be adjusted easily.
In such a precise temperature adjusting device and a precise temperature adjusting method, a heat pump means is provided. Since this heat pump means is a means capable of transferring heat from a low-temperature part to a high-temperature part, among the high-temperature first heat medium (the high-temperature part) heated by being compressed by the compressor, the heat flow path The first heat medium which has been cooled by releasing heat by the heating means and then further adiabatically expanded by the second expansion means and further cooled by the heat absorption means constituting the heat pump means (the second heat medium (external heat source)) It is possible to absorb heat from the lower temperature portion and raise the temperature and return it to the compressor.
For this reason, according to the precise temperature control apparatus and the precise temperature control method proposed by the present inventors, the high-temperature first heat medium (the high temperature part) discharged from the compressor contains the compression power energy generated by the compressor. In addition, energy absorbed from the second heat medium (low temperature portion) of the external heat source by the heat pump means can be applied, and the heating capability of the heating means to which the high temperature first heat medium is supplied can be improved.
Therefore, in the precise temperature adjustment device and the precise temperature adjustment method proposed by the present inventors, minute load fluctuations of the temperature adjustment target fluid passing through the heating means and the cooling means are caused in the heating flow path and the cooling flow path. By finely adjusting the distribution ratio of the high-temperature first heat medium to be distributed, it is possible to quickly cope with it, and it is possible to precisely adjust the temperature of the temperature adjustment target fluid.
Further, even when the set temperature of the fluid to be temperature adjusted that passes through the heating means and the cooling means is significantly increased, the distribution ratio that distributes the distribution ratio of the high-temperature first heat medium to the heating flow path rather than the cooling flow path. Is significantly increased, the temperature adjustment target fluid can be adjusted to a predetermined temperature.
Moreover, in the precise temperature adjustment device and the precise temperature adjustment method proposed by the present inventors, the rotation speed of the compressor is changed to adjust the distribution ratio of the high-temperature first heat medium, and the temperature adjustment target is adjusted by the heating means. Of the amount of heating applied to the fluid and the amount of cooling applied to the fluid whose temperature is to be adjusted by the cooling means, the amount of heat that cancels each other can be reduced. For this reason, in combination with the provision of the heat pump means, further energy saving can be achieved.
As described above, in the precise temperature adjustment device and the precise temperature adjustment method proposed by the present inventors, even if the auxiliary heater such as the auxiliary electric heater is made unnecessary or downsized, the fluid subject to temperature adjustment is precisely adjusted to a predetermined temperature. And energy saving can be achieved.

精密温度調整装置の参考例を説明する概略図である。It is the schematic explaining the reference example of a precise temperature control apparatus. 図1に示す精密温度調整装置に用いる制御弁40の内部構造を説明する説明図である。It is explanatory drawing explaining the internal structure of the control valve 40 used for the precise temperature control apparatus shown in FIG. 精密温度調整装置の他の参考例を説明する概略図である。It is the schematic explaining the other reference example of a precise temperature control apparatus. 精密温度調整装置の他の参考例を説明する概略図である。It is the schematic explaining the other reference example of a precise temperature control apparatus. 図1〜図4に示す精密温度調整装置で用いることのできる他の分配手段を説明する説明図である。It is explanatory drawing explaining the other distribution means which can be used with the precise temperature control apparatus shown in FIGS. 図5に示す分配手段で用いるゲートバルブの流量特性を示すグラフである。It is a graph which shows the flow volume characteristic of the gate valve used with the distribution means shown in FIG. 図1に示す精密温度調整装置において、冷却側にある場合の省エネルギーの原理を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the principle of energy saving in the precise temperature control apparatus shown in FIG. 1 when it is on the cooling side. 図1に示す精密温度調整装置において、加熱側にある場合の省エネルギーの原理を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the principle of energy saving in the precise temperature control apparatus shown in FIG. 1 when it is on the heating side. 本発明者らが提供した課題を解決する手段としての精密温度調整装置を説明する概略図である。It is the schematic explaining the precise temperature control apparatus as a means to solve the subject which the present inventors provided. 図9に示す温度調整装置の第1制御部22aと第2制御部22bとによる制御手順を説明するためのフローチャートである。It is a flowchart for demonstrating the control procedure by the 1st control part 22a and the 2nd control part 22b of the temperature control apparatus shown in FIG. 精密温度調整装置の他の参考例を説明する概略図である。It is the schematic explaining the other reference example of a precise temperature control apparatus. 精密温度調整装置の他の参考例を説明する概略図である。It is the schematic explaining the other reference example of a precise temperature control apparatus. 従来の温度調整装置を説明する概略図である。It is the schematic explaining the conventional temperature control apparatus. 従来の温度調整装置の改良例を説明する概略図である。It is the schematic explaining the example of improvement of the conventional temperature control apparatus.

精密温度調整装置の参考例を説明する概略図を図1に示す。図1に示す精密温度調整装置には、温度調整が成されたクリーンルーム内に設置された空間ユニット10内に、ファン12によって吸込んだ流体としてのクリーンルーム内の温度及び湿度が調整された空気を更に精密に温度調整する加熱流路と冷却流路とが設けられている。
かかる加熱流路を構成する加熱手段としての加熱器14と冷却流路を構成する冷却手段としての冷却器16とが設けられ、空間ユニット10内に吸引したクリーンルーム内の空気を冷却した後、加熱して精密に温度調整する。この冷却器16と加熱器14との空気流に対する配置によれば、加熱器14及び冷却器16を通過する空気流の除湿を更に向上できる。
かかる加熱器14及び冷却器16には、第1熱媒体として、例えばプロパン、イソブタンやシクロペンタン等の炭化水素、フロン類、アンモニア、炭酸ガスが供給され、第1熱媒体の気化・液化によってクリーンルーム内の空気を加熱・冷却して所定の温度に調整する。
この様な第1熱媒体は、圧縮機18によって圧縮・加熱されて高温(例えば70℃)の気体状となって吐出される。圧縮機18から吐出された高温の第1熱媒体を、分配手段としての比例三方弁20によって、加熱器14が設けられた加熱流路側と冷却器16が設けられた冷却流路側とに分配する。
A schematic diagram illustrating a reference example of the precision temperature control apparatus is shown in FIG. In the precision temperature control apparatus shown in FIG. 1, the air in which the temperature and humidity in the clean room are adjusted as the fluid sucked by the fan 12 is further introduced into the space unit 10 installed in the temperature-controlled clean room. A heating flow path and a cooling flow path for precisely adjusting the temperature are provided.
A heater 14 as a heating means constituting the heating flow path and a cooler 16 as a cooling means constituting the cooling flow path are provided, and the air in the clean room sucked into the space unit 10 is cooled and then heated. And adjust the temperature precisely. According to the arrangement of the cooler 16 and the heater 14 with respect to the air flow, dehumidification of the air flow passing through the heater 14 and the cooler 16 can be further improved.
The heater 14 and the cooler 16 are supplied with, for example, hydrocarbons such as propane, isobutane, and cyclopentane, chlorofluorocarbons, ammonia, and carbon dioxide as the first heat medium, and clean room is obtained by vaporizing and liquefying the first heat medium. The inside air is heated and cooled to adjust to a predetermined temperature.
Such a first heat medium is compressed and heated by the compressor 18 and discharged in the form of a gas at a high temperature (for example, 70 ° C.). The high-temperature first heat medium discharged from the compressor 18 is distributed to the heating channel side provided with the heater 14 and the cooling channel side provided with the cooler 16 by the proportional three-way valve 20 serving as a distribution unit. .

この比例三方弁20では、加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との合計量が圧縮機18から吐出された高温の第1熱媒体量と等しくなるように分配する。
かかる比例三方弁20は、第1制御部22aによって制御されている。この第1制御部22aでは、空間ユニット10内に設けられた温度センサ24によって測定された測定温度と設定された設定温度と比較し、測定温度が設定温度と一致するように、加熱流路側と冷却流路側とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更し、空間ユニット10内に吸込まれた流体を所定温度に調整する。
この「実質的に連続して変更」とは、比例三方弁20をステップ制御で駆動するとき、微視的には比例三方弁20がステップ的に駆動されているものの、全体的には連続して駆動されている場合を含む意味である。
In this proportional three-way valve 20, the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is the high temperature first heat medium discharged from the compressor 18. Distribute to equal the amount.
The proportional three-way valve 20 is controlled by the first control unit 22a. In the first control unit 22a, the measured temperature measured by the temperature sensor 24 provided in the space unit 10 is compared with the set temperature, and the heating channel side is set so that the measured temperature matches the set temperature. The distribution ratio of the high-temperature first heat medium distributed to the cooling flow path side is changed substantially continuously, and the fluid sucked into the space unit 10 is adjusted to a predetermined temperature.
This “substantially continuously changing” means that when the proportional three-way valve 20 is driven by step control, the proportional three-way valve 20 is microscopically driven stepwise, but is continuously continuous as a whole. This includes the case where it is driven.

かかる第1制御部22aに設定する設定温度は、任意に設定できるようにしてもよい。また、図1に示す温度センサ24は、ファン12の吐出側に設置されているが、ファン12の吸入側に設置してもよく、ファン12の吐出側及び吸入側に設けてもよい。
加熱流路側に分配された高温の第1熱媒体は、加熱器14に直接供給され、空間ユニット10内に吸引された空気流を加熱して所定温度に調整する。その際に、高温の第1熱媒体は放熱して冷却されて凝縮液を含む第1熱媒体となる。
一方、冷却流路側に分配された高温の第1熱媒体は、凝縮手段としての凝縮器26によって冷却されてから膨張手段としての膨張弁28によって断熱的に膨張して更に冷却(例えば、10℃に冷却)される。冷却された第1熱媒体は、冷却器16に供給され、空間ユニット10内に吸込まれて加熱器14によって加熱された空気流を冷却して所定温度に調整する。その際に、冷却器16に供給された第1熱媒体は空気流から吸熱して昇温される。この様に、加熱器14に吹き付けられて昇温された空気流を冷却器16に吹き付けることによって、空気流の温度調整の精度を向上できる。
The set temperature set in the first control unit 22a may be arbitrarily set. Further, the temperature sensor 24 shown in FIG. 1 is installed on the discharge side of the fan 12, but may be installed on the suction side of the fan 12, or may be provided on the discharge side and suction side of the fan 12.
The high temperature first heat medium distributed to the heating flow path side is directly supplied to the heater 14 and heats the air flow sucked into the space unit 10 to adjust to a predetermined temperature. At that time, the high-temperature first heat medium is radiated and cooled to become the first heat medium containing the condensate.
On the other hand, the high-temperature first heat medium distributed to the cooling flow path side is cooled by the condenser 26 as the condensing means and then adiabatically expanded by the expansion valve 28 as the expanding means to be further cooled (for example, 10 ° C. Cooled). The cooled first heat medium is supplied to the cooler 16, and the air flow sucked into the space unit 10 and heated by the heater 14 is cooled and adjusted to a predetermined temperature. At that time, the first heat medium supplied to the cooler 16 is heated by absorbing heat from the air flow. In this way, by blowing the air flow that has been blown to the heater 14 and raised in temperature to the cooler 16, the accuracy of temperature adjustment of the air flow can be improved.

かかる凝縮器26には、加熱器14側に分配された高温の第1熱媒体を冷却する冷却用として配管30を経由して、外部から加熱又は冷却されることなく供給された第2熱媒体として冷却水が供給されている。かかる冷却水は、凝縮器26内で70℃程度の第1熱媒体によって30℃程度に加熱されて配管31から吐出される。この配管31から吐出される冷却水は、ヒートポンプ手段の吸熱手段としての吸熱器32に加熱源として供給される。
この吸熱器32には、加熱器14で放熱した第1熱媒体を、膨張弁34によって断熱的に膨張して更に冷却した10℃程度の第1熱媒体が供給されている。このため、吸熱器32では、凝縮器26で吸熱して30℃程度に昇温された冷却水と10℃程度に冷却された第1熱媒体との温度差に基づいて、第1熱媒体が冷却水から吸熱できる。
吸熱器32で冷却水から吸熱して昇温された第1熱媒体は、アキュームレータ36を経由して圧縮機18に供給される。このアキュームレータ36には、冷却器16に供給されて空間ユニット10内に吸込まれた空気流から吸熱した第1熱媒体も供給される。かかるアキュームレータ36は、液体成分を貯めてガス成分のみを圧縮機18に再供給できるタイプのアキュームレータであるため、確実に第1熱媒体のガス成分のみを圧縮機18に供給できる。
このアキュームレータ36としては、蓄圧器用タイプのアキュームレータを用いることができる。
尚、アキュームレータ36を設置しなくても、吸熱器32で冷却水から吸熱して昇温された熱媒体と、冷却器16に供給されて空間ユニット10内に吸込まれた流体から吸熱した熱媒体とを合流して、圧縮機18に再供給できればよい。
The second heat medium supplied to the condenser 26 without being heated or cooled from the outside via the piping 30 for cooling the high-temperature first heat medium distributed to the heater 14 side. As the cooling water is supplied. The cooling water is heated to about 30 ° C. by the first heat medium of about 70 ° C. in the condenser 26 and is discharged from the pipe 31. The cooling water discharged from the pipe 31 is supplied as a heat source to a heat absorber 32 as a heat absorption unit of the heat pump unit.
The heat absorber 32 is supplied with a first heat medium at about 10 ° C., which is adiabatically expanded by the expansion valve 34 and further cooled by the first heat medium radiated by the heater 14. For this reason, in the heat absorber 32, based on the temperature difference between the cooling water that has absorbed heat in the condenser 26 and has been heated to about 30 ° C., and the first heat medium that has been cooled to about 10 ° C., Can absorb heat from cooling water.
The first heat medium that has been heated by absorbing heat from the cooling water by the heat absorber 32 is supplied to the compressor 18 via the accumulator 36. The accumulator 36 is also supplied with a first heat medium that absorbs heat from the air flow supplied to the cooler 16 and sucked into the space unit 10. Since the accumulator 36 is a type of accumulator that can store the liquid component and re-supply only the gas component to the compressor 18, it can reliably supply only the gas component of the first heat medium to the compressor 18.
As this accumulator 36, an accumulator type accumulator can be used.
Even if the accumulator 36 is not installed, a heat medium that has been heated by absorbing heat from the cooling water by the heat absorber 32 and a heat medium that has absorbed heat from the fluid supplied to the cooler 16 and sucked into the space unit 10. And can be re-supplied to the compressor 18.

ところで、加熱器14で放熱した第1熱媒体を、膨張弁34によって断熱的に膨張して冷却しているが、膨張弁34での断熱膨張による冷却では、第1熱媒体と外部との間での熱の遣り取りはない。このため、断熱的に冷却された第1熱媒体は、外部から凝縮器26を経由して吸熱器32に供給された第2熱媒体としての冷却水から吸熱できる。
従って、圧縮機18から吐出される高温の第1熱媒体には、圧縮機18による圧縮動力エネルギーに、ヒートポンプ手段の吸熱器32によって外部から供給された冷却水より吸熱したエネルギーを加えることができる。更に、図1に示す精密温度調整装置では、外部から供給された冷却水が凝縮器26を経由して吸熱器32に供給されており、凝縮器26で高温の第1熱媒体から除去されたエネルギーの一部も、圧縮機18から吐出される高温の第1熱媒体に加えることができ、加熱流路の加熱能力を向上できる。その結果、補助ヒータ等の他の加熱手段を用いることを要しない。
By the way, the first heat medium radiated by the heater 14 is adiabatically expanded and cooled by the expansion valve 34, but in the cooling by the adiabatic expansion in the expansion valve 34, the first heat medium is between the first heat medium and the outside. There is no exchange of heat. For this reason, the first heat medium cooled adiabatically can absorb heat from the cooling water as the second heat medium supplied from the outside to the heat absorber 32 via the condenser 26.
Therefore, energy absorbed from the cooling water supplied from the outside by the heat absorber 32 of the heat pump means can be added to the compression power energy by the compressor 18 to the high temperature first heat medium discharged from the compressor 18. . Furthermore, in the precise temperature control apparatus shown in FIG. 1, the cooling water supplied from the outside is supplied to the heat absorber 32 via the condenser 26, and is removed from the high-temperature first heat medium by the condenser 26. Part of the energy can also be added to the high-temperature first heat medium discharged from the compressor 18, and the heating capacity of the heating flow path can be improved. As a result, it is not necessary to use other heating means such as an auxiliary heater.

この様に、図1に示す精密温度調整装置では、その加熱流路の加熱能力をヒートポンプ手段の設置によって向上でき、且つ比例三方弁20によって加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との分配比率を、空間ユニット10内の温度に応じて実質的に連続して変更できる。
このため、図1に示す精密温度調整装置では、加熱流路及び冷却流路に高温の第1熱媒体が常時供給されており、加熱流路の加熱器14と冷却流路の冷却器16とを通過する温度調整対象の空気流の微小な負荷変動は、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を比例三方弁20によって直ちに微小調整することによって迅速に対応でき、応答性を向上できる。
その結果、加熱流路の加熱器14と冷却流路の冷却器16とを通過する温度調整対象の空気流の温度を設定温度に対して±0.1℃以下の精度で制御でき、図1に示す温度調整装置が設置された空間ユニット10の温度変化をクリーンルームの温度変化よりも小さくでき、精密加工が要求される工程を設置できる。
As described above, in the precise temperature control apparatus shown in FIG. 1, the heating capacity of the heating channel can be improved by installing the heat pump means, and the high-temperature first heating medium distributed to the heating channel side by the proportional three-way valve 20 and the cooling The distribution ratio with the high-temperature first heat medium distributed to the flow path side can be changed substantially continuously according to the temperature in the space unit 10.
For this reason, in the precise temperature control apparatus shown in FIG. 1, the high-temperature first heat medium is always supplied to the heating flow path and the cooling flow path, and the heater 14 of the heating flow path and the cooler 16 of the cooling flow path are The minute load fluctuation of the air flow to be temperature-adjusted that passes through the air flow is promptly adjusted by immediately adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path by the proportional three-way valve 20. It can cope and can improve responsiveness.
As a result, it is possible to control the temperature of the air flow to be adjusted through the heater 14 in the heating channel and the cooler 16 in the cooling channel with an accuracy of ± 0.1 ° C. or less with respect to the set temperature. The temperature change of the space unit 10 in which the temperature adjusting device shown in FIG. 1 is installed can be made smaller than the temperature change of the clean room, and a process requiring precision machining can be installed.

また、図1に示す温度調整装置では、上述した様に、加熱流路の加熱能力が向上され、且つ加熱流路と冷却手段とを含む流路のうち、分配手段としての比例三方弁20から冷却器16及び吸熱器32の各々を通過した第1熱媒体がアキュームレータ36で合流されるまでの加熱流路を含む流路と冷却流路を含む流路との各々が、流路的に独立して設けられている。このため、加熱器14と冷却器16とを通過する温度調整対象の空気流の設定温度を大幅に高くする場合でも、比例三方弁20によって高温の第1熱媒体の分配比率を冷却流路よりも加熱流路に分配する分配比率を大幅に高くして、温度調整対象の空気流を所定温度に迅速に調整できる。
その結果、例えば、図13に示す温度調整装置では、その温度設定範囲が20〜26℃程度であるが、図1に示す温度調整装置では、その温度設定範囲を18〜35℃と大幅に拡大できる。
尚、加熱流路を含む流路には、加熱器14、第2膨張弁43及び吸熱器32が設けられており、冷却流路を含む流路には、凝縮器26、第1膨張弁28及び冷却器16が設けられている。
Further, in the temperature adjusting device shown in FIG. 1, as described above, the heating capacity of the heating channel is improved, and the proportional three-way valve 20 serving as the distribution unit among the channels including the heating channel and the cooling unit is used. Each of the flow path including the heating flow path and the flow path including the cooling flow path until the first heat medium that has passed through each of the cooler 16 and the heat absorber 32 is joined by the accumulator 36 is independent of the flow path. Is provided. For this reason, even when the set temperature of the air flow to be temperature adjusted passing through the heater 14 and the cooler 16 is significantly increased, the proportional three-way valve 20 allows the distribution ratio of the high-temperature first heat medium to be higher than that of the cooling flow path. In addition, the distribution ratio distributed to the heating flow path can be significantly increased, and the air flow to be temperature adjusted can be quickly adjusted to a predetermined temperature.
As a result, for example, in the temperature adjusting device shown in FIG. 13, the temperature setting range is about 20 to 26 ° C., but in the temperature adjusting device shown in FIG. 1, the temperature setting range is greatly expanded to 18 to 35 ° C. it can.
The heater 14, the second expansion valve 43 and the heat absorber 32 are provided in the flow path including the heating flow path, and the condenser 26 and the first expansion valve 28 are provided in the flow path including the cooling flow path. And a cooler 16 is provided.

更に、図1に示す温度調整装置では、加熱流路の加熱能力が向上され、補助ヒータ等の他の加熱手段を用いることを要しないため、図14に示す補助ヒータ114を設けた温度調整装置に比較して、大幅な省エネルギーを図ることができる。
例えば、図14に示す補助ヒータ114を設けた温度調整装置では、全消費エネルギーの内訳は、圧縮機100が18%、補助ヒータ114が69%、及び送風機112が13%である。この点、図1に示す温度調整装置では、補助ヒータ114の消費エネルギーをカットできる。
このため、吐出量が20m/min程度の水冷式空調機に、図14に示す温度調整装置の方式を適用した場合には、最大消費電力が11.7KWであったが、図1に示す温度調整装置の方式を適用すると、最大消費電力を2.4KW程度とすることができる。
Further, in the temperature adjusting device shown in FIG. 1, the heating capacity of the heating channel is improved, and it is not necessary to use other heating means such as an auxiliary heater. Therefore, the temperature adjusting device provided with the auxiliary heater 114 shown in FIG. Compared with, significant energy saving can be achieved.
For example, in the temperature control apparatus provided with the auxiliary heater 114 shown in FIG. 14, the breakdown of the total energy consumption is 18% for the compressor 100, 69% for the auxiliary heater 114, and 13% for the blower 112. In this regard, the temperature adjustment device shown in FIG. 1 can cut the energy consumption of the auxiliary heater 114.
For this reason, when the system of the temperature control apparatus shown in FIG. 14 is applied to a water-cooled air conditioner with a discharge amount of about 20 m 3 / min, the maximum power consumption is 11.7 KW, but it is shown in FIG. When the temperature control system is applied, the maximum power consumption can be reduced to about 2.4 KW.

以上、説明してきた図1に示す温度調整装置では、凝縮器26に冷却水を供給する配管30に、冷媒制御手段としての制御弁40が設けられている。この制御弁40は、圧縮機18の吐出圧が一定となるように制御されている。かかる制御弁40は、図2に示す様に、冷却水の流路内に設けられた弁部40aの開口部を開閉する弁体40bを具備する棒状部が設けられている。この棒状部は、その先端面が当接するバネ40cによって弁体40bが弁部40aの開口部を閉じる方向に付勢されている。また、棒状部の他端面は、圧縮機18から吐出された第1熱媒体の圧力が供給されるベローズ40dに当接し、棒状部をバネ40cの付勢力に抗して弁部40aの開口部を解放する方向に弁体40bを付勢している。
従って、圧縮機18の吐出圧がバネ40cの付勢力以上となったとき、制御弁40のベローズ40dによって弁体40bが弁部40aの開口部を開放する方向に移動し、凝縮器26に供給される冷却水量が増加して、凝縮器26の冷却能力が向上される。このため、圧縮機18の吐出圧が低下する。
他方、圧縮機18の吐出圧が制御弁40のバネ40cの付勢力以下となったとき、弁体40bが弁部40aの開口部を閉じる方向に移動し、凝縮器26に供給される冷却水量が減少して、凝縮器26の冷却能力が低下する。このため、圧縮機18の吐出圧が高くなる。
この様に、圧縮機18の吐出圧を一定に保持することによって、精密温度調整装置を安定して運転できる。また、凝縮器26に冷却水量が必要以上に供給され、系外に排出されないように調整できる。
As described above, in the temperature adjusting apparatus shown in FIG. 1, the control valve 40 as the refrigerant control means is provided in the pipe 30 that supplies the cooling water to the condenser 26. The control valve 40 is controlled so that the discharge pressure of the compressor 18 is constant. As shown in FIG. 2, the control valve 40 is provided with a rod-like portion including a valve body 40 b that opens and closes an opening of a valve portion 40 a provided in the cooling water flow path. The rod-like portion is biased in a direction in which the valve body 40b closes the opening of the valve portion 40a by a spring 40c with which the tip end surface abuts. Further, the other end surface of the rod-shaped portion is in contact with the bellows 40d to which the pressure of the first heat medium discharged from the compressor 18 is supplied, and the rod-shaped portion is opened against the urging force of the spring 40c. The valve body 40b is urged in a direction to release the valve.
Therefore, when the discharge pressure of the compressor 18 becomes equal to or greater than the urging force of the spring 40c, the valve body 40b is moved in the direction to open the opening of the valve portion 40a by the bellows 40d of the control valve 40 and supplied to the condenser 26. The amount of cooling water to be increased increases, and the cooling capacity of the condenser 26 is improved. For this reason, the discharge pressure of the compressor 18 decreases.
On the other hand, when the discharge pressure of the compressor 18 becomes equal to or less than the biasing force of the spring 40c of the control valve 40, the valve body 40b moves in a direction to close the opening of the valve portion 40a, and the amount of cooling water supplied to the condenser 26 Decreases and the cooling capacity of the condenser 26 decreases. For this reason, the discharge pressure of the compressor 18 becomes high.
In this way, by keeping the discharge pressure of the compressor 18 constant, the precise temperature adjusting device can be stably operated. Moreover, it can adjust so that the amount of cooling water may be supplied to the condenser 26 more than needed, and it may not discharge | emit out of the system.

ところで、加熱器14及び冷却器16を通過する空気流の温度設定を大幅に昇温した場合、第1制御部22aでは、比例三方弁20の冷却流路側の吐出口の開度を全閉状態又は全閉状態に近い状態とすると共に、加熱流路側の吐出口を全開状態又は全開状態に近い状態とする。
また、温度調整対象の空気流の温度が低温である場合、加熱流路の加熱器14に供給された高温の第1熱媒体は、加熱器14で低温の空気流によって凝縮され、圧縮機18の吐出圧が所定圧よりも低圧となるため、制御弁40が閉じて凝縮器26に冷却水が供給されなくなる。
この様に、凝縮器26に冷却水が供給されなくなると、凝縮器26からヒートポンプ手段の吸熱器32に供給される冷却水も供給されなくなる。このため、吸熱器32が稼働停止状態となって、ヒートポンプ手段が機能しなくなる。
しかも、加熱器14で放熱して凝縮した第1熱媒体を膨張弁34で断熱的に膨張して冷却した第1熱媒体と冷却水との熱交換が行われず、吸熱器32が凍結するおそれがある。
By the way, when the temperature setting of the air flow passing through the heater 14 and the cooler 16 is significantly increased, the first control unit 22a fully opens the opening of the discharge port on the cooling flow path side of the proportional three-way valve 20. Or while making it the state close | similar to a fully closed state, let the discharge port by the side of a heating flow path be a fully open state or a state close to a fully open state.
When the temperature of the air flow to be temperature adjusted is low, the high temperature first heat medium supplied to the heater 14 in the heating flow path is condensed by the low temperature air flow in the heater 14, and the compressor 18. Therefore, the control valve 40 is closed and the cooling water is not supplied to the condenser 26.
In this way, when the cooling water is not supplied to the condenser 26, the cooling water supplied from the condenser 26 to the heat absorber 32 of the heat pump means is also not supplied. For this reason, the heat absorber 32 becomes an operation stop state, and a heat pump means stops functioning.
In addition, heat exchange between the first heat medium, which is radiated and condensed by the heater 14, is adiabatically expanded by the expansion valve 34 and cooled, and the cooling water is not performed, and the heat absorber 32 may freeze. There is.

このため、図3に示す精密温度調整装置の様に、吸熱器32への冷却水の供給手段として、制御弁40のバイパス配管42に制御弁44を設けている。この制御弁44は、比例三方弁20の冷却流路側の吐出口の開度が全閉状態又は全閉状態に近い状態となり、加熱流路側の吐出口が全開状態又は全開状態に近い状態となったとき、第1制御部22aからの信号によって開き、強制的に冷却水を凝縮器26に供給し、吸熱器32を稼働状態としている。
このため、加熱器14及び冷却器16を通過する空気流の温度設定を大幅に昇温した場合や加熱器14及び冷却器16を通過する空気流が低温の場合の様に、冷却流路側に分配される高温の第1熱媒体の分配率がゼロ又はその近傍となったときでも、吸熱器32に所定量の冷却水を供給でき、吸熱器32の凍結を防止し且つヒートポンプ手段の機能を発揮させることができる。
For this reason, a control valve 44 is provided in the bypass pipe 42 of the control valve 40 as means for supplying cooling water to the heat absorber 32 as in the precise temperature adjusting device shown in FIG. In the control valve 44, the opening degree of the discharge port on the cooling channel side of the proportional three-way valve 20 is in a fully closed state or a state close to a fully closed state, and the discharge port on the heating channel side is in a fully open state or a state close to a fully open state. When this occurs, it opens by a signal from the first control unit 22a, forcibly supplies cooling water to the condenser 26, and the heat absorber 32 is in an operating state.
For this reason, when the temperature setting of the air flow that passes through the heater 14 and the cooler 16 is significantly increased, or when the air flow that passes through the heater 14 and the cooler 16 is low temperature, Even when the distribution ratio of the high-temperature first heat medium to be distributed becomes zero or in the vicinity thereof, a predetermined amount of cooling water can be supplied to the heat absorber 32 to prevent the heat absorber 32 from freezing and to function as a heat pump means. It can be demonstrated.

圧縮機18の吐出圧が上昇し所定圧近傍に到達したとき、制御弁44を第1制御部22aからの信号によって閉じる。その後は、制御弁40によって圧縮機18の吐出側の圧力が一定に保持されるように、凝縮器26に供給される冷却水の供給量を制御する。
図3に示す精密温度調整装置では、冷却器16に吹き付けられて冷却された空気流を加熱器14に吹き付けている。この様に、最初に空気流を冷却器16に吹き付けることによって、空気流中の水分を凝縮して除湿を行うことができる。
尚、図3に示す精密温度調整装置では、その構成部材が図1に示す精密温度調整装置の構成部材と同一部材である場合には、図1の構成部材と同一番号を付し、詳細な説明を省略した。
When the discharge pressure of the compressor 18 increases and reaches a predetermined pressure, the control valve 44 is closed by a signal from the first control unit 22a. Thereafter, the supply amount of the cooling water supplied to the condenser 26 is controlled so that the pressure on the discharge side of the compressor 18 is kept constant by the control valve 40.
In the precise temperature control apparatus shown in FIG. 3, the air flow blown to the cooler 16 and cooled is blown to the heater 14. In this way, by first blowing an air flow to the cooler 16, moisture in the air flow can be condensed and dehumidified.
In the precise temperature adjusting device shown in FIG. 3, when the constituent members are the same as those of the precise temperature adjusting device shown in FIG. 1, the same reference numerals as those in FIG. The explanation was omitted.

図1及び図3に示す精密温度調整装置では、凝縮器26及びヒートポンプ手段の吸熱器32に供給する第2熱媒体として冷却水を用いていたが、図4に示す様に、凝縮器26及びヒートポンプ手段の吸熱器32に供給する第2熱媒体としてファン46による空気流を用いることができる。
図4に示す精密温度調整装置では、加熱器14で放熱した第1熱媒体が膨張弁34によって断熱膨張して更に冷却されて供給されている吸熱器32に、ファン46によって凝縮器26に吹き付けられて加熱された空気流が吹き付けられる。このため、吸熱器32では、加熱器14で放熱・凝縮し断熱膨張して更に冷却した第1熱媒体が空気流から吸熱して昇温される。
尚、図4に示す精密温度調整装置では、その構成部材が図1に示す精密温度調整装置の構成部材と同一部材である場合には、図1の構成部材と同一番号を付し、詳細な説明を省略した。
In the precise temperature control apparatus shown in FIGS. 1 and 3, cooling water is used as the second heat medium supplied to the condenser 26 and the heat absorber 32 of the heat pump means, but as shown in FIG. An air flow generated by the fan 46 can be used as the second heat medium supplied to the heat absorber 32 of the heat pump means.
In the precision temperature control apparatus shown in FIG. 4, the first heat medium radiated by the heater 14 is adiabatically expanded by the expansion valve 34 and further cooled and supplied to the heat absorber 32 supplied to the condenser 26 by the fan 46. And heated air flow is blown. For this reason, in the heat absorber 32, the first heat medium, which is radiated and condensed by the heater 14 and adiabatically expanded and further cooled, absorbs heat from the air flow and is heated.
In the precise temperature adjusting device shown in FIG. 4, when the constituent members are the same as those of the precise temperature adjusting device shown in FIG. 1, the same reference numerals as those in FIG. The explanation was omitted.

また、図1〜図4に示す温度調整装置に用いた分配手段としての比例三方弁20に代えて、図5に示す様に、2個の二方弁としてのゲートバルブ38a,38bを用いることができる。2個のゲートバルブ38a,38bの各々は、第1制御部22aによって制御されている。かかる第1制御部22aによって、ゲートバルブ38a,38bの各々の開度を調整し、圧縮機18で圧縮・加熱された気体状の高温の第1熱媒体を加熱流路と冷却流路とに分配する分配比率を実質的に連続して調整し、加熱器14と冷却器16とを通過する空気流を所定温度に制御する。その際に、加熱器14側に分配する高温の第1熱媒体量と冷却器16側に分配する高温の第1熱媒体量との合計量が、圧縮機18から吐出された高温の第1熱媒体量と等しくなるように、ゲートバルブ38a,38bの開度を調整して連続的に比例分配される。   Further, instead of the proportional three-way valve 20 as the distribution means used in the temperature control device shown in FIGS. 1 to 4, two gate valves 38a and 38b as two-way valves are used as shown in FIG. Can do. Each of the two gate valves 38a and 38b is controlled by the first controller 22a. The opening degree of each of the gate valves 38a and 38b is adjusted by the first control unit 22a, and the gaseous high temperature first heat medium compressed and heated by the compressor 18 is used as a heating channel and a cooling channel. The distribution ratio to be distributed is adjusted substantially continuously, and the air flow passing through the heater 14 and the cooler 16 is controlled to a predetermined temperature. At that time, the total amount of the high temperature first heat medium amount distributed to the heater 14 side and the high temperature first heat medium amount distributed to the cooler 16 side is the first high temperature discharged from the compressor 18. The opening of the gate valves 38a and 38b is adjusted so as to be equal to the amount of heat medium, and is continuously proportionally distributed.

その際に、ゲートバルブ38a,38bの各々は、図6に示す様に、バルブ開度と流量との関係は直線状でない。このため、第1制御部22aでは、図6に示すゲートバルブ38a,38bの各々についての流量特性データを保持し、第1制御部22aからは、ゲートバルブ38a,38bの各流量特性に基づいて各ゲートバルブ38a,38bへの開度信号を発信する。
ここで、「加熱流路と冷却流路とに分配する分配比率を実質的に連続して調整」或いは「分配比率を実質的に連続して調整」するとは、ゲートバルブ38a,38bをステップ制御によって駆動し、加熱流路と冷却流路との分配比率を調整する際に、ゲートバルブ38a,38bの開度が、微視的にはステップ的に駆動されて調整されているものの、全体として連続して駆動されて調整されている場合を含むことを意味する。
At that time, as shown in FIG. 6, in each of the gate valves 38a and 38b, the relationship between the valve opening and the flow rate is not linear. For this reason, the first control unit 22a holds the flow rate characteristic data for each of the gate valves 38a and 38b shown in FIG. 6, and the first control unit 22a is based on the flow rate characteristics of the gate valves 38a and 38b. An opening signal is transmitted to each gate valve 38a, 38b.
Here, “to adjust the distribution ratio distributed to the heating flow path and the cooling flow path substantially continuously” or “to adjust the distribution ratio substantially continuously” is step control of the gate valves 38a and 38b. When adjusting the distribution ratio between the heating flow path and the cooling flow path, the opening degree of the gate valves 38a, 38b is microscopically driven and adjusted, but as a whole, It means to include the case where it is continuously driven and adjusted.

図1〜図4に示す精密温度調整装置では、加熱器14と冷却器16とによる温度調整対象としての空気流の温度調整では、例えば、温度調整対象の空気流に対して冷却側にある場合、空気温度が安定する運転状態では、図7(a)に示す様に、冷却器16で冷却した空気を加熱器14で加熱している。図7(a)に示す運転状態では、空気流を冷却するに要するエネルギーAに比較して、加熱器14で加熱するエネルギーが大きくなる場合がある。この場合、図7(b)に示す様に、冷却器16と加熱器14との重複するエネルギーを少なくできれば、省エネルギーを図ることができる。
一方、温度調整対象の空気流に対して加熱側にある場合、空気温度が安定する運転状態では、図8(a)に示す様に、加熱器14で加熱した空気流を冷却器16で冷却している。図8(a)に示す運転状態では、空気流を加熱に要するエネルギーBに比較して、冷却器16で冷却するエネルギーが大きくなる場合がある。この場合、図8(b)に示す様に、冷却器14と加熱器16との重複するエネルギーを可及的に少なくできれば、省エネルギーを図ることができる。
但し、互いに打ち消し合う熱量分をゼロとすべく、加熱器14と冷却器16とに高温の第1熱媒体の供給をON−OFF制御すると、精密温度調整装置の運転が不安定となり、空気流を所定温度で安定するまで時間が掛かる。このため、精密温度調整装置を安定運転できる程度には、加熱器14に加えられる加熱量と冷却器16に加えられる冷却量のうち、互いに打ち消し合う熱量分を最小限存在させることが必要である。
尚、この必要最小限の互いに打ち消し合う熱量分は、精密温度調整装置によって多少異なるため、実験的に求めておくことが好ましい。
1 to 4, in the temperature adjustment of the air flow as the temperature adjustment target by the heater 14 and the cooler 16, for example, in the case of being on the cooling side with respect to the air flow of the temperature adjustment target In the operation state where the air temperature is stable, the air cooled by the cooler 16 is heated by the heater 14 as shown in FIG. In the operation state shown in FIG. 7A, the energy heated by the heater 14 may be larger than the energy A required for cooling the airflow. In this case, as shown in FIG. 7B, energy can be saved if the overlapping energy between the cooler 16 and the heater 14 can be reduced.
On the other hand, when it is on the heating side with respect to the air flow to be adjusted, in the operation state where the air temperature is stable, the air flow heated by the heater 14 is cooled by the cooler 16 as shown in FIG. is doing. In the operating state shown in FIG. 8A, the energy to cool by the cooler 16 may be larger than the energy B required for heating the airflow. In this case, as shown in FIG. 8B, if the overlapping energy between the cooler 14 and the heater 16 can be reduced as much as possible, energy saving can be achieved.
However, if the supply of the high-temperature first heat medium to the heater 14 and the cooler 16 is turned on and off so that the amount of heat canceling each other is zero, the operation of the precision temperature control device becomes unstable, and the air flow It takes time to stabilize at a predetermined temperature. For this reason, to the extent that the precise temperature control device can be stably operated, it is necessary that the amount of heat that cancels each other out of the amount of heat applied to the heater 14 and the amount of cooling applied to the cooler 16 must be present at a minimum. .
The minimum necessary amount of heat that cancels each other is somewhat different depending on the precise temperature adjusting device, and is preferably obtained experimentally.

この様に、冷却器16と加熱器14との重複するエネルギーを少なくできるように、本発明者らが提案した精密温度調整装置では、図9に示す様に、加熱器14に加えられる加熱量と冷却器16に加えられる冷却量のうち、互いに打ち消し合う熱量分を可及的に少なくするように、回転数制御手段としてのインバータ19を介して圧縮機18の回転数を第2制御部22bによって制御している。
尚、図9に示す精密温度調整装置を構成する構成部材のうち、図1に示す精密温度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
In this way, in the precision temperature control apparatus proposed by the present inventors so as to reduce the overlapping energy between the cooler 16 and the heater 14, the heating amount applied to the heater 14 as shown in FIG. And the cooling amount applied to the cooler 16, the rotational speed of the compressor 18 is controlled by the second control unit 22b via the inverter 19 serving as the rotational speed control means so as to reduce as much as possible the amount of heat that cancels each other out. Is controlled by.
9, the same members as those of the precise temperature adjusting device shown in FIG. 1 are given the same reference numerals as those in FIG. Omitted.

かかる第2制御部22bは、比例三方弁20を制御する第1制御部22aと協働して、加熱器14に加えられる加熱量と冷却器16に加えられ冷却量のうち、互いに打ち消し合う熱量分を可及的に少なくしつつ、空気流の精密温度制御を行う。
第1制御部22aによる比例三方弁20の制御と第2制御部22bによる圧縮機18の回転数の制御とを図10のフローチャートに示す。
図9に示す温度調整装置を試運転したところ、空気流に対して冷却側で運転する場合は、加熱器14に加えられる加熱量として、比例三方弁20による加熱器14側への高温の第1熱媒体の分配率を5〜15%(比例三方弁20による冷却器16側への高温の第1熱媒体の分配率を95〜85%)とすることが安定運転上から好ましいことが判明した。
他方、空気流に対して加熱側で運転する場合は、加熱器14側に加えられる加熱量として、比例三方弁20による加熱器14側への高温の第1熱媒体の分配率を95〜85%(比例三方弁20による冷却器16側への高温の第1熱媒体の分配率を5〜15%)とすることが安定運転上から好ましいことが判明した。
The second control unit 22b cooperates with the first control unit 22a for controlling the proportional three-way valve 20, and cancels each other out of the heating amount applied to the heater 14 and the cooling amount applied to the cooler 16. Precise temperature control of air flow while minimizing the minute.
The control of the proportional three-way valve 20 by the first controller 22a and the control of the rotational speed of the compressor 18 by the second controller 22b are shown in the flowchart of FIG.
When the temperature adjusting device shown in FIG. 9 was trial run, when operating on the cooling side with respect to the air flow, as the amount of heating applied to the heater 14, the first high temperature to the heater 14 side by the proportional three-way valve 20. It has been found that the heat medium distribution ratio is preferably 5 to 15% (the distribution ratio of the high temperature first heat medium to the cooler 16 side by the proportional three-way valve 20 is 95 to 85%) from the standpoint of stable operation. .
On the other hand, when operating on the heating side with respect to the air flow, the distribution ratio of the high-temperature first heat medium to the heater 14 side by the proportional three-way valve 20 is 95 to 85 as the heating amount applied to the heater 14 side. % (The distribution ratio of the high-temperature first heat medium to the cooler 16 side by the proportional three-way valve 20 is 5 to 15%) from the viewpoint of stable operation.

このため、図10のフローチャートに示す制御では、加熱器14側に加えられる加熱量、具体的には比例三方弁20による加熱器14側への高温の第1熱媒体の分配率を、空気流に対して冷却側で運転する場合は、5〜15%となるように圧縮機18の回転数を制御し、空気流に対して加熱側で運転する場合は、95〜85%の分配率となるように圧縮機18の回転数を制御することにした。
図10に示すフローチャートでは、ステップS10で圧縮機18を起動した後、ステップS12で空気流を所定温度とするように、空間ユニット10内に設けられた温度センサ24によって測定された温度信号に基づいて、比例三方弁20による加熱器14側と冷却器16側とに分配する高温の第1熱媒体の分配比率を連続的に変更し、空間ユニット10内に吸込まれた空気流を所定温度に調整する。
For this reason, in the control shown in the flowchart of FIG. 10, the amount of heating applied to the heater 14 side, specifically, the distribution ratio of the high-temperature first heat medium to the heater 14 side by the proportional three-way valve 20, When operating on the cooling side, the rotational speed of the compressor 18 is controlled so as to be 5 to 15%, and when operating on the heating side with respect to the air flow, the distribution ratio is 95 to 85%. Thus, the rotational speed of the compressor 18 is controlled.
In the flowchart shown in FIG. 10, after starting the compressor 18 in step S10, based on the temperature signal measured by the temperature sensor 24 provided in the space unit 10 so that the air flow is set to a predetermined temperature in step S12. Thus, the distribution ratio of the high temperature first heat medium distributed to the heater 14 side and the cooler 16 side by the proportional three-way valve 20 is continuously changed, and the air flow sucked into the space unit 10 is set to a predetermined temperature. adjust.

かかる空気流が所定温度に到達して安定しているかをステップS14で判断し、空気流の温度が安定していない場合は、ステップS12に戻り、比例三方弁20による加熱器14側と冷却器16側とに分配する高温熱媒体の分配比率を連続的に変更する。かかるステップS12及びステップS14は第1制御部22aで行う。
一方、空間ユニット10内の空気流が所定温度に到達して安定している場合は、ステップS16〜S22で加熱器14側に分配される高温の第1熱媒体の分配比率が所定の範囲内であるか否か判断する。このステップS16〜S22は第2制御部22bで行う。
尚、図10に示す高温の第1熱媒体の平均分配率とは、加熱器14側に分配される高温の第1熱媒体の分配比率にはばらつきがあるため、所定時間内の第1熱媒体の分配率の平均をとった値であって、以下、単に第1熱媒体の平均分配率と称することがある。
In step S14, it is determined whether the air flow reaches a predetermined temperature and is stable. If the temperature of the air flow is not stable, the process returns to step S12 and the heater 14 side and the cooler by the proportional three-way valve 20 are returned. The distribution ratio of the high-temperature heat medium distributed to the 16 side is continuously changed. Steps S12 and S14 are performed by the first controller 22a.
On the other hand, when the air flow in the space unit 10 reaches a predetermined temperature and is stable, the distribution ratio of the high-temperature first heat medium distributed to the heater 14 side in steps S16 to S22 is within a predetermined range. It is determined whether or not. Steps S16 to S22 are performed by the second controller 22b.
Note that since the distribution ratio of the high temperature first heat medium distributed to the heater 14 side varies with the average distribution ratio of the high temperature first heat medium shown in FIG. A value obtained by averaging the distribution ratio of the medium, and may be simply referred to as an average distribution ratio of the first heat medium.

先ず、ステップS16とステップS18とでは、空気流に対して冷却側にあると仮定したとき、加熱器14側への第1熱媒体の平均分配率が5〜15%内にあるか否か判断する。
ここで、加熱器14側への第1熱媒体の平均分配率が5〜15%内にある場合は、空気流に対して冷却側にあり、且つ精密温度調整装置の運転が安定する範囲内であるため、ステップS16を通過しステップS18からステップS16に戻る。
一方、加熱器14側への第1熱媒体の平均分配率が5%未満である場合には、加熱器14側への第1熱媒体の平均分配率が低過ぎるため、精密温度調整装置の運転が不安定となり易い。このため、加熱器14側への第1熱媒体の平均分配率を増加すべく、ステップS16からステップS24に移行し、圧縮機18の回転数を増加する。ステップS24では、第2制御部22bからインバータ19に向けて、インバータ19に設定されている圧縮機18の回転数を最小変化量で増加する増加信号を発信する。圧縮機18の回転数を最小変化量で増加することによって、精密温度調整装置を安定して運転できるからである。
尚、圧縮機18の回転数を変化させる最小変化量は、精密温度調整装置によって異なるため、実験的に求めておくことが好ましいが、圧縮機18の回転数が2000〜5000rpmのとき、最小変化量を3〜10%の範囲とすることが好ましい。
First, in step S16 and step S18, when it is assumed that the air flow is on the cooling side, it is determined whether or not the average distribution ratio of the first heat medium to the heater 14 side is within 5 to 15%. To do.
Here, when the average distribution ratio of the first heat medium to the heater 14 side is within 5 to 15%, it is on the cooling side with respect to the air flow, and within the range where the operation of the precision temperature control device is stable. Therefore, it passes through step S16 and returns from step S18 to step S16.
On the other hand, when the average distribution ratio of the first heat medium to the heater 14 side is less than 5%, the average distribution ratio of the first heat medium to the heater 14 side is too low. Driving tends to be unstable. For this reason, in order to increase the average distribution ratio of the first heat medium to the heater 14 side, the process proceeds from step S16 to step S24, and the rotational speed of the compressor 18 is increased. In step S <b> 24, an increase signal for increasing the rotation speed of the compressor 18 set in the inverter 19 with a minimum change amount is transmitted from the second control unit 22 b to the inverter 19. This is because the precise temperature adjusting device can be stably operated by increasing the rotation speed of the compressor 18 with the minimum change amount.
The minimum change amount for changing the rotation speed of the compressor 18 is preferably determined experimentally because it varies depending on the precise temperature adjusting device. However, when the rotation speed of the compressor 18 is 2000 to 5000 rpm, the minimum change amount is preferred. The amount is preferably in the range of 3 to 10%.

また、加熱器14側への第1熱媒体の平均分配率が15%を越えている場合には、ステップS16とステップS18とを通過して、空気流が冷却側にないと判断し、ステップS20とステップS22とに移行する。ステップS20とステップS22とでは、空気流が加熱側にあると仮定したとき、加熱器14側への第1熱媒体の平均分配率が95〜85%内にあるか否か判断する。
ここで、加熱器14側への第1熱媒体の平均分配率が85〜95%内にある場合は、空気流が加熱側にあり、且つ精密温度調整装置の運転が安定する範囲内であるため、ステップS20を通過しステップS22からステップS16に戻る。
一方、加熱器14側への第1熱媒体の平均分配率が95%を超えている場合には、加熱器14側への第1熱媒体の平均分配率が高過ぎ、精密温度調整装置の運転が不安定となり易い。このため、加熱器14側への第1熱媒体の平均分配率を減少すべく、ステップS20からステップS24に移行し、圧縮機18の回転数を増加する。ステップS24では、第2制御部22bからインバータ19に向けて、インバータ19に設定されている圧縮機18の回転数を最小変化量で増加する増加信号を発信する。
When the average distribution ratio of the first heat medium to the heater 14 side exceeds 15%, it is determined that the air flow is not on the cooling side through steps S16 and S18. The process proceeds to S20 and step S22. In Step S20 and Step S22, when it is assumed that the air flow is on the heating side, it is determined whether or not the average distribution ratio of the first heat medium to the heater 14 side is within 95 to 85%.
Here, when the average distribution ratio of the first heat medium to the heater 14 side is within 85 to 95%, the air flow is on the heating side and the operation of the precision temperature control device is within a stable range. Therefore, it passes through step S20 and returns from step S22 to step S16.
On the other hand, when the average distribution ratio of the first heat medium to the heater 14 side exceeds 95%, the average distribution ratio of the first heat medium to the heater 14 side is too high, and the precision temperature adjusting device Driving tends to be unstable. For this reason, in order to reduce the average distribution ratio of the first heat medium to the heater 14 side, the process proceeds from step S20 to step S24, and the rotational speed of the compressor 18 is increased. In step S <b> 24, an increase signal for increasing the rotation speed of the compressor 18 set in the inverter 19 with a minimum change amount is transmitted from the second control unit 22 b to the inverter 19.

また、加熱器14側への第1熱媒体の平均分配率が85%未満の場合には、ステップS22において、空気流は加熱側でもなく且つ冷却側でもない状態、すなわち加熱器14に加えられる加熱量と冷却器16に加えられる冷却量のうち、互いに打ち消し合う熱量が多い状態と判断される。このため、ステップS26に移行し、圧縮機18の回転数を低下する。ステップS26では、第2制御部22bからインバータ19に向けて、インバータ19に設定されている圧縮機18の回転数を最小変化量で低下する低下信号を発信する。圧縮機18の回転数を最小変化量で低下し、空気流を加熱側又は冷却側に移行させるためである。
次いで、ステップS24又はステップS26を通過してステップS28に移行し、圧縮機18が運転中か否か判断して、圧縮機18が運転中であれば、ステップS14に戻る。ステップS14では、ステップS24又はステップS26において、圧縮機18の回転数を最小変化量で増加又は低下した状態で、空間ユニット10内の空気流が所定温度に到達して安定しているかを判断する。空間ユニット10内の空気流が所定温度に到達して安定している場合には、ステップS16〜S26によって、再度、加熱器14側への第1熱媒体の平均分配率が所定範囲内に在るか否か判断する。
When the average distribution ratio of the first heat medium to the heater 14 side is less than 85%, in step S22, the air flow is applied to the heater 14 in a state that is neither the heating side nor the cooling side. Of the heating amount and the cooling amount applied to the cooler 16, it is determined that the amount of heat canceling each other is large. For this reason, it transfers to step S26 and the rotation speed of the compressor 18 is reduced. In step S <b> 26, a lowering signal is transmitted from the second control unit 22 b to the inverter 19 to reduce the rotation speed of the compressor 18 set in the inverter 19 with the minimum change amount. This is because the rotation speed of the compressor 18 is reduced by the minimum change amount and the air flow is shifted to the heating side or the cooling side.
Next, the process proceeds to step S28 after passing through step S24 or step S26, and it is determined whether or not the compressor 18 is in operation. If the compressor 18 is in operation, the process returns to step S14. In step S14, in step S24 or step S26, it is determined whether the air flow in the space unit 10 reaches a predetermined temperature and is stable in a state where the rotation speed of the compressor 18 is increased or decreased by the minimum change amount. . When the air flow in the space unit 10 reaches a predetermined temperature and is stable, the average distribution ratio of the first heat medium to the heater 14 side is within the predetermined range again in steps S16 to S26. Judge whether or not.

一方、ステップS14において、空間ユニット10内の空気流の温度が安定していないと判断した場合は、ステップS12に戻り、比例三方弁20による加熱器14側と冷却器16側とに分配する第1熱媒体の分配比率を連続的に変更する。空間ユニット10内の空気流が所定温度に到達して安定してからステップS16〜S26に移行する。
ステップS28において、圧縮機18が運転状態にない場合には、第1制御部22a及び第2制御部22bによる制御は停止する。
以上、説明してきた図10に示すフローチャートの第1制御部22aでは、加熱器14側への第1熱媒体の平均分配率に注目して制御しているが、冷却器16側への第1熱媒体の平均分配率に注目して制御してもよい。
On the other hand, if it is determined in step S14 that the temperature of the air flow in the space unit 10 is not stable, the process returns to step S12, and the proportional three-way valve 20 distributes the heater 14 side and the cooler 16 side. 1 The distribution ratio of the heat medium is continuously changed. After the air flow in the space unit 10 reaches a predetermined temperature and stabilizes, the process proceeds to steps S16 to S26.
In step S28, when the compressor 18 is not in the operating state, the control by the first control unit 22a and the second control unit 22b is stopped.
As described above, in the first control unit 22a of the flowchart shown in FIG. 10 described above, control is performed by paying attention to the average distribution ratio of the first heat medium to the heater 14, but the first control to the cooler 16 side. You may control paying attention to the average distribution rate of a heat carrier.

図1〜図10に示す精密温度調整装置では、温度調整対象が空気流であったが、工作機械等に用いられる冷却液を温度調整対象とする精密温度調整装置にも適用できる。かかる温度調整対象としての冷却液の精密温度調整装置の一例を図11に示す。
図11に示す冷却液の精密温度調整装置では、インバータ51によって所定回転数で回転するように制御されている圧縮機50で圧縮された高温の第1熱媒体は分配手段としての比例三方弁52によって加熱流路と冷却流路とに分配される。
かかる比例三方弁52は、加熱流路側に分配する高温の第1熱媒体量と冷却流路側に分配する高温の第1熱媒体量との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、圧縮機50で圧縮された高温の第1熱媒体を比例分配する。この比例三方弁52は、第1制御部55aで制御されており、後述する様に、精密温度調整装置の出口の冷却液の温度を測定する温度センサ62からの信号に基づいて、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配率を連続的に変更して、冷却液を所定温度に調整する。
1 to 10, the temperature adjustment target is an air flow, but the present invention can also be applied to a precision temperature adjustment device that uses a coolant used in a machine tool or the like as a temperature adjustment target. An example of the precise temperature adjusting device for the coolant as the temperature adjustment target is shown in FIG.
In the coolant precise temperature control apparatus shown in FIG. 11, the high-temperature first heat medium compressed by the compressor 50 controlled to rotate at a predetermined number of revolutions by the inverter 51 is a proportional three-way valve 52 serving as a distribution means. Is distributed to the heating channel and the cooling channel.
The proportional three-way valve 52 has a high-temperature first heat discharged from the compressor in which the total amount of the high-temperature first heat medium amount distributed to the heating flow path side and the high-temperature first heat medium amount distributed to the cooling flow path side is discharged. The high-temperature first heat medium compressed by the compressor 50 is proportionally distributed so as to be equal to the medium amount. The proportional three-way valve 52 is controlled by the first control unit 55a and, as will be described later, based on a signal from a temperature sensor 62 that measures the temperature of the coolant at the outlet of the precision temperature adjusting device, The distribution ratio of the high-temperature first heat medium distributed to the cooling flow path is continuously changed to adjust the coolant to a predetermined temperature.

圧縮機50から吐出された高温の第1熱媒体の一部が分配された冷却流路には、分配された高温の第1熱媒体を冷却する冷却手段として、高温の第1熱媒体を凝縮する凝縮器56と、凝縮器56によって凝縮された第1熱媒体を断熱的に膨張して更に冷却する第1膨張手段としての膨張弁58と、この冷却された第1熱媒体が供給される冷却器60とが設けられている。この冷却器60には、貯留槽64に貯留されているUSERから戻った温度調整対象の冷却液がポンプ66によって供給されて冷却される。冷却器60で吸熱して昇温された第1熱媒体は、アキュームレータ71に戻り圧縮機50に供給される。   In the cooling flow path in which a part of the high temperature first heat medium discharged from the compressor 50 is distributed, the high temperature first heat medium is condensed as a cooling means for cooling the distributed high temperature first heat medium. A condenser 56, an expansion valve 58 as a first expansion means for adiabatically expanding and further cooling the first heat medium condensed by the condenser 56, and the cooled first heat medium are supplied. A cooler 60 is provided. The cooler 60 is supplied with a temperature adjustment target coolant returned from the USER stored in the storage tank 64 by the pump 66 and cooled. The first heat medium whose temperature is increased by absorbing heat with the cooler 60 returns to the accumulator 71 and is supplied to the compressor 50.

また、加熱流路には、高温の第1熱媒体が供給される加熱手段としての加熱器54が設けられている。この加熱器54には、冷却器60で冷却された温度調整対象の冷却液が供給され、供給された高温の第1熱媒体によって所定温度に調整されてUSERに送液される。
かかる加熱流路及び冷却流路には、ヒートポンプ手段の吸熱器68が設けられている。この吸熱器68には、加熱器54で放熱して凝縮した第1熱媒体を第2膨張手段としての膨張弁70で断熱的に膨張して更に冷却して供給され、且つ冷却流路に設けられた凝縮器56で高温熱媒体の熱を吸熱して昇温された第2熱媒体としての冷却水とが供給され、昇温された冷却水から吸熱した第1熱媒体はアキュームレータ71に戻り圧縮機50に供給される。
The heating channel is provided with a heater 54 as a heating means to which a high temperature first heat medium is supplied. The heater 54 is supplied with the coolant for temperature adjustment cooled by the cooler 60, adjusted to a predetermined temperature by the supplied high-temperature first heat medium, and sent to the USER.
A heat absorber 68 of a heat pump means is provided in the heating channel and the cooling channel. The heat absorber 68 is supplied with the first heat medium radiated and condensed by the heater 54 after being adiabatically expanded by the expansion valve 70 as the second expansion means and further cooled, and provided in the cooling flow path. Cooling water as the second heat medium that has been heated by absorbing the heat of the high-temperature heat medium is supplied by the condenser 56, and the first heat medium that has absorbed heat from the raised cooling water returns to the accumulator 71. Supplied to the compressor 50.

かかる図11に示す精密温度調整装置では、凝縮器56に供給される第2熱媒体としての冷却水の配管途中に、圧縮機50の吐出側の圧力が一定に保持されるように、凝縮器56に供給される冷却水の供給量を制御する冷却媒体制御手段としての制御弁72が設けられている。この制御弁72は、図2に示す制御弁40と同一構造であって、圧縮機50の吐出圧が一定となるように制御する。
つまり、圧縮機50の吐出圧が所定圧以上となったとき、制御弁72の冷却流路内に設けられた弁部の開口部の開度が大きくなり、凝縮器56に供給される冷却水量が増加して、凝縮器56の冷却能力が向上される。このため、圧縮機50の吐出圧が低下する。他方、圧縮機50の吐出圧が所定圧以下となったとき、制御弁72の冷却流路内に設けられた弁部の開口部の開度が小さくなり、凝縮器56に供給される冷却水量が減少して、凝縮器56の冷却能力が低下する。このため、圧縮機50の吐出圧が高くなる。
この様に、圧縮機50の吐出圧を一定に保持することによって、精密温度調整装置を安定して運転できる。また、凝縮器56に冷却水量が必要以上に供給され、系外に排出されないように調整できる。
In the precise temperature control apparatus shown in FIG. 11, the condenser is arranged so that the pressure on the discharge side of the compressor 50 is kept constant in the middle of the piping of the cooling water as the second heat medium supplied to the condenser 56. A control valve 72 is provided as a cooling medium control means for controlling the amount of cooling water supplied to 56. The control valve 72 has the same structure as the control valve 40 shown in FIG. 2, and controls the discharge pressure of the compressor 50 to be constant.
That is, when the discharge pressure of the compressor 50 becomes a predetermined pressure or more, the opening degree of the valve portion provided in the cooling flow path of the control valve 72 increases, and the amount of cooling water supplied to the condenser 56 And the cooling capacity of the condenser 56 is improved. For this reason, the discharge pressure of the compressor 50 decreases. On the other hand, when the discharge pressure of the compressor 50 becomes a predetermined pressure or less, the opening degree of the valve portion provided in the cooling flow path of the control valve 72 becomes small, and the amount of cooling water supplied to the condenser 56 Decreases, and the cooling capacity of the condenser 56 decreases. For this reason, the discharge pressure of the compressor 50 becomes high.
In this way, by keeping the discharge pressure of the compressor 50 constant, the precise temperature adjusting device can be stably operated. Moreover, it can adjust so that the amount of cooling water may be supplied to the condenser 56 more than needed, and it may not discharge | emit out of the system.

ところで、冷却液の温度設定を大幅に昇温した場合、第1制御部55aでは、比例三方弁52の冷却流路側の吐出口を全閉状態又は全閉状態に近い状態とすると共に、加熱流路側の吐出口を全開状態又は全開状態に近い状態とし、加熱流路側に殆どの高温の第1熱媒体を分配する。
また、貯留槽64の冷却液が低温である場合、加熱流路の加熱器54に供給された高温の第1熱媒体は加熱器54で低温の冷却液で凝縮され、圧縮機50の吐出圧が所定圧よりも低圧となるため、制御弁72が閉じて凝縮器56に冷却水が供給されなくなる。
この様に、凝縮器56に冷却水が供給されなくなると、凝縮器56からヒートポンプ手段を構成する吸熱器68に供給される冷却水も供給されなくなる。このため、吸熱器68が稼働停止状態となって、ヒートポンプ手段が機能しなくなる。
しかも、加熱器54で放熱して凝縮した第1熱媒体を膨張弁70で断熱的に膨張して更に冷却された第1熱媒体と冷却水との熱交換が行われず、吸熱器68が凍結するおそれがある。
By the way, when the temperature setting of the coolant is significantly increased, the first control unit 55a sets the discharge port on the cooling flow path side of the proportional three-way valve 52 to a fully closed state or a state close to the fully closed state, The discharge port on the side of the road is in a fully open state or a state close to the fully open state, and most of the high-temperature first heat medium is distributed to the heating channel side.
Further, when the coolant in the storage tank 64 is at a low temperature, the high temperature first heat medium supplied to the heater 54 in the heating channel is condensed with the low temperature coolant in the heater 54 and discharged from the compressor 50. Since the pressure becomes lower than the predetermined pressure, the control valve 72 is closed and the cooling water is not supplied to the condenser 56.
In this way, when the cooling water is not supplied to the condenser 56, the cooling water supplied from the condenser 56 to the heat absorber 68 constituting the heat pump means is also not supplied. For this reason, the heat absorber 68 is in an operation stop state, and the heat pump means does not function.
In addition, heat exchange between the first heat medium that has dissipated heat and condensed by the heater 54 is adiabatically expanded by the expansion valve 70 and further cooled, and the heat absorber 68 is frozen. There is a risk.

この点、図11に示す精密温度調整装置では、吸熱器68への冷却水の供給手段として、制御弁72のバイパス配管74に制御弁76を設けている。この制御弁76は、比例三方弁52の加熱流路側の吐出口が全開状態又は全開状態に近い状態(或いは冷却流路側の吐出口を全閉状態又は全閉状態に近い状態)となったとき、第1制御部55aからの信号によって開き、強制的に冷却水を凝縮器56に供給し、吸熱器68を稼働状態としている。
このため、冷却液の温度設定を大幅に昇温した場合の様に、冷却流路側に分配される高温の第1熱媒体の分配率がゼロ又はその近傍となったときでも、吸熱器68に所定量の冷却水を供給でき、吸熱器68の凍結を防止し且つヒートポンプ手段の機能を発揮させることができる。
In this regard, in the precise temperature adjusting device shown in FIG. 11, a control valve 76 is provided in the bypass pipe 74 of the control valve 72 as means for supplying cooling water to the heat absorber 68. When the discharge port on the heating flow path side of the proportional three-way valve 52 is in a fully open state or a state close to a full open state (or the discharge port on the cooling flow path side is in a fully closed state or close to a fully closed state). It is opened by a signal from the first controller 55a, forcibly supplies cooling water to the condenser 56, and the heat absorber 68 is in an operating state.
For this reason, even when the distribution ratio of the high-temperature first heat medium distributed to the cooling flow path becomes zero or in the vicinity thereof, as in the case where the temperature setting of the coolant is significantly increased, the heat absorber 68 A predetermined amount of cooling water can be supplied, freezing of the heat absorber 68 can be prevented, and the function of the heat pump means can be exhibited.

圧縮機50の吐出圧が上昇し所定圧近傍に到達したとき、制御弁76を第1制御部55aからの信号によって閉じる。その後は、制御弁72によって圧縮機50の吐出側の圧力が一定に保持されるように、凝縮器56に供給される冷却水の供給量を制御する。
図11に示す冷却液の精密温度調整装置でも、比例三方弁52に代えて、図5に示す様に、2個の二方弁としてのゲートバルブ38a,38bを用いることができる。
また、図11に示す冷却液の精密温度調整装置では、凝縮器56及びヒートポンプ手段の吸熱器68に供給する第2熱媒体として冷却水を用いていたが、図12に示す様に、凝縮器56及びヒートポンプ手段の吸熱器68に供給する第2熱却媒体としてファン78による空気流を用いることができる。図12に示す精密温度調整装置では、加熱器54で放熱した第1熱媒体を、第2膨張手段としての膨張弁70によって断熱膨張し更に冷却して供給している吸熱器68に、ファン78によって凝縮器56に吹き付けられて加熱された空気流が吹き付けられる。このため、吸熱器68では、加熱器54で放熱・凝縮し膨張弁70で断熱膨張して冷却した第1熱媒体が空気流から吸熱できる。
尚、図12に示す精密温度調整装置では、その構成部材が図11に示す精密温度調整装置の構成部材と同一部材である場合には、図11の構成部材と同一番号を付し、詳細な説明を省略した。
When the discharge pressure of the compressor 50 increases and reaches a predetermined pressure, the control valve 76 is closed by a signal from the first control unit 55a. Thereafter, the supply amount of the cooling water supplied to the condenser 56 is controlled so that the pressure on the discharge side of the compressor 50 is kept constant by the control valve 72.
In the coolant precise temperature control apparatus shown in FIG. 11, two two-way gate valves 38 a and 38 b can be used instead of the proportional three-way valve 52, as shown in FIG. 5.
Further, in the precise temperature adjusting device for the coolant shown in FIG. 11, the cooling water is used as the second heat medium supplied to the condenser 56 and the heat absorber 68 of the heat pump means. However, as shown in FIG. 56 and the air flow by the fan 78 can be used as the second heat rejection medium supplied to the heat absorber 68 of the heat pump means. In the precise temperature control apparatus shown in FIG. 12, the first heat medium radiated by the heater 54 is adiabatically expanded by the expansion valve 70 as the second expansion means, and further cooled and supplied to the heat absorber 68 supplied to the fan 78. The air stream heated by being blown to the condenser 56 is blown by the above. For this reason, in the heat absorber 68, the 1st heat medium which thermally radiated and condensed by the heater 54, adiabatically expanded by the expansion valve 70, and cooled can absorb heat from an air flow.
In the precise temperature control apparatus shown in FIG. 12, when the constituent members are the same as the constituent members of the precise temperature control apparatus shown in FIG. 11, the same reference numerals as those in FIG. The explanation was omitted.

以上、説明した図11及び図12に示す精密温度調整装置にも、冷却器60と加熱器54との重複するエネルギーを少なくできるように、図9に示す精密温度調整装置と同様に、第2制御部を設けて圧縮機50を制御するインバータ51を介して圧縮機50の回転数を制御するようにしてもよい。この場合も。第1制御部55aと協働して図10に示すフローチャートに従って加熱器54に加えられる加熱量と冷却器60に加えられ冷却量のうち、互いに打ち消し合う熱量分を可及的に少なくしつつ、温度調整対象の冷却液の精密温度制御を行う。
また、図1〜図12に示す精密温度調整装置で用いた加熱器14,54、冷却器16,60、凝縮器26,56、吸熱器32,68は、温度差を有する二つの流体が向流又は並流として流れる公知の熱交換器を用いることができる。例えば、二重管、フィン付き管或いはプレート式熱交換器等を好適に用いることができる。
特に、凝縮器26,56に第2熱媒体として冷却水が供給される場合は、その使用温度がスケールの発生し易い温度帯であるため、比較的詰まりが発生し難い、二重管の内管と外管とに異なる温度の流体を流して熱交換を行う二重管式熱交換器を好適に用いることができる。
As described above, in the precision temperature adjustment apparatus shown in FIGS. 11 and 12, the second temperature is the same as that of the precision temperature adjustment apparatus shown in FIG. 9 so that the overlapping energy between the cooler 60 and the heater 54 can be reduced. You may make it control the rotation speed of the compressor 50 via the inverter 51 which provides a control part and controls the compressor 50. FIG. Again. In cooperation with the first control unit 55a, according to the flowchart shown in FIG. 10, while reducing the amount of heat that cancels each other out as much as possible between the amount of heating applied to the heater 54 and the amount of cooling applied to the cooler 60, Perform precise temperature control of the coolant to be adjusted.
In addition, the heaters 14 and 54, the coolers 16 and 60, the condensers 26 and 56, and the heat absorbers 32 and 68 used in the precise temperature control apparatus shown in FIGS. A known heat exchanger that flows as a flow or a parallel flow can be used. For example, a double tube, a finned tube, a plate heat exchanger, or the like can be suitably used.
In particular, when cooling water is supplied to the condensers 26 and 56 as the second heat medium, the operating temperature is a temperature range in which scale is likely to occur, and therefore, clogging is relatively difficult to occur. A double tube heat exchanger that performs heat exchange by flowing fluids having different temperatures between the tube and the outer tube can be suitably used.

一方、熱効率が要求される吸熱器32,68としては、複数枚のプレート状のフィンを積層した積層体に複数本の伝熱管を挿通したプレート式熱交換器を好適に用いることができる。
更に、図1〜図12に示す精密温度調整装置では、凝縮器26,56と吸熱器32,68とに供給される第2熱媒体として冷却水又は空気流であったが、凝縮器26,56と吸熱器32,68との一方に冷却水を供給し、他方に空気流を供給してもよい。
また、図1〜図12に示す精密温度調整装置では、凝縮器26,56で高温の第1熱媒体から除去した熱量の一部を回収すべく、第2熱媒体を凝縮器26,56を経由して吸熱器32,68に供給している。しかし、第2熱媒体の流速等によっては、その回収が殆ど期待できない場合がある。この場合、凝縮器26,56と吸熱器32,68との各々に個別に第2熱媒体を供給するようにしてもよい。具体的には、凝縮器26,56と吸熱器32,68とに各々に個別に冷却水を供給したり、凝縮器26,56と吸熱器32,68との各々に個別に冷却ファンを設けて個々に空気流を供給してもよい。
尚、本発明で適用できる温度調整対象の流体及び第2熱媒体は、空気又は水に限定されず、オイルや気液混合体であってもよい。
On the other hand, as the heat absorbers 32 and 68 for which thermal efficiency is required, a plate heat exchanger in which a plurality of heat transfer tubes are inserted in a laminate in which a plurality of plate-like fins are stacked can be suitably used.
Furthermore, in the precise temperature control apparatus shown in FIGS. 1 to 12, the second heat medium supplied to the condensers 26 and 56 and the heat absorbers 32 and 68 is cooling water or air flow. Cooling water may be supplied to one of 56 and the heat absorbers 32 and 68, and an air flow may be supplied to the other.
Moreover, in the precise temperature control apparatus shown in FIGS. 1-12, in order to collect | recover part of the calorie | heat amount removed from the high temperature 1st heat medium with the condensers 26 and 56, the condensers 26 and 56 are used for the 2nd heat medium. It is supplied to the heat absorbers 32 and 68 via. However, depending on the flow rate of the second heat medium, the recovery may be hardly expected. In this case, the second heat medium may be individually supplied to each of the condensers 26 and 56 and the heat absorbers 32 and 68. Specifically, cooling water is individually supplied to each of the condensers 26 and 56 and the heat absorbers 32 and 68, or a cooling fan is provided for each of the condensers 26 and 56 and the heat absorbers 32 and 68. The air flow may be supplied individually.
The temperature adjustment target fluid and the second heat medium that can be applied in the present invention are not limited to air or water, but may be oil or a gas-liquid mixture.

10 空間ユニット
12,46 ファン
14,54 加熱器
16,60 冷却器
18,50 圧縮機
19,51 インバータ
20,52 比例三方弁
22a,55a 第1制御部
22b 第2制御部
24,62 温度センサ
26,56 凝縮器
28,58 第1膨張弁
32,68 吸熱器
34,70 第2膨張弁
36 アキュームレータ
40 制御弁
46 ファン
10 Space unit 12, 46 Fan 14, 54 Heater 16, 60 Cooler 18, 50 Compressor 19, 51 Inverter 20, 52 Proportional three-way valve 22a, 55a First controller 22b Second controller 24, 62 Temperature sensor 26 , 56 Condensers 28, 58 First expansion valve 32, 68 Heat absorber 34, 70 Second expansion valve 36 Accumulator 40 Control valve 46 Fan

Claims (18)

圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が供給される加熱手段を具備する加熱流路と、
前記高温の第1熱媒体の残余部が供給される凝縮手段と、前記凝縮手段で冷却された第1熱媒体が第1膨張手段で断熱的に膨張して更に冷却されて供給される冷却手段とを具備する冷却流路とが設けられ、
前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に調整するように、前記高温の第1熱媒体が加熱流路と冷却流路とに分配され、且つ前記加熱流路と冷却流路との各々を通過した第1熱媒体が合流して圧縮機に再供給される精密温度調整装置であって、
前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、
前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、
前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する第1制御部と、
前記圧縮機の回転数を制御する回転数制御手段が設けられ、前記第1制御部によって制御される高温の第1熱媒体の分配比率が、前記加熱手段によって温度調整対象の流体に加えられる加熱量と冷却手段によって温度調整対象の流体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくできる分配比率となるように、前記回転数制御手段を介して圧縮機の回転数を変更する第2制御部とが設けられていることを特徴とする精密温度調整装置。
A heating flow path comprising heating means to which a part of the high-temperature first heat medium compressed and heated by the compressor is supplied;
Condensing means to which the remaining portion of the high temperature first heat medium is supplied, and cooling means to which the first heat medium cooled by the condensing means is adiabatically expanded by the first expansion means and further cooled and supplied. A cooling flow path comprising:
The high temperature first heat medium is distributed to the heating flow path and the cooling flow path so that the temperature adjustment target fluid passing through the heating means and the cooling means is adjusted to a predetermined temperature, and the heating flow path A precision temperature control device in which the first heat medium that has passed through each of the cooling flow paths merges and is re-supplied to the compressor,
A portion of the high temperature first heat medium discharged from the compressor is distributed to the heating flow path side, and the remaining portion of the high temperature first heat medium is distributed to the cooling flow path side, and the heating flow path and A distribution means capable of changing a distribution ratio of the high-temperature first heat medium distributed to the cooling flow path;
The first heat medium, which is cooled by releasing heat by the heating means and then adiabatically expanded by the second expansion means and further cooled, includes heat absorption means for absorbing heat from the second heat medium as an external heat source. Heat pump means;
Controlling the distribution means, adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, and adjusting the temperature adjustment target fluid that passes through the heating means and the cooling means. A first controller that controls to a predetermined temperature;
A rotation speed control means for controlling the rotation speed of the compressor is provided, and the distribution ratio of the high-temperature first heat medium controlled by the first control section is added to the fluid whose temperature is adjusted by the heating means. The rotational speed of the compressor is changed via the rotational speed control means so that a distribution ratio can be obtained in which the amount of heat canceling each other out of the amount and the cooling amount applied to the temperature adjustment target fluid by the cooling means is reduced. A precision temperature adjusting device, characterized in that a second control unit is provided.
第2制御部では、高温の第1熱媒体の加熱手段又は冷却手段への分配比率が5〜15%の範囲となるように、回転数制御手段を介して圧縮機の回転数を制御する請求項1記載の精密温度調整装置。   The second control unit controls the rotation speed of the compressor via the rotation speed control means so that the distribution ratio of the high temperature first heat medium to the heating means or the cooling means is in the range of 5 to 15%. Item 2. The precise temperature control apparatus according to Item 1. 第2制御部では、高温の第1熱媒体の分配比率が、温度調整対象の流体が加熱される加熱側の場合、高温の第1熱媒体の95〜85%が加熱手段に分配され且つ残余の高温の第1熱媒体の5〜15%が冷却手段に分配される範囲となるように、他方、前記温度調整対象の流体が冷却される冷却側の場合、高温の第1熱媒体の95〜85%が冷却手段に分配され且つ残余の高温の第1熱媒体の5〜15%が加熱手段に分配される範囲となるように、回転数制御手段を介して圧縮機の回転数を制御する請求項1又は請求項2記載の精密温度調整装置。   In the second control unit, when the distribution ratio of the high temperature first heat medium is the heating side where the fluid whose temperature is to be adjusted is heated, 95 to 85% of the high temperature first heat medium is distributed to the heating means and the remainder On the other hand, in the case of the cooling side where the temperature adjustment target fluid is cooled, the temperature of the first heat medium 95 is 95% of the high temperature first heat medium. The rotational speed of the compressor is controlled via the rotational speed control means so that ~ 85% is distributed to the cooling means and 5 to 15% of the remaining hot first heat medium is distributed to the heating means. The precise temperature control apparatus according to claim 1 or 2. 回転数制御手段が、インバータである請求項1〜3のいずれか一項記載の精密温度調整装置。   The precise temperature control apparatus according to any one of claims 1 to 3, wherein the rotation speed control means is an inverter. 冷却流路の凝縮手段に供給されて高温の第1熱媒体を冷却する冷却媒体とヒートポンプ手段の吸熱手段に供給される第2熱媒体とが、同一熱媒体であって、前記凝縮手段に供給されてから前記吸熱手段に供給される請求項1〜4のいずれか一項記載の精密温度調整装置。   The cooling medium that is supplied to the condensing means of the cooling flow path to cool the high temperature first heat medium and the second heat medium that is supplied to the heat absorbing means of the heat pump means are the same heat medium and are supplied to the condensing means The precision temperature control apparatus according to any one of claims 1 to 4, which is supplied to the heat absorption means after being performed. 第2熱媒体が、外部から加熱又は冷却されることなく供給された第2熱媒体である請求項1〜5のいずれか一項記載の精密温度調整装置。   The precision temperature control apparatus according to any one of claims 1 to 5, wherein the second heat medium is a second heat medium supplied without being heated or cooled from the outside. 分配手段から第1熱媒体が合流されるまでの流路のうち、冷却流路を含む流路と加熱流路及びヒートポンプ手段を含む流路との各々が流路的に独立して設けられている請求項1〜6のいずれか一項記載の精密温度調整装置。   Of the flow paths from the distribution means until the first heat medium is merged, each of the flow path including the cooling flow path and the flow path including the heating flow path and the heat pump means is provided independently as a flow path. The precision temperature control apparatus as described in any one of Claims 1-6. 加熱流路及びヒートポンプ手段を含む流路には、加熱手段、第2膨張手段及び吸熱手段が設けられ、冷却流路を含む流路には、凝縮手段、第1膨張手段及び冷却手段が設けられている請求項7記載の精密温度調整装置。   The flow path including the heating flow path and the heat pump means is provided with heating means, the second expansion means and the heat absorption means, and the flow path including the cooling flow path is provided with the condensation means, the first expansion means and the cooling means. The precision temperature control apparatus according to claim 7. 分配手段が、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を実質的に連続して変更可能な分配手段である請求項1〜8のいずれか一項記載の精密温度調整装置。   The distribution means is a distribution means capable of substantially continuously changing the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path. Precision temperature control device. 分配手段には、加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記高温の第1熱媒体を比例分配する比例三方弁が用いられている請求項1〜9のいずれか一項記載の精密温度調整装置。   In the distribution means, the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is equal to the amount of the high temperature first heat medium discharged from the compressor. The precision temperature control apparatus according to any one of claims 1 to 9, wherein a proportional three-way valve that proportionally distributes the high-temperature first heat medium is used. 分配手段には、高温の第1熱媒体を加熱流路側と冷却流路側とに分岐する分岐配管と、分岐配管の各々に設けられた二方弁とを具備し、
第1制御部が、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御すると共に、前記加熱流路側に分配される高温の第1熱媒体と冷却流路側に分配される高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記二方弁の各々の開度を調整する第1制御部でもある請求項1〜9のいずれか一項記載の精密温度調整装置。
The distribution means includes a branch pipe that branches the high-temperature first heat medium into the heating flow path side and the cooling flow path side, and a two-way valve provided in each of the branch pipes,
The first control unit adjusts a distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, and sets the temperature adjustment target fluid passing through the heating means and the cooling means to a predetermined temperature. And the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is discharged from the compressor. The precise temperature adjusting device according to any one of claims 1 to 9, which is also a first control unit that adjusts the opening degree of each of the two-way valves so as to be equal to the amount.
冷却流路の凝縮手段には、高温の第1熱媒体を冷却する液状媒体が供給され、圧縮機の吐出側の圧力が一定に保持されるように、前記凝縮手段に供給される前記液状媒体の供給量を制御する冷媒制御手段が設けられている請求項1〜11のいずれか一項記載の精密温度調整装置。   The liquid medium for cooling the high-temperature first heat medium is supplied to the condensing means of the cooling flow path, and the liquid medium is supplied to the condensing means so that the pressure on the discharge side of the compressor is kept constant. The precision temperature control apparatus as described in any one of Claims 1-11 in which the refrigerant | coolant control means which controls the supply amount of is provided. 温度調整対象の流体が、空気流であって、冷却手段に吹き付けられて低湿度化された空気流が加熱手段に吹き付けられるように、前記冷却手段と加熱手段とが配設されている請求項1〜12のいずれか一項記載の精密温度調整装置。   The cooling means and the heating means are arranged so that the fluid whose temperature is to be adjusted is an air flow, and the air flow reduced in humidity by being blown to the cooling means is blown to the heating means. The precision temperature control apparatus as described in any one of 1-12. 温度調整対象の流体が、空気流であって、加熱手段に吹き付けられて昇温された空気流が冷却手段に吹き付けられるように、前記加熱手段と冷却手段とが配設されている請求項1〜12のいずれか一項記載の精密温度調整装置。   2. The heating means and the cooling means are arranged so that the fluid whose temperature is to be adjusted is an air flow, and the air flow heated to be heated by the heating means is blown to the cooling means. The precision temperature control apparatus as described in any one of -12. 圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が供給される加熱手段を具備する加熱流路と、前記高温の第1熱媒体の残余部が供給される凝縮手段と、前記凝縮手段で冷却された第1熱媒体が第1膨張手段で断熱的に膨張して更に冷却されて供給される冷却手段とを具備する冷却流路と、前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段とが設けられ、前記加熱流路と冷却流路との各々を通過した第1熱媒体が合流して圧縮機に再供給される精密温度調整装置を用い、
前記加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御しつつ、
前記高温の第1熱媒体の分配比率を、前記加熱手段によって温度調整対象の流体に加えられる加熱量と冷却手段によって温度調整対象の流体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくできる分配比率となるように、前記圧縮機の回転数を変更することを特徴とする精密温度調整方法。
A heating flow path comprising heating means to which a part of the high temperature first heat medium compressed and heated by the compressor is supplied; a condensing means to which the remainder of the high temperature first heat medium is supplied; A cooling passage provided with a cooling means supplied by cooling the first heat medium cooled by the condensing means by adiabatic expansion by the first expansion means and further cooled, and a high temperature discharged from the compressor A part of the first heat medium is distributed to the heating flow path side, the remaining portion of the high temperature first heat medium is distributed to the cooling flow path side, and the high temperature is distributed to the heating flow path and the cooling flow path. A distribution means capable of changing a distribution ratio of the first heat medium, and a first heat medium that is cooled by releasing heat by the heating means and then adiabatically expanded by the second expansion means and further cooled, And a heat pump means having a heat absorption means for absorbing heat from the second heat medium as an external heat source. A precision temperature regulating device first heat medium having passed through each is resupplied to merge to the compressor of the heating channel and the cooling channel,
While adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, while controlling the temperature adjustment target fluid passing through the heating means and the cooling means to a predetermined temperature,
The distribution ratio of the high-temperature first heat medium is a heat amount that cancels each other out of a heating amount applied to the temperature adjustment target fluid by the heating unit and a cooling amount applied to the temperature adjustment target fluid by the cooling unit. A precision temperature adjustment method, wherein the number of rotations of the compressor is changed so that the distribution ratio can be reduced.
高温の第1熱媒体の加熱手段又は冷却手段への分配比率を、5〜15%の範囲となるように、回転数制御手段を介して圧縮機の回転数を制御する請求項15記載の精密温度調整方法。   16. The precision according to claim 15, wherein the rotational speed of the compressor is controlled via the rotational speed control means so that the distribution ratio of the high-temperature first heat medium to the heating means or the cooling means is in the range of 5 to 15%. Temperature adjustment method. 高温の第1熱媒体の分配比率を、温度調整対象の流体を加熱する加熱側の場合、高温の第1熱媒体の95〜85%を加熱手段に分配し且つ残余の高温の第1熱媒体の5〜15%を冷却手段に分配する範囲となるように、他方、前記温度調整対象の流体を冷却する冷却側の場合、高温の第1熱媒体の95〜85%を冷却手段に分配し且つ残余の高温の第1熱媒体の5〜15%を加熱手段に分配する範囲となるように、回転数制御手段を介して圧縮機の回転数を制御する請求項15又は請求項16記載の精密温度調整方法。   When the distribution ratio of the high-temperature first heat medium is the heating side that heats the fluid whose temperature is to be adjusted, 95 to 85% of the high-temperature first heat medium is distributed to the heating means, and the remaining high-temperature first heat medium On the other hand, in the case of the cooling side that cools the fluid subject to temperature adjustment, 95 to 85% of the high-temperature first heat medium is distributed to the cooling means. The rotational speed of the compressor is controlled via the rotational speed control means so that 5 to 15% of the remaining high-temperature first heat medium is distributed to the heating means. Precision temperature adjustment method. 圧縮機の回転数を、インバータによって行う請求項15〜17のいずれか一項記載の精密温度調整方法。   The precise temperature control method according to any one of claims 15 to 17, wherein the rotation speed of the compressor is performed by an inverter.
JP2009228074A 2006-12-27 2009-09-30 Precision temperature control device and precision temperature control method Active JP4435278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228074A JP4435278B2 (en) 2006-12-27 2009-09-30 Precision temperature control device and precision temperature control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006351583 2006-12-27
JP2007126179 2007-05-11
JP2007257152 2007-10-01
JP2009228074A JP4435278B2 (en) 2006-12-27 2009-09-30 Precision temperature control device and precision temperature control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008551016A Division JP4875714B2 (en) 2006-12-27 2007-12-06 Precision temperature control device

Publications (2)

Publication Number Publication Date
JP2010043855A JP2010043855A (en) 2010-02-25
JP4435278B2 true JP4435278B2 (en) 2010-03-17

Family

ID=39562319

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008551016A Active JP4875714B2 (en) 2006-12-27 2007-12-06 Precision temperature control device
JP2009228074A Active JP4435278B2 (en) 2006-12-27 2009-09-30 Precision temperature control device and precision temperature control method
JP2009228085A Pending JP2009300077A (en) 2006-12-27 2009-09-30 Device for precise temperature control

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008551016A Active JP4875714B2 (en) 2006-12-27 2007-12-06 Precision temperature control device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009228085A Pending JP2009300077A (en) 2006-12-27 2009-09-30 Device for precise temperature control

Country Status (5)

Country Link
JP (3) JP4875714B2 (en)
KR (1) KR101453924B1 (en)
CN (1) CN101558270B (en)
TW (1) TWI387716B (en)
WO (1) WO2008078525A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122357A (en) * 2007-11-14 2009-06-04 Orion Mach Co Ltd Device for regulating temperature of plate-like member
WO2009125776A1 (en) * 2008-04-10 2009-10-15 オリオン機械株式会社 Temperature and humidity regulating apparatus and temperature and humidity regulating system
JP5098046B2 (en) * 2008-06-26 2012-12-12 オリオン機械株式会社 Temperature control system
WO2010026840A1 (en) * 2008-09-02 2010-03-11 株式会社ラスコ Heat exchanging device
JP5428021B2 (en) * 2009-02-12 2014-02-26 オリオン機械株式会社 Temperature and humidity control device
JP5205601B2 (en) * 2009-03-26 2013-06-05 オリオン機械株式会社 Temperature and humidity control device
JP2010236700A (en) * 2009-03-30 2010-10-21 Orion Mach Co Ltd Temperature and humidity control device
JP2010255879A (en) * 2009-04-22 2010-11-11 Orion Mach Co Ltd Temperature adjusting device
JP5245074B2 (en) * 2009-05-22 2013-07-24 オリオン機械株式会社 Dehumidifier with temperature adjustment function
CN101691960B (en) * 2009-09-30 2012-10-10 广东美的电器股份有限公司 Three-pipe heating and reclaiming air-conditioning system
JP5643982B2 (en) * 2009-10-28 2014-12-24 オリオン機械株式会社 Temperature / humidity adjusting device and temperature / humidity adjusting method
JP5526359B2 (en) * 2010-03-11 2014-06-18 オリオン機械株式会社 Temperature control blower
CN101975489B (en) * 2010-11-03 2012-01-18 合肥工业大学 Precise temperature control system with all-weather wide temperature zone
JP2014081120A (en) * 2012-10-16 2014-05-08 Orion Mach Co Ltd Precise temperature control device
CN103307819B (en) * 2013-05-21 2015-05-20 澳柯玛股份有限公司 Refrigerating system and method capable of regulating and controlling cold outputting capacity of compressor
GB2535707A (en) 2015-02-24 2016-08-31 Fives Landis Ltd Machine tools and methods of operation thereof
JP6429084B2 (en) * 2015-03-31 2018-11-28 株式会社東京精密 Temperature control device, temperature control method and prober for wafer mounting table
JP2017161123A (en) * 2016-03-08 2017-09-14 日本スピンドル製造株式会社 Temperature adjustment device
KR101910347B1 (en) * 2016-12-05 2018-10-23 주식회사 글로벌스탠다드테크놀로지 High-Tech Temperature Control Device for Semiconductor Manufacturing Facilities
CN108278490B (en) * 2016-12-30 2024-02-20 贵港市芭田生态有限公司 Anti-hardening agent conveying system and method
AT521086B1 (en) * 2018-03-28 2020-02-15 Avl List Gmbh Conditioning device for regulating a gaseous or
WO2020217800A1 (en) * 2019-04-23 2020-10-29 Ckd株式会社 Heat exchange system
JP2021009590A (en) * 2019-07-02 2021-01-28 株式会社Kelk Temperature control system and temperature control method
CN116670447A (en) * 2020-12-08 2023-08-29 株式会社湘南贸易 Cooling device
WO2023199688A1 (en) * 2022-04-14 2023-10-19 パナソニックエナジー株式会社 Temperature control device and temperature control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197048A (en) * 1975-02-22 1976-08-26
JPH0728545Y2 (en) * 1986-10-18 1995-06-28 ダイキン工業株式会社 Liquid temperature controller
CN1142593A (en) * 1995-04-12 1997-02-12 三洋电机株式会社 Heat pump air conditioner with circulation fluid by-pass path
JPH09189460A (en) * 1996-01-09 1997-07-22 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH10148416A (en) * 1996-11-15 1998-06-02 Yasuhiko Arai Dehumidifier
CN2526749Y (en) * 2002-03-11 2002-12-18 北京中能创新电力技术有限公司 Semiconductor refrigerating gas humidifier

Also Published As

Publication number Publication date
JP2010043855A (en) 2010-02-25
TWI387716B (en) 2013-03-01
JP2009300077A (en) 2009-12-24
TW200827639A (en) 2008-07-01
CN101558270B (en) 2011-07-20
JPWO2008078525A1 (en) 2010-04-22
JP4875714B2 (en) 2012-02-15
KR20090106452A (en) 2009-10-09
WO2008078525A1 (en) 2008-07-03
KR101453924B1 (en) 2014-10-23
CN101558270A (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4435278B2 (en) Precision temperature control device and precision temperature control method
JP2007524059A (en) Refrigeration system with variable speed fan
US11162714B2 (en) Test chamber and method
US20120073319A1 (en) Co2 refrigeration system for ice-playing surfaces
JPWO2009125776A1 (en) Temperature / humidity adjusting device and temperature / humidity adjusting method
JP5098046B2 (en) Temperature control system
JP5205601B2 (en) Temperature and humidity control device
JP5266455B2 (en) Temperature control device
JP4790685B2 (en) Precision temperature control device
JP2009115442A (en) Temperature adjusting device
JP2010007962A (en) Temperature controller
JP5099843B2 (en) Temperature and humidity control device
JP2009103436A (en) Precise temperature adjusting device
KR102097783B1 (en) Adsorption type air conditioning apparatus for automotive vehicles
JP5568728B2 (en) Temperature / humidity adjusting device and temperature / humidity adjusting method
JP2009122357A (en) Device for regulating temperature of plate-like member
JP2010007955A (en) Temperature controller
JP5223152B2 (en) Temperature control device
JP2009097750A (en) Precise temperature adjustment device
JP2008309465A (en) Temperature control device
JP2010266118A (en) Temperature regulation apparatus
JP2010007958A (en) Temperature adjusting device
CN101253374A (en) Heat pump water heating system using speed changeable air compressor
JP2009115446A (en) Precision temperature adjusting device
JP5117297B2 (en) Method for controlling an evaporative heat exchanger assembly and evaporative heat exchanger assembly

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4435278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250