JP6429084B2 - Temperature control device, temperature control method and prober for wafer mounting table - Google Patents

Temperature control device, temperature control method and prober for wafer mounting table Download PDF

Info

Publication number
JP6429084B2
JP6429084B2 JP2015071528A JP2015071528A JP6429084B2 JP 6429084 B2 JP6429084 B2 JP 6429084B2 JP 2015071528 A JP2015071528 A JP 2015071528A JP 2015071528 A JP2015071528 A JP 2015071528A JP 6429084 B2 JP6429084 B2 JP 6429084B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
mounting table
liquid
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015071528A
Other languages
Japanese (ja)
Other versions
JP2016192485A (en
Inventor
鈴木 克彦
克彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2015071528A priority Critical patent/JP6429084B2/en
Publication of JP2016192485A publication Critical patent/JP2016192485A/en
Application granted granted Critical
Publication of JP6429084B2 publication Critical patent/JP6429084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明はウエハ搭載台の温度制御装置及び温度制御方法並びにプローバに係り、特にウエハ搭載台の温度を常温よりも低い温度に制御する技術に関する。   The present invention relates to a temperature control device, a temperature control method, and a prober for a wafer mounting table, and more particularly to a technique for controlling the temperature of a wafer mounting table to a temperature lower than room temperature.

半導体製造工程では、薄い円板状の半導体ウエハに各種の処理を施して、半導体装置(デバイス)をそれぞれ有する複数のチップ(ダイ)を形成する。各チップは電気的特性が検査され、その後ダイサー等で切り離なされた後、リードフレームなどに固定されて組み立てられる。   In the semiconductor manufacturing process, various processes are performed on a thin disk-shaped semiconductor wafer to form a plurality of chips (dies) each having a semiconductor device (device). Each chip is inspected for electrical characteristics and then separated by a dicer or the like, and then fixed to a lead frame or the like and assembled.

上記の電気的特性の検査は、プローバとテスタで構成されるウエハテストシステムにより行われる。プローバは、半導体ウエハをウエハ搭載台に固定し、各チップの電極パッドにプローブを接触させる。テスタは、プローブに接続される端子から、電源および各種の試験信号を供給し、チップの電極に出力される信号をテスタで解析して正常に動作するかを確認する。   The inspection of the electrical characteristics is performed by a wafer test system composed of a prober and a tester. The prober fixes the semiconductor wafer to the wafer mounting table and brings the probe into contact with the electrode pad of each chip. The tester supplies power and various test signals from the terminals connected to the probe, and analyzes the signals output to the electrodes of the chip with the tester to check whether it operates normally.

しかし、半導体装置は広い用途に使用されており、−60°Cのような低温環境や、200°Cのような高温環境でも使用される半導体装置もあり、プローバにはこのような環境での検査が行えることが要求される。   However, semiconductor devices are used in a wide range of applications. Some semiconductor devices are used in low-temperature environments such as -60 ° C and high-temperature environments such as 200 ° C. It is required that inspection can be performed.

そこで、プローバにおいて半導体ウエハを保持するウエハ搭載台の載置面の下に、例えば、加熱機構(ヒータ)、冷却機構(チラー機構)などのウエハ搭載台の載置面の温度を変えるウエハ温度調整装置を設けて、ウエハ搭載台の上に保持されたウエハを加熱又は冷却することが行われる。   Therefore, a wafer temperature adjustment that changes the temperature of the mounting surface of the wafer mounting table such as a heating mechanism (heater) or a cooling mechanism (chiller mechanism) below the mounting surface of the wafer mounting table that holds the semiconductor wafer in the prober. An apparatus is provided to heat or cool the wafer held on the wafer mounting table.

一般的に、ウエハ搭載台を冷却する冷却機構としては、ウエハ搭載台に冷却液を循環させるラインと、冷媒が循環するヒートポンプ型の冷凍機を有し、冷媒と搭載台冷却ラインの冷却液とを熱交換することで冷却液を冷却するラインと、を備え、ウエハ搭載台に供給される冷却液の温度が目標冷却温度になるように冷凍機を制御する。   In general, the cooling mechanism for cooling the wafer mounting table includes a line for circulating the coolant on the wafer mounting table, and a heat pump type refrigerator that circulates the refrigerant. And a line for cooling the coolant by exchanging heat, and the refrigerator is controlled so that the temperature of the coolant supplied to the wafer mounting table becomes the target cooling temperature.

しかし、ヒートポンプ型の冷凍機は、省エネに優れているが、凝縮器の凝縮状態が変化し易く冷媒温度が変動し易いために高精度な制御を行えないとともに、冷媒の温度を変化させるのに時間を要し応答性能(レスポンス)が遅いという問題がある。   However, the heat pump type refrigerator is excellent in energy saving, but the condensation state of the condenser is easy to change and the refrigerant temperature is likely to fluctuate. There is a problem that it takes time and response performance (response) is slow.

プローバによって半導体装置を、高温又は低温で検査を行う場合、ウエハ搭載台の部分のみが高温又は低温に保持されるので、周囲との温度差のためにウエハ搭載台の温度が変化する。また、上記のように検査に伴うチップの発熱のためにウエハ搭載台の温度が変化する。そこで、ウエハ搭載台に流す冷却液の測定温度に基づいて冷却機構や加熱機構を制御するが、正確な温度制御を行うにはそれらの応答性能(レスポンス)が問題になる。   When the semiconductor device is inspected by a prober at a high temperature or a low temperature, only the portion of the wafer mounting table is held at a high temperature or a low temperature, so that the temperature of the wafer mounting table changes due to a temperature difference from the surroundings. Further, as described above, the temperature of the wafer mounting table changes due to the heat generation of the chip accompanying the inspection. Therefore, although the cooling mechanism and the heating mechanism are controlled based on the measured temperature of the coolant flowing through the wafer mounting table, their response performance (response) becomes a problem for accurate temperature control.

例えば、測定温度が目標冷却温度からのずれを検出して直ぐに温度ずれを補正するように冷却機構や加熱機構を制御しても、レスポンスが遅いと、補正されるまでには長い時間を要するために、その間に温度ずれが大きくなり目標冷却温度に正確に制御することができないという問題を生じる。   For example, even if the cooling mechanism or the heating mechanism is controlled so that the measured temperature deviates from the target cooling temperature and the temperature deviation is corrected immediately, if the response is slow, it takes a long time to be corrected. In addition, a problem arises in that the temperature deviation becomes large during that time, and the target cooling temperature cannot be accurately controlled.

一方、電流を増加させると直ぐに発熱するヒータは比較的応答性能が速い。   On the other hand, the heater that generates heat immediately when the current is increased has a relatively fast response performance.

そこで、特許文献1では、ウエハ搭載台の冷却機構として、搭載台を冷却するラインにインラインヒータを設けることを提案している。即ち、冷凍機の冷媒との熱交換によって
ウエハ搭載台内を流れる冷却液の温度が目標冷却温度より低温度になるように調整しておき、低温度の冷却液をインラインヒータで目標冷却温度まで加熱することによって応答性能が速くなるようにしている。
Therefore, Patent Document 1 proposes to provide an in-line heater in a line for cooling the mounting table as a cooling mechanism for the wafer mounting table. That is, the temperature of the coolant flowing in the wafer mounting table is adjusted to be lower than the target cooling temperature by heat exchange with the refrigerant of the refrigerator, and the low temperature coolant is adjusted to the target cooling temperature with an in-line heater. The response performance is increased by heating.

特開2008−311492号公報JP 2008-311492 A

しかしながら、インラインヒータは消費電力が大きく、省エネの点で問題がある。特に、省エネに優れたヒートポンプ型の冷凍機を用いた冷却機構に消費電力の大きなインラインヒータを用いることは、省エネの趣旨にそぐわない。   However, the in-line heater consumes a large amount of power and has a problem in terms of energy saving. In particular, the use of an in-line heater with large power consumption in a cooling mechanism using a heat pump type refrigerator excellent in energy saving is not suitable for the purpose of energy saving.

本発明は、このような事情に鑑みてなされたもので、インラインヒータを使用せずに高精度で且つ応答性能を速くすることができるので、従来よりも省エネに優れたウエハ搭載台の温度制御装置及び温度制御方法並びにプローバを提供することを目的とする。   The present invention has been made in view of such circumstances, and is capable of speeding up the response performance with high accuracy without using an in-line heater. An object is to provide an apparatus, a temperature control method, and a prober.

上記目的を達成するために、本発明は、半導体ウエハを搭載するウエハ搭載台を目標冷却温度に冷却する冷却機構を備えたウエハ搭載台の温度制御装置において、前記冷却機構は、前記ウエハ搭載台に冷却液を循環させる搭載台冷却ラインと、冷媒が循環するヒートポンプ型の冷凍機を有し、前記冷媒と前記搭載台冷却ラインの冷却液とを熱交換することで前記冷却液を前記目標冷却温度よりも低い温度に冷却する冷凍機ラインと、前記冷凍機ラインの凝縮器で前記冷媒を液化する際に発生する凝縮熱により前記ウエハ搭載台の出口側から分流した冷却液を加熱した加熱液を前記ウエハ搭載台の入口側に合流させる加熱ラインと、前記搭載台冷却ラインを循環させる冷却液と前記加熱ラインから前記ウエハ搭載台の入口側に合流させる加熱液との混合比を調整する混合比調整手段と、前記ウエハ搭載台の入口側の冷却液温度を検出する冷却液温度検出手段と、前記冷却液温度検出手段の測定結果に基づいて前記目標冷却温度になるように前記混合比調整手段を制御する冷却液温度調節手段と、を備えたことを特徴とする。 In order to achieve the above object, the present invention provides a temperature control device for a wafer mounting table including a cooling mechanism for cooling a wafer mounting table on which a semiconductor wafer is mounted to a target cooling temperature, wherein the cooling mechanism includes the wafer mounting table. And a heat pump type refrigerator that circulates the refrigerant, and heat-exchanges the refrigerant and the cooling liquid of the mounting base cooling line to cool the target liquid to the target cooling. A refrigerator line that cools to a temperature lower than the temperature, and a heating liquid that heats the coolant divided from the outlet side of the wafer mounting table by condensation heat generated when the refrigerant is liquefied by the condenser of the refrigerator line A heating line for joining the wafer mounting table to the inlet side, a cooling liquid for circulating the mounting table cooling line, and a heating liquid for joining the heating line to the inlet side of the wafer mounting table A mixing ratio adjusting means for adjusting the mixing ratio of the coolant temperature detecting means for detecting a coolant temperature of the wafer mounting base inlet side, the target cooling temperature based on a measurement result of the coolant temperature detecting means And a coolant temperature adjusting means for controlling the mixing ratio adjusting means.

本発明のウエハ搭載台の温度制御装置によれば、目標冷却温度よりも低い温度に調整した冷却液に、従来排熱していた冷凍機ラインの凝縮熱で加熱した加熱液を混合して目標冷却温度に制御するようにしたので、従来に比べてインラインヒータ使用分の消費電力を削減することができる。   According to the temperature control device for a wafer mounting table of the present invention, a target liquid is mixed by mixing a liquid adjusted to a temperature lower than a target cooling temperature with a heating liquid heated by the condensation heat of a refrigerator line that has been conventionally exhausted. Since the temperature is controlled, it is possible to reduce the power consumption of the in-line heater used compared to the conventional case.

また、混合比調整手段によって冷却液と加熱液とを直接混合することにより目標冷却温度に制御する制御応答性が良い。   In addition, the control responsiveness of controlling to the target cooling temperature by directly mixing the cooling liquid and the heating liquid by the mixing ratio adjusting means is good.

これにより、インラインヒータを使用せずに高精度で且つ応答性能を速くすることができるので、従来よりも省エネに優れたウエハ搭載台の温度制御装置を提供することができる。   As a result, since the response performance can be increased with high accuracy without using an in-line heater, a temperature control device for a wafer mounting table that is more energy-saving than the conventional one can be provided.

本発明のウエハ搭載台の温度制御装置の態様として、前記搭載台冷却ラインの冷却液と前記加熱ラインの加熱液とを1台の送液ポンプで送液するとともに、前記搭載台冷却ラインの冷却液に前記加熱ラインの加熱液が合流する合流点の上流側に定圧弁を設け、前記送液ポンプの吐出圧力を前記定圧弁の設定圧力よりも大きくすることが好ましい。   As an aspect of the temperature control device for the wafer mounting table of the present invention, the cooling liquid of the mounting table cooling line and the heating liquid of the heating line are supplied by a single liquid supply pump, and the cooling of the mounting table cooling line is performed. It is preferable that a constant pressure valve is provided upstream of the junction where the heating liquid of the heating line joins the liquid, and the discharge pressure of the liquid feeding pump is made larger than the set pressure of the constant pressure valve.

これにより、搭載台冷却ラインを流れる冷却液と加熱ラインを流れる加熱液の圧力変動が小さくなり流れが安定するので、冷却液と加熱液との混合比を高精度に制御できる。   Thereby, the pressure fluctuations of the cooling liquid flowing through the mounting table cooling line and the heating liquid flowing through the heating line are reduced and the flow is stabilized, so that the mixing ratio of the cooling liquid and the heating liquid can be controlled with high accuracy.

本発明のウエハ搭載台の温度制御装置の態様として、前記冷凍機ラインは熱交換器を介して低温側回路と高温側回路との2台の冷凍機を組み合わせた2元冷凍回路であることが好ましい。   As an aspect of the temperature control device for a wafer mounting table of the present invention, the refrigerator line is a two-way refrigeration circuit in which two refrigerators of a low temperature side circuit and a high temperature side circuit are combined via a heat exchanger. preferable.

これにより、冷凍機ラインでの冷媒の温度変動を小さくできるので、搭載台冷却ラインの冷却液温度を高精度に制御することができる。したがって、冷却液と加熱液との混合比を一層高精度に制御できる。   Thereby, since the temperature variation of the refrigerant | coolant in a refrigerator line can be made small, the coolant temperature of a mounting base cooling line can be controlled with high precision. Therefore, the mixing ratio of the cooling liquid and the heating liquid can be controlled with higher accuracy.

上記目的を達成するために、本発明は、半導体ウエハを搭載するウエハ搭載台を目標冷却温度に冷却するウエハ搭載台の温度制御方法において、前記ウエハ搭載台に循環させる冷却液と、冷媒が循環するヒートポンプ型の冷凍機で冷却された冷媒とを熱交換させて前記冷却液を前記目標冷却温度よりも低温度の低温冷却液を形成する低温冷却液形成工程と、前記冷凍機の凝縮器で前記冷媒を液化する際に発生する凝縮熱により前記ウエハ搭載台の出口側から分流した冷却液を加熱して前記目標冷却温度よりも高温度な加熱液を形成する加熱液形成工程と、前記ウエハ搭載台の入口側の冷却液温度を検出する冷却液温度検出工程と、前記冷却液温度検出工程の測定結果に基づいて前記ウエハ搭載台の入口側の冷却液温度が前記目標冷却温度になるように前記低温冷却液と前記加熱液とを混合する混合工程と、を備えたことを特徴とする。 In order to achieve the above object, according to the present invention, there is provided a temperature control method for a wafer mounting table for cooling a wafer mounting table on which a semiconductor wafer is mounted to a target cooling temperature. A low-temperature cooling liquid forming step of forming a low-temperature cooling liquid having a temperature lower than the target cooling temperature by exchanging heat with a refrigerant cooled by a heat pump type refrigerator, and a condenser of the refrigerator A heating liquid forming step of heating the cooling liquid divided from the outlet side of the wafer mounting table by condensation heat generated when the refrigerant is liquefied to form a heating liquid having a temperature higher than the target cooling temperature; and the wafer. a coolant temperature detection step of detecting a coolant temperature of the mounting base of the inlet side, the coolant temperature of the coolant temperature detected inlet side measurement based on the result of the wafer mounting base process it to the target cooling temperature A mixing step of mixing the low temperature coolant and the heating liquid so as to comprising the.

これにより、インラインヒータを使用せずに高精度で且つ応答性能を速くすることができるので、従来よりも省エネに優れたウエハ搭載台の温度制御方法を提供することができる。   As a result, it is possible to increase the accuracy and speed of response performance without using an in-line heater, and thus it is possible to provide a temperature control method for a wafer mounting table that is more energy-saving than conventional ones.

上記目的を達成するために、本発明は、ウエハ搭載台に搭載された半導体ウエハ上に形成された複数の半導体装置をテスタで検査するために、前記テスタの各端子を前記半導体装置の電極に接続するプローバ装置において、前記ウエハ搭載台に上記記載の温度制御装置を備えたことを特徴とする。
To achieve the above object, the present invention is to inspect multiple semiconductor devices formed on a semiconductor wafer mounted on the wafer mounting base with a tester, the terminals of the tester of the semiconductor device electrode In the prober device connected to the wafer mounting table, the wafer mounting table includes the temperature control device described above.

これにより、インラインヒータを使用せずに高精度で且つ応答性能を速くすることができるので、従来よりも省エネに優れたプローバを提供することができる。   As a result, it is possible to increase the accuracy and speed of response without using an in-line heater, and thus it is possible to provide a prober that is more energy-saving than conventional ones.

本発明のウエハ搭載台の温度制御装置及び温度制御方法並びにプローバによれば、インラインヒータを使用せずに高精度で且つ応答性能を速くすることができるので、従来よりも省エネに優れたウエハ搭載台の温度制御装置及び温度制御方法並びにプローバを提供することができる。   According to the temperature control device, temperature control method, and prober of the wafer mounting table of the present invention, it is possible to increase the accuracy and speed of response without using an in-line heater. A temperature control device, a temperature control method, and a prober can be provided.

ウエハ搭載台を加熱する加熱機構と冷却する冷却機構とで構成された温度制御装置を備えたプローバの概略構成図Schematic configuration diagram of a prober equipped with a temperature control device composed of a heating mechanism for heating the wafer mounting table and a cooling mechanism for cooling it. 冷却機構の全体構成図Overall configuration of cooling mechanism ウエハ搭載台の冷却制御方法において比例2方弁の弁開度をPID制御する制御フロー図Control flow diagram for PID control of valve opening of proportional two-way valve in wafer mounting table cooling control method

以下、添付図面に従って本発明のウエハ搭載台の温度制御装置及び温度制御方法並びにプローバに関する実施の形態について説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments relating to a temperature control device, a temperature control method, and a prober for a wafer mounting table according to the present invention will be described below with reference to the accompanying drawings.

[プローバ]
図1は、ウエハ搭載台を加熱する加熱機構を構成するヒータと、ウエハ搭載台を冷却する冷却機構とで構成された温度制御装置を備えたプローバの概略構成図である。
[Prober]
FIG. 1 is a schematic configuration diagram of a prober including a temperature control device including a heater that constitutes a heating mechanism that heats the wafer mounting table and a cooling mechanism that cools the wafer mounting table.

図1に示すように、プローバ10は、主として、半導体ウエハWを保持するウエハ搭載台12(「ウエハチャック」ともいう)と、半導体ウエハW上に形成された半導体装置(デバイス)をそれぞれ有する複数のチップの電極配置に合わせて作られたプローブ14を有するプローブカード16と、温度制御装置18とで構成される。また、温度制御装置18は、加熱機構を構成するヒータ20と、構成の詳細を後記する冷却機構22とで構成される。   As shown in FIG. 1, the prober 10 mainly includes a plurality of wafer mounting tables 12 (also referred to as “wafer chucks”) that hold a semiconductor wafer W and semiconductor devices (devices) formed on the semiconductor wafer W. The probe card 16 having the probe 14 made according to the electrode arrangement of the chip and the temperature controller 18 are configured. The temperature control device 18 includes a heater 20 that constitutes a heating mechanism, and a cooling mechanism 22 that will be described in detail later.

ウエハ搭載台12内には、ヒータ20と、冷却機構22の構成部分である搭載台冷却ライン24とが設けられる。ヒータ20は発熱して半導体ウエハWを保持するウエハ搭載台12の表面を加熱する。また、搭載台冷却ライン24には冷却液が流れ、半導体ウエハWを保持するウエハ搭載台12の表面を冷却する。   In the wafer mounting table 12, a heater 20 and a mounting table cooling line 24 that is a component of the cooling mechanism 22 are provided. The heater 20 generates heat to heat the surface of the wafer mounting table 12 that holds the semiconductor wafer W. Further, the coolant flows through the mounting table cooling line 24 to cool the surface of the wafer mounting table 12 that holds the semiconductor wafer W.

図1では、ウエハ搭載台12の表面に近い側にヒータ20を設け、その下に搭載台冷却ライン24を設ける例を示したが、搭載台冷却ライン24を上にその下にヒータ20を設けてもよい。   Although FIG. 1 shows an example in which the heater 20 is provided on the side close to the surface of the wafer mounting table 12 and the mounting table cooling line 24 is provided below, the heater 20 is provided below the mounting table cooling line 24. May be.

ウエハ搭載台12内には、他にも半導体ウエハWを真空吸着するための真空経路(図示せず)などが設けられ、ウエハ搭載台12内における搭載台冷却ライン24、ヒータ20及び真空経路の配置については各種の変形例がある。   In addition, a vacuum path (not shown) for vacuum-sucking the semiconductor wafer W is provided in the wafer mounting table 12, and the mounting table cooling line 24, the heater 20 and the vacuum path in the wafer mounting table 12 are provided. There are various variations of the arrangement.

そして、半導体ウエハWを所定温度にして検査を行う場合、半導体ウエハWをウエハ搭載台12に保持した状態で、制御装置26はウエハ搭載台12の温度を検出する搭載台温度検出手段28の検出した温度に基づいてウエハ搭載台12のヒータ20及び冷却機構22を制御し、ウエハ搭載台12が所定の温度になるようにする。ウエハ搭載台12は、アルミニューム、銅などの金属や、熱伝導性の良好なセラミックなどの材料で作られている。   When the semiconductor wafer W is inspected at a predetermined temperature, the control device 26 detects the temperature of the wafer mounting table 12 while the semiconductor wafer W is held on the wafer mounting table 12. Based on the temperature, the heater 20 and the cooling mechanism 22 of the wafer mounting table 12 are controlled so that the wafer mounting table 12 has a predetermined temperature. The wafer mounting table 12 is made of a metal such as aluminum or copper, or a material such as ceramic having good thermal conductivity.

テスタは、主として、テスタ本体30と、テスタ本体30の端子とプローブカード16の端子を電気的に接続するコネクション部32と、で構成される。コネクション部32は、バネを使用した接続端子機構、いわゆるスプリングピン構造を有する。プローバ10は、半導体ウエハWの検査においてテスタと連携して測定を行うが、その電源系や機構部分はテスタ本体及びテストヘッドとは独立した装置である。   The tester mainly includes a tester body 30 and a connection portion 32 that electrically connects the terminals of the tester body 30 and the terminals of the probe card 16. The connection part 32 has a connection terminal mechanism using a spring, a so-called spring pin structure. The prober 10 performs measurement in cooperation with the tester in the inspection of the semiconductor wafer W, but the power supply system and the mechanism part are devices independent of the tester body and the test head.

また、プローバ10は、上記した構成の他に、ウエハ搭載台12を水平面上のX方向とY方向に移動させるX−Y移動部、垂直面上のZ方向に移動させるZ移動部、及び回転方向の移動を行わせる回転移動部、半導体ウエハ上に形成されたチップの配列方向を検出するアライメント用カメラ、プローブの位置を検出する針位置検出カメラ等が設けられる。しかし、このようなプローバ10の構成要素は、特開2007−324189等に記載されるように公知であるとともに、本発明に直接関係しないので、ここでは図示を省略している。   In addition to the above-described configuration, the prober 10 has an XY moving unit that moves the wafer mounting table 12 in the X direction and the Y direction on the horizontal plane, a Z moving unit that moves in the Z direction on the vertical plane, and a rotation. A rotational movement unit that moves the direction, an alignment camera that detects the arrangement direction of the chips formed on the semiconductor wafer, a needle position detection camera that detects the position of the probe, and the like are provided. However, such components of the prober 10 are well known as described in Japanese Patent Application Laid-Open No. 2007-324189 and are not directly related to the present invention, and therefore are not shown here.

[冷却機構]
次に、図2を用いて冷却機構22の構成を説明する。
[Cooling mechanism]
Next, the configuration of the cooling mechanism 22 will be described with reference to FIG.

図2に示すように、冷却機構22は、主として、上記した搭載台冷却ライン24と、冷凍機ライン34と、加熱ライン36と、混合比調整手段38と、冷却液温度調節手段40とで構成される。なお、冷却液温度調節手段40はウエハ搭載台12の温度を制御する図1の制御装置26で兼用してもよい。   As shown in FIG. 2, the cooling mechanism 22 is mainly composed of the mounting table cooling line 24, the refrigerator line 34, the heating line 36, the mixing ratio adjusting means 38, and the coolant temperature adjusting means 40. Is done. The coolant temperature adjusting means 40 may also be used in the control device 26 in FIG. 1 that controls the temperature of the wafer mounting table 12.

搭載台冷却ライン24は、ウエハ搭載台12内に冷却液を循環させるラインであり、図2の矢印A→B→C→Dで示す循環ラインを形成する。また、搭載台冷却ライン24には、ウエハ搭載台12の出口側から順に、送液ポンプ42、冷却コイル44、冷却液温度検出手段46が設けられる。冷却液温度検出手段46は、ウエハ搭載台12の入口温度を検出する。また、冷却液としては、例えば水やフッ素系液体(例えば3M(商標登録)ジャパン(株)のNovec(商標登録)シリーズ、あるいはソルベイススペシャルティポリマーズジャパン(株)のガルデン(商標登録)シリーズ)を好適に用いることができる。   The mounting table cooling line 24 is a line for circulating the coolant in the wafer mounting table 12, and forms a circulation line indicated by arrows A → B → C → D in FIG. The mounting table cooling line 24 is provided with a liquid feed pump 42, a cooling coil 44, and a coolant temperature detecting means 46 in order from the outlet side of the wafer mounting table 12. The coolant temperature detecting means 46 detects the inlet temperature of the wafer mounting table 12. As the cooling liquid, for example, water or fluorine-based liquid (for example, Novec (registered trademark) series of 3M (trademark registered) Japan Co., Ltd., or Galden (trademark registered) series of Solvay Specialty Polymers Japan Co., Ltd.) is used. It can be used suitably.

冷凍機ライン34は、冷媒が循環するヒートポンプ型の冷凍機を有し、冷媒と搭載台冷却ライン24の冷却液とを熱交換することで冷却液をウエハ搭載台12の目標冷却温度よりも低い温度に冷却するラインである。図2では、冷却機構22における冷凍機ライン34の部分を二点鎖線で囲った。   The refrigerator line 34 has a heat pump type refrigerator in which the refrigerant circulates, and the coolant is lower than the target cooling temperature of the wafer mounting table 12 by exchanging heat between the refrigerant and the cooling liquid in the mounting table cooling line 24. A line that cools to a temperature. In FIG. 2, the portion of the refrigerator line 34 in the cooling mechanism 22 is surrounded by a two-dot chain line.

なお、本実施の形態では、冷凍機ライン34は、第1熱交換器48を介して高温側回路50と低温側回路52との2台の冷凍機を組み合わせた2元冷凍回路の場合で説明するが、本発明は1元冷凍回路にも適用できる。   In the present embodiment, the refrigerator line 34 is described as a dual refrigeration circuit in which two refrigerators of a high temperature side circuit 50 and a low temperature side circuit 52 are combined via a first heat exchanger 48. However, the present invention can also be applied to a one-way refrigeration circuit.

高温側回路50は、図2の矢印E→F→G→Hで示す循環ラインを形成し、循環ラインにはヒートポンプを構成する第1圧縮器(コンプレッサ)54、第1凝縮器56、第1膨張弁58、第1蒸発器60が配設される。そして、循環ラインには冷媒(例えば代替フロン)が循環される。第1凝縮器56は、凝縮コイル56Aと冷却ファン72とで構成され、凝縮コイル56Aを流れる冷媒を冷却ファン72で冷却する。   The high temperature side circuit 50 forms a circulation line indicated by arrows E → F → G → H in FIG. 2, and the first compressor (compressor) 54, the first condenser 56, and the first that constitute the heat pump are formed in the circulation line. An expansion valve 58 and a first evaporator 60 are provided. A refrigerant (for example, alternative chlorofluorocarbon) is circulated through the circulation line. The first condenser 56 includes a condensing coil 56 </ b> A and a cooling fan 72, and the refrigerant flowing through the condensing coil 56 </ b> A is cooled by the cooling fan 72.

これにより、高温側回路50では、第1凝縮器56で液化した液体冷媒は第1膨張弁58を経て第1蒸発器60に流れ、第1蒸発器60で気化してガス状冷媒となり、第1圧縮機54で圧縮された後に再び第1凝縮器56に戻る循環流を形成する。そして、第1凝縮器56においてガス状冷媒が凝縮して液状冷媒になる際に凝縮熱(温熱)を放熱するとともに、第1蒸発器60で液状冷媒が気化してガス状冷媒になるときに気化熱(冷熱)を放出する。   Thereby, in the high temperature side circuit 50, the liquid refrigerant liquefied by the first condenser 56 flows to the first evaporator 60 through the first expansion valve 58, and is vaporized by the first evaporator 60 to become a gaseous refrigerant. A circulation flow is formed which is compressed by the first compressor 54 and then returns to the first condenser 56 again. When the gaseous refrigerant condenses in the first condenser 56 and becomes a liquid refrigerant, the heat of condensation (heat) is dissipated, and when the liquid refrigerant is vaporized and becomes a gaseous refrigerant in the first evaporator 60. Releases heat of vaporization (cold heat).

低温側回路52は、図2の矢印I→J→K→Lで示す循環ラインを形成し、循環ラインにはヒートポンプを構成する第2圧縮器(コンプレッサ)62、第2凝縮器64、第2膨張弁66、第2蒸発器68が配設される。そして、循環ラインには冷媒(例えば代替フロン)が循環される。   The low temperature side circuit 52 forms a circulation line indicated by arrows I → J → K → L in FIG. 2, and a second compressor (compressor) 62, a second condenser 64, and a second compressor constituting a heat pump are formed in the circulation line. An expansion valve 66 and a second evaporator 68 are provided. A refrigerant (for example, alternative chlorofluorocarbon) is circulated through the circulation line.

これにより、低温側回路52では、第2凝縮器64で液化した液体冷媒は第2膨張弁66を経て第2蒸発器68に流れ、第2蒸発器68で気化してガス状冷媒となり、第2圧縮器62で圧縮された後に再び第2凝縮器64に戻る循環ラインを形成する。   Thereby, in the low temperature side circuit 52, the liquid refrigerant liquefied by the second condenser 64 flows to the second evaporator 68 through the second expansion valve 66, and is vaporized by the second evaporator 68 to become a gaseous refrigerant. A circulation line is formed which is compressed by the two compressors 62 and then returns to the second condenser 64 again.

また、低温側回路52も高温側回路50と同様に、第2凝縮器64においてガス状冷媒が凝縮して液状冷媒になる際に凝縮熱(温熱)を放熱するとともに、第2蒸発器68で液状冷媒が気化してガス状冷媒になるときに気化熱(冷熱)を放出する。   Similarly to the high temperature side circuit 50, the low temperature side circuit 52 radiates condensation heat (warm heat) when the gaseous refrigerant condenses into a liquid refrigerant in the second condenser 64, and the second evaporator 68 When the liquid refrigerant is vaporized to become a gaseous refrigerant, heat of vaporization (cold heat) is released.

そして、高温側回路50の第1蒸発器60と低温側回路52の第2凝縮器64とで上記した第1熱交換器48を構成する。即ち、高温側回路50の第1蒸発器60で発生する気化熱を低温側回路52の第2凝縮器64を冷却するための冷熱として利用する。   And the 1st evaporator 60 of the high temperature side circuit 50 and the 2nd condenser 64 of the low temperature side circuit 52 comprise the 1st heat exchanger 48 mentioned above. That is, the heat of vaporization generated in the first evaporator 60 of the high temperature side circuit 50 is used as cold heat for cooling the second condenser 64 of the low temperature side circuit 52.

また、低温側回路52の第2蒸発器68と、搭載台冷却ライン24の上記した冷却コイル44とで第2熱交換器70を構成する。即ち、低温側回路52の第2蒸発器68で発生する気化熱で冷却コイル44を流れる冷却液を冷却する。   The second evaporator 68 of the low temperature side circuit 52 and the cooling coil 44 of the mounting table cooling line 24 constitute a second heat exchanger 70. That is, the coolant flowing through the cooling coil 44 is cooled by the heat of vaporization generated by the second evaporator 68 of the low temperature side circuit 52.

なお、図2では、高温側回路50の第1凝縮器56として冷却ファン72により第1凝縮コイル56Aを流れる冷媒を空冷する空冷型の場合で示したが、水冷型を採用することもできる。また。第1膨張弁58及び第2膨張弁66としてキャピラリ(毛細管)チューブを採用することもできる。   In FIG. 2, the first condenser 56 of the high-temperature circuit 50 is shown as an air-cooled type in which the refrigerant flowing through the first condensing coil 56 </ b> A is cooled by the cooling fan 72, but a water-cooled type can also be adopted. Also. Capillary (capillary) tubes may be employed as the first expansion valve 58 and the second expansion valve 66.

このように、冷凍機ライン34を2元冷凍回路で構成することによって、1元冷凍回路に比べて温度変動を小さくすることができる。   In this way, by configuring the refrigerator line 34 with a binary refrigeration circuit, temperature fluctuations can be reduced as compared with a single refrigeration circuit.

加熱ライン36は、冷凍機ライン34における高温側回路50の第1凝縮器56で冷媒を液化する際に発生する凝縮熱(温熱)により、ウエハ搭載台12の出口側の冷却液の一部を加熱してウエハ搭載台12の入口側に戻るラインであり、図2の矢印M→N→Pで示すラインを形成する。   The heating line 36 converts a part of the coolant on the outlet side of the wafer mounting table 12 by the condensation heat (warm heat) generated when the refrigerant is liquefied by the first condenser 56 of the high temperature side circuit 50 in the refrigerator line 34. This is a line that heats and returns to the entrance side of the wafer mounting table 12, and forms a line indicated by arrows M → N → P in FIG.

そして、冷凍機ライン34の高温側回路50における第1凝縮器56の一次側(冷媒の流れ方向上流側)に、冷凍機ライン34を流れる冷媒と加熱ライン36を流れる冷却液とが熱交換する第3熱交換器74が設けられる。第3熱交換器74は、第1凝縮器56の一次側に設けられた熱交換コイル74Aと、加熱ライン36に設けられた加熱コイル74Bとで構成される。   The refrigerant flowing in the refrigerator line 34 and the coolant flowing in the heating line 36 exchange heat on the primary side (upstream side in the refrigerant flow direction) of the first condenser 56 in the high-temperature side circuit 50 of the refrigerator line 34. A third heat exchanger 74 is provided. The third heat exchanger 74 includes a heat exchange coil 74 </ b> A provided on the primary side of the first condenser 56 and a heating coil 74 </ b> B provided on the heating line 36.

即ち、加熱ライン36は、搭載台冷却ライン24の送液ポンプ42と冷却コイル44との間の分岐点Rからウエハ搭載台12の出口側の冷却液の一部が分流して第3熱交換器74の加熱コイル74Bへ至る往路78と、加熱コイル74Bから搭載台冷却ライン24の冷却コイル44と冷却液温度検出手段46との間の合流点Sにおいて搭載台冷却ライン24の冷却液に合流する復路80とで構成される。   That is, in the heating line 36, a part of the coolant on the outlet side of the wafer mounting table 12 is diverted from the branch point R between the liquid feed pump 42 and the cooling coil 44 of the mounting table cooling line 24, and the third heat exchange is performed. The forward path 78 to the heating coil 74B of the vessel 74 and the cooling liquid of the mounting table cooling line 24 join at the junction S between the heating coil 74B and the cooling coil 44 of the mounting table cooling line 24 and the coolant temperature detecting means 46. And a return path 80.

上記の如く構成された第3熱交換器74によって、高温側回路50の第1蒸発器60で温まったガス状冷媒は、第1凝縮器56の冷却ファン72により凝縮熱(温熱)が排気(排熱)されて温度が低下する前に冷却液と熱交換し、冷却液を加熱する。これにより、第3熱交換器74では、多くの温熱の授受が可能となり、加熱ライン36を流れる冷却液を効果的に加熱することができる。   The gaseous refrigerant warmed in the first evaporator 60 of the high-temperature circuit 50 by the third heat exchanger 74 configured as described above is exhausted by the cooling fan 72 of the first condenser 56 (condensation heat (hot heat)) ( Heat is exchanged with the coolant before the temperature drops due to exhaust heat, and the coolant is heated. Thereby, in the 3rd heat exchanger 74, transfer of much warmth is attained and the cooling fluid which flows through the heating line 36 can be heated effectively.

なお、上記搭載台冷却ライン24と加熱ライン36との流路から分かるように、加熱ライン36には、搭載台冷却ライン24を流れる冷却液(例えば水や上記のフッ素系液体)と同じ液体が流れる。しかし、説明の便宜上、搭載台冷却ライン24を流れる液体を冷却液と言い、加熱ライン36を流れる液体を加熱液と言うことにする。   As can be seen from the flow path between the mounting table cooling line 24 and the heating line 36, the heating line 36 contains the same liquid as the coolant flowing through the mounting table cooling line 24 (for example, water or the above-described fluorinated liquid). Flowing. However, for convenience of explanation, the liquid flowing through the mounting table cooling line 24 is referred to as a cooling liquid, and the liquid flowing through the heating line 36 is referred to as a heating liquid.

そして、復路ライン80の合流点Sの直前に混合比調整手段38が設けられる。   A mixing ratio adjusting means 38 is provided immediately before the junction S of the return line 80.

混合比調整手段38は、搭載台冷却ライン24を循環させる冷却液の循環量と、加熱ライン36からウエハ搭載台12の入口側に戻す加熱液の戻し量との混合比を調整するためのものである。混合比調整手段38としては、例えば、電動弁であって、弁開度に対して流量がリニアに変化する比例2方弁38Aを好適に用いることができ、以下は比例2方弁38Aで説明する。   The mixing ratio adjusting means 38 is for adjusting the mixing ratio between the circulating amount of the cooling liquid circulating through the mounting table cooling line 24 and the returning amount of the heating liquid returned from the heating line 36 to the inlet side of the wafer mounting table 12. It is. As the mixing ratio adjusting means 38, for example, a proportional two-way valve 38A, which is an electric valve and whose flow rate changes linearly with respect to the valve opening, can be suitably used. To do.

冷却液温度調節手段40は、冷却液温度検出手段46の測定結果に基づいてウエハ搭載台12の温度が目標冷却温度になるように冷凍機ライン34を制御するとともに、比例2方弁38Aの弁開度をPID制御(Proportional Integral Derivative Controller)する。   The coolant temperature adjusting means 40 controls the refrigerator line 34 based on the measurement result of the coolant temperature detecting means 46 so that the temperature of the wafer mounting table 12 becomes the target cooling temperature, and the valve of the proportional two-way valve 38A. The opening is PID controlled (Proportional Integral Derivative Controller).

即ち、冷却液温度調節手段40と冷凍機ライン34とは、信号ケーブル(又は無線)で接続される。また、冷却液温度調節手段40と冷却液温度検出手段46とは信号ケーブル(又は無線)によって接続されるとともに、冷却液温度検出手段46と比例2方弁38Aとが信号ケーブル(又は無線)によって接続される。   That is, the coolant temperature adjusting means 40 and the refrigerator line 34 are connected by a signal cable (or wireless). The coolant temperature adjusting means 40 and the coolant temperature detecting means 46 are connected by a signal cable (or wireless), and the coolant temperature detecting means 46 and the proportional two-way valve 38A are connected by a signal cable (or wireless). Connected.

また、図2から分かるように、搭載台冷却ライン24の冷却液を循環させる動力と、加熱ライン36の加熱液を送液する動力とは、搭載台冷却ライン24に配置された1台の送液ポンプ42で行う。これにより、送液ポンプ42によって液体を流す配管長が加熱ライン36の分だけ長くなるので、搭載台冷却ライン24だけの場合よりも圧力損失が大きくなる。   In addition, as can be seen from FIG. 2, the power for circulating the cooling liquid in the mounting table cooling line 24 and the power for feeding the heating liquid in the heating line 36 are the same as the power supply for one unit arranged in the mounting table cooling line 24. This is done with the liquid pump 42. As a result, the length of the pipe through which the liquid is fed by the liquid feed pump 42 is increased by the amount corresponding to the heating line 36, so that the pressure loss is greater than in the case of only the mounting table cooling line 24.

したがって、搭載台冷却ライン24の冷却液に加熱ライン36の加熱液が合流する合流点Sの上流側に定圧弁82を設け、送液ポンプ42の吐出圧力を定圧弁82の設定圧力よりも大きくすることが好ましい。これにより、搭載台冷却ライン24を流れる冷却液と、加熱ライン36を流れる加熱液の流れが安定するので、加熱液と冷却液とを精度良く混合することができる。   Therefore, the constant pressure valve 82 is provided upstream of the junction S where the heating liquid of the heating line 36 merges with the cooling liquid of the mounting table cooling line 24, and the discharge pressure of the liquid feed pump 42 is larger than the set pressure of the constant pressure valve 82. It is preferable to do. Thereby, since the flow of the cooling liquid flowing through the mounting table cooling line 24 and the flow of the heating liquid flowing through the heating line 36 are stabilized, the heating liquid and the cooling liquid can be mixed with high accuracy.

また、搭載台冷却ライン24よりも高い位置に、冷却液補給ライン84を介して冷却液を貯留するリザーブタンク86が設けられ、リザーブタンク86内の冷却液が位置エネルギーによって搭載台冷却ライン24に自然落下する。これにより、搭載台冷却ライン24を流れる冷却液及び加熱ラインを流れる加熱液の膨張又は収縮による液の体積変化があっても配管内の圧力を一定に保つことができる。さらには、搭載台冷却ライン24の配管、及び加熱ライン36の配管の膨張又は収縮による配管容積変化があっても、配管内の圧力を一定に保つことができる。   Further, a reserve tank 86 for storing the coolant via the coolant replenishment line 84 is provided at a position higher than the mount table cooling line 24, and the coolant in the reserve tank 86 is transferred to the mount table cooling line 24 by potential energy. Fall naturally. Thereby, even if there is a volume change of the liquid due to expansion or contraction of the cooling liquid flowing through the mounting table cooling line 24 and the heating liquid flowing through the heating line, the pressure in the pipe can be kept constant. Furthermore, even if the piping volume changes due to the expansion or contraction of the piping of the mounting table cooling line 24 and the piping of the heating line 36, the pressure in the piping can be kept constant.

したがって、搭載台冷却ライン24を流れる冷却液と、加熱ライン36を流れる加熱液の流れが安定するので、加熱液と冷却液とを精度良く混合することができる。   Therefore, the flow of the cooling liquid flowing through the mounting table cooling line 24 and the flow of the heating liquid flowing through the heating line 36 are stabilized, so that the heating liquid and the cooling liquid can be mixed with high accuracy.

[ウエハ搭載台の冷却制御方法]
次に、上記の如く構成された冷却機構22を用いて、ウエハ搭載台12を目標冷却温度T1に冷却する冷却制御方法を説明する。本実施の形態では、目標冷却温度T1を−47℃に設定するとともに、加熱液を混合しない状態での冷却液の温度T2を目標冷却温度T1よりも5℃低い−52℃の場合で説明する。なお、混合比調整手段38は比例2方弁38Aの例で説明する。
[Cooling control method for wafer mounting table]
Next, a cooling control method for cooling the wafer mounting table 12 to the target cooling temperature T1 using the cooling mechanism 22 configured as described above will be described. In the present embodiment, the target cooling temperature T1 is set to −47 ° C., and the temperature T2 of the cooling liquid without mixing the heating liquid is described as being −52 ° C., which is 5 ° C. lower than the target cooling temperature T1. . The mixing ratio adjusting means 38 will be described using an example of a proportional two-way valve 38A.

冷却液温度調節手段40は、冷凍機ライン34の冷媒温度を制御する。   The coolant temperature adjusting means 40 controls the refrigerant temperature of the refrigerator line 34.

そして、第2熱交換器70により、搭載台冷却ライン24を流れる冷却液と、冷凍機ライン34を流れる冷媒とを熱交換させて冷却液を目標冷却温度T1よりも低温度の低温冷却液(−52℃)を形成する(低温冷却液形成工程)。   Then, the second heat exchanger 70 exchanges heat between the coolant flowing through the mounting table cooling line 24 and the refrigerant flowing through the refrigerator line 34 so that the coolant is a low-temperature coolant having a temperature lower than the target cooling temperature T1 ( −52 ° C.) (low temperature cooling liquid forming step).

また、第3熱交換器74により、ウエハ搭載台12の出口側の冷却液の一部、即ち分岐点Rにおいて搭載台冷却ライン24から分岐して加熱ライン36を流れる冷却液を、冷凍機ライン34の第1凝縮器56で冷媒を液化する際に発生する凝縮熱で加熱する。これにより、目標冷却温度T1よりも高温度の加熱液を形成し、ウエハ搭載台12の入口、即ち搭載台冷却ライン24と加熱ライン36とが合流する合流点Sに戻す(加熱液形成工程)。   Further, a part of the cooling liquid on the outlet side of the wafer mounting table 12, that is, the cooling liquid branched from the mounting table cooling line 24 at the branch point R and flowing through the heating line 36 by the third heat exchanger 74 is supplied to the refrigerator line. The first condenser 56 is heated by condensation heat generated when the refrigerant is liquefied. Thereby, a heating liquid having a temperature higher than the target cooling temperature T1 is formed and returned to the entrance of the wafer mounting table 12, that is, the junction S where the mounting table cooling line 24 and the heating line 36 merge (heating liquid forming step). .

次に、冷却液温度調節手段40は、比例2方弁38Aの弁開度をPID制御して、搭載台冷却ライン24の冷却液と、加熱ライン36から合流点Sに合流する加熱液とを混合する混合比を調整ことにより、ウエハ搭載台入口の冷却液温度が目標冷却温度T1になるようにする。   Next, the coolant temperature adjusting means 40 performs PID control on the valve opening degree of the proportional two-way valve 38A, so that the coolant of the mounting table cooling line 24 and the heating fluid that merges from the heating line 36 to the junction S are supplied. By adjusting the mixing ratio, the coolant temperature at the entrance of the wafer mounting table is set to the target cooling temperature T1.

図3は、比例2方弁38Aの弁開度をPID制御する制御フロー図である。   FIG. 3 is a control flow diagram for PID control of the valve opening of the proportional two-way valve 38A.

冷却液温度調節手段40は、搭載台冷却ライン24を流れる冷却液に、冷凍機ライン34を流れる加熱液を混合する比例2方弁38Aの開度を例えば50%に設定する。制御スタート時点での比例2方弁38Aの開度は特に重要ではなく、どのような開度に設定してもよい。   The coolant temperature adjusting means 40 sets the opening degree of the proportional two-way valve 38A that mixes the coolant flowing through the mounting table cooling line 24 with the heating fluid flowing through the refrigerator line 34, for example, 50%. The opening degree of the proportional two-way valve 38A at the start of control is not particularly important, and any opening degree may be set.

冷却液温度調節手段40は、ステップ1において、冷却液温度検出手段46から入力される測定温度T2と予め入力されている目標冷却温度T1とを比較し、T2>T1かを判断する。YESの場合には、測定温度T2が目標冷却温度T1よりも高く、冷却液に混合する加熱液の混合比を小さくする必要があるのでステップ2に進む。NOの場合には、加熱液の混合比を大きくする必要があるのでステップ3に進む。   In step 1, the coolant temperature adjusting means 40 compares the measured temperature T2 input from the coolant temperature detecting means 46 with the target coolant temperature T1 input in advance, and determines whether T2> T1. In the case of YES, the measured temperature T2 is higher than the target cooling temperature T1, and it is necessary to reduce the mixing ratio of the heating liquid to be mixed with the cooling liquid. In the case of NO, since it is necessary to increase the mixing ratio of the heating liquid, the process proceeds to Step 3.

ステップ2において、冷却液温度調節手段40は、比例2方弁38Aの開度が小さくなるように制御して冷却液に混合する加熱液の混合比を小さくし、ステップ4に進む。   In step 2, the coolant temperature adjusting means 40 controls the opening degree of the proportional two-way valve 38 </ b> A to be small so as to reduce the mixing ratio of the heating liquid to be mixed with the coolant, and proceeds to step 4.

ステップ4において、冷却液温度調節手段40は、測定温度T2と目標冷却温度T1とを比較し、T2=T1かを判断する。そして、YESの場合にはウエハ搭載台12入口の冷却液の温度が目標冷却温度T1になったことを意味するので、比例2方弁38Aの弁開度にそのまま維持して終了する。また、NOの場合にはステップ5に進む。   In step 4, the coolant temperature adjusting means 40 compares the measured temperature T2 with the target cooling temperature T1, and determines whether T2 = T1. In the case of YES, it means that the temperature of the coolant at the inlet of the wafer mounting table 12 has reached the target cooling temperature T1, so that the valve opening degree of the proportional two-way valve 38A is maintained as it is and the processing is ended. If NO, the process proceeds to step 5.

ステップ5において、冷却液温度調節手段40は、測定温度T2と目標冷却温度T1とを比較し、T2>T1かを判断する。YESの場合には、冷却液に混合する加熱液の混合比が未だ多すぎることを意味するのでステップ2に戻り、比例2方弁38Aの開度が更に小さくなるように制御する。NOの場合には、冷却液に混合する加熱液の混合比が多くなり過ぎたことを意味するのでステップ1の制御スタートに戻り、T2=T1になるまでステップ1〜ステップ5を繰り返す。   In step 5, the coolant temperature adjusting means 40 compares the measured temperature T2 with the target cooling temperature T1, and determines whether T2> T1. In the case of YES, it means that the mixing ratio of the heating liquid to be mixed with the cooling liquid is still too large, so the process returns to step 2 and the opening degree of the proportional two-way valve 38A is controlled to be further reduced. In the case of NO, it means that the mixing ratio of the heating liquid to be mixed with the cooling liquid has increased too much, so the control returns to Step 1 and repeats Steps 1 to 5 until T2 = T1.

一方、ステップ3において、冷却液温度調節手段40は、T2<T1かを判断する。YESの場合には、測定温度T2が目標冷却温度T1よりも低く、加熱液の混合比を大きくする必要があるのでステップ6に進む。NOの場合には、加熱液の混合比を小さくする必要があるのでステップ1の制御スタートに戻る。   On the other hand, in step 3, the coolant temperature adjusting means 40 determines whether T2 <T1. In the case of YES, the measured temperature T2 is lower than the target cooling temperature T1, and it is necessary to increase the mixing ratio of the heating liquid. In the case of NO, since it is necessary to reduce the mixing ratio of the heating liquid, the process returns to the control start in step 1.

ステップ6において、冷却液温度調節手段40は、比例2方弁38Aの開度が大きくなるように制御して冷却液に混合する加熱液の混合比を大きくし、ステップ7に進む。   In step 6, the coolant temperature adjusting means 40 controls the opening degree of the proportional two-way valve 38A to be increased so as to increase the mixing ratio of the heating liquid to be mixed with the coolant, and the process proceeds to step 7.

ステップ7において、冷却液温度調節手段40は、測定温度T2と目標冷却温度T1とを比較し、T2=T1かを判断する。そして、YESの場合にはT2=T1となる比例2方弁38Aの弁開度に維持して終了する。また、NOの場合にはステップ8に進む。   In step 7, the coolant temperature adjusting means 40 compares the measured temperature T2 with the target cooling temperature T1, and determines whether T2 = T1. And in the case of YES, the valve opening of the proportional two-way valve 38A where T2 = T1 is maintained and the process ends. If NO, the process proceeds to step 8.

ステップ8において、冷却液温度調節手段40は、測定温度T2と目標冷却温度T1とを比較し、T2<T1かを判断する。YESの場合には、冷却液に混合する加熱液の混合比が未だ少な過ぎることを意味するのでステップ6に戻り、比例2方弁38Aの開度が更に大きくなるように制御する。NOの場合には、冷却液に混合する加熱液の混合比が小さくなり過ぎたことを意味するのでステップ1の制御スタートに戻る。   In step 8, the coolant temperature adjusting means 40 compares the measured temperature T2 with the target cooling temperature T1, and determines whether T2 <T1. In the case of YES, it means that the mixing ratio of the heating liquid to be mixed with the cooling liquid is still too small. Therefore, the process returns to step 6 to control the opening degree of the proportional two-way valve 38A to be further increased. In the case of NO, it means that the mixing ratio of the heating liquid to be mixed with the cooling liquid has become too small, so that the control returns to step 1.

これにより、ウエハ搭載台12が目標冷却温度T1に冷却される。ちなみに、目標冷却温度T1を−47℃、加熱液を混合しない状態での冷却液温度T2を−52℃に設定した場合、本発明は従来のインラインヒータを用いた場合に比べて消費電力が400Wの省エネ効果を得ることができた。   Thereby, the wafer mounting table 12 is cooled to the target cooling temperature T1. Incidentally, when the target cooling temperature T1 is set to −47 ° C. and the cooling liquid temperature T2 in the state where the heating liquid is not mixed is set to −52 ° C., the present invention consumes 400 W compared to the case where the conventional inline heater is used. Energy saving effect.

以上説明した本発明のウエハ搭載台の冷却制御装置及び冷却制御方法によれば、以下の効果を奏することができる。   According to the cooling control apparatus and cooling control method for a wafer mounting table of the present invention described above, the following effects can be obtained.

(1)本発明では、目標冷却温度よりも低い温度に調整した冷却液に、従来排熱していた冷凍機ライン34の凝縮熱で加熱した加熱液を混合することにより、目標冷却温度に制御するようにした。これにより、本発明は、従来に比べてインラインヒータ使用分の消費電力を削減することができる。   (1) In the present invention, the cooling liquid adjusted to a temperature lower than the target cooling temperature is mixed with the heating liquid heated by the condensation heat of the refrigerator line 34 that has been exhausted conventionally, thereby controlling the target cooling temperature. I did it. Thereby, this invention can reduce the power consumption for inline heater use compared with the past.

(2)また、本発明は、混合比調整手段38(例えば比例2方弁38A)によって同じ熱媒体(例えば水)である冷却液と加熱液とを直接混合するので、目標冷却温度に制御する制御応答性が良い。例えば、上記した測定温度T2と目標冷却温度T1との偏差が大きい場合でも比例2方弁38Aの弁開度を制御(例えば全開)して冷却液と加熱液との混合比を変えるだけで目標冷却温度にすることができる。   (2) Further, in the present invention, the cooling liquid and the heating liquid, which are the same heat medium (for example, water), are directly mixed by the mixing ratio adjusting means 38 (for example, the proportional two-way valve 38A), so that the target cooling temperature is controlled. Good control response. For example, even when the deviation between the above measured temperature T2 and the target cooling temperature T1 is large, the target of the target is simply changed by controlling the valve opening of the proportional two-way valve 38A (for example, fully opened) and changing the mixing ratio of the cooling liquid and the heating liquid. Cooling temperature can be achieved.

(3)また、本発明は、搭載台冷却ライン24の冷却液と加熱ライン36の加熱液とを1台の送液ポンプ42で送液するとともに、搭載台冷却ライン24と加熱ライン36との間に定圧弁82を設け、送液ポンプ42の吐出圧力を定圧弁82の設定圧力よりも大きくする構成とした。これにより、搭載台冷却ライン24を流れる冷却液と加熱ライン36を流れる加熱液の圧力変動が小さくなり流れが安定するので、冷却液と加熱液との混合比を高精度に制御できる。   (3) Further, the present invention feeds the cooling liquid of the mounting table cooling line 24 and the heating liquid of the heating line 36 with one liquid feeding pump 42, and the mounting table cooling line 24 and the heating line 36 A constant pressure valve 82 is provided between them, and the discharge pressure of the liquid feed pump 42 is set to be larger than the set pressure of the constant pressure valve 82. Thereby, the pressure fluctuation of the cooling liquid flowing through the mounting table cooling line 24 and the heating liquid flowing through the heating line 36 is reduced and the flow is stabilized, so that the mixing ratio of the cooling liquid and the heating liquid can be controlled with high accuracy.

(4)また、本発明は、冷凍機ライン34は第1熱交換器48を介して高温側回路50と低温側回路52との2台の冷凍機を組み合わせた2元冷凍回路であるように構成した。これにより、冷凍機ライン34での冷媒の温度変動を小さくできるので、搭載台冷却ライン24の冷却液温度を高精度に制御することができる。したがって、冷却液と加熱液との混合比を高精度に制御できる。   (4) In the present invention, the refrigerator line 34 is a two-way refrigeration circuit in which two refrigerators of a high temperature side circuit 50 and a low temperature side circuit 52 are combined via a first heat exchanger 48. Configured. Thereby, since the temperature fluctuation of the refrigerant | coolant in the refrigerator line 34 can be made small, the coolant temperature of the mounting base cooling line 24 can be controlled with high precision. Therefore, the mixing ratio of the cooling liquid and the heating liquid can be controlled with high accuracy.

(5)これにより、インラインヒータを使用せずに高精度で且つ応答性能を速くすることができるので、従来よりも省エネに優れたウエハ搭載台の温度制御装置及び温度制御方法並びにプローバを提供することができる。   (5) As a result, it is possible to increase the accuracy and speed of response without using an in-line heater, and thus provide a temperature control device, a temperature control method, and a prober for a wafer mounting table that are more energy-saving than before. be able to.

10…プロ―バ、12…ウエハ搭載台、14…プローブ、16…プローブカード、18…温度制御装置、20…ヒータ、22…冷却機構、24…搭載台冷却ライン、26…制御部、28…搭載台温度検出手段、30…テスタ本体、32…コネクション部、34…冷凍機ライン、36…加熱ライン、38…混合比調整手段、38A…比例2方弁、40…冷却液温度調節手段、42…送液ポンプ、44…冷却コイル、46…冷却液温度検出手段、48…第1熱交換器、50…低温側回路、52…高温側回路、54…第1圧縮器、56…第1凝縮器、58…第1膨張弁、60…第1蒸発器、62…第2圧縮器、64…第2凝縮器、66…第2膨張弁、68…第2蒸発器、70…第2熱交換器、72…冷却ファン、74…第3熱交換器、74A…熱交換コイル、74B…加熱コイル、78…加熱ラインの往路、80…加熱ラインの復路、R…分岐点、S…合流点   DESCRIPTION OF SYMBOLS 10 ... Probe, 12 ... Wafer mounting base, 14 ... Probe, 16 ... Probe card, 18 ... Temperature control apparatus, 20 ... Heater, 22 ... Cooling mechanism, 24 ... Mounting base cooling line, 26 ... Control part, 28 ... Mounting base temperature detecting means, 30 ... tester body, 32 ... connection section, 34 ... refrigerator line, 36 ... heating line, 38 ... mixing ratio adjusting means, 38A ... proportional two-way valve, 40 ... coolant temperature adjusting means, 42 DESCRIPTION OF SYMBOLS ... Liquid feed pump, 44 ... Cooling coil, 46 ... Coolant temperature detection means, 48 ... 1st heat exchanger, 50 ... Low temperature side circuit, 52 ... High temperature side circuit, 54 ... 1st compressor, 56 ... 1st condensation 58 ... 1st expansion valve, 60 ... 1st evaporator, 62 ... 2nd compressor, 64 ... 2nd condenser, 66 ... 2nd expansion valve, 68 ... 2nd evaporator, 70 ... 2nd heat exchange 72 ... Cooling fan, 74 ... Third heat exchanger, 74A ... Heat exchange Coil, 74B ... heating coil, 78 ... outward path of heating line, 80 ... return path of heating line, R ... branch point, S ... confluence

Claims (5)

半導体ウエハを搭載するウエハ搭載台を目標冷却温度に冷却する冷却機構を備えたウエハ搭載台の温度制御装置において、
前記冷却機構は、
前記ウエハ搭載台に冷却液を循環させる搭載台冷却ラインと、
冷媒が循環するヒートポンプ型の冷凍機を有し、前記冷媒と前記搭載台冷却ラインの冷却液とを熱交換することで前記冷却液を前記目標冷却温度よりも低い温度に冷却する冷凍機ラインと、
前記冷凍機ラインの凝縮器で前記冷媒を液化する際に発生する凝縮熱により前記ウエハ搭載台の出口側から分流した冷却液を加熱した加熱液を前記ウエハ搭載台の入口側に合流させる加熱ラインと、
前記搭載台冷却ラインを循環させる冷却液と前記加熱ラインから前記ウエハ搭載台の入口側に合流させる加熱液との混合比を調整する混合比調整手段と、
前記ウエハ搭載台の入口側の冷却液温度を検出する冷却液温度検出手段と、
前記冷却液温度検出手段の測定結果に基づいて前記目標冷却温度になるように前記混合比調整手段を制御する冷却液温度調節手段と、を備えたことを特徴とするウエハ搭載台の温度制御装置。
In the temperature control device for a wafer mounting table equipped with a cooling mechanism for cooling the wafer mounting table for mounting a semiconductor wafer to a target cooling temperature,
The cooling mechanism is
A mounting table cooling line for circulating a coolant to the wafer mounting table;
A refrigerating machine line having a heat pump type refrigerating machine in which the refrigerant circulates, and cooling the cooling liquid to a temperature lower than the target cooling temperature by exchanging heat between the refrigerant and the cooling liquid of the mounting base cooling line; ,
A heating line for joining the heating liquid obtained by heating the cooling liquid divided from the outlet side of the wafer mounting table with the condensation heat generated when the refrigerant is liquefied in the condenser of the refrigerator line to the inlet side of the wafer mounting table When,
A mixing ratio adjusting means for adjusting a mixing ratio of the cooling liquid circulating through the mounting table cooling line and the heating liquid combined from the heating line to the inlet side of the wafer mounting table;
A coolant temperature detecting means for detecting a coolant temperature on the inlet side of the wafer mounting table;
And a cooling liquid temperature adjusting means for controlling the mixing ratio adjusting means so as to reach the target cooling temperature based on a measurement result of the cooling liquid temperature detecting means. .
前記搭載台冷却ラインの前記冷却液と前記加熱ラインの前記加熱液とを1台の送液ポンプで送液するとともに、前記搭載台冷却ラインの冷却液に前記加熱ラインの加熱液が合流する合流点の上流側に定圧弁を設け、
前記送液ポンプの吐出圧力を前記定圧弁の設定圧力よりも大きくした請求項1に記載のウエハ搭載台の温度制御装置。
The cooling liquid of the mounting table cooling line and the heating liquid of the heating line are fed by a single liquid feed pump, and the heating liquid of the heating line joins the cooling liquid of the mounting table cooling line Provide a constant pressure valve upstream of the point,
The temperature control device for a wafer mounting table according to claim 1, wherein a discharge pressure of the liquid feeding pump is larger than a set pressure of the constant pressure valve.
前記冷凍機ラインは熱交換器を介して低温側回路と高温側回路との2台の冷凍機を組み合わせた2元冷凍回路である請求項1又は2に記載のウエハ搭載台の温度制御装置。   The temperature control device for a wafer mounting table according to claim 1 or 2, wherein the refrigerator line is a two-way refrigeration circuit in which two refrigerators of a low temperature side circuit and a high temperature side circuit are combined via a heat exchanger. 半導体ウエハを搭載するウエハ搭載台を目標冷却温度に冷却するウエハ搭載台の温度制御方法において、
前記ウエハ搭載台に循環させる冷却液と、冷媒が循環するヒートポンプ型の冷凍機で冷却された冷媒とを熱交換させて前記冷却液を前記目標冷却温度よりも低温度の低温冷却液を形成する低温冷却液形成工程と、
前記冷凍機の凝縮器で前記冷媒を液化する際に発生する凝縮熱により前記ウエハ搭載台の出口側から分流した冷却液を加熱して前記目標冷却温度よりも高温度な加熱液を形成する加熱液形成工程と、
前記ウエハ搭載台の入口側の冷却液温度を検出する冷却液温度検出工程と、
前記冷却液温度検出工程の測定結果に基づいて前記ウエハ搭載台の入口側の冷却液温度が前記目標冷却温度になるように前記低温冷却液と前記加熱液とを混合する混合工程と、を備えたことを特徴とするウエハ搭載台の温度制御方法。
In the temperature control method of the wafer mounting table for cooling the wafer mounting table on which the semiconductor wafer is mounted to the target cooling temperature,
Heat exchange is performed between the coolant that is circulated to the wafer mounting table and the coolant that is cooled by a heat pump refrigerator that circulates the coolant to form a low-temperature coolant that is lower than the target cooling temperature. A low-temperature coolant forming step;
Heating that forms a heating liquid having a temperature higher than the target cooling temperature by heating the cooling liquid divided from the outlet side of the wafer mounting table by condensation heat generated when the refrigerant is liquefied by the condenser of the refrigerator. A liquid forming step;
A coolant temperature detecting step of detecting a coolant temperature on the inlet side of the wafer mounting table;
A mixing step of mixing the low-temperature cooling liquid and the heating liquid so that the cooling liquid temperature on the inlet side of the wafer mounting table becomes the target cooling temperature based on the measurement result of the cooling liquid temperature detection step. A method for controlling the temperature of a wafer mounting table.
ウエハ搭載台に搭載された半導体ウエハ上に形成された複数の半導体装置をテスタで検査するために、前記テスタの各端子を前記半導体装置の電極に接続するプローバにおいて、
前記ウエハ搭載台に請求項1〜3の何れか1に記載の温度制御装置を備えたことを特徴とするプローバ。
The multiple semiconductor devices formed on the mounted semiconductor wafer on the wafer mounting base in order to inspect a tester, the prober to connect each terminal of the tester to the electrodes of the semiconductor device,
A prober comprising the temperature control device according to claim 1 on the wafer mounting table.
JP2015071528A 2015-03-31 2015-03-31 Temperature control device, temperature control method and prober for wafer mounting table Active JP6429084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071528A JP6429084B2 (en) 2015-03-31 2015-03-31 Temperature control device, temperature control method and prober for wafer mounting table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071528A JP6429084B2 (en) 2015-03-31 2015-03-31 Temperature control device, temperature control method and prober for wafer mounting table

Publications (2)

Publication Number Publication Date
JP2016192485A JP2016192485A (en) 2016-11-10
JP6429084B2 true JP6429084B2 (en) 2018-11-28

Family

ID=57247027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071528A Active JP6429084B2 (en) 2015-03-31 2015-03-31 Temperature control device, temperature control method and prober for wafer mounting table

Country Status (1)

Country Link
JP (1) JP6429084B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112538A1 (en) * 2014-01-21 2015-07-30 Persimmon Technologies, Corp. Substrate transport vacuum platform
KR102594505B1 (en) * 2016-11-21 2023-10-26 세메스 주식회사 Apparatus of adjusting temperature for substrate
KR101910347B1 (en) * 2016-12-05 2018-10-23 주식회사 글로벌스탠다드테크놀로지 High-Tech Temperature Control Device for Semiconductor Manufacturing Facilities
US10509321B2 (en) * 2018-01-30 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Temperature controlling apparatus and method for forming coating layer
KR101972372B1 (en) * 2018-11-15 2019-04-25 안병도 Refrigeration system that improve refrigeration function and apparatus comprising the same
CN110721756B (en) * 2019-11-20 2023-04-25 吉林大学 High-speed rotation experiment table with temperature gradient field and control method thereof
JP2022125685A (en) 2021-02-17 2022-08-29 株式会社Kelk Semiconductor wafer temperature control device and semiconductor wafer temperature control method
DE102022118446A1 (en) 2022-07-22 2024-01-25 SINGLE Group GmbH Temperature control system with intermediate circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453924B1 (en) * 2006-12-27 2014-10-23 오리온 기까이 가부시끼가이샤 Device for precise temperature control
JP5641709B2 (en) * 2009-04-23 2014-12-17 キヤノン株式会社 Device manufacturing apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP2016192485A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6429084B2 (en) Temperature control device, temperature control method and prober for wafer mounting table
CN107045361B (en) Electronic component testing equipment with double-loop temperature control module
US6505478B1 (en) Heat exchanger having sloped deflection surface for directing refrigerant
US9885747B2 (en) Substrate inspection apparatus and substrate temperature control method
TWI534573B (en) Wide range temperature control apparatus
US9677822B2 (en) Efficient temperature forcing of semiconductor devices under test
JP2010127600A (en) Cooling device and cooling method
JP6750611B2 (en) Phase change cooling device and phase change cooling method
US20140209288A1 (en) Cooling technique
JP6931093B2 (en) Liquid temperature control device and method
JP6133129B2 (en) Temperature control device
KR101564172B1 (en) A hybrid chiller
JP5121322B2 (en) Prober and prober wafer chuck temperature control method
JP2022167947A (en) cooling system
TW202247254A (en) Substrate processing system
JP2019169549A (en) Cooling system of prober
JP4055892B2 (en) Refrigerant temperature control method, cooling method and cooling device
JP2008311483A (en) Prober and method of controlling temperature of wafer chuck of prober
JP6496346B2 (en) Temperature control device
JP2009081387A (en) Substrate cooling device
CN217215490U (en) Low-cost laser equipment with dual temperature system
CN115295926A (en) Energy storage cabinet automatic temperature control method and system based on thermoelectric effect
CN114582760A (en) Temperature control equipment for integrated circuit manufacturing process and integrated circuit manufacturing process system
CN117826898A (en) Temperature control device and method for optical device
Yun et al. Flat plate evaporator for electronic cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6429084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250