WO2009125776A1 - Temperature and humidity regulating apparatus and temperature and humidity regulating system - Google Patents

Temperature and humidity regulating apparatus and temperature and humidity regulating system Download PDF

Info

Publication number
WO2009125776A1
WO2009125776A1 PCT/JP2009/057148 JP2009057148W WO2009125776A1 WO 2009125776 A1 WO2009125776 A1 WO 2009125776A1 JP 2009057148 W JP2009057148 W JP 2009057148W WO 2009125776 A1 WO2009125776 A1 WO 2009125776A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
humidity
heating
cooling
Prior art date
Application number
PCT/JP2009/057148
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 太田
雅俊 寺島
正一 小林
Original Assignee
オリオン機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリオン機械株式会社 filed Critical オリオン機械株式会社
Priority to KR1020107021886A priority Critical patent/KR101516772B1/en
Priority to JP2010507251A priority patent/JP5343231B2/en
Priority to CN2009801128851A priority patent/CN101990617B/en
Publication of WO2009125776A1 publication Critical patent/WO2009125776A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles

Definitions

  • the present invention relates to a temperature / humidity adjusting device and a temperature / humidity adjusting method.
  • the compressor 100 includes a compressor 100, a three-way valve 102, a condenser 104, an expansion valve 106, a cooler 108, and a heater 110, and a cooling flow path including the cooler 108 and heating. And a heating channel provided with a vessel 110.
  • the cooler 108 and the heater 110 adjust the temperature of the air flow to be adjusted from the fan 112.
  • the high-temperature heat medium compressed by the compressor 100 is distributed to the cooling channel and the heating channel by the three-way valve 102.
  • the high-temperature heat medium distributed to the cooling channel side is cooled by the condenser 104.
  • the cooled heat medium is adiabatically expanded and cooled by the expansion valve 106, and is supplied to the cooler 108.
  • the heat medium that has been heated to absorb the temperature while cooling the air flow to be temperature-adjusted blown from the fan 112 is supplied to the compressor 100.
  • the high-temperature heat medium distributed to the heating flow path side is supplied to the heater 110, and the air flow to be temperature-adjusted cooled by the cooler 108 is heated and adjusted to a desired temperature.
  • the heating medium that is radiated and cooled while heating the air flow to be temperature adjusted in the heater 110 passes through the expansion valve 106 and the cooler 108 and is supplied to the compressor 100.
  • the entire amount of the high-temperature heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108.
  • the amount of cooling energy for cooling the air stream to be temperature-adjusted blown out from the air is constant.
  • the heating amount in the heater 110 with respect to the air flow to be temperature-adjusted cooled by the cooler 108 can be adjusted.
  • the temperature of the air flow it is possible to adjust the temperature of the air flow to be temperature-adjusted that passes through the cooler 108 and the heater 110, and to manage the temperature in the space unit in a narrow temperature range.
  • the entire amount of the high-temperature heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108.
  • the temperature adjustment for the air flow to be adjusted from the fan 112 is performed by reheating the high-temperature heat medium compressed by the compressor 100 supplied to the heater 110 exclusively.
  • the heat medium used for heating is also passed through the cooling flow path, so that the amount of heat that can be heated is only the amount of heat generated by the power of the compressor. And it is difficult to cope with load fluctuations on the heater 110. For this reason, when the set temperature of the air flow subject to temperature adjustment passing through the cooler 108 and the heater 110 is significantly increased, the temperature of the air flow subject to temperature adjustment does not reach the set temperature or reaches the set temperature. It may take a long time to complete. Further, in the temperature adjusting device shown in FIG. 13, there is no humidity adjusting function for adjusting the humidity of the air flow to be temperature adjusted passing through the cooler 108 and the heater 110, and the air flow is adjusted for humidity. I can't.
  • An object of the present invention is to provide a temperature / humidity adjustment apparatus and a temperature / humidity adjustment method that can perform energy adjustment and have a wide range in which temperature adjustment and humidity adjustment can be performed simultaneously.
  • the present inventors provide a cooling flow path and a heating flow path, and a cooling amount for the air to be adjusted in temperature and humidity that passes through the cooling means of the cooling flow path and the heating means of the heating flow path.
  • Providing distribution means that can change the heating amount providing heat pump means that can transfer heat from a low temperature part to a high temperature part to improve the heating capacity of the heating flow path, and in the gas flow path It has been found that it is effective to provide humidity adjusting means. That is, as means for solving the above-described problem, a heating flow path in which a part of the high-temperature first heat medium compressed and heated by the compressor is supplied to the heating means, and the remaining portion of the high-temperature first heat medium A cooling channel that is adiabatically expanded by the first expansion unit after being cooled by the condensing unit, and further cooled and supplied to the cooling unit; and the heating channel through which the high-temperature first heat medium is distributed And a circulation circuit in which the first heat medium that has passed through each of the cooling flow paths is re-supplied to the compressor, and the temperature and humidity adjustment target gas that passes through the heating means and the cooling means is a predetermined temperature and humidity.
  • a temperature / humidity adjusting device that distributes a part of the high-temperature first heat medium discharged from the compressor to the heating flow path side, and cools a remaining portion of the high-temperature first heat medium.
  • High temperature first heat distributed to the road side and distributed to the heating flow path and the cooling flow path Distributing means capable of changing the body distribution ratio, and further, after being cooled by releasing heat by the heating means and further adiabatically expanded by the second expansion means so as to improve the heating capacity of the heating channel.
  • the cooled first heat medium is a heat pump means having heat absorption means for absorbing heat from the second heat medium, which is an external heat source, and a high temperature that controls the distribution means and is distributed to the heating flow path and the cooling flow path.
  • a temperature / humidity adjusting device provided with humidity control means for controlling the temperature to a predetermined humidity. Further, as means for solving the above-mentioned problems, a heating means for directly supplying a part of the high-temperature first heat medium compressed and heated by a compressor, and a remaining part of the first heat medium is cooled by a condensing means.
  • the first heat is distributed to the heating means and the cooling means for the temperature / humidity adjustment target gas that sequentially passes through the cooling means that is adiabatically expanded by the first expansion means, and further cooled and supplied.
  • the distribution ratio of the medium is changed, the gas is adjusted to a predetermined temperature, the gas is adjusted to a predetermined humidity by humidity control means provided in a flow path through which the gas to be temperature and humidity is adjusted, and the heating is performed.
  • the first heat medium that has passed through the means is adiabatically expanded by the second expansion means, cooled, and passed through the heat pump means that includes the heat absorption means that absorbs heat from the second heat medium that is an external heat source.
  • a first heat medium that has passed through the cooling means can provide a temperature and humidity adjusting method for returning to the compressor.
  • the humidity control means a moisture supply means for supplying a predetermined amount of moisture to the gas subject to temperature / humidity adjustment is used, and droplets in the moisture supplied from the moisture supply means are directly heated by the heating means or by the gas heated by the heating means. Humidity can be adjusted by providing the moisture supply means on the gas inlet side or outlet side of the heating means so as to evaporate by heating.
  • a water spray nozzle for injecting water a control valve provided in a water supply pipe for supplying water to the water spray nozzle, and adjusting the control valve to adjust the amount of water supplied to the water spray nozzle Humidity control can be easily performed by using a moisture supply means including a humidity control unit to be controlled.
  • a moisture supply means including a humidity control unit to be controlled.
  • water vapor generating means for generating water vapor with a heater can be used as the humidity adjusting means. This water vapor generating means can be easily controlled by providing a humidity control unit that controls the amount of water vapor generated by adjusting the heating amount of the heater.
  • the cooling medium that is supplied to the condensing means of the cooling flow path to cool the first heat medium and the second heat medium that is supplied to the heat absorbing means of the heat pump means are the same heat medium, and the same heat medium is supplied to the condensing means Then, by supplying the heat absorption means, the heat of the high temperature first heat medium removed by the condensation means can be effectively used.
  • As the second heat medium it is effective from the viewpoint of energy saving to use the second heat medium supplied without being heated or cooled from the outside.
  • a rotational speed control means for controlling the rotational speed of the compressor is provided, and the distribution ratio of the high-temperature first heat medium controlled by the temperature control unit is determined by the heating amount applied to the temperature / humidity adjustment target gas by the heating means.
  • Compression that changes the rotational speed of the compressor via the rotational speed control means so that a distribution ratio that can reduce the amount of heat that cancels each other out of the cooling amount that is applied to the temperature and humidity adjustment target gas by the cooling means.
  • the machine control unit it is possible to reduce the amount of heat that cancels each other out of the amount of heat applied to each of the heating means and the cooling means, so that further energy saving is achieved in combination with the provision of the heat pump means. Can do.
  • the distribution ratio of the high temperature first heat medium is the heating side where the gas to be adjusted in temperature and humidity is heated, 95 to 85% of the high temperature first heat medium is distributed to the heating means.
  • the high-temperature first heat Rotation of the compressor via the rotational speed control means so that 95 to 85% of the medium is distributed to the cooling means and 5 to 15% of the remaining hot first heat medium is distributed to the heating means.
  • this rotation speed control means an inverter can be suitably used. Further, the first heat medium that has passed through each of the heating flow path and the cooling flow path is merged and re-supplied to the compressor.
  • the temperature adjustment range of the temperature / humidity adjustment target gas can be widened.
  • the distribution means for distributing the high temperature first heat medium to the heating flow path and the cooling flow path the distribution ratio of the high temperature first heat medium distributed to the heating flow path and the cooling flow path is substantially continuous.
  • the changeable distribution means the temperature adjustment of the temperature / humidity adjustment target gas can be adjusted more accurately.
  • the temperature and humidity adjustment target gas can be changed. The temperature can be adjusted even more precisely.
  • This “substantially changeable distribution means” means that a two-way valve or a proportional three-way valve is used as the distribution means, and when the two-way valve or the proportional three-way valve is driven by step control, This means that the three-way valve or the proportional three-way valve is microscopically driven stepwise, but includes a case where it is driven continuously as a whole.
  • the distribution means the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is equal to the amount of the high temperature first heat medium discharged from the compressor.
  • the distribution ratio of the high-temperature first heat medium discharged from the compressor can be changed smoothly.
  • the distribution ratio of the high-temperature first heat medium distributed to the heating device is adjusted to control the temperature / humidity adjustment target gas passing through the heating unit and the cooling unit to a predetermined temperature, and the high temperature distributed to the heating channel side
  • Each of the two-way valves is configured such that the total amount of the first heat medium and the high-temperature first heat medium distributed to the cooling channel side is equal to the high-temperature first heat medium discharged from the compressor.
  • the distribution ratio of the high-temperature first heat medium discharged from the compressor can also be changed smoothly by using a temperature control unit that adjusts the opening.
  • the cooling medium supplied to the condensing means of the cooling channel is a liquid medium
  • thermo / humidity adjusting apparatus and temperature / humidity adjusting method provided by the present inventors, high-temperature first heat discharged from the compressor is supplied to each of the heating means of the heating flow path and the cooling means of the cooling flow path. Medium is supplied. Furthermore, by changing the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, the heating amount and the cooling amount for the temperature / humidity adjustment target gas passing through the heating means and the cooling means are changed. The temperature of the gas passing through the heating means and the cooling means can be adjusted to a predetermined temperature.
  • the humidity control means for controlling the gas that has passed through the heating means and the cooling means to a predetermined humidity is provided, the humidity of the gas that has passed through the heating means and the cooling means can be adjusted to the predetermined humidity at the same time.
  • the temperature / humidity adjusting apparatus and the temperature / humidity adjusting method provided by the present inventors are provided with heat pump means.
  • this heat pump means is a means capable of transferring heat from a low-temperature part to a high-temperature part, among the high-temperature first heat medium (the high-temperature part) heated by being compressed by the compressor, the heat flow path
  • the first heat medium which has been cooled by releasing heat by the heating means and then further adiabatically expanded by the second expansion means and further cooled by the heat absorption means constituting the heat pump means (the second heat medium (external heat source)) It is possible to absorb heat from the low temperature part), raise the temperature, vaporize it, and return it to the compressor. For this reason, the heating capacity per unit power can be greatly increased, and energy saving can be achieved.
  • the high-temperature first heat medium (high temperature part) discharged from the compressor is supplied with the compression power energy by the compressor, and the heat pump means supplies the first heat source.
  • Energy absorbed from two heat media (low temperature part) can be added, and the heating capability of the heating means to which the high temperature first heat medium is supplied can be improved.
  • the minute load fluctuation of the gas subject to temperature / humidity adjustment passing through the heating means and the cooling means is a high temperature first distributed to the heating flow path and the cooling flow path.
  • the temperature / humidity adjustment target gas can be adjusted to a predetermined temperature, and the temperature / humidity adjustment target gas temperature adjustment The width can be increased.
  • the humidity of the gas subject to temperature and humidity adjustment can also be maintained at a predetermined humidity by the humidity control means.
  • the temperature / humidity adjusting device and the temperature / humidity adjusting method provided by the present inventors are not possible with the conventional temperature adjusting device shown in FIG. 13 or the temperature adjusting method using this temperature adjusting device.
  • the humidity adjustment target gas can be adjusted to a predetermined temperature and humidity, and energy can be saved.
  • FIG. 7A and 7B are explanatory views for explaining the principle of energy saving in the temperature / humidity adjusting apparatus shown in FIG. 1 when it is on the heating side. It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. It is a flowchart for demonstrating the control procedure by the temperature control part 22 and the COMP control part 44 of the temperature / humidity adjustment apparatus shown in FIG. It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. It is the schematic explaining the conventional temperature control apparatus.
  • FIG. 1 A schematic diagram illustrating an example of a temperature and humidity adjusting apparatus provided by the present inventors is shown in FIG.
  • the temperature and humidity of air as the temperature / humidity adjustment target gas sucked by the fan 12 in the space unit 10 installed in the clean room where the temperature and humidity are adjusted.
  • a heating flow path, a cooling flow path to be adjusted, and moisture supply means as humidity control means are provided.
  • a heater 14 as a heating means constituting the heating flow path and a cooler 16 as a cooling means constituting the cooling flow path are provided, and after the air in the clean room passes through the cooler 16 and is dehumidified, A cooler 16 and a heater 14 are disposed so as to pass through the heater 14.
  • a spray nozzle group 15 constituting a moisture supply device is disposed, and a predetermined amount of water is sprayed on the air dehumidified by the cooler 16.
  • the spray nozzles 15a, 15a,... Constituting the spray nozzle group 15 are supplied with pure water stored in the water tank 17 via a pump 19 and a control valve 23 provided in the water supply pipe 21. . Further, compressed air for spraying the supplied pure water is also supplied to the spray nozzles 15a, 15a,.
  • the water tank 17 stores pure water obtained by supplying normal water supplied via the pipe 33 to the pure water device 35. The amount of pure water stored in the water tank 17 is kept constant by a control valve 39 provided in the pure water supply pipe 37.
  • the spray nozzle 15a a known spray nozzle, for example, a two-fluid nozzle that sprays air and water at the same time to bring the water into a mist state can be used.
  • one two-fluid nozzle can be used in place of the spray nozzle group 15.
  • the first heat medium discharged from the compressor 18 is distributed to a heating flow path including the heater 14 and a cooling flow path including the cooler 16, A circulation circuit is provided in which the first heat medium that has passed through each of the cooling flow paths is re-supplied to the compressor 18.
  • the first heat medium for example, hydrocarbons such as propane, isobutane and cyclopentane, chlorofluorocarbons, ammonia and carbon dioxide gas can be used.
  • the first heat medium is supplied, and the air in the clean room is heated and cooled by vaporization and liquefaction of the first heat medium to adjust to a predetermined temperature.
  • Such a first heat medium is compressed and heated by the compressor 18 and discharged in the form of a gas at a high temperature (for example, 70 ° C.).
  • the high-temperature first heat medium discharged from the compressor 18 is distributed to the heating channel side provided with the heater 14 and the cooling channel side provided with the cooler 16 by the proportional three-way valve 20 serving as a distribution unit. .
  • the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is the high temperature first heat medium discharged from the compressor 18. Distribute to equal the amount.
  • the proportional three-way valve 20 is controlled by the temperature control unit 22.
  • the measured temperature measured by the temperature sensor 24 provided at the air outlet of the space unit 10 is compared with the set temperature, and heating is performed so that the measured temperature matches the set temperature.
  • the distribution ratio of the high-temperature first heat medium distributed to the flow path side and the cooling flow path side is changed substantially continuously to adjust the air sucked into the space unit 10 to a predetermined temperature.
  • This “substantially continuously changing” means that when the proportional three-way valve 20 is driven by step control, the proportional three-way valve 20 is microscopically driven stepwise, but is continuously continuous as a whole. This includes the case where it is driven.
  • the set temperature set in the temperature control unit 22 may be arbitrarily set. Further, although the temperature sensor 24 shown in FIG. 1 is installed on the discharge side of the fan 12, it may be installed on the suction side of the fan 12, or may be provided on the discharge side and suction side of the fan 12. The amount of pure water sprayed from the spray nozzle group 15 is controlled by the humidity control unit 27.
  • the humidity control unit 27 compares the measured humidity measured by the humidity sensor 29 provided at the air outlet of the space unit 10 with the set set humidity, and controls the control valve 23 so that the measured humidity matches the set humidity.
  • the air sucked into the space unit 10 is adjusted to a predetermined humidity.
  • the set humidity set in the humidity control unit 27 may be arbitrarily set.
  • the humidity sensor 29 shown in FIG. 1 is installed on the discharge side of the fan 12, but may be installed on the suction side of the fan 12, or may be provided on the discharge side and suction side of the fan 12.
  • the high-temperature first heat medium distributed to the heating channel side by the proportional three-way valve 20 is directly supplied to the heater 14, sucked into the space unit 10, and cooled by the cooler 16 and the spray nozzle group 15.
  • the water sprayed from is heated and adjusted to a predetermined temperature. At that time, the high-temperature first heat medium is radiated and cooled to become the first heat medium containing the condensate.
  • the high temperature first heat medium distributed to the cooling flow path side is cooled by the condenser 26 as the condensing means and then expanded adiabatically by the expansion valve 28 as the first expansion means, and further cooled (for example, Cooled to 10 ° C.).
  • the cooled first heat medium is supplied to the cooler 16 and vaporized to cool the air flow sucked into the space unit 10.
  • the cooling water is supplied.
  • the cooling water is heated to about 30 ° C. by the first heat medium of about 70 ° C. in the condenser 26 and is discharged from the pipe 31.
  • the cooling water discharged from the pipe 31 is supplied as a heat source to a heat absorber 32 as a heat absorption unit of the heat pump unit.
  • the heat absorber 32 is supplied with a first heat medium at about 10 ° C. which is adiabatic expansion of the first heat medium radiated by the heater 14 by an expansion valve 34 as a second expansion means and further cooled. Yes.
  • the first heat is based on the temperature difference between the cooling water that has absorbed heat in the condenser 26 and raised to about 30 ° C., and the first heat medium that has been cooled to about 10 ° C. by vaporization.
  • the medium can absorb heat from the cooling water.
  • the first heat medium that has been heated from the cooling water by the heat absorber 32 and heated up and vaporized is supplied to the compressor 18 via the accumulator 36.
  • the accumulator 36 is also supplied with a first heat medium that is supplied to the cooler 16 and absorbed and vaporized from the air flow sucked into the space unit 10.
  • the accumulator 36 is a type of accumulator that can store the liquid component and re-supply only the gas component to the compressor 18, it can reliably supply only the gas component of the first heat medium to the compressor 18.
  • an accumulator type accumulator can be used.
  • the cooling water discharged from the heat absorber 32 may be supplied to the pure water device 35 and sprayed from the spray nozzle 15 a of the spray nozzle group 15.
  • the temperature of the cooling water discharged from the heat absorber 32 is higher than that of the cooling water supplied from the pipe 33, the latent heat of vaporization of the water sprayed from the spray nozzle 15a is small, so the temperature drop of the air flow is reduced. it can.
  • the heat absorber 32 absorbs heat from the air flow and is heated and vaporized and the gas supplied to the cooler 16 and sucked into the space unit 10 absorbs heat. It is only necessary that the evaporated heat medium can be merged and re-supplied to the compressor 18.
  • the first heat medium radiated by the heater 14 is adiabatically expanded and cooled by the expansion valve 34, but in the cooling by the adiabatic expansion in the expansion valve 34, the first heat medium is between the first heat medium and the outside. There is no exchange of heat. For this reason, the first heat medium cooled adiabatically can absorb heat from the cooling water as the second heat medium supplied from the outside to the heat absorber 32 via the condenser 26.
  • energy absorbed from the cooling water supplied from the outside by the heat absorber 32 of the heat pump means can be added to the compression power energy by the compressor 18 to the high temperature first heat medium discharged from the compressor 18. .
  • the heat absorption by the heat absorber 32 can be performed only by the driving energy of the compressor 18 that circulates the first heat medium.
  • the cooling water supplied from the outside is supplied to the heat absorber 32 via the condenser 26. For this reason, part of the energy from the high-temperature first heat medium removed by the condenser 26 can also be added to the high-temperature first heat medium discharged from the compressor 18, thereby improving the heating capacity of the heating channel. it can.
  • the heating capacity of the heating channel can be improved.
  • the temperature adjustment range of the air flow can be expanded, and significant energy saving can be achieved.
  • the heater 14 can greatly increase not only the heating capacity for the air flow but also the heating capacity of the water sprayed from the spray nozzle 15a and the humidification capacity, the humidity adjustment range of the air flow can be greatly increased. Can also be expanded.
  • the heat pump means also against a decrease in the air flow temperature due to the spraying of a predetermined amount of pure water from the spray nozzle group 15 provided on the air supply side of the heater 14 with improved heating capacity. It is possible to have a heating capacity capable of raising the air flow temperature to a predetermined temperature by the endothermic heat.
  • a heating capacity capable of raising the air flow temperature to a predetermined temperature by the endothermic heat.
  • the distribution ratio between the high-temperature first heat medium distributed to the heating flow path side and the high-temperature first heat medium distributed to the cooling flow path side by the proportional three-way valve 20 It can be changed substantially continuously depending on the temperature within 10. For this reason, in the temperature / humidity adjusting apparatus shown in FIG. 1, the high temperature 1st heat medium is always supplied to the heating flow path and the cooling flow path, and the heater 14 of the heating flow path and the cooler 16 of the cooling flow path are The minute load fluctuation of the air flow of the temperature / humidity adjustment target passing through the air flow is quickly adjusted by immediately adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path by the proportional three-way valve 20.
  • the temperature change and humidity change of the unit 10 can be reduced, and a process requiring precision machining can be installed.
  • the heating capacity of the heating channel is improved, and cooling is performed from the proportional three-way valve 20 serving as a distribution unit among the channels including the heating channel and the cooling unit.
  • Each of the flow path including the heating flow path and the flow path including the cooling flow path until the first heat medium that has passed through each of the cooler 16 and the heat absorber 32 is joined by the accumulator 36 is independent of the flow path. Is provided. For this reason, the first heat medium having different temperatures is not mixed, and the temperature adjustment range of the temperature / humidity adjustment target can be widened.
  • the proportional three-way valve 20 allows the distribution ratio of the high-temperature first heat medium to be higher than that of the cooling flow path.
  • the distribution ratio distributed to the heating flow path can be significantly increased, and the air flow for temperature and humidity adjustment can be quickly adjusted to a predetermined temperature.
  • the humidity controller 27 adjusts the amount of pure water sprayed from the spray nozzle group 15 so that the humidity of the air flow is adjusted to the set humidity. Furthermore, in the temperature / humidity adjusting apparatus shown in FIG.
  • the heating capacity of the heating channel is improved, and it is not necessary to use other moisture supply means or heating means such as a heating steam generator, so that significant energy saving is achieved. Can do.
  • the temperature control unit 22 and the humidity control unit 27 independently adjust the temperature / humidity. However, even when the set temperature or the set humidity is changed, the air flow Temperature and humidity reach the set temperature and set humidity in a relatively short time.
  • the control valve 40 as the refrigerant control means is provided in the pipe 30 for supplying the cooling water to the condenser 26. The control valve 40 is controlled so that the discharge pressure of the compressor 18 is constant. As shown in FIG.
  • the control valve 40 is provided with a rod-like portion including a valve body 40 b that opens and closes an opening of a valve portion 40 a provided in the cooling water flow path.
  • the rod-like portion is biased in a direction in which the valve body 40b closes the opening of the valve portion 40a by a spring 40c with which the tip end surface abuts.
  • the other end surface of the rod-shaped portion is in contact with the bellows 40d to which the pressure of the first heat medium discharged from the compressor 18 is supplied, and the rod-shaped portion is opened against the urging force of the spring 40c.
  • the valve body 40b is urged in the direction to open the valve.
  • the valve body 40 d is moved by the bellows 40 d in a direction to open the opening of the valve portion 40 a and the cooling supplied to the condenser 26 is performed.
  • the amount of water increases and the cooling capacity of the condenser 26 is improved.
  • the cooling capacity of the condenser 26 is improved, and the discharge pressure of the compressor 18 is reduced.
  • the valve body 40d moves in the direction of closing the opening of the valve portion 40a, and the amount of cooling water supplied to the condenser 26 decreases.
  • the cooling capacity of the condenser 26 is reduced. For this reason, the discharge pressure of the compressor 18 becomes high. In this way, by keeping the discharge pressure of the compressor 18 constant, the temperature and humidity adjusting device can be stably operated. Moreover, it can adjust so that the amount of cooling water may be supplied to the condenser 26 more than needed, and it may not discharge
  • the control valve 40 is provided with a valve 41 in the bypass piping of the control valve 40 as shown in FIG. The valve 41 absorbs heat when the control valve 40 fails or when the supply amount of the high-temperature first heat medium supplied to the heater 14 increases, the discharge pressure of the compressor 18 decreases, and the supply water is insufficient.
  • a spray nozzle group 15 for spraying pure water is disposed between the cooler 16 and the heater 14, but as shown in FIG.
  • the spray nozzle group 15 may be disposed on the air outlet side. In this way, even if the spray nozzle group 15 is disposed on the air outlet side of the heater 14, water droplets sprayed from the spray nozzle group 15 can be heated by the heater 14 and heated by the air flow to be evaporated.
  • the cooler 16 and the heater 14 are arranged so that air is supplied to the heater 14 and then supplied to the cooler 16.
  • a spray nozzle group 15 may be disposed between the two. Also in this case, water droplets sprayed from the spray nozzle group 15 can be heated by the heater 14 and heated by the air flow to evaporate. Furthermore, it is arrangement
  • each of the two two-way valves 38 a and 38 b is controlled by the temperature control unit 22.
  • the temperature control unit 22 adjusts the opening degree of each of the two-way valves 38a and 38b, and converts the gaseous first high-temperature heat medium compressed and heated by the compressor 18 into a heating channel and a cooling channel.
  • the distribution ratio to be distributed is adjusted substantially continuously, and the air flow passing through the heater 14 and the cooler 16 is controlled to a predetermined temperature. At that time, the total amount of the high temperature first heat medium amount distributed to the heater 14 side and the high temperature first heat medium amount distributed to the cooler 16 side is the first high temperature discharged from the compressor 18.
  • the opening of the two-way valves 38a and 38b is adjusted so as to be equal to the amount of heat medium, and is continuously proportionally distributed. At that time, the relationship between the valve opening and the flow rate of each of the two-way valves 38a and 38b is not linear as shown in FIG. For this reason, the temperature control unit 22 holds the flow rate characteristic data for each of the two-way valves 38a and 38b shown in FIG. 5, and the temperature control unit 22 determines the flow rate characteristics of the two-way valves 38a and 38b. An opening signal is transmitted to each two-way valve 38a, 38b.
  • “to adjust the distribution ratio distributed to the heating flow path and the cooling flow path substantially continuously” or “to adjust the distribution ratio substantially continuously” means that the two-way valves 38a and 38b are stepped.
  • the opening degree of the two-way valves 38a, 38b is microscopically driven and adjusted, It is meant to include the case of being continuously driven and adjusted as a whole.
  • the air flow cooled by the cooler 16 is heated by the heater 14 as shown in FIG. 6A.
  • the energy heated by the heater 14 may be larger than the energy A required to heat the airflow.
  • FIG. 6B if the overlapping energy between the heater 14 and the cooler 16 can be reduced as much as possible, energy saving can be achieved.
  • the air heated by the heater 14 is cooled by the cooler 16 as shown in FIG. 7A.
  • the energy to be cooled by the cooler 16 may be larger than the energy B required to cool the airflow.
  • FIG. 7B if the overlapping energy between the cooler 16 and the heater 14 can be reduced, energy saving can be achieved.
  • the operation of the temperature / humidity adjusting device becomes unstable and the air flow It takes time to stabilize at a predetermined temperature. For this reason, to the extent that the temperature / humidity adjusting device can be stably operated, it is necessary that the amount of heat that cancels each other out of the amount of heating applied to the heater 14 and the amount of cooling applied to the cooler 16 must be present at a minimum. .
  • the minimum necessary amount of heat that cancels each other differs somewhat depending on the temperature / humidity adjusting device, and is preferably obtained experimentally. In this way, in the temperature and humidity adjusting apparatus shown in FIG.
  • a compressor control unit 44 (hereinafter referred to as a COMP control unit 44) is connected via an inverter 42 as a rotation speed control unit that controls the rotation speed of the compressor 18 so as to reduce the amount of heat canceling each other as much as possible. Control).
  • a COMP control unit 44 is connected via an inverter 42 as a rotation speed control unit that controls the rotation speed of the compressor 18 so as to reduce the amount of heat canceling each other as much as possible. Control).
  • the same members as those of the temperature / humidity adjusting device shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted. .
  • the COMP control unit 44 cooperates with the temperature control unit 22 that controls the proportional three-way valve 20 to calculate the amount of heat that cancels each other out of the heating amount applied to the heater 14 and the cooling amount applied to the cooler 16. Control air temperature and humidity while reducing as much as possible.
  • the control of the proportional three-way valve 20 by the temperature control unit 22 and the control of the rotation speed of the compressor 18 by the COMP control unit 44 are shown in the flowchart of FIG. When the temperature / humidity adjusting apparatus shown in FIG. 8 was trial run, when operating on the cooling side with respect to the air flow, the amount of heat applied to the heater 14 was increased by the proportional three-way valve 20 to the heater 14 side.
  • the distribution ratio of one heat medium is 5 to 15% (the distribution ratio of the high temperature first heat medium to the cooler 16 side by the proportional three-way valve 20 is 95 to 85%). did.
  • the distribution ratio of the high-temperature first heat medium to the heater 14 side by the proportional three-way valve 20 is 95 to 85.
  • % The distribution ratio of the high-temperature first heat medium to the cooler 16 side by the proportional three-way valve 20 is 5 to 15%
  • the amount of heating applied to the heater 14 side specifically, the distribution ratio of the high-temperature first heat medium to the heater 14 side by the proportional three-way valve 20,
  • the rotational speed of the compressor 18 is controlled so as to be 5 to 15%, and when operating on the heating side with respect to the air flow, a distribution ratio of 95 to 85% is obtained.
  • the rotational speed of the compressor 18 is controlled.
  • step S14 it is determined whether the air flow reaches a predetermined temperature and is stable. If the temperature of the air flow is not stable, the process returns to step S12 and the heater 14 side and the cooler by the proportional three-way valve 20 are returned. The distribution ratio of the high-temperature heat medium distributed to the 16 side is continuously changed. Steps S12 and S14 are performed by the temperature control unit 22.
  • the distribution ratio of the high-temperature first heat medium distributed to the heater 14 in steps S16 to S22 is within a predetermined range. It is determined whether or not. Steps S16 to S22 are performed by the COMP control unit 44.
  • the average distribution rate of the high-temperature first heat medium shown in FIG. 9 varies depending on the distribution ratio of the high-temperature first heat medium distributed to the heater 14 side. A value obtained by averaging the distribution ratio of the medium, and may be simply referred to as an average distribution ratio of the first heat medium.
  • step S16 and step S18 it is determined whether or not the average distribution ratio of the first heat medium to the heater 14 side is within 5 to 15% when it is assumed that the air flow is on the cooling side. To do.
  • the average distribution ratio of the first heat medium to the heater 14 side is within 5 to 15%, it is on the cooling side with respect to the air flow and within the range where the operation of the temperature and humidity control device is stable. Therefore, it passes through step S16 and returns from step S18 to step S16.
  • the average distribution ratio of the first heat medium to the heater 14 side is less than 5%, the average distribution ratio of the first heat medium to the heater 14 side is too low. Driving tends to be unstable.
  • step S ⁇ b> 24 an increase signal for increasing the rotational speed of the compressor 18 set in the inverter 42 by a minimum change amount is transmitted from the COMP control unit 44 to the inverter 42.
  • the temperature and humidity adjustment device can be stably operated by increasing the rotation speed of the compressor 18 with the minimum change amount. Since the minimum change amount for changing the rotation speed of the compressor 18 varies depending on the temperature and humidity adjusting device, it is preferable to obtain it experimentally. However, when the rotation speed of the compressor 18 is 2000 to 5000 rpm, the minimum change amount is preferred.
  • the amount is preferably in the range of 3 to 10%.
  • the average distribution ratio of the first heat medium to the heater 14 side exceeds 15%, it is determined that the air flow is not on the cooling side through steps S16 and S18.
  • the process proceeds to S20 and step S22.
  • step S20 and step S22 when it is assumed that the air flow is on the heating side, it is determined whether or not the average distribution ratio of the first heat medium to the heater 14 side is within 95 to 85%.
  • the average distribution ratio of the first heat medium to the heater 14 side is within 85 to 95%, the air flow is on the heating side, and the operation of the temperature and humidity control device is within a stable range. Therefore, it passes through step S20 and returns from step S22 to step S16.
  • step S20 the average distribution ratio of the first heat medium to the heater 14 side
  • step S24 the process proceeds from step S20 to step S24, and the rotational speed of the compressor 18 is increased.
  • step S ⁇ b> 24 an increase signal for increasing the rotational speed of the compressor 18 set in the inverter 42 by a minimum change amount is transmitted from the COMP control unit 44 to the inverter 42.
  • step S22 When the average distribution ratio of the first heat medium to the heater 14 side is less than 85%, in step S22, the air flow is applied to the heater 14 in a state that is neither the heating side nor the cooling side. Of the heating amount and the cooling amount applied to the cooler 16, it is determined that the amount of heat canceling each other is large. For this reason, it transfers to step S26 and the rotation speed of the compressor 18 is reduced.
  • step S ⁇ b> 26 a reduction signal that lowers the rotation speed of the compressor 18 set in the inverter 42 by the minimum change amount is transmitted from the COMP control unit 44 to the inverter 42. This is because the rotation speed of the compressor 18 is reduced by the minimum change amount and the air flow is shifted to the heating side or the cooling side.
  • step S28 after passing through step S24 or step S26, and it is determined whether or not the compressor 18 is in operation. If the compressor 18 is in operation, the process returns to step S14.
  • step S14 in step S24 or step S26, it is determined whether the air flow in the space unit 10 reaches a predetermined temperature and is stable in a state where the rotation speed of the compressor 18 is increased or decreased by the minimum change amount. .
  • the average distribution ratio of the first heat medium to the heater 14 side is within the predetermined range again in steps S16 to S26. Judge whether or not.
  • step S14 if it is determined in step S14 that the temperature of the air flow in the space unit 10 is not stable, the process returns to step S12, and the proportional three-way valve 20 distributes the heater 14 side and the cooler 16 side. 1 The distribution ratio of the heat medium is continuously changed. After the air flow in the space unit 10 reaches a predetermined temperature and stabilizes, the process proceeds to steps S16 to S26. In step S28, when the compressor 18 is not in the operating state, the control by the temperature control unit 22 and the COMP control unit 44 is stopped. In the flowchart shown in FIG. 9 described above, the temperature control unit 22 controls the first heat medium to the heater 14 side while paying attention to the average distribution ratio to the heater 14 side.
  • an input unit for inputting the set temperature and set humidity, a display unit for displaying the operation state, and the like may be provided integrally or separately from the temperature control unit 22 and the humidity control unit 27.
  • the condenser 26 and the heat absorber 32 use water as cooling water or a heating source.
  • FIG. A system in which room air is blown by the fan 50 may be used as the cooling source and the heating source.
  • the constituent members constituting the temperature and humidity adjusting device shown in FIG. 10 the same members as those of the temperature and humidity adjusting device shown in FIG. 1 are assigned the same reference numerals as in FIG. .
  • the spray nozzle group 15 for spraying water is provided as the humidity control means.
  • a steam generator 52 may be disposed in the flow path.
  • the steam generator 52 is a device that supplies moisture to the air flow through the heater 14 and the cooler 16, and generates steam by heating the pure water stored in the container 54 by the heater 56.
  • the heater 56 is controlled by the humidity control unit 27. That is, the humidity control unit 27 adjusts the heating amount of the heater 56 of the steam generator 52 in accordance with the difference between the humidity in the airflow discharged from the fan 12 and the target humidity, and discharges from the fan 12. Adjust the humidity in the airflow to the target humidity.
  • the temperature and humidity adjustment apparatus shown in FIG. 11 can save energy. That is, the air flow is heated by the heater 14 whose heating capacity is increased by installing the heat pump means, the dew point in the air flow is increased, and a large amount of moisture can be contained in the air flow.
  • the constituent members constituting the temperature / humidity adjusting apparatus shown in FIG. 11 the same members as those of the temperature / humidity adjusting apparatus shown in FIG. To do.
  • water may be supplied to the condenser 26 and the heat absorber 32 through separate piping.
  • the condenser 26 may be supplied via a pipe 33 and the heat absorber 32 may be supplied via a pipe 32a.
  • Both water that has passed through the condenser 26 and the heat absorber 32 are discharged out of the system.
  • the water supplied to the condenser 26 and the water supplied to the pure water device 35 may be supplied by separate pipes.
  • normal water may be supplied to the condenser 26 and pure water may be supplied to the pure water device 35.
  • the humidity control means used in the temperature / humidity adjusting apparatus shown in FIGS. 1 to 12 dry air dried from the air to be temperature / humidity adjusted is used in combination with the moisture supply means or instead of the moisture supply means. Means for blowing into the air flow channel may be used.
  • the temperature and humidity of the gas flow adjusted by the temperature / humidity adjustment device are simultaneously adjusted.
  • the range which can be performed is wide, and it can enjoy the effect
  • the heater 14 that directly supplies a part of the high-temperature first heat medium compressed and heated by the compressor 18, and the remaining part of the first heat medium is cooled by the condenser 26,
  • the three-way valve 20 or the two-way valve 38a which distributes the cooler 16 which is adiabatically expanded by the expansion valve 28 and further cooled and supplied to the heater 14 and the cooler 16 with respect to the sequentially passing air flow.
  • the distribution ratio of the first heat medium is changed by 38b to adjust the air flow to a predetermined temperature, and the air flow is adjusted to a predetermined humidity by humidity control means provided in a flow path through which the air flow passes.
  • the first heat medium that passed through the heater 14 was adiabatically expanded by the expansion valve 34 to be cooled, and passed through a heat pump means including a heat absorber 32 that absorbs heat from water or air as an external heat source. Then, it returns to the compressor 18 together with the first heat medium that has passed through the cooler 16.
  • the temperature / humidity adjustment apparatus and temperature / humidity adjustment method described above are used for temperature / humidity adjustment of clean rooms in the precision processing field such as the manufacturing process of semiconductor devices. Of course, it can be used for temperature and humidity adjustment.
  • temperature / humidity adjustment apparatus and temperature / humidity adjustment method that have been described are applicable to other fields, such as painting booths, painting booths, solar simulators, printed circuit board stockers, electron microscopes, tablet presses, three-dimensional measuring machines, chromatographs, drafts In fields such as chambers, exposure equipment, spin coaters, liquid crystal glass substrates, screen printers, diagnostic imaging equipment, cement curing, molding dies, injection molding machines, cell culture, plant cultivation, food storage and ripening, DNA immobilization, etc. It can also be used for temperature and humidity adjustment.

Abstract

Disclosed is a temperature and humidity regulating apparatus for resolving the problems of energy waste and an inability to regulate the temperature of a gas stream such as an air stream across a broad range and to regulate the humidity thereof, which are problems in conventional temperature regulating apparatuses. The temperature and humidity regulating apparatus comprises a heating flow passage for supplying part of a first heat medium compressed by a compressor (18) to a heater (14), a cooling flow passage for condensing, adiabatically expanding, cooling, and then supplying the remaining part of the first heat medium to a cooler (16), and an atomizing nozzle group (15) provided between the heater (14) and the cooler (16) for supplying a predetermined quantity of moisture to air, and the air passing through the heater (14) and the cooler (16) is set to a predetermined temperature. The humidity and temperature regulating apparatus further comprises a three-way proportional valve (20) able to alter the distribution ratio of the first heat medium to the cooling flow passage and the heating flow passage, a heat pump means for increasing the heating capacity of the heating flow passage, a temperature controller (22) for controlling the three-way proportional valve (20) and regulating the distribution ratio of the first heating medium to control the air passing through the heater (14) and the cooler (16) to a predetermined temperature, and a humidity controller (27) for controlling the quantity of water supplied to the atomizer nozzle group (15) in such a way that the air that has passed through the heater (14) and the cooler (16) is controlled to a predetermined humidity.

Description

温湿度調整装置及び温湿度調整方法Temperature / humidity adjusting device and temperature / humidity adjusting method
 本発明は温湿度調整装置及び温湿度調整方法に関する。 The present invention relates to a temperature / humidity adjusting device and a temperature / humidity adjusting method.
 通常、半導体装置の製造工程等の精密加工分野では、その殆どが温度及び湿度が制御されたクリーンルーム内に設置されている。
 しかし、近年、精密加工分野でも、従来よりも更に加工精度の高い精密加工等が要求される工程が出現しつつある。
 かかる高い精密加工等が要求される工程では、通常、クリーンルームの温度変化よりも更に小さな温度変化の環境であることが要求される。このため、高い精密加工等が要求される工程は、精密な温度管理がなされている空間ユニット内に設けられる。
 この様な空間ユニットの温度調整に用いられる温度調整装置としては、例えば特開昭51-97048号公報には、図13に示す温度調整装置が記載されている。
 図13に示す温度調整装置には、圧縮機100、三方弁102、凝縮器104、膨張弁106、冷却器108及び加熱器110が設けられており、冷却器108を具備する冷却流路と加熱器110を具備する加熱流路とが設けられている。
 かかる冷却器108と加熱器110とによって、ファン112から吹き出す温度調整対象の空気流の温度が調整される。
 この図13に示す温度調整装置では、圧縮機100で圧縮された高温の熱媒体を三方弁102によって、冷却流路と加熱流路とに分配する。冷却流路側に分配された高温の熱媒体は、凝縮器104で冷却される。この冷却された熱媒体は、膨張弁106によって断熱的に膨張されて冷却され、冷却器108に供給される。冷却器108では、ファン112から吹き出す温度調整対象の空気流を冷却しつつ吸熱して昇温された熱媒体は圧縮機100に供給される。
 一方、加熱流路側に分配された高温の熱媒体は加熱器110に供給され、冷却器108で冷却された温度調整対象の空気流を加熱して所望の温度に調整する。この様に、加熱器110において、温度調整対象の空気流を加熱しつつ放熱して降温された熱媒体は、膨張弁106及び冷却器108を通過して圧縮機100に供給される。
Usually, in the precision processing field such as the manufacturing process of semiconductor devices, most of them are installed in a clean room in which temperature and humidity are controlled.
However, in recent years, in the precision processing field, processes requiring precision processing with higher processing accuracy than before have been emerging.
In a process that requires such high precision processing, it is usually required that the temperature change environment is smaller than that of a clean room. For this reason, a process requiring high precision processing or the like is provided in a space unit in which precise temperature management is performed.
As a temperature adjusting device used for adjusting the temperature of such a space unit, for example, Japanese Patent Application Laid-Open No. 51-97048 describes a temperature adjusting device shown in FIG.
The temperature control apparatus shown in FIG. 13 includes a compressor 100, a three-way valve 102, a condenser 104, an expansion valve 106, a cooler 108, and a heater 110, and a cooling flow path including the cooler 108 and heating. And a heating channel provided with a vessel 110.
The cooler 108 and the heater 110 adjust the temperature of the air flow to be adjusted from the fan 112.
In the temperature adjusting device shown in FIG. 13, the high-temperature heat medium compressed by the compressor 100 is distributed to the cooling channel and the heating channel by the three-way valve 102. The high-temperature heat medium distributed to the cooling channel side is cooled by the condenser 104. The cooled heat medium is adiabatically expanded and cooled by the expansion valve 106, and is supplied to the cooler 108. In the cooler 108, the heat medium that has been heated to absorb the temperature while cooling the air flow to be temperature-adjusted blown from the fan 112 is supplied to the compressor 100.
On the other hand, the high-temperature heat medium distributed to the heating flow path side is supplied to the heater 110, and the air flow to be temperature-adjusted cooled by the cooler 108 is heated and adjusted to a desired temperature. As described above, the heating medium that is radiated and cooled while heating the air flow to be temperature adjusted in the heater 110 passes through the expansion valve 106 and the cooler 108 and is supplied to the compressor 100.
 図13に示す温度調整装置では、圧縮機100で圧縮された高温の熱媒体の全量が膨張弁106を通過して断熱的に膨張されて冷却され、冷却器108に供給されるため、ファン112から吹き出す温度調整対象の空気流を冷却する冷却エネルギー量は一定である。
 一方、三方弁102によって加熱流路側に分配する高温の熱媒体の流量を調整することによって、冷却器108で冷却された温度調整対象の空気流に対する加熱器110での加熱量を調整できる。
 従って、冷却器108及び加熱器110を通過する温度調整対象の空気流の温度を調整でき、空間ユニット内の温度管理を狭い温度範囲で行うことは可能である。
 しかし、図13に示す温度調整装置では、圧縮機100で圧縮された高温の熱媒体の全量が膨張弁106を通過して断熱的に膨張されて冷却され、冷却器108に供給されるため、ファン112から吹き出す温度調整対象の空気流に対する温度調整は、専ら加熱器110に供給する圧縮機100で圧縮された高温の熱媒体の再加熱によって行われる。
 この様に、図13に示す温度調整装置で採用された温度制御方式では、加熱に使用した熱媒体も冷却流路に流すため、加熱できる熱量は圧縮機の動力による熱量のみとなり、冷却器108及び加熱器110に対する負荷変動への対応が困難である。
 このため、冷却器108及び加熱器110を通過する温度調整対象の空気流の設定温度を大幅に高くする場合、温度調整対象の空気流の温度が設定温度に到達しなかったり、設定温度に到達するまでに著しく時間がかかることがある。
 更に、図13に示す温度調整装置では、冷却器108及び加熱器110を通過する温度調整対象の空気流の湿度を調整する湿度調整機能が設けられておらず、空気流に湿度調整を施すことはできない。
 そこで、本発明は、空気流等の気体流の温度調整できる範囲が狭いと共に、湿度調整を施すことができず、且つエネルギー的に無駄がある従来の温度調製装置の課題を解決し、気体流の温度調整と湿度調整とを同時に行うことのできる範囲が広く、且つ省エネルギーを図ることのできる温湿度調整装置及び温湿度調整方法を提供することを目的とする。
 本発明者らは、前記課題を解決するには、冷却流路及び加熱流路を設け、冷却流路の冷却手段及び加熱流路の加熱手段を通過する温湿度調整対象の空気に対する冷却量と加熱量とを変更可能な分配手段を設けること、加熱流路の加熱能力を向上すべく、低温の部分から温度の高い部分へ熱を移動できるヒートポンプ手段を設けること、及び気体流の流路内に湿度調整手段を設けることが有効であることを見出した。
 すなわち、前記課題を解決する手段としては、圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が加熱手段に供給される加熱流路と、前記高温の第1熱媒体の残余部が凝縮手段で冷却されてから第1膨張手段で断熱的に膨張して更に冷却されて冷却手段に供給される冷却流路と、前記高温の第1熱媒体が分配されて前記加熱流路と冷却流路との各々を通過した第1熱媒体が圧縮機に再供給される循環回路とを具備し、前記加熱手段及び冷却手段を通過する温湿度調整対象の気体を所定の温度及び湿度に調整する温湿度調整装置であって、前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、前記加熱流路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温湿度調整対象の気体を所定温度に制御する温度制御部と、前記加熱手段及び冷却手段を通過する気体を所定の湿度に制御する湿度制御手段とが設けられている温湿度調整装置を提供できる。
 また、前記課題を解決する手段としては、圧縮機で圧縮して加熱した高温の第1熱媒体の一部を直接供給する加熱手段と、前記第1熱媒体の残余部を凝縮手段で冷却した後、第1膨張手段で断熱的に膨張させて更に冷却して供給する冷却手段とを、順次通過する温湿度調整対象の気体に対し、前記加熱手段と冷却手段とに分配する前記第1熱媒体の分配率を変更して、前記気体を所定温度に調整すると共に、前記温湿度調整対象の気体が通過する流路に設けた湿度制御手段によって前記気体を所定湿度に調整し、且つ前記加熱手段を通過した第1熱媒体を、第2膨張手段によって断熱的に膨張させて冷却して、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段を通過させた後、前記冷却手段を通過した第1熱媒体と共に前記圧縮機に戻す温湿度調整方法を提供できる。
 本発明者らが提供した課題を解決する手段において、下記の好ましい態様を上げることができる。
 湿度制御手段として、温湿度調整対象の気体に所定量の水分を供給する水分供給手段を用い、前記水分供給手段から供給した水分中の液滴を加熱手段によって直接又は加熱手段で加熱した気体によって加熱して蒸発するように、前記水分供給手段を加熱手段の前記気体の入口側又は出口側に設けることによって、湿度調整を行うことができる。
 この水分供給手段として、水を噴射する水噴霧ノズルと、前記水噴霧ノズルに水を供給する水供給配管に設けた制御弁と、前記制御弁を調整し、前記水噴霧ノズルに供給する水量を制御する湿度制御部とを具備する水分供給手段を用いることによって、湿度制御を容易に行うことができる。
 或いは、湿度調整手段として、加熱ヒータによって水蒸気を発生させる水蒸気発生手段を用いることができる。
 この水蒸気発生手段には、加熱ヒータの加熱量を調整して水蒸気発生量を制御する湿度制御部を設けることによって、湿度制御を容易に行うことができる。
 冷却流路の凝縮手段に供給されて第1熱媒体を冷却する冷却媒体とヒートポンプ手段の吸熱手段に供給される第2熱媒体とを、同一熱媒体とし、前記同一熱媒体を凝縮手段に供給してから前記吸熱手段に供給することによって、凝縮手段で除去された高温の第1熱媒体の熱を有効利用できる。
 この第2熱媒体として、外部から加熱又は冷却されることなく供給された第2熱媒体を用いることが、省エネルギーの観点から有効である。
 また、圧縮機の回転数を制御する回転数制御手段を設け、温度制御部によって制御される高温の第1熱媒体の分配比率が、加熱手段によって温湿度調整対象の気体に加えられる加熱量と冷却手段によって温湿度調整対象の気体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくできる分配比率となるように、前記回転数制御手段を介して圧縮機の回転数を変更する圧縮機制御部を設けることによって、加熱手段と冷却手段との各々に加えられる熱量のうち、互いに打ち消し合う熱量を少なくできるため、ヒートポンプ手段を設けたことと相俟って更に一層の省エネルギーを図ることができる。
 かかる圧縮機制御部では、高温の第1熱媒体の分配比率が、温湿度調整対象の気体が加熱される加熱側の場合、高温の第1熱媒体の95~85%が加熱手段に分配され且つ残余の高温の第1熱媒体の5~15%が冷却手段に分配される範囲となるように、他方、前記温湿度調整対象の気体が冷却される冷却側の場合、高温の第1熱媒体の95~85%が冷却手段に分配され且つ残余の高温の第1熱媒体の5~15%が加熱手段に分配される範囲となるように、回転数制御手段を介して圧縮機の回転数を制御することによって、温湿度調整装置の省エネルギーを図りつつ、温湿度調整装置を安定して運転できる。この回転数制御手段としては、インバータを好適に用いることができる。
 更に、加熱流路と冷却流路との各々を通過した第1熱媒体が合流して圧縮機に再供給される第1熱媒体の流路のうち、分配手段から前記第1熱媒体が合流されるまでの前記加熱流路を含む流路と冷却流路を含む流路とを、流路的に独立して設けることによって、温湿度調整対象の気体の温度調整幅を広くできる。
 この加熱流路と冷却流路とに高温の第1熱媒体を分配する分配手段としては、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更可能な分配手段を用いることによって、温湿度調整対象の気体の温度調整を更に一層精密調整できる。
 かかる分配手段としては、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更可能な分配手段を用いることによって、温湿度調整対象の気体の温度調整を更に一層精密調整できる。
 この「実質的に連続して変更可能な分配手段」とは、分配手段として二方弁又は比例三方弁を用い、二方弁又は比例三方弁がステップ制御で駆動が制御されているとき、二方弁又は比例三方弁は微視的にはステップ的に駆動されているものの、全体的には連続的に駆動されている場合を含むことを意味する。
 分配手段としては、加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記高温の第1熱媒体を比例分配する比例三方弁を用いることによって、圧縮機から吐出された高温の第1熱媒体の分配比率をスムーズに変更できる。
 また、分配手段として、高温の第1熱媒体を加熱流路側と冷却流路側とに分岐する分岐配管の各々に設けた二方弁とし、温度制御部を、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、加熱手段と冷却手段とを通過する温湿度調整対象の気体を所定温度に制御すると共に、前記加熱流路側に分配される高温の第1熱媒体と冷却流路側に分配される高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記二方弁の各々の開度を調整する温度制御部とすることによっても、圧縮機から吐出された高温の第1熱媒体の分配比率をスムーズに変更できる。
 更に、冷却流路の凝縮手段に供給する冷却媒体を液状媒体とし、圧縮機の吐出側の圧力が一定に保持されるように、前記凝縮手段に供給する前記液状媒体の供給量を制御する冷媒制御手段を設けることによって、温湿度調整装置を安定して運転でき、凝縮手段に液状媒体が必要以上に供給されることを防止できる。
In the temperature adjusting device shown in FIG. 13, the entire amount of the high-temperature heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108. The amount of cooling energy for cooling the air stream to be temperature-adjusted blown out from the air is constant.
On the other hand, by adjusting the flow rate of the high-temperature heat medium distributed to the heating flow path side by the three-way valve 102, the heating amount in the heater 110 with respect to the air flow to be temperature-adjusted cooled by the cooler 108 can be adjusted.
Therefore, it is possible to adjust the temperature of the air flow to be temperature-adjusted that passes through the cooler 108 and the heater 110, and to manage the temperature in the space unit in a narrow temperature range.
However, in the temperature adjusting device shown in FIG. 13, the entire amount of the high-temperature heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108. The temperature adjustment for the air flow to be adjusted from the fan 112 is performed by reheating the high-temperature heat medium compressed by the compressor 100 supplied to the heater 110 exclusively.
As described above, in the temperature control method employed in the temperature adjusting device shown in FIG. 13, the heat medium used for heating is also passed through the cooling flow path, so that the amount of heat that can be heated is only the amount of heat generated by the power of the compressor. And it is difficult to cope with load fluctuations on the heater 110.
For this reason, when the set temperature of the air flow subject to temperature adjustment passing through the cooler 108 and the heater 110 is significantly increased, the temperature of the air flow subject to temperature adjustment does not reach the set temperature or reaches the set temperature. It may take a long time to complete.
Further, in the temperature adjusting device shown in FIG. 13, there is no humidity adjusting function for adjusting the humidity of the air flow to be temperature adjusted passing through the cooler 108 and the heater 110, and the air flow is adjusted for humidity. I can't.
Therefore, the present invention solves the problems of the conventional temperature adjustment device in which the temperature adjustment range of the gas flow such as the air flow is narrow and the humidity adjustment cannot be performed and the energy is wasted. An object of the present invention is to provide a temperature / humidity adjustment apparatus and a temperature / humidity adjustment method that can perform energy adjustment and have a wide range in which temperature adjustment and humidity adjustment can be performed simultaneously.
In order to solve the above problems, the present inventors provide a cooling flow path and a heating flow path, and a cooling amount for the air to be adjusted in temperature and humidity that passes through the cooling means of the cooling flow path and the heating means of the heating flow path. Providing distribution means that can change the heating amount, providing heat pump means that can transfer heat from a low temperature part to a high temperature part to improve the heating capacity of the heating flow path, and in the gas flow path It has been found that it is effective to provide humidity adjusting means.
That is, as means for solving the above-described problem, a heating flow path in which a part of the high-temperature first heat medium compressed and heated by the compressor is supplied to the heating means, and the remaining portion of the high-temperature first heat medium A cooling channel that is adiabatically expanded by the first expansion unit after being cooled by the condensing unit, and further cooled and supplied to the cooling unit; and the heating channel through which the high-temperature first heat medium is distributed And a circulation circuit in which the first heat medium that has passed through each of the cooling flow paths is re-supplied to the compressor, and the temperature and humidity adjustment target gas that passes through the heating means and the cooling means is a predetermined temperature and humidity. A temperature / humidity adjusting device that distributes a part of the high-temperature first heat medium discharged from the compressor to the heating flow path side, and cools a remaining portion of the high-temperature first heat medium. High temperature first heat distributed to the road side and distributed to the heating flow path and the cooling flow path Distributing means capable of changing the body distribution ratio, and further, after being cooled by releasing heat by the heating means and further adiabatically expanded by the second expansion means so as to improve the heating capacity of the heating channel. The cooled first heat medium is a heat pump means having heat absorption means for absorbing heat from the second heat medium, which is an external heat source, and a high temperature that controls the distribution means and is distributed to the heating flow path and the cooling flow path. Adjusting a distribution ratio of the first heat medium to control a temperature / humidity adjustment target gas passing through the heating unit and the cooling unit to a predetermined temperature, and a gas passing through the heating unit and the cooling unit It is possible to provide a temperature / humidity adjusting device provided with humidity control means for controlling the temperature to a predetermined humidity.
Further, as means for solving the above-mentioned problems, a heating means for directly supplying a part of the high-temperature first heat medium compressed and heated by a compressor, and a remaining part of the first heat medium is cooled by a condensing means. Then, the first heat is distributed to the heating means and the cooling means for the temperature / humidity adjustment target gas that sequentially passes through the cooling means that is adiabatically expanded by the first expansion means, and further cooled and supplied. The distribution ratio of the medium is changed, the gas is adjusted to a predetermined temperature, the gas is adjusted to a predetermined humidity by humidity control means provided in a flow path through which the gas to be temperature and humidity is adjusted, and the heating is performed. The first heat medium that has passed through the means is adiabatically expanded by the second expansion means, cooled, and passed through the heat pump means that includes the heat absorption means that absorbs heat from the second heat medium that is an external heat source. A first heat medium that has passed through the cooling means; Both can provide a temperature and humidity adjusting method for returning to the compressor.
In the means for solving the problems provided by the present inventors, the following preferred embodiments can be raised.
As the humidity control means, a moisture supply means for supplying a predetermined amount of moisture to the gas subject to temperature / humidity adjustment is used, and droplets in the moisture supplied from the moisture supply means are directly heated by the heating means or by the gas heated by the heating means. Humidity can be adjusted by providing the moisture supply means on the gas inlet side or outlet side of the heating means so as to evaporate by heating.
As the water supply means, a water spray nozzle for injecting water, a control valve provided in a water supply pipe for supplying water to the water spray nozzle, and adjusting the control valve to adjust the amount of water supplied to the water spray nozzle Humidity control can be easily performed by using a moisture supply means including a humidity control unit to be controlled.
Alternatively, water vapor generating means for generating water vapor with a heater can be used as the humidity adjusting means.
This water vapor generating means can be easily controlled by providing a humidity control unit that controls the amount of water vapor generated by adjusting the heating amount of the heater.
The cooling medium that is supplied to the condensing means of the cooling flow path to cool the first heat medium and the second heat medium that is supplied to the heat absorbing means of the heat pump means are the same heat medium, and the same heat medium is supplied to the condensing means Then, by supplying the heat absorption means, the heat of the high temperature first heat medium removed by the condensation means can be effectively used.
As the second heat medium, it is effective from the viewpoint of energy saving to use the second heat medium supplied without being heated or cooled from the outside.
In addition, a rotational speed control means for controlling the rotational speed of the compressor is provided, and the distribution ratio of the high-temperature first heat medium controlled by the temperature control unit is determined by the heating amount applied to the temperature / humidity adjustment target gas by the heating means. Compression that changes the rotational speed of the compressor via the rotational speed control means so that a distribution ratio that can reduce the amount of heat that cancels each other out of the cooling amount that is applied to the temperature and humidity adjustment target gas by the cooling means. By providing the machine control unit, it is possible to reduce the amount of heat that cancels each other out of the amount of heat applied to each of the heating means and the cooling means, so that further energy saving is achieved in combination with the provision of the heat pump means. Can do.
In such a compressor control unit, when the distribution ratio of the high temperature first heat medium is the heating side where the gas to be adjusted in temperature and humidity is heated, 95 to 85% of the high temperature first heat medium is distributed to the heating means. On the other hand, in the case of the cooling side where the temperature / humidity adjustment target gas is cooled so that 5 to 15% of the remaining high-temperature first heat medium is distributed to the cooling means, the high-temperature first heat Rotation of the compressor via the rotational speed control means so that 95 to 85% of the medium is distributed to the cooling means and 5 to 15% of the remaining hot first heat medium is distributed to the heating means. By controlling the number, it is possible to stably operate the temperature / humidity adjusting device while saving energy of the temperature / humidity adjusting device. As this rotation speed control means, an inverter can be suitably used.
Further, the first heat medium that has passed through each of the heating flow path and the cooling flow path is merged and re-supplied to the compressor. By providing the flow path including the heating flow path and the flow path including the cooling flow path independently, the temperature adjustment range of the temperature / humidity adjustment target gas can be widened.
As the distribution means for distributing the high temperature first heat medium to the heating flow path and the cooling flow path, the distribution ratio of the high temperature first heat medium distributed to the heating flow path and the cooling flow path is substantially continuous. By using the changeable distribution means, the temperature adjustment of the temperature / humidity adjustment target gas can be adjusted more accurately.
As such distribution means, by using a distribution means that can substantially continuously change the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, the temperature and humidity adjustment target gas can be changed. The temperature can be adjusted even more precisely.
This “substantially changeable distribution means” means that a two-way valve or a proportional three-way valve is used as the distribution means, and when the two-way valve or the proportional three-way valve is driven by step control, This means that the three-way valve or the proportional three-way valve is microscopically driven stepwise, but includes a case where it is driven continuously as a whole.
As the distribution means, the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is equal to the amount of the high temperature first heat medium discharged from the compressor. As described above, by using the proportional three-way valve that proportionally distributes the high-temperature first heat medium, the distribution ratio of the high-temperature first heat medium discharged from the compressor can be changed smoothly.
Further, as the distribution means, a two-way valve provided in each of the branch pipes branching the high temperature first heat medium into the heating channel side and the cooling channel side, and the temperature control unit includes the heating channel and the cooling channel. The distribution ratio of the high-temperature first heat medium distributed to the heating device is adjusted to control the temperature / humidity adjustment target gas passing through the heating unit and the cooling unit to a predetermined temperature, and the high temperature distributed to the heating channel side Each of the two-way valves is configured such that the total amount of the first heat medium and the high-temperature first heat medium distributed to the cooling channel side is equal to the high-temperature first heat medium discharged from the compressor. The distribution ratio of the high-temperature first heat medium discharged from the compressor can also be changed smoothly by using a temperature control unit that adjusts the opening.
Furthermore, the cooling medium supplied to the condensing means of the cooling channel is a liquid medium, and the refrigerant for controlling the supply amount of the liquid medium supplied to the condensing means so that the pressure on the discharge side of the compressor is kept constant. By providing the control means, the temperature / humidity adjusting device can be operated stably, and the liquid medium can be prevented from being supplied to the condensing means more than necessary.
発明の効果
 本発明者らが提供した温湿度調整装置及び温湿度調整方法では、加熱流路の加熱手段と冷却流路の冷却手段との各々に、圧縮機から吐出された高温の第1熱媒体が供給される。更に、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を変更して、加熱手段と冷却手段とを通過する温湿度調整対象の気体に対する加熱量と冷却量とを容易に調整でき、加熱手段及び冷却手段を通過する気体の温度を所定温度に調整できる。
 しかも、かかる加熱手段及び冷却手段を通過した気体を所定湿度に制御する湿度制御手段を設けているため、加熱手段及び冷却手段を通過した気体の湿度も所定湿度に同時に調整できる。
 また、本発明者らが提供した温湿度調整装置及び温湿度調整方法には、ヒートポンプ手段を具備している。このヒートポンプ手段は、低温の部分から温度の高い部分へ熱を移動できる手段であるため、圧縮機によって圧縮されて加熱された高温の第1熱媒体(温度の高い部分)のうち、加熱流路の加熱手段で熱を放出して冷却してから第2膨張手段で断熱的に膨張して更に冷却した第1熱媒体を、ヒートポンプ手段を構成する吸熱手段によって、外部熱源の第2熱媒体(温度の低い部分)から吸熱し昇温して気化させて圧縮機に戻すことができる。このため、単位電力当たりの加熱能力を大幅に増加でき、省エネルギーを図ることができる。
 従って、この温湿度調整装置及び温湿度調整方法では、圧縮機から吐出される高温の第1熱媒体(温度の高い部分)には、圧縮機による圧縮動力エネルギーに、ヒートポンプ手段によって外部熱源の第2熱媒体(温度の低い部分)から吸熱されたエネルギーを加えることができ、高温の第1熱媒体が供給される加熱手段の加熱能力を向上できる。
 この様な温湿度調整装置及び温湿度調整方法では、加熱手段及び冷却手段を通過する温湿度調整対象の気体の微小な負荷変動は、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を微小調整することによって迅速に対応できると共に、負荷変動による気体の湿度変化も湿度制御手段によって迅速に対応でき、温湿度調整対象の気体に対して温度及び湿度の調整を図ることができる。
 また、本発明者らが提供した温湿度調整装置及び温湿度調整方法において、加熱手段と冷却手段とを通過する温湿度調整対象の気体の設定温度を大幅に高くする場合でも、高温の第1熱媒体の分配比率を冷却流路よりも加熱流路に分配する分配比率を大幅に高くすることによって、温湿度調整対象の気体を所定の温度に調整でき、温湿度調整対象の気体の温度調整幅を広げることができる。
 この場合、温湿度調整対象の気体の湿度も、湿度制御手段によって所定湿度に保持できる。
 この様に、本発明者らが提供した温湿度調整装置及び温湿度調整方法では、図13に示す従来の温度調整装置やこの温度調整装置を用いた温度調整方法では不可能であった、温湿度調整対象の気体を所定の温度及び湿度に調整でき、且つ省エネルギーを図ることができる。
[Advantageous Effects of Invention] In the temperature / humidity adjusting apparatus and temperature / humidity adjusting method provided by the present inventors, high-temperature first heat discharged from the compressor is supplied to each of the heating means of the heating flow path and the cooling means of the cooling flow path. Medium is supplied. Furthermore, by changing the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, the heating amount and the cooling amount for the temperature / humidity adjustment target gas passing through the heating means and the cooling means are changed. The temperature of the gas passing through the heating means and the cooling means can be adjusted to a predetermined temperature.
Moreover, since the humidity control means for controlling the gas that has passed through the heating means and the cooling means to a predetermined humidity is provided, the humidity of the gas that has passed through the heating means and the cooling means can be adjusted to the predetermined humidity at the same time.
Moreover, the temperature / humidity adjusting apparatus and the temperature / humidity adjusting method provided by the present inventors are provided with heat pump means. Since this heat pump means is a means capable of transferring heat from a low-temperature part to a high-temperature part, among the high-temperature first heat medium (the high-temperature part) heated by being compressed by the compressor, the heat flow path The first heat medium which has been cooled by releasing heat by the heating means and then further adiabatically expanded by the second expansion means and further cooled by the heat absorption means constituting the heat pump means (the second heat medium (external heat source)) It is possible to absorb heat from the low temperature part), raise the temperature, vaporize it, and return it to the compressor. For this reason, the heating capacity per unit power can be greatly increased, and energy saving can be achieved.
Therefore, in this temperature / humidity adjusting device and temperature / humidity adjusting method, the high-temperature first heat medium (high temperature part) discharged from the compressor is supplied with the compression power energy by the compressor, and the heat pump means supplies the first heat source. Energy absorbed from two heat media (low temperature part) can be added, and the heating capability of the heating means to which the high temperature first heat medium is supplied can be improved.
In such a temperature / humidity adjusting apparatus and temperature / humidity adjusting method, the minute load fluctuation of the gas subject to temperature / humidity adjustment passing through the heating means and the cooling means is a high temperature first distributed to the heating flow path and the cooling flow path. It is possible to respond quickly by finely adjusting the distribution ratio of the heat medium, and it is also possible to quickly respond to changes in the humidity of the gas due to load fluctuations by the humidity control means, and to adjust the temperature and humidity for the temperature / humidity adjustment target gas be able to.
Further, in the temperature / humidity adjusting device and the temperature / humidity adjusting method provided by the present inventors, even when the set temperature of the temperature / humidity adjustment target gas passing through the heating means and the cooling means is significantly increased, By greatly increasing the distribution ratio of the heat medium distribution to the heating flow path rather than the cooling flow path, the temperature / humidity adjustment target gas can be adjusted to a predetermined temperature, and the temperature / humidity adjustment target gas temperature adjustment The width can be increased.
In this case, the humidity of the gas subject to temperature and humidity adjustment can also be maintained at a predetermined humidity by the humidity control means.
As described above, the temperature / humidity adjusting device and the temperature / humidity adjusting method provided by the present inventors are not possible with the conventional temperature adjusting device shown in FIG. 13 or the temperature adjusting method using this temperature adjusting device. The humidity adjustment target gas can be adjusted to a predetermined temperature and humidity, and energy can be saved.
本発明者らが提供した温湿度調整装置の一例を説明する概略図である。It is the schematic explaining an example of the temperature / humidity adjustment apparatus which the present inventors provided. 図1に示す温湿度調整装置に用いる制御弁40の内部構造を説明する説明図である。It is explanatory drawing explaining the internal structure of the control valve 40 used for the temperature / humidity adjustment apparatus shown in FIG. 図3A~図3Dは、図1に示す加熱器14、冷却器16及び噴霧ノズル群15の配列について説明する説明図である。3A to 3D are explanatory diagrams for explaining the arrangement of the heater 14, the cooler 16, and the spray nozzle group 15 shown in FIG. 図1に示す温湿度調整装置で用いることのできる他の分配手段を説明する説明図である。It is explanatory drawing explaining the other distribution means which can be used with the temperature / humidity adjustment apparatus shown in FIG. 図4に示す分配手段で用いる二方弁の流量特性を示すグラフである。It is a graph which shows the flow volume characteristic of the two-way valve used with the distribution means shown in FIG. 図6A及び図6Bは、図1に示す温湿度調整装置において、冷却側にある場合の省エネルギーの原理を説明する説明図である。6A and 6B are explanatory diagrams for explaining the principle of energy saving in the temperature / humidity adjusting apparatus shown in FIG. 1 when it is on the cooling side. 図7A及び図7Bは、図1に示す温湿度調整装置において、加熱側にある場合の省エネルギーの原理を説明する説明図である。7A and 7B are explanatory views for explaining the principle of energy saving in the temperature / humidity adjusting apparatus shown in FIG. 1 when it is on the heating side. 本発明者らが提供した温湿度調整装置の他の例を説明する概略図である。It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. 図8に示す温湿度調整装置の温度制御部22とCOMP制御部44とによる制御手順を説明するためのフローチャートである。It is a flowchart for demonstrating the control procedure by the temperature control part 22 and the COMP control part 44 of the temperature / humidity adjustment apparatus shown in FIG. 本発明者らが提供した温湿度調整装置の他の例を説明する概略図である。It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. 本発明者らが提供した温湿度調整装置の他の例を説明する概略図である。It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. 本発明者らが提供した温湿度調整装置の他の例を説明する概略図である。It is the schematic explaining the other example of the temperature / humidity adjustment apparatus which the present inventors provided. 従来の温度調整装置を説明する概略図である。It is the schematic explaining the conventional temperature control apparatus.
 本発明者らが提供した温湿度調整装置の一例を説明する概略図を図1に示す。図1に示す温湿度調整装置には、温度及び湿度の調整がなされたクリーンルーム内に設置された空間ユニット10内に、ファン12によって吸込んだ温湿度調整対象の気体としての空気の温度及び湿度を調整する加熱流路、冷却流路及び湿度制御手段としての水分供給手段が設けられている。
 かかる加熱流路を構成する加熱手段としての加熱器14と冷却流路を構成する冷却手段としての冷却器16とが設けられ、クリーンルーム内の空気は冷却器16を通過して除湿された後、加熱器14を通過するように、冷却器16と加熱器14とが配設されている。
 この冷却器16と加熱器14との間に、水分供給装置を構成する噴霧ノズル群15が配設されており、冷却器16によって除湿された空気に、所定量の水を噴霧する。この噴霧ノズル群15を構成する噴霧ノズル15a,15a・・には、水タンク17に貯留されている純水がポンプ19及び水供給配管21に設けられた制御弁23を経由して供給される。更に、供給された純水を噴霧するための圧縮空気も、配管25を経由して噴霧ノズル15a,15a・・に供給される。
 かかる水タンク17には、配管33を経由して供給された通常水を純水器35に供給して得た純水が貯留されている。この水タンク17の純水の貯留量は、純水供給配管37に設けられた制御弁39によって一定に保持されている。
 この噴霧ノズル15aとしては、公知の噴霧ノズル、例えば、空気と水とを同時に噴射して水を霧状態とする二流体ノズルを用いることができる。或いは、噴霧ノズル群15に代えて、一個の二流体ノズルを用いることができる。
 図1に示す温湿度調整装置には、圧縮機18から吐出された第1熱媒体が、加熱器14を含む加熱流路と冷却器16を含む冷却流路とに分配され、加熱流路及び冷却流路の各々を通過した第1熱媒体が圧縮機18に再供給される循環回路が設けられている。
 この第1熱媒体として、例えばプロパン、イソブタンやシクロペンタン等の炭化水素、フロン類、アンモニア、炭酸ガスを用いることができる。かかる第1熱媒体が供給され、第1熱媒体の気化・液化によってクリーンルーム内の空気を加熱・冷却して所定の温度に調整する。
 この様な第1熱媒体は、圧縮機18によって圧縮・加熱されて高温(例えば70℃)の気体状となって吐出される。圧縮機18から吐出された高温の第1熱媒体を、分配手段としての比例三方弁20によって、加熱器14が設けられた加熱流路側と冷却器16が設けられた冷却流路側とに分配する。
 この比例三方弁20では、加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との合計量が圧縮機18から吐出された高温の第1熱媒体量と等しくなるように分配する。
 かかる比例三方弁20は、温度制御部22によって制御されている。この温度制御部22では、空間ユニット10の空気吹出口に設けられた温度センサ24によって測定された測定温度と設定された設定温度とを比較し、測定温度が設定温度と一致するように、加熱流路側と冷却流路側とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更し、空間ユニット10内に吸込まれた空気を所定温度に調整する。
 この「実質的に連続して変更」とは、比例三方弁20をステップ制御で駆動するとき、微視的には比例三方弁20がステップ的に駆動されているものの、全体的には連続して駆動されている場合を含む意味である。
 かかる温度制御部22に設定する設定温度は、任意に設定できるようにしてもよい。更に、図1に示す温度センサ24は、ファン12の吐出側に設置されているが、ファン12の吸入側に設置してもよく、ファン12の吐出側及び吸入側に設けてもよい。
 また、噴霧ノズル群15から噴霧される純水量は、湿度制御部27によって制御されている。この湿度制御部27では、空間ユニット10の空気吹出口に設けられた湿度センサ29によって測定された測定湿度と設定された設定湿度と比較し、測定湿度が設定湿度と一致するように制御弁23を調整し、空間ユニット10内に吸込まれた空気を所定湿度に調整する。
 かかる湿度制御部27に設定する設定湿度は、任意に設定できるようにしてもよい。更に、図1に示す湿度センサ29は、ファン12の吐出側に設置されているが、ファン12の吸入側に設置してもよく、ファン12の吐出側及び吸入側に設けてもよい。
 比例三方弁20によって加熱流路側に分配された高温の第1熱媒体は、加熱器14に直接供給され、空間ユニット10内に吸引されて冷却器16で冷却された空気流及び噴霧ノズル群15から噴霧された水分を加熱して所定温度に調整する。その際に、高温の第1熱媒体は放熱して冷却されて凝縮液を含む第1熱媒体となる。
 一方、冷却流路側に分配された高温の第1熱媒体は、凝縮手段としての凝縮器26によって冷却されてから第1膨張手段としての膨張弁28によって断熱的に膨張して更に冷却(例えば、10℃に冷却)される。冷却された第1熱媒体は、冷却器16に供給されて気化し、空間ユニット10内に吸込まれた空気流を冷却する。
 かかる凝縮器26には、加熱器14側に分配された高温の第1熱媒体を冷却する冷却用として配管30を経由して、外部から加熱又は冷却されることなく供給された第2熱媒体として冷却水が供給されている。かかる冷却水は、凝縮器26内で70℃程度の第1熱媒体によって30℃程度に加熱されて配管31から吐出される。この配管31から吐出される冷却水は、ヒートポンプ手段の吸熱手段としての吸熱器32に加熱源として供給される。
 この吸熱器32には、加熱器14で放熱した第1熱媒体を、第2膨張手段としての膨張弁34によって断熱的に膨張して更に冷却した10℃程度の第1熱媒体が供給されている。このため、吸熱器32では、凝縮器26で吸熱して30℃程度に昇温された冷却水と気化により10℃程度に冷却された第1熱媒体との温度差に基づいて、第1熱媒体が冷却水から吸熱できる。
 吸熱器32で冷却水から吸熱して昇温されて気化した第1熱媒体は、アキュームレータ36を経由して圧縮機18に供給される。このアキュームレータ36には、冷却器16に供給されて空間ユニット10内に吸込まれた空気流から吸熱して気化した第1熱媒体も供給される。
 かかるアキュームレータ36は、液体成分を貯めてガス成分のみを圧縮機18に再供給できるタイプのアキュームレータであるため、確実に第1熱媒体のガス成分のみを圧縮機18に供給できる。
 このアキュームレータ36としては、蓄圧器用タイプのアキュームレータを用いることができる。
 また、吸熱器32から排出された冷却水を、純水器35に供給して、噴霧ノズル群15の噴霧ノズル15aから噴霧するようにしてもよい。吸熱器32から排出された冷却水が、配管33から供給される冷却水よりも温度が高い場合には、噴霧ノズル15aから噴霧された水の蒸発潜熱が小さいため、空気流の温度低下を小さくできる。
 尚、アキュームレータ36を設置しなくても、吸熱器32で空気流から吸熱して昇温されて気化した熱媒体と、冷却器16に供給されて空間ユニット10内に吸込まれた気体から吸熱して蒸発した熱媒体とを合流して、圧縮機18に再供給できればよい。
 ところで、加熱器14で放熱した第1熱媒体を、膨張弁34によって断熱的に膨張して冷却しているが、膨張弁34での断熱膨張による冷却では、第1熱媒体と外部との間での熱の遣り取りはない。このため、断熱的に冷却された第1熱媒体は、外部から凝縮器26を経由して吸熱器32に供給された第2熱媒体としての冷却水から吸熱できる。
 従って、圧縮機18から吐出される高温の第1熱媒体には、圧縮機18による圧縮動力エネルギーに、ヒートポンプ手段の吸熱器32によって外部から供給された冷却水より吸熱したエネルギーを加えることができる。この吸熱器32による吸熱は、第1熱媒体を循環させる圧縮機18の駆動エネルギーのみによって行うことができる。
 更に、図1に示す温湿度調整装置では、外部から供給された冷却水が凝縮器26を経由して吸熱器32に供給されている。このため、凝縮器26で除去した高温の第1熱媒体からのエネルギーの一部も、圧縮機18から吐出される高温の第1熱媒体に加えることができ、加熱流路の加熱能力を向上できる。このため、ヒートポンプ手段の吸熱器32によって吸熱したエネルギーに加えて、凝縮器26で除去した高温の第1熱媒体からのエネルギーの一部も圧縮機18から吐出される高温の第1熱媒体に加えることができ、加熱流路の加熱能力を向上できる結果、空気流の温度調整範囲を広げることができ、且つ大幅な省エネルギーを図ることができる。
 しかも、かかる加熱器14は、その空気流に対する加熱能力のみならず、噴霧ノズル15aから噴霧された水分の加熱能力も大幅に増加でき、加湿能力も大幅に増加できるため、空気流の湿度調整範囲も広げることができる。
 この様に、加熱能力が向上された加熱器14の空気の供給側に設けられた噴霧ノズル群15から所定量の純水が噴霧されたことによる空気流温度の低下に対しても、ヒートポンプ手段での吸熱によって空気流温度を所定温度に昇温できる加熱能力を有することができる。
 ここで、ヒートポンプ手段を設けることなく噴霧ノズル群15を設置して湿度調整を試みた場合、空気流を所定温度に調整できない事態や空気流を所定温度に調整するに長時間かかる事態が発生するおそれがある。
 つまり、噴霧ノズル群15から噴霧された水による空気流温度の低下に対して、圧縮機18から吐出された高温の第1熱媒体の一部が供給されている加熱器14での加熱量を増加することが必要となる。
 しかし、加熱器14に供給される第1熱媒体には、圧縮機18によって加えられる熱量のみである。
 従って、湿度調整のために噴霧ノズル群15から供給される水分量が急増した場合、空気流を所定温度に昇温するに充分な熱量を加熱器14に直ちに供給できないからである。
 この様に、図1に示す温湿度調整装置では、その加熱流路の加熱能力をヒートポンプ手段の設置によって向上できるため、所定電力当たりの加熱能力及び加湿能力を大幅に増加させることができ、且つ省エネルギーを図ることができる。
 また、図1に示す温湿度調整装置では、比例三方弁20によって加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との分配比率を、空間ユニット10内の温度に応じて実質的に連続して変更できる。
 このため、図1に示す温湿度調整装置では、加熱流路及び冷却流路に高温の第1熱媒体が常時供給されており、加熱流路の加熱器14と冷却流路の冷却器16とを通過する温湿度調整対象の空気流の微小な負荷変動は、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を比例三方弁20によって直ちに微小調整することによって迅速に対応でき、応答性を向上できる。
 また、図1に示す温湿度調整装置の様に、加熱器14の空気入口側に設けられた噴霧ノズルから純水が噴霧されて、空気中の湿度を所定値に維持できる。更に、クリーンルーム内の空気を循環すると、循環空気はファン12等によって加熱されるが、噴霧ノズル群15からの純水の噴霧によって除熱されるため、冷却器16に対する負荷を小さくできる。
 その結果、加熱流路の冷却器16、噴霧ノズル群15及び加熱器14を通過する温湿度調整対象の空気流の温度及び湿度を設定値に対して高精度に制御でき、図1に示す空間ユニット10の温度変化及び湿度変化を小さくでき、精密加工が要求される工程を設置できる。
 図1に示す温湿度調整装置では、上述した様に、加熱流路の加熱能力が向上され、且つ加熱流路と冷却手段とを含む流路のうち、分配手段としての比例三方弁20から冷却器16及び吸熱器32の各々を通過した第1熱媒体がアキュームレータ36で合流されるまでの加熱流路を含む流路と冷却流路を含む流路との各々が、流路的に独立して設けられている。このため、温度の異なる第1熱媒体が混合されることがなく、温湿度調整対象の温度調整幅を広くできる。
 また、加熱器14と冷却器16とを通過する温湿度調整対象の空気流の設定温度を大幅に高くする場合でも、比例三方弁20によって高温の第1熱媒体の分配比率を冷却流路よりも加熱流路に分配する分配比率を大幅に高くして、温湿度調整対象の空気流を所定温度に迅速に調整できる。
 かかる空気流の温度調整の際にも、空気流の湿度を設定湿度に調整するように、湿度制御部27は噴霧ノズル群15からの純水の噴霧量を調整する。
 更に、図1に示す温湿度調整装置では、加熱流路の加熱能力が向上され、加熱水蒸気発生装置等の他の水分供給手段や加熱手段を用いることを要しないため、大幅な省エネルギーを図ることができる。
 尚、図1に示す温湿度調整装置では、温度制御部22と湿度制御部27とが独立して温度・湿度を調整しているが、設定温度や設定湿度を変更した場合でも、空気流の温度・湿度は比較的短時間で設定温度・設定湿度に到達する。
 以上、説明してきた図1に示す温湿度調整装置では、凝縮器26に冷却水を供給する配管30に、冷媒制御手段としての制御弁40が設けられている。この制御弁40は、圧縮機18の吐出圧が一定となるように制御されている。かかる制御弁40は、図2に示す様に、冷却水の流路内に設けられた弁部40aの開口部を開閉する弁体40bを具備する棒状部が設けられている。この棒状部は、その先端面が当接するバネ40cによって弁体40bが弁部40aの開口部を閉じる方向に付勢されている。また、棒状部の他端面は、圧縮機18から吐出された第1熱媒体の圧力が供給されるベローズ40dに当接し、棒状部をバネ40cの付勢力に抗して弁部40aの開口部を開放する方向に弁体40bを付勢している。
 このため、圧縮機18の吐出圧がバネ40cの付勢力以上となったとき、ベローズ40dによって弁体40dが弁部40aの開口部を開放する方向に移動し、凝縮器26に供給される冷却水量が増加して、凝縮器26の冷却能力が向上される。この様に、凝縮器26の冷却能力が向上されて、圧縮機18の吐出圧が低下する。
 他方、圧縮機18の吐出圧がバネ40cの付勢力以下となったとき、弁体40dが弁部40aの開口部を閉じる方向に移動し、凝縮器26に供給される冷却水量が減少して、凝縮器26の冷却能力が低下する。このため、圧縮機18の吐出圧が高くなる。
 この様に、圧縮機18の吐出圧を一定に保持することによって、温湿度調整装置を安定して運転できる。また、凝縮器26に冷却水量が必要以上に供給され、系外に排出されないように調整できる。
 かかる制御弁40には、図1に示す様に、制御弁40のバイパス配管にバルブ41が設けられている。このバルブ41は、制御弁40が故障した場合や加熱器14に供給される高温の第1熱媒体の供給量が増加して、圧縮機18の吐出圧が低下し、供給水の不足によって吸熱器32が実質的に機能しなくなった場合等に、凝縮器26及び吸熱器32に強制的に水を供給するためのものである。
 図1に示す温湿度調整装置では、冷却器16と加熱器14との間に、純水を噴霧する噴霧ノズル群15が配設されているが、図3Aに示す様に、加熱器14の空気の出口側に噴霧ノズル群15を配設してもよい。この様に、噴霧ノズル群15を加熱器14の空気の出口側に配設しても、噴霧ノズル群15から噴霧された水滴は加熱器14で加熱され空気流によって加熱されて蒸発できる。
 また、冷却器16と加熱器14とを、図3Bに示す様に、空気が加熱器14に供給された後、冷却器16に供給されるように配設し、冷却器16と加熱器14との間に噴霧ノズル群15を配設してもよい。この場合も、噴霧ノズル群15から噴霧された水滴は加熱器14で加熱され空気流によって加熱されて蒸発できる。
 更に、図3Bに示す加熱器14と冷却器16との配設であって、図3Cに示す様に、加熱器14の空気の入口側に噴霧ノズル群15を配設してもよい。この場合は、噴霧ノズル群15から噴霧された水滴を加熱器14によって直接加熱して蒸発できる。
 但し、例えば、図3Aに示す加熱器14と冷却器16との配設であって、図3Dに示す如く、冷却器16の空気の入口側に噴霧ノズル群15を配設した場合には、噴霧ノズル群15から噴霧された水滴は、冷却器16内で凝縮されて蒸発されることなく空気流から除去されるため、空気流を所定の湿度に調整することが困難となる。
 尚、図3B及び図3Cの様に、噴霧ノズル群15が加熱器16又は冷却器14の上流側に設けられている場合には、噴霧ノズル群15よりも下流側の加熱器16又は冷却器14が、噴霧ノズル群15から噴霧された水滴のエリミネータとしても機能し、下流側の加熱器16又は冷却器14を通過した空気流に含有される水滴の大きさを一定にできる。
 図1に示す温湿度調整装置に用いた分配手段としての比例三方弁20に代えて、図4に示す様に、2個の二方弁としての二方弁38a,38bを用いることができる。2個の二方弁38a,38bの各々は、温度制御部22によって制御されている。かかる温度制御部22によって、二方弁38a,38bの各々の開度を調整し、圧縮機18で圧縮・加熱された気体状の高温の第1熱媒体を加熱流路と冷却流路とに分配する分配比率を実質的に連続して調整し、加熱器14と冷却器16とを通過する空気流を所定温度に制御する。その際に、加熱器14側に分配する高温の第1熱媒体量と冷却器16側に分配する高温の第1熱媒体量との合計量が、圧縮機18から吐出された高温の第1熱媒体量と等しくなるように、二方弁38a,38bの開度を調整して連続的に比例分配される。
 その際に、二方弁38a,38bの各々は、図5に示す様に、バルブ開度と流量との関係は直線状でない。このため、温度制御部22では、図5に示す二方弁38a,38bの各々についての流量特性データを保持し、温度制御部22からは、二方弁38a,38bの各流量特性に基づいて各二方弁38a,38bへの開度信号を発信する。
 ここで、「加熱流路と冷却流路とに分配する分配比率を実質的に連続して調整」或いは「分配比率を実質的に連続して調整」するとは、二方弁38a,38bをステップ制御によって駆動し、加熱流路と冷却流路との分配比率を調整する際に、二方弁38a,38bの開度が、微視的にはステップ的に駆動されて調整されているものの、全体として連続して駆動されて調整されている場合を含むことを意味する。
 図1に示す温湿度調整装置では、加熱器14と冷却器16とによる温湿度調整対象としての空気流の温湿度調整では、例えば、温湿度調整対象の空気流に対して加熱側にある場合、空気温度が安定する運転状態では、図6Aに示す様に、冷却器16で冷却した空気流を加熱器14で加熱している。図6Aに示す運転状態では、空気流を加熱するに要するエネルギーAに比較して、加熱器14で加熱するエネルギーが大きくなる場合がある。この場合、図6Bに示す様に、加熱器14と冷却器16との重複するエネルギーを可及的に少なくできれば、省エネルギーを図ることができる。
 一方、温湿度調整対象の空気流に対して冷却側にある場合、空気流の温度が安定する運転状態では、図7Aに示す様に、加熱器14で加熱した空気を冷却器16で冷却している。図7Aに示す運転状態では、空気流を冷却するに要するエネルギーBに比較して、冷却器16で冷却するエネルギーが大きくなる場合がある。この場合、図7Bに示す様に、冷却器16と加熱器14との重複するエネルギーを少なくできれば、省エネルギーを図ることができる。
 但し、互いに打ち消し合う熱量分をゼロとすべく、加熱器14と冷却器16とに高温の第1熱媒体の供給をON-OFF制御すると、温湿度調整装置の運転が不安定となり、空気流を所定温度で安定するまで時間が掛かる。このため、温湿度調整装置を安定運転できる程度には、加熱器14に加えられる加熱量と冷却器16に加えられる冷却量のうち、互いに打ち消し合う熱量分を最小限存在させることが必要である。
 尚、この必要最小限の互いに打ち消し合う熱量分は、温湿度調整装置によって多少異なるため、実験的に求めておくことが好ましい。
 この様に、冷却器16と加熱器14との重複するエネルギーを少なくできるように、図8に示す温湿度調整装置では、加熱器14に加えられる加熱量と冷却器16に加えられ冷却量のうち、互いに打ち消し合う熱量分を可及的に少なくするように、圧縮機18の回転数を制御する回転数制御部としてのインバータ42を介して圧縮機制御部44(以下、COMP制御部44と称することがある)によって制御している。
 図8に示す温湿度調整装置を構成する構成部材のうち、図1に示す温湿度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
 かかるCOMP制御部44は、比例三方弁20を制御する温度制御部22と協働して、加熱器14に加えられる加熱量と冷却器16に加えられ冷却量のうち、互いに打ち消し合う熱量分を可及的に少なくしつつ、空気流の温湿度制御を行う。
 温度制御部22による比例三方弁20の制御とCOMP制御部44による圧縮機18の回転数の制御とを図9のフローチャートに示す。
 図8に示す温湿度調整装置を試運転したところ、空気流に対して冷却側で運転する場合は、加熱器14に加えられる加熱量として、比例三方弁20による加熱器14側への高温の第1熱媒体の分配率を5~15%(比例三方弁20による冷却器16側への高温の第1熱媒体の分配率を95~85%)とすることが安定運転上から好ましいことが判明した。
 他方、空気流に対して加熱側で運転する場合は、加熱器14側に加えられる加熱量として、比例三方弁20による加熱器14側への高温の第1熱媒体の分配率を95~85%(比例三方弁20による冷却器16側への高温の第1熱媒体の分配率を5~15%)とすることが安定運転上から好ましいことが判明した。
 このため、図9のフローチャートに示す制御では、加熱器14側に加えられる加熱量、具体的には比例三方弁20による加熱器14側への高温の第1熱媒体の分配率を、空気流に対して冷却側で運転する場合は、5~15%となるように圧縮機18の回転数を制御し、空気流に対して加熱側で運転する場合は、95~85%の分配率となるように圧縮機18の回転数を制御することにした。
 図9に示すフローチャートでは、ステップS10で圧縮機18を起動した後、ステップS12で空気流を所定温度とするように、空間ユニット10内に設けられた温度センサ24によって測定された温度信号に基づいて、比例三方弁20による加熱器14側と冷却器16側とに分配する高温の第1熱媒体の分配比率を連続的に変更し、空間ユニット10内に吸込まれた空気流を所定温度に調整する。
 かかる空気流が所定温度に到達して安定しているかをステップS14で判断し、空気流の温度が安定していない場合は、ステップS12に戻り、比例三方弁20による加熱器14側と冷却器16側とに分配する高温熱媒体の分配比率を連続的に変更する。かかるステップS12及びステップS14は温度制御部22で行う。
 一方、空間ユニット10内の空気流が所定温度に到達して安定している場合は、ステップS16~S22で加熱器14側に分配される高温の第1熱媒体の分配比率が所定の範囲内であるか否か判断する。このステップS16~S22はCOMP制御部44で行う。
 尚、図9に示す高温の第1熱媒体の平均分配率とは、加熱器14側に分配される高温の第1熱媒体の分配比率にはばらつきがあるため、所定時間内の第1熱媒体の分配率の平均をとった値であって、以下、単に第1熱媒体の平均分配率と称することがある。
 先ず、ステップS16とステップS18とでは、空気流に対して冷却側にあると仮定したとき、加熱器14側への第1熱媒体の平均分配率が5~15%内にあるか否か判断する。
 ここで、加熱器14側への第1熱媒体の平均分配率が5~15%内にある場合は、空気流に対して冷却側にあり、且つ温湿度調整装置の運転が安定する範囲内であるため、ステップS16を通過しステップS18からステップS16に戻る。
 一方、加熱器14側への第1熱媒体の平均分配率が5%未満である場合には、加熱器14側への第1熱媒体の平均分配率が低過ぎるため、温湿度調整装置の運転が不安定となり易い。このため、加熱器14側への第1熱媒体の平均分配率を増加すべく、ステップS16からステップS24に移行し、圧縮機18の回転数を増加する。ステップS24では、COMP制御部44からインバータ42に向けて、インバータ42に設定されている圧縮機18の回転数を最小変化量で増加する増加信号を発信する。圧縮機18の回転数を最小変化量で増加することによって、温湿度調整装置を安定して運転できるからである。
 尚、圧縮機18の回転数を変化させる最小変化量は、温湿度調整装置によって異なるため、実験的に求めておくことが好ましいが、圧縮機18の回転数が2000~5000rpmのとき、最小変化量を3~10%の範囲とすることが好ましい。
 また、加熱器14側への第1熱媒体の平均分配率が15%を越えている場合には、ステップS16とステップS18とを通過して、空気流が冷却側にないと判断し、ステップS20とステップS22とに移行する。ステップS20とステップS22とでは、空気流が加熱側にあると仮定したとき、加熱器14側への第1熱媒体の平均分配率が95~85%内にあるか否か判断する。
 ここで、加熱器14側への第1熱媒体の平均分配率が85~95%内にある場合は、空気流が加熱側にあり、且つ温湿度調整装置の運転が安定する範囲内であるため、ステップS20を通過しステップS22からステップS16に戻る。
 一方、加熱器14側への第1熱媒体の平均分配率が95%を超えている場合には、加熱器14側への第1熱媒体の平均分配率が高過ぎ、温湿度調整装置の運転が不安定となり易い。このため、加熱器14側への第1熱媒体の平均分配率を減少すべく、ステップS20からステップS24に移行し、圧縮機18の回転数を増加する。ステップS24では、COMP制御部44からインバータ42に向けて、インバータ42に設定されている圧縮機18の回転数を最小変化量で増加する増加信号を発信する。
 また、加熱器14側への第1熱媒体の平均分配率が85%未満の場合には、ステップS22において、空気流は加熱側でもなく且つ冷却側でもない状態、すなわち加熱器14に加えられる加熱量と冷却器16に加えられる冷却量のうち、互いに打ち消し合う熱量が多い状態と判断される。このため、ステップS26に移行し、圧縮機18の回転数を低下する。ステップS26では、COMP制御部44からインバータ42に向けて、インバータ42に設定されている圧縮機18の回転数を最小変化量で低下する低下信号を発信する。圧縮機18の回転数を最小変化量で低下し、空気流を加熱側又は冷却側に移行させるためである。
 次いで、ステップS24又はステップS26を通過してステップS28に移行し、圧縮機18が運転中か否か判断して、圧縮機18が運転中であれば、ステップS14に戻る。ステップS14では、ステップS24又はステップS26において、圧縮機18の回転数を最小変化量で増加又は低下した状態で、空間ユニット10内の空気流が所定温度に到達して安定しているかを判断する。空間ユニット10内の空気流が所定温度に到達して安定している場合には、ステップS16~S26によって、再度、加熱器14側への第1熱媒体の平均分配率が所定範囲内に在るか否か判断する。
 一方、ステップS14において、空間ユニット10内の空気流の温度が安定していないと判断した場合は、ステップS12に戻り、比例三方弁20による加熱器14側と冷却器16側とに分配する第1熱媒体の分配比率を連続的に変更する。空間ユニット10内の空気流が所定温度に到達して安定してからステップS16~S26に移行する。
 尚、ステップS28において、圧縮機18が運転状態にない場合には、温度制御部22及びCOMP制御部44による制御は停止する。
 以上、説明してきた図9に示すフローチャートでは、温度制御部22では、加熱器14側への第1熱媒体の平均分配率に注目して制御しているが、冷却器16側への第1熱媒体の平均分配率に注目して制御してもよい。
 また、設定温度や設定湿度を入力する入力手段や運転状態を表示する表示手段等を、温度制御部22や湿度制御部27と一体又は別体に設けてもよい。
 図1~図9に示す温湿度調整装置では、凝縮器26及び吸熱器32では、冷却水や加熱源として水を用いていたが、図10に示す様に、凝縮器26及び吸熱器32の冷却源と加熱源として、ファン50で室内空気を吹き付ける方式であってもよい。
 図10に示す温湿度調整装置を構成する構成部材のうち、図1に示す温湿度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
 また、図1~図9に示す温湿度調整装置では、湿度制御手段として水を噴霧する噴霧ノズル群15を配設したが、図11に示す様に、噴霧ノズル群15に代えて、空気流の流路内に蒸気発生器52を配設してもよい。蒸気発生器52は、加熱器14、冷却器16を通過して空気流に水分を供給する装置であって、容器54内に貯留された純水を加熱ヒータ56によって加熱して蒸気を発生する。この加熱ヒータ56は、湿度制御部27によって制御されている。
 つまり、湿度制御部27では、ファン12から吐出される空気流中の湿度と目標湿度との相違に応じて、蒸気発生器52の加熱ヒータ56の加熱量を調整し、ファン12から吐出される空気流中の湿度を目標湿度に調整する。
 この様に、湿度制御手段として蒸気発生器52を用いても、図11に示す温湿度調整装置では、省エネルギーを図ることができる。
 すなわち、ヒートポンプ手段の設置で加熱能力が高められた加熱器14によって空気流を加熱して、空気流中の露点を高め、多くの水分を空気流中に含有できる。
 この図11に示す温湿度調整装置を構成する構成部材のうち、図1に示す温湿度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
 更に、図12に示す様に、凝縮器26と吸熱器32とに別配管で水を供給するようにしてもよい。例えば、凝縮器26には、配管33を経由して供給し、吸熱器32には、配管32aを経由して供給するようにしてもよい。かかる凝縮器26と吸熱器32とを通過した水は、共に系外に排出される。
 この図12に示す温湿度調整装置を構成する構成部材のうち、図1に示す温湿度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
 また、凝縮器26に供給する水と純水器35に供給する水とを別配管で供給するようにしてもよい。例えば、凝縮器26には、通常の水を供給し、純水器35には純水を供するようにしてもよい。
 尚、図1~12に示す温湿度調整装置に用いる湿度制御手段としては、温湿度調整対象の空気よりも乾燥された乾燥空気を、水分供給手段と併用して、或いは水分供給手段に代えて空気流の流路に吹き込む手段を用いることができる。
 これまで説明してきた図1~図12に示す温湿度調整装置を採用した温湿度調整対象の空気流の温湿度調整方法では、温湿度調整装置の奏する、気体流の温度と湿度とを同時に調整できる範囲が広く、且つ省エネルギーを図ることができるという作用・効果を享有できる。
 かかる温湿度調整方法では、圧縮機18で圧縮して加熱した高温の第1熱媒体の一部を直接供給する加熱器14と、第1熱媒体の残余部を凝縮器26で冷却した後、膨張弁28で断熱的に膨張させて更に冷却して供給する冷却器16とを、順次通過する空気流に対し、加熱器14と冷却器16とに分配する三方弁20又は二方弁38a,38bによって第1熱媒体の分配率を変更して、空気流を所定温度に調整すると共に、空気流が通過する流路に設けた湿度制御手段によって空気流を所定湿度に調整する。
 更に、加熱器14を通過した第1熱媒体を、膨張弁34によって断熱的に膨張させて冷却して、外部熱源である水又は空気から吸熱する吸熱器32を具備するヒートポンプ手段を通過させた後、冷却器16を通過した第1熱媒体と共に圧縮機18に戻す。
 以上、説明してきた温湿度調整装置及び温湿度調整方法は、半導体装置の製造工程等の精密加工分野でのクリーンルームの温湿度調整用に用いているが、他の分野で用いられているクリーンルームの温湿度調整用に用いることができることは勿論のことである。
 また、説明してきた温湿度調整装置及び温湿度調整方法は、他の分野、例えば塗装ブース、塗装ブース、ソーラーシュミレータ、プリント基板ストッカ、電子顕微鏡、打錠機、三次元測定機、クロマトグラフ、ドラフトチャンバー、露光装置、スピンコータ、液晶ガラス基板、スクリーン印刷機、画像診断装置、セメント養生、成形用金型、射出成形機、細胞培養、植物栽培、食品の保存や熟成、DNA固定化等の分野の温湿度調整装用としても用いることができる。
A schematic diagram illustrating an example of a temperature and humidity adjusting apparatus provided by the present inventors is shown in FIG. In the temperature / humidity adjusting apparatus shown in FIG. 1, the temperature and humidity of air as the temperature / humidity adjustment target gas sucked by the fan 12 in the space unit 10 installed in the clean room where the temperature and humidity are adjusted. A heating flow path, a cooling flow path to be adjusted, and moisture supply means as humidity control means are provided.
A heater 14 as a heating means constituting the heating flow path and a cooler 16 as a cooling means constituting the cooling flow path are provided, and after the air in the clean room passes through the cooler 16 and is dehumidified, A cooler 16 and a heater 14 are disposed so as to pass through the heater 14.
Between the cooler 16 and the heater 14, a spray nozzle group 15 constituting a moisture supply device is disposed, and a predetermined amount of water is sprayed on the air dehumidified by the cooler 16. The spray nozzles 15a, 15a,... Constituting the spray nozzle group 15 are supplied with pure water stored in the water tank 17 via a pump 19 and a control valve 23 provided in the water supply pipe 21. . Further, compressed air for spraying the supplied pure water is also supplied to the spray nozzles 15a, 15a,.
The water tank 17 stores pure water obtained by supplying normal water supplied via the pipe 33 to the pure water device 35. The amount of pure water stored in the water tank 17 is kept constant by a control valve 39 provided in the pure water supply pipe 37.
As the spray nozzle 15a, a known spray nozzle, for example, a two-fluid nozzle that sprays air and water at the same time to bring the water into a mist state can be used. Alternatively, one two-fluid nozzle can be used in place of the spray nozzle group 15.
In the temperature and humidity control apparatus shown in FIG. 1, the first heat medium discharged from the compressor 18 is distributed to a heating flow path including the heater 14 and a cooling flow path including the cooler 16, A circulation circuit is provided in which the first heat medium that has passed through each of the cooling flow paths is re-supplied to the compressor 18.
As the first heat medium, for example, hydrocarbons such as propane, isobutane and cyclopentane, chlorofluorocarbons, ammonia and carbon dioxide gas can be used. The first heat medium is supplied, and the air in the clean room is heated and cooled by vaporization and liquefaction of the first heat medium to adjust to a predetermined temperature.
Such a first heat medium is compressed and heated by the compressor 18 and discharged in the form of a gas at a high temperature (for example, 70 ° C.). The high-temperature first heat medium discharged from the compressor 18 is distributed to the heating channel side provided with the heater 14 and the cooling channel side provided with the cooler 16 by the proportional three-way valve 20 serving as a distribution unit. .
In this proportional three-way valve 20, the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is the high temperature first heat medium discharged from the compressor 18. Distribute to equal the amount.
The proportional three-way valve 20 is controlled by the temperature control unit 22. In this temperature control unit 22, the measured temperature measured by the temperature sensor 24 provided at the air outlet of the space unit 10 is compared with the set temperature, and heating is performed so that the measured temperature matches the set temperature. The distribution ratio of the high-temperature first heat medium distributed to the flow path side and the cooling flow path side is changed substantially continuously to adjust the air sucked into the space unit 10 to a predetermined temperature.
This “substantially continuously changing” means that when the proportional three-way valve 20 is driven by step control, the proportional three-way valve 20 is microscopically driven stepwise, but is continuously continuous as a whole. This includes the case where it is driven.
The set temperature set in the temperature control unit 22 may be arbitrarily set. Further, although the temperature sensor 24 shown in FIG. 1 is installed on the discharge side of the fan 12, it may be installed on the suction side of the fan 12, or may be provided on the discharge side and suction side of the fan 12.
The amount of pure water sprayed from the spray nozzle group 15 is controlled by the humidity control unit 27. The humidity control unit 27 compares the measured humidity measured by the humidity sensor 29 provided at the air outlet of the space unit 10 with the set set humidity, and controls the control valve 23 so that the measured humidity matches the set humidity. The air sucked into the space unit 10 is adjusted to a predetermined humidity.
The set humidity set in the humidity control unit 27 may be arbitrarily set. Further, the humidity sensor 29 shown in FIG. 1 is installed on the discharge side of the fan 12, but may be installed on the suction side of the fan 12, or may be provided on the discharge side and suction side of the fan 12.
The high-temperature first heat medium distributed to the heating channel side by the proportional three-way valve 20 is directly supplied to the heater 14, sucked into the space unit 10, and cooled by the cooler 16 and the spray nozzle group 15. The water sprayed from is heated and adjusted to a predetermined temperature. At that time, the high-temperature first heat medium is radiated and cooled to become the first heat medium containing the condensate.
On the other hand, the high temperature first heat medium distributed to the cooling flow path side is cooled by the condenser 26 as the condensing means and then expanded adiabatically by the expansion valve 28 as the first expansion means, and further cooled (for example, Cooled to 10 ° C.). The cooled first heat medium is supplied to the cooler 16 and vaporized to cool the air flow sucked into the space unit 10.
The second heat medium supplied to the condenser 26 without being heated or cooled from the outside via the piping 30 for cooling the high-temperature first heat medium distributed to the heater 14 side. As the cooling water is supplied. The cooling water is heated to about 30 ° C. by the first heat medium of about 70 ° C. in the condenser 26 and is discharged from the pipe 31. The cooling water discharged from the pipe 31 is supplied as a heat source to a heat absorber 32 as a heat absorption unit of the heat pump unit.
The heat absorber 32 is supplied with a first heat medium at about 10 ° C. which is adiabatic expansion of the first heat medium radiated by the heater 14 by an expansion valve 34 as a second expansion means and further cooled. Yes. Therefore, in the heat absorber 32, the first heat is based on the temperature difference between the cooling water that has absorbed heat in the condenser 26 and raised to about 30 ° C., and the first heat medium that has been cooled to about 10 ° C. by vaporization. The medium can absorb heat from the cooling water.
The first heat medium that has been heated from the cooling water by the heat absorber 32 and heated up and vaporized is supplied to the compressor 18 via the accumulator 36. The accumulator 36 is also supplied with a first heat medium that is supplied to the cooler 16 and absorbed and vaporized from the air flow sucked into the space unit 10.
Since the accumulator 36 is a type of accumulator that can store the liquid component and re-supply only the gas component to the compressor 18, it can reliably supply only the gas component of the first heat medium to the compressor 18.
As this accumulator 36, an accumulator type accumulator can be used.
Further, the cooling water discharged from the heat absorber 32 may be supplied to the pure water device 35 and sprayed from the spray nozzle 15 a of the spray nozzle group 15. When the temperature of the cooling water discharged from the heat absorber 32 is higher than that of the cooling water supplied from the pipe 33, the latent heat of vaporization of the water sprayed from the spray nozzle 15a is small, so the temperature drop of the air flow is reduced. it can.
Even if the accumulator 36 is not installed, the heat absorber 32 absorbs heat from the air flow and is heated and vaporized and the gas supplied to the cooler 16 and sucked into the space unit 10 absorbs heat. It is only necessary that the evaporated heat medium can be merged and re-supplied to the compressor 18.
By the way, the first heat medium radiated by the heater 14 is adiabatically expanded and cooled by the expansion valve 34, but in the cooling by the adiabatic expansion in the expansion valve 34, the first heat medium is between the first heat medium and the outside. There is no exchange of heat. For this reason, the first heat medium cooled adiabatically can absorb heat from the cooling water as the second heat medium supplied from the outside to the heat absorber 32 via the condenser 26.
Therefore, energy absorbed from the cooling water supplied from the outside by the heat absorber 32 of the heat pump means can be added to the compression power energy by the compressor 18 to the high temperature first heat medium discharged from the compressor 18. . The heat absorption by the heat absorber 32 can be performed only by the driving energy of the compressor 18 that circulates the first heat medium.
Furthermore, in the temperature / humidity adjusting apparatus shown in FIG. 1, the cooling water supplied from the outside is supplied to the heat absorber 32 via the condenser 26. For this reason, part of the energy from the high-temperature first heat medium removed by the condenser 26 can also be added to the high-temperature first heat medium discharged from the compressor 18, thereby improving the heating capacity of the heating channel. it can. For this reason, in addition to the energy absorbed by the heat absorber 32 of the heat pump means, part of the energy from the high temperature first heat medium removed by the condenser 26 is also converted into the high temperature first heat medium discharged from the compressor 18. As a result, the heating capacity of the heating channel can be improved. As a result, the temperature adjustment range of the air flow can be expanded, and significant energy saving can be achieved.
Moreover, since the heater 14 can greatly increase not only the heating capacity for the air flow but also the heating capacity of the water sprayed from the spray nozzle 15a and the humidification capacity, the humidity adjustment range of the air flow can be greatly increased. Can also be expanded.
In this way, the heat pump means also against a decrease in the air flow temperature due to the spraying of a predetermined amount of pure water from the spray nozzle group 15 provided on the air supply side of the heater 14 with improved heating capacity. It is possible to have a heating capacity capable of raising the air flow temperature to a predetermined temperature by the endothermic heat.
Here, when the humidity adjustment is attempted by installing the spray nozzle group 15 without providing the heat pump means, a situation where the air flow cannot be adjusted to a predetermined temperature or a situation where it takes a long time to adjust the air flow to the predetermined temperature occurs. There is a fear.
That is, the amount of heating in the heater 14 to which a part of the high-temperature first heat medium discharged from the compressor 18 is supplied in response to a decrease in the air flow temperature due to the water sprayed from the spray nozzle group 15. It is necessary to increase.
However, the first heat medium supplied to the heater 14 is only the amount of heat applied by the compressor 18.
Therefore, when the amount of moisture supplied from the spray nozzle group 15 for humidity adjustment increases rapidly, a sufficient amount of heat for raising the air flow to a predetermined temperature cannot be immediately supplied to the heater 14.
Thus, in the temperature / humidity adjusting apparatus shown in FIG. 1, since the heating capacity of the heating channel can be improved by the installation of the heat pump means, the heating capacity and humidification capacity per predetermined power can be greatly increased, and Energy saving can be achieved.
In the temperature / humidity adjusting apparatus shown in FIG. 1, the distribution ratio between the high-temperature first heat medium distributed to the heating flow path side and the high-temperature first heat medium distributed to the cooling flow path side by the proportional three-way valve 20 It can be changed substantially continuously depending on the temperature within 10.
For this reason, in the temperature / humidity adjusting apparatus shown in FIG. 1, the high temperature 1st heat medium is always supplied to the heating flow path and the cooling flow path, and the heater 14 of the heating flow path and the cooler 16 of the cooling flow path are The minute load fluctuation of the air flow of the temperature / humidity adjustment target passing through the air flow is quickly adjusted by immediately adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path by the proportional three-way valve 20. Can improve responsiveness.
Further, as in the temperature and humidity adjusting device shown in FIG. 1, pure water is sprayed from the spray nozzle provided on the air inlet side of the heater 14, and the humidity in the air can be maintained at a predetermined value. Further, when the air in the clean room is circulated, the circulating air is heated by the fan 12 or the like, but heat is removed by the spray of pure water from the spray nozzle group 15, so that the load on the cooler 16 can be reduced.
As a result, the temperature and humidity of the air flow to be adjusted for temperature and humidity passing through the cooler 16, the spray nozzle group 15 and the heater 14 in the heating channel can be controlled with high accuracy with respect to the set value, and the space shown in FIG. The temperature change and humidity change of the unit 10 can be reduced, and a process requiring precision machining can be installed.
In the temperature / humidity adjusting apparatus shown in FIG. 1, as described above, the heating capacity of the heating channel is improved, and cooling is performed from the proportional three-way valve 20 serving as a distribution unit among the channels including the heating channel and the cooling unit. Each of the flow path including the heating flow path and the flow path including the cooling flow path until the first heat medium that has passed through each of the cooler 16 and the heat absorber 32 is joined by the accumulator 36 is independent of the flow path. Is provided. For this reason, the first heat medium having different temperatures is not mixed, and the temperature adjustment range of the temperature / humidity adjustment target can be widened.
Even when the set temperature of the air flow to be adjusted for temperature and humidity passing through the heater 14 and the cooler 16 is significantly increased, the proportional three-way valve 20 allows the distribution ratio of the high-temperature first heat medium to be higher than that of the cooling flow path. In addition, the distribution ratio distributed to the heating flow path can be significantly increased, and the air flow for temperature and humidity adjustment can be quickly adjusted to a predetermined temperature.
When adjusting the temperature of the air flow, the humidity controller 27 adjusts the amount of pure water sprayed from the spray nozzle group 15 so that the humidity of the air flow is adjusted to the set humidity.
Furthermore, in the temperature / humidity adjusting apparatus shown in FIG. 1, the heating capacity of the heating channel is improved, and it is not necessary to use other moisture supply means or heating means such as a heating steam generator, so that significant energy saving is achieved. Can do.
In the temperature / humidity adjusting apparatus shown in FIG. 1, the temperature control unit 22 and the humidity control unit 27 independently adjust the temperature / humidity. However, even when the set temperature or the set humidity is changed, the air flow Temperature and humidity reach the set temperature and set humidity in a relatively short time.
As described above, in the temperature / humidity adjusting apparatus shown in FIG. 1, the control valve 40 as the refrigerant control means is provided in the pipe 30 for supplying the cooling water to the condenser 26. The control valve 40 is controlled so that the discharge pressure of the compressor 18 is constant. As shown in FIG. 2, the control valve 40 is provided with a rod-like portion including a valve body 40 b that opens and closes an opening of a valve portion 40 a provided in the cooling water flow path. The rod-like portion is biased in a direction in which the valve body 40b closes the opening of the valve portion 40a by a spring 40c with which the tip end surface abuts. Further, the other end surface of the rod-shaped portion is in contact with the bellows 40d to which the pressure of the first heat medium discharged from the compressor 18 is supplied, and the rod-shaped portion is opened against the urging force of the spring 40c. The valve body 40b is urged in the direction to open the valve.
For this reason, when the discharge pressure of the compressor 18 becomes equal to or greater than the urging force of the spring 40 c, the valve body 40 d is moved by the bellows 40 d in a direction to open the opening of the valve portion 40 a and the cooling supplied to the condenser 26 is performed. The amount of water increases and the cooling capacity of the condenser 26 is improved. Thus, the cooling capacity of the condenser 26 is improved, and the discharge pressure of the compressor 18 is reduced.
On the other hand, when the discharge pressure of the compressor 18 becomes equal to or less than the biasing force of the spring 40c, the valve body 40d moves in the direction of closing the opening of the valve portion 40a, and the amount of cooling water supplied to the condenser 26 decreases. The cooling capacity of the condenser 26 is reduced. For this reason, the discharge pressure of the compressor 18 becomes high.
In this way, by keeping the discharge pressure of the compressor 18 constant, the temperature and humidity adjusting device can be stably operated. Moreover, it can adjust so that the amount of cooling water may be supplied to the condenser 26 more than needed, and it may not discharge | emit out of the system.
The control valve 40 is provided with a valve 41 in the bypass piping of the control valve 40 as shown in FIG. The valve 41 absorbs heat when the control valve 40 fails or when the supply amount of the high-temperature first heat medium supplied to the heater 14 increases, the discharge pressure of the compressor 18 decreases, and the supply water is insufficient. This is for forcibly supplying water to the condenser 26 and the heat absorber 32 when the condenser 32 substantially does not function.
In the temperature / humidity adjusting apparatus shown in FIG. 1, a spray nozzle group 15 for spraying pure water is disposed between the cooler 16 and the heater 14, but as shown in FIG. The spray nozzle group 15 may be disposed on the air outlet side. In this way, even if the spray nozzle group 15 is disposed on the air outlet side of the heater 14, water droplets sprayed from the spray nozzle group 15 can be heated by the heater 14 and heated by the air flow to be evaporated.
Further, as shown in FIG. 3B, the cooler 16 and the heater 14 are arranged so that air is supplied to the heater 14 and then supplied to the cooler 16. A spray nozzle group 15 may be disposed between the two. Also in this case, water droplets sprayed from the spray nozzle group 15 can be heated by the heater 14 and heated by the air flow to evaporate.
Furthermore, it is arrangement | positioning with the heater 14 and the cooler 16 which are shown to FIG. 3B, Comprising: You may arrange | position the spray nozzle group 15 in the inlet side of the air of the heater 14, as shown to FIG. 3C. In this case, water droplets sprayed from the spray nozzle group 15 can be directly heated by the heater 14 and evaporated.
However, for example, when the heater 14 and the cooler 16 shown in FIG. 3A are arranged, and when the spray nozzle group 15 is arranged on the air inlet side of the cooler 16 as shown in FIG. Since the water droplets sprayed from the spray nozzle group 15 are removed from the air flow without being condensed and evaporated in the cooler 16, it is difficult to adjust the air flow to a predetermined humidity.
3B and 3C, when the spray nozzle group 15 is provided upstream of the heater 16 or the cooler 14, the heater 16 or cooler downstream of the spray nozzle group 15 is provided. 14 also functions as an eliminator for water droplets sprayed from the spray nozzle group 15, and the size of the water droplets contained in the air flow that has passed through the downstream heater 16 or cooler 14 can be made constant.
Instead of the proportional three-way valve 20 as the distribution means used in the temperature and humidity adjusting apparatus shown in FIG. 1, two two-way valves 38a and 38b as two two-way valves can be used as shown in FIG. Each of the two two-way valves 38 a and 38 b is controlled by the temperature control unit 22. The temperature control unit 22 adjusts the opening degree of each of the two-way valves 38a and 38b, and converts the gaseous first high-temperature heat medium compressed and heated by the compressor 18 into a heating channel and a cooling channel. The distribution ratio to be distributed is adjusted substantially continuously, and the air flow passing through the heater 14 and the cooler 16 is controlled to a predetermined temperature. At that time, the total amount of the high temperature first heat medium amount distributed to the heater 14 side and the high temperature first heat medium amount distributed to the cooler 16 side is the first high temperature discharged from the compressor 18. The opening of the two-way valves 38a and 38b is adjusted so as to be equal to the amount of heat medium, and is continuously proportionally distributed.
At that time, the relationship between the valve opening and the flow rate of each of the two-way valves 38a and 38b is not linear as shown in FIG. For this reason, the temperature control unit 22 holds the flow rate characteristic data for each of the two-way valves 38a and 38b shown in FIG. 5, and the temperature control unit 22 determines the flow rate characteristics of the two-way valves 38a and 38b. An opening signal is transmitted to each two-way valve 38a, 38b.
Here, “to adjust the distribution ratio distributed to the heating flow path and the cooling flow path substantially continuously” or “to adjust the distribution ratio substantially continuously” means that the two-way valves 38a and 38b are stepped. When driven by control and adjusting the distribution ratio between the heating channel and the cooling channel, the opening degree of the two-way valves 38a, 38b is microscopically driven and adjusted, It is meant to include the case of being continuously driven and adjusted as a whole.
In the temperature / humidity adjusting apparatus shown in FIG. 1, in the temperature / humidity adjustment of the air flow as the temperature / humidity adjustment target by the heater 14 and the cooler 16, for example, when it is on the heating side with respect to the air flow of the temperature / humidity adjustment target In the operation state where the air temperature is stable, the air flow cooled by the cooler 16 is heated by the heater 14 as shown in FIG. 6A. In the operation state shown in FIG. 6A, the energy heated by the heater 14 may be larger than the energy A required to heat the airflow. In this case, as shown in FIG. 6B, if the overlapping energy between the heater 14 and the cooler 16 can be reduced as much as possible, energy saving can be achieved.
On the other hand, when it is on the cooling side with respect to the air flow to be adjusted for temperature and humidity, in the operation state where the temperature of the air flow is stable, the air heated by the heater 14 is cooled by the cooler 16 as shown in FIG. 7A. ing. In the operation state shown in FIG. 7A, the energy to be cooled by the cooler 16 may be larger than the energy B required to cool the airflow. In this case, as shown in FIG. 7B, if the overlapping energy between the cooler 16 and the heater 14 can be reduced, energy saving can be achieved.
However, if the supply of the high-temperature first heat medium to the heater 14 and the cooler 16 is turned on and off in order to reduce the amount of heat that cancels each other, the operation of the temperature / humidity adjusting device becomes unstable and the air flow It takes time to stabilize at a predetermined temperature. For this reason, to the extent that the temperature / humidity adjusting device can be stably operated, it is necessary that the amount of heat that cancels each other out of the amount of heating applied to the heater 14 and the amount of cooling applied to the cooler 16 must be present at a minimum. .
The minimum necessary amount of heat that cancels each other differs somewhat depending on the temperature / humidity adjusting device, and is preferably obtained experimentally.
In this way, in the temperature and humidity adjusting apparatus shown in FIG. 8, the amount of heating applied to the heater 14 and the amount of cooling added to the cooler 16 can be reduced so that the overlapping energy between the cooler 16 and the heater 14 can be reduced. Among them, a compressor control unit 44 (hereinafter referred to as a COMP control unit 44) is connected via an inverter 42 as a rotation speed control unit that controls the rotation speed of the compressor 18 so as to reduce the amount of heat canceling each other as much as possible. Control).
8, the same members as those of the temperature / humidity adjusting device shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted. .
The COMP control unit 44 cooperates with the temperature control unit 22 that controls the proportional three-way valve 20 to calculate the amount of heat that cancels each other out of the heating amount applied to the heater 14 and the cooling amount applied to the cooler 16. Control air temperature and humidity while reducing as much as possible.
The control of the proportional three-way valve 20 by the temperature control unit 22 and the control of the rotation speed of the compressor 18 by the COMP control unit 44 are shown in the flowchart of FIG.
When the temperature / humidity adjusting apparatus shown in FIG. 8 was trial run, when operating on the cooling side with respect to the air flow, the amount of heat applied to the heater 14 was increased by the proportional three-way valve 20 to the heater 14 side. It has been found from the standpoint of stable operation that the distribution ratio of one heat medium is 5 to 15% (the distribution ratio of the high temperature first heat medium to the cooler 16 side by the proportional three-way valve 20 is 95 to 85%). did.
On the other hand, when operating on the heating side with respect to the air flow, as a heating amount applied to the heater 14 side, the distribution ratio of the high-temperature first heat medium to the heater 14 side by the proportional three-way valve 20 is 95 to 85. % (The distribution ratio of the high-temperature first heat medium to the cooler 16 side by the proportional three-way valve 20 is 5 to 15%) from the viewpoint of stable operation.
For this reason, in the control shown in the flowchart of FIG. 9, the amount of heating applied to the heater 14 side, specifically, the distribution ratio of the high-temperature first heat medium to the heater 14 side by the proportional three-way valve 20, In contrast, when operating on the cooling side, the rotational speed of the compressor 18 is controlled so as to be 5 to 15%, and when operating on the heating side with respect to the air flow, a distribution ratio of 95 to 85% is obtained. Thus, the rotational speed of the compressor 18 is controlled.
In the flowchart shown in FIG. 9, after starting the compressor 18 in step S10, based on the temperature signal measured by the temperature sensor 24 provided in the space unit 10 so that the air flow is set to a predetermined temperature in step S12. Thus, the distribution ratio of the high temperature first heat medium distributed to the heater 14 side and the cooler 16 side by the proportional three-way valve 20 is continuously changed, and the air flow sucked into the space unit 10 is set to a predetermined temperature. adjust.
In step S14, it is determined whether the air flow reaches a predetermined temperature and is stable. If the temperature of the air flow is not stable, the process returns to step S12 and the heater 14 side and the cooler by the proportional three-way valve 20 are returned. The distribution ratio of the high-temperature heat medium distributed to the 16 side is continuously changed. Steps S12 and S14 are performed by the temperature control unit 22.
On the other hand, when the air flow in the space unit 10 reaches a predetermined temperature and is stable, the distribution ratio of the high-temperature first heat medium distributed to the heater 14 in steps S16 to S22 is within a predetermined range. It is determined whether or not. Steps S16 to S22 are performed by the COMP control unit 44.
The average distribution rate of the high-temperature first heat medium shown in FIG. 9 varies depending on the distribution ratio of the high-temperature first heat medium distributed to the heater 14 side. A value obtained by averaging the distribution ratio of the medium, and may be simply referred to as an average distribution ratio of the first heat medium.
First, in step S16 and step S18, it is determined whether or not the average distribution ratio of the first heat medium to the heater 14 side is within 5 to 15% when it is assumed that the air flow is on the cooling side. To do.
Here, when the average distribution ratio of the first heat medium to the heater 14 side is within 5 to 15%, it is on the cooling side with respect to the air flow and within the range where the operation of the temperature and humidity control device is stable. Therefore, it passes through step S16 and returns from step S18 to step S16.
On the other hand, when the average distribution ratio of the first heat medium to the heater 14 side is less than 5%, the average distribution ratio of the first heat medium to the heater 14 side is too low. Driving tends to be unstable. For this reason, in order to increase the average distribution ratio of the first heat medium to the heater 14 side, the process proceeds from step S16 to step S24, and the rotational speed of the compressor 18 is increased. In step S <b> 24, an increase signal for increasing the rotational speed of the compressor 18 set in the inverter 42 by a minimum change amount is transmitted from the COMP control unit 44 to the inverter 42. This is because the temperature and humidity adjustment device can be stably operated by increasing the rotation speed of the compressor 18 with the minimum change amount.
Since the minimum change amount for changing the rotation speed of the compressor 18 varies depending on the temperature and humidity adjusting device, it is preferable to obtain it experimentally. However, when the rotation speed of the compressor 18 is 2000 to 5000 rpm, the minimum change amount is preferred. The amount is preferably in the range of 3 to 10%.
When the average distribution ratio of the first heat medium to the heater 14 side exceeds 15%, it is determined that the air flow is not on the cooling side through steps S16 and S18. The process proceeds to S20 and step S22. In step S20 and step S22, when it is assumed that the air flow is on the heating side, it is determined whether or not the average distribution ratio of the first heat medium to the heater 14 side is within 95 to 85%.
Here, when the average distribution ratio of the first heat medium to the heater 14 side is within 85 to 95%, the air flow is on the heating side, and the operation of the temperature and humidity control device is within a stable range. Therefore, it passes through step S20 and returns from step S22 to step S16.
On the other hand, when the average distribution ratio of the first heat medium to the heater 14 side exceeds 95%, the average distribution ratio of the first heat medium to the heater 14 side is too high, and the temperature and humidity adjustment device Driving tends to be unstable. For this reason, in order to reduce the average distribution ratio of the first heat medium to the heater 14 side, the process proceeds from step S20 to step S24, and the rotational speed of the compressor 18 is increased. In step S <b> 24, an increase signal for increasing the rotational speed of the compressor 18 set in the inverter 42 by a minimum change amount is transmitted from the COMP control unit 44 to the inverter 42.
When the average distribution ratio of the first heat medium to the heater 14 side is less than 85%, in step S22, the air flow is applied to the heater 14 in a state that is neither the heating side nor the cooling side. Of the heating amount and the cooling amount applied to the cooler 16, it is determined that the amount of heat canceling each other is large. For this reason, it transfers to step S26 and the rotation speed of the compressor 18 is reduced. In step S <b> 26, a reduction signal that lowers the rotation speed of the compressor 18 set in the inverter 42 by the minimum change amount is transmitted from the COMP control unit 44 to the inverter 42. This is because the rotation speed of the compressor 18 is reduced by the minimum change amount and the air flow is shifted to the heating side or the cooling side.
Next, the process proceeds to step S28 after passing through step S24 or step S26, and it is determined whether or not the compressor 18 is in operation. If the compressor 18 is in operation, the process returns to step S14. In step S14, in step S24 or step S26, it is determined whether the air flow in the space unit 10 reaches a predetermined temperature and is stable in a state where the rotation speed of the compressor 18 is increased or decreased by the minimum change amount. . When the air flow in the space unit 10 reaches a predetermined temperature and is stable, the average distribution ratio of the first heat medium to the heater 14 side is within the predetermined range again in steps S16 to S26. Judge whether or not.
On the other hand, if it is determined in step S14 that the temperature of the air flow in the space unit 10 is not stable, the process returns to step S12, and the proportional three-way valve 20 distributes the heater 14 side and the cooler 16 side. 1 The distribution ratio of the heat medium is continuously changed. After the air flow in the space unit 10 reaches a predetermined temperature and stabilizes, the process proceeds to steps S16 to S26.
In step S28, when the compressor 18 is not in the operating state, the control by the temperature control unit 22 and the COMP control unit 44 is stopped.
In the flowchart shown in FIG. 9 described above, the temperature control unit 22 controls the first heat medium to the heater 14 side while paying attention to the average distribution ratio to the heater 14 side. You may control paying attention to the average distribution rate of a heat carrier.
Further, an input unit for inputting the set temperature and set humidity, a display unit for displaying the operation state, and the like may be provided integrally or separately from the temperature control unit 22 and the humidity control unit 27.
In the temperature / humidity adjusting apparatus shown in FIGS. 1 to 9, the condenser 26 and the heat absorber 32 use water as cooling water or a heating source. However, as shown in FIG. A system in which room air is blown by the fan 50 may be used as the cooling source and the heating source.
Among the constituent members constituting the temperature and humidity adjusting device shown in FIG. 10, the same members as those of the temperature and humidity adjusting device shown in FIG. 1 are assigned the same reference numerals as in FIG. .
In addition, in the temperature / humidity adjusting apparatus shown in FIGS. 1 to 9, the spray nozzle group 15 for spraying water is provided as the humidity control means. However, as shown in FIG. A steam generator 52 may be disposed in the flow path. The steam generator 52 is a device that supplies moisture to the air flow through the heater 14 and the cooler 16, and generates steam by heating the pure water stored in the container 54 by the heater 56. . The heater 56 is controlled by the humidity control unit 27.
That is, the humidity control unit 27 adjusts the heating amount of the heater 56 of the steam generator 52 in accordance with the difference between the humidity in the airflow discharged from the fan 12 and the target humidity, and discharges from the fan 12. Adjust the humidity in the airflow to the target humidity.
Thus, even if the steam generator 52 is used as the humidity control means, the temperature and humidity adjustment apparatus shown in FIG. 11 can save energy.
That is, the air flow is heated by the heater 14 whose heating capacity is increased by installing the heat pump means, the dew point in the air flow is increased, and a large amount of moisture can be contained in the air flow.
Among the constituent members constituting the temperature / humidity adjusting apparatus shown in FIG. 11, the same members as those of the temperature / humidity adjusting apparatus shown in FIG. To do.
Furthermore, as shown in FIG. 12, water may be supplied to the condenser 26 and the heat absorber 32 through separate piping. For example, the condenser 26 may be supplied via a pipe 33 and the heat absorber 32 may be supplied via a pipe 32a. Both water that has passed through the condenser 26 and the heat absorber 32 are discharged out of the system.
Among the components constituting the temperature and humidity adjusting device shown in FIG. 12, the same members as those of the temperature and humidity adjusting device shown in FIG. To do.
Further, the water supplied to the condenser 26 and the water supplied to the pure water device 35 may be supplied by separate pipes. For example, normal water may be supplied to the condenser 26 and pure water may be supplied to the pure water device 35.
Incidentally, as the humidity control means used in the temperature / humidity adjusting apparatus shown in FIGS. 1 to 12, dry air dried from the air to be temperature / humidity adjusted is used in combination with the moisture supply means or instead of the moisture supply means. Means for blowing into the air flow channel may be used.
In the temperature / humidity adjustment method of the temperature / humidity adjustment target that employs the temperature / humidity adjustment device shown in FIGS. 1 to 12 described above, the temperature and humidity of the gas flow adjusted by the temperature / humidity adjustment device are simultaneously adjusted. The range which can be performed is wide, and it can enjoy the effect | action and effect that energy saving can be aimed at.
In this temperature and humidity adjustment method, the heater 14 that directly supplies a part of the high-temperature first heat medium compressed and heated by the compressor 18, and the remaining part of the first heat medium is cooled by the condenser 26, The three-way valve 20 or the two-way valve 38a, which distributes the cooler 16 which is adiabatically expanded by the expansion valve 28 and further cooled and supplied to the heater 14 and the cooler 16 with respect to the sequentially passing air flow. The distribution ratio of the first heat medium is changed by 38b to adjust the air flow to a predetermined temperature, and the air flow is adjusted to a predetermined humidity by humidity control means provided in a flow path through which the air flow passes.
Further, the first heat medium that passed through the heater 14 was adiabatically expanded by the expansion valve 34 to be cooled, and passed through a heat pump means including a heat absorber 32 that absorbs heat from water or air as an external heat source. Then, it returns to the compressor 18 together with the first heat medium that has passed through the cooler 16.
The temperature / humidity adjustment apparatus and temperature / humidity adjustment method described above are used for temperature / humidity adjustment of clean rooms in the precision processing field such as the manufacturing process of semiconductor devices. Of course, it can be used for temperature and humidity adjustment.
In addition, the temperature / humidity adjustment apparatus and temperature / humidity adjustment method that have been described are applicable to other fields, such as painting booths, painting booths, solar simulators, printed circuit board stockers, electron microscopes, tablet presses, three-dimensional measuring machines, chromatographs, drafts In fields such as chambers, exposure equipment, spin coaters, liquid crystal glass substrates, screen printers, diagnostic imaging equipment, cement curing, molding dies, injection molding machines, cell culture, plant cultivation, food storage and ripening, DNA immobilization, etc. It can also be used for temperature and humidity adjustment.

Claims (16)

  1.  圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が加熱手段に供給される加熱流路と、前記高温の第1熱媒体の残余部が凝縮手段で冷却されてから第1膨張手段で断熱的に膨張して更に冷却されて冷却手段に供給される冷却流路と、前記高温の第1熱媒体が分配されて前記加熱流路と冷却流路との各々を通過した第1熱媒体が圧縮機に再供給される循環回路とを具備し、
     前記加熱手段及び冷却手段を通過する温湿度調整対象の気体を所定の温度及び湿度に調整する温湿度調整装置であって、
     前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、
     前記加熱流路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、
     前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温湿度調整対象の気体を所定温度に制御する温度制御部と、
     前記加熱手段及び冷却手段を通過する気体を所定湿度に制御する湿度制御手段とが設けられていることを特徴とする温湿度調整装置。
    A heating flow path in which a part of the high temperature first heat medium compressed and heated by the compressor is supplied to the heating means, and a first portion after the remaining portion of the high temperature first heat medium is cooled by the condensation means. A cooling flow path that is adiabatically expanded by the expansion means and is further cooled and supplied to the cooling means; and the high-temperature first heat medium is distributed and passed through each of the heating flow path and the cooling flow path. A circulation circuit in which one heat medium is re-supplied to the compressor,
    A temperature / humidity adjusting device for adjusting a temperature / humidity adjustment target gas passing through the heating means and the cooling means to a predetermined temperature and humidity,
    A portion of the high temperature first heat medium discharged from the compressor is distributed to the heating flow path side, and the remaining portion of the high temperature first heat medium is distributed to the cooling flow path side, and the heating flow path and A distribution means capable of changing a distribution ratio of the high-temperature first heat medium distributed to the cooling flow path;
    In order to improve the heating capacity of the heating flow path, the first heat medium, which is cooled by releasing heat by the heating means and then adiabatically expanded by the second expansion means, is further cooled by an external heat source. Heat pump means comprising heat absorption means for absorbing heat from a certain second heat medium;
    Controlling the distribution means, adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, and passing through the heating means and the cooling means to adjust the temperature and humidity A temperature control unit for controlling the temperature to a predetermined temperature;
    Humidity control means for controlling the gas passing through the heating means and cooling means to a predetermined humidity is provided.
  2.  湿度制御手段が、温湿度調整対象の気体に所定量の水分を供給する水分供給手段であって、前記水分供給手段から供給された水分中の液滴が加熱手段によって直接又は加熱手段で加熱された気体によって加熱されて蒸発するように、前記水分供給手段が加熱手段の前記気体の入口側又は出口側に設けられている請求項1記載の温湿度調整装置。 The humidity control means is a moisture supply means for supplying a predetermined amount of moisture to the temperature / humidity adjustment target gas, and droplets in the moisture supplied from the moisture supply means are heated directly or by the heating means by the heating means. The temperature / humidity adjusting device according to claim 1, wherein the moisture supply means is provided on an inlet side or an outlet side of the gas of the heating means so as to be heated and evaporated by the gas.
  3.  水分供給手段は、水を噴射する水噴霧ノズルと、前記水噴霧ノズルに水を供給する水供給配管に設けられた制御弁と、前記制御弁を調整し、前記水噴霧ノズルに供給する水量を制御する湿度制御部とを具備する請求項2記載の温湿度調整装置。 The water supply means includes a water spray nozzle for injecting water, a control valve provided in a water supply pipe for supplying water to the water spray nozzle, and an amount of water supplied to the water spray nozzle by adjusting the control valve. The temperature / humidity adjusting device according to claim 2, further comprising a humidity control unit to be controlled.
  4.  湿度調整手段が、加熱ヒータによって水蒸気を発生させる水蒸気発生手段である請求項1記載の温湿度調整装置。 The temperature / humidity adjusting device according to claim 1, wherein the humidity adjusting means is water vapor generating means for generating water vapor by a heater.
  5.  水蒸気発生手段には、加熱ヒータの加熱量を調整して水蒸気発生量を制御する湿度制御部が設けられている請求項4記載の温湿度調整装置。 The temperature / humidity adjusting device according to claim 4, wherein the water vapor generating means is provided with a humidity control unit that controls the amount of water vapor generated by adjusting the heating amount of the heater.
  6.  冷却流路の凝縮手段に供給されて第1熱媒体を冷却する冷却媒体とヒートポンプ手段の吸熱手段に供給される第2熱媒体とが、同一熱媒体であって、前記同一熱媒体は凝縮手段に供給されてから前記吸熱手段に供給される請求項1~5のいずれか一項記載の温湿度調整装置。 The cooling medium that is supplied to the condensing means of the cooling flow path to cool the first heat medium and the second heat medium that is supplied to the heat absorbing means of the heat pump means are the same heat medium, and the same heat medium is the condensing means. The temperature / humidity adjusting device according to any one of claims 1 to 5, wherein the temperature and humidity adjusting device is supplied to the heat absorbing means after being supplied to the heat absorbing means.
  7.  第2熱媒体が、外部から加熱又は冷却されることなく供給される第2熱媒体である請求項6記載の温湿度調整装置。 The temperature and humidity adjusting device according to claim 6, wherein the second heat medium is a second heat medium supplied without being heated or cooled from the outside.
  8.  圧縮機の回転数を制御する回転数制御手段が設けられ、温度制御部によって制御される高温の第1熱媒体の分配比率が、加熱手段によって温湿度調整対象の気体に加えられる加熱量と冷却手段によって温湿度調整対象の気体に加えられる冷却量とのうち、互いに打ち消し合う熱量分を少なくできる分配比率となるように、前記回転数制御手段を介して圧縮機の回転数を変更する圧縮機制御部が設けられている請求項1~7のいずれか一項記載の温湿度調整装置。 A rotation speed control means for controlling the rotation speed of the compressor is provided, and the distribution ratio of the high-temperature first heat medium controlled by the temperature control section is determined by the heating amount and the cooling applied to the temperature / humidity adjustment target gas by the heating means. Compressor that changes the rotational speed of the compressor via the rotational speed control means so as to obtain a distribution ratio that can reduce the amount of heat that cancels each other out of the amount of cooling that is applied to the gas subject to temperature and humidity adjustment by the means The temperature / humidity adjusting device according to any one of claims 1 to 7, further comprising a control unit.
  9.  圧縮機制御部では、高温の第1熱媒体の分配比率が、温湿度調整対象の気体が加熱される加熱側の場合、高温の第1熱媒体の95~85%が加熱手段に分配され且つ残余の高温の第1熱媒体の5~15%が冷却手段に分配される範囲となるように、他方、前記温湿度調整対象の気体が冷却される冷却側の場合、高温の第1熱媒体の95~85%が冷却手段に分配され且つ残余の高温の第1熱媒体の5~15%が加熱手段に分配される範囲となるように、回転数制御手段を介して圧縮機の回転数を制御する請求項8記載の温湿度調整装置。 In the compressor control unit, when the distribution ratio of the high temperature first heat medium is on the heating side where the temperature / humidity adjustment target gas is heated, 95 to 85% of the high temperature first heat medium is distributed to the heating means and On the other hand, in the case of the cooling side where the temperature / humidity adjustment target gas is cooled so that 5 to 15% of the remaining high temperature first heat medium is distributed to the cooling means, the high temperature first heat medium The rotation speed of the compressor is set via the rotation speed control means so that 95 to 85% is distributed to the cooling means and 5 to 15% of the remaining hot first heat medium is distributed to the heating means. The temperature / humidity adjusting device according to claim 8 for controlling the temperature.
  10.  回転数制御手段が、インバータである請求項8又は請求項9記載の温湿度調整装置。 The temperature / humidity adjusting device according to claim 8 or 9, wherein the rotation speed control means is an inverter.
  11.  加熱流路と冷却流路との各々を通過した第1熱媒体が合流して圧縮機に再供給される第1熱媒体の流路のうち、分配手段から前記第1熱媒体が合流されるまでの前記加熱流路を含む流路と冷却流路を含む流路との各々が、流路的に独立して設けられている請求項1~10のいずれか一項記載の温湿度調整装置。 Of the flow paths of the first heat medium that the first heat medium that has passed through each of the heating flow path and the cooling flow path merge and are re-supplied to the compressor, the first heat medium is merged from the distribution means. The temperature / humidity adjusting device according to any one of claims 1 to 10, wherein each of the flow path including the heating flow path and the flow path including the cooling flow path is provided independently as a flow path. .
  12.  分配手段が、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を実質的に連続して変更可能な分配手段である請求項1~11のいずれか一項記載の温湿度調整装置。 The distribution means is a distribution means capable of changing the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path substantially continuously. Temperature and humidity control device.
  13.  分配手段が、加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記高温の第1熱媒体を比例分配する比例三方弁である請求項1~12のいずれか一項記載の温湿度調整装置。 The total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side by the distribution means becomes equal to the high temperature first heat medium amount discharged from the compressor. The temperature / humidity adjusting device according to any one of claims 1 to 12, which is a proportional three-way valve that proportionally distributes the high-temperature first heat medium.
  14.  分配手段が、高温の第1熱媒体を加熱流路側と冷却流路側とに分岐する分岐配管の各々に設けられた二方弁であって、
     温度制御部が、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、加熱手段と冷却手段とを通過する温湿度調整対象の気体を所定温度に制御すると共に、前記加熱流路側に分配される高温の第1熱媒体と冷却流路側に分配される高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、前記二方弁の各々の開度を調整する温度制御部でもある請求項1~13のいずれか一項記載の温湿度調整装置。
    The distribution means is a two-way valve provided in each of the branch pipes for branching the high-temperature first heat medium into the heating channel side and the cooling channel side,
    The temperature control unit adjusts the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path so that the temperature / humidity adjustment target gas passing through the heating means and the cooling means is a predetermined temperature. And the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is discharged from the compressor. The temperature / humidity adjusting device according to any one of claims 1 to 13, which is also a temperature control unit that adjusts the opening degree of each of the two-way valves so as to be equal to the amount.
  15.  冷却流路の凝縮手段に供給される冷却媒体が、液状媒体であって、圧縮機の吐出側の圧力が一定に保持されるように、前記凝縮手段に供給される前記液状媒体の供給量を制御する冷媒制御手段が設けられている請求項1~14のいずれか一項記載の温湿度調整装置。 The cooling medium supplied to the condensing means of the cooling channel is a liquid medium, and the supply amount of the liquid medium supplied to the condensing means is set so that the pressure on the discharge side of the compressor is kept constant. The temperature / humidity adjusting device according to any one of claims 1 to 14, further comprising a refrigerant control means for controlling.
  16.  圧縮機で圧縮して加熱した高温の第1熱媒体の一部を直接供給する加熱手段と、前記第1熱媒体の残余部を凝縮手段で冷却した後、第1膨張手段で断熱的に膨張させて更に冷却して供給する冷却手段とを、順次通過する温湿度調整対象の気体に対し、前記加熱手段と冷却手段とに分配する前記第1熱媒体の分配率を変更して、前記気体を所定温度に調整すると共に、
     前記温湿度調整対象の気体が通過する流路に設けた湿度制御手段によって前記気体を所定の湿度に調整し、
     且つ前記加熱手段を通過した第1熱媒体を、第2膨張手段によって断熱的に膨張させて冷却して、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段を通過させた後、前記冷却手段を通過した第1熱媒体と共に前記圧縮機に戻すことを特徴とする温湿度調整方法。
     
    A heating unit that directly supplies a part of a high-temperature first heat medium that has been compressed and heated by a compressor, and a remaining part of the first heat medium is cooled by a condensing unit and then adiabatically expanded by a first expansion unit. And the cooling means to be further cooled and supplied to the gas to be adjusted for temperature and humidity, the distribution ratio of the first heat medium distributed to the heating means and the cooling means is changed, and the gas Is adjusted to a predetermined temperature,
    The gas is adjusted to a predetermined humidity by humidity control means provided in a flow path through which the gas subject to temperature and humidity adjustment passes,
    The first heat medium that has passed through the heating means is adiabatically expanded by the second expansion means, cooled, and passed through a heat pump means having a heat absorption means for absorbing heat from the second heat medium that is an external heat source. Thereafter, the temperature and humidity adjustment method is characterized by returning to the compressor together with the first heat medium that has passed through the cooling means.
PCT/JP2009/057148 2008-04-10 2009-04-07 Temperature and humidity regulating apparatus and temperature and humidity regulating system WO2009125776A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107021886A KR101516772B1 (en) 2008-04-10 2009-04-07 Temperature and humidity regulating apparatus and temperature and humidity regulating system
JP2010507251A JP5343231B2 (en) 2008-04-10 2009-04-07 Temperature and humidity control device
CN2009801128851A CN101990617B (en) 2008-04-10 2009-04-07 Temperature and humidity regulating apparatus and temperature and humidity regulating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008102339 2008-04-10
JP2008-102339 2008-04-10

Publications (1)

Publication Number Publication Date
WO2009125776A1 true WO2009125776A1 (en) 2009-10-15

Family

ID=41161907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057148 WO2009125776A1 (en) 2008-04-10 2009-04-07 Temperature and humidity regulating apparatus and temperature and humidity regulating system

Country Status (5)

Country Link
JP (2) JP5343231B2 (en)
KR (1) KR101516772B1 (en)
CN (1) CN101990617B (en)
TW (1) TWI468632B (en)
WO (1) WO2009125776A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112352A (en) * 2009-11-30 2011-06-09 Orion Machinery Co Ltd Temperature and humidity adjusting device
JP2011127884A (en) * 2009-12-21 2011-06-30 Orion Machinery Co Ltd Temperature/humidity control device and method
EP2492605A1 (en) * 2009-10-23 2012-08-29 Hitachi High-Technologies Corporation Gas temperature/humidity regulation method and gas supply device
JP2013122350A (en) * 2011-12-12 2013-06-20 Orion Machinery Co Ltd Temperature and humidity adjusting device
EP2762793A1 (en) * 2013-02-01 2014-08-06 Technische Hochshule Mittelhessen Device for regulating air humidity
JPWO2013115073A1 (en) * 2012-02-01 2015-05-11 国立大学法人 東京大学 Energy saving device and energy saving method using self-heat regeneration

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495871B (en) * 2011-11-04 2015-08-11 Grand Mate Co Ltd Humidity detection device and detection method thereof
CN104406321B (en) * 2014-11-28 2016-09-21 烟台大学 A kind of heat supply humidification, cooling one heat pump assembly
CN104864536B (en) * 2015-06-23 2017-05-03 向君 Efficient energy-saving multi-stage heat and humidity treatment air conditioning device and treatment method thereof
CN105407688A (en) * 2015-10-24 2016-03-16 无锡商业职业技术学院 Fully-closed intelligent electric control cabinet cooling system
JP6461073B2 (en) * 2016-12-09 2019-01-30 ダイキン工業株式会社 Humidifier
WO2018179474A1 (en) * 2017-03-27 2018-10-04 東芝三菱電機産業システム株式会社 Two fluid spray device
AT521086B1 (en) * 2018-03-28 2020-02-15 Avl List Gmbh Conditioning device for regulating a gaseous or
CN109273742B (en) * 2018-09-27 2020-06-09 德州新动能铁塔发电有限公司 Air supply system of methanol-water reforming hydrogen production fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197048A (en) * 1975-02-22 1976-08-26
JPS63259707A (en) * 1987-04-16 1988-10-26 Tabai Esupetsuku Kk Method and device for obtaining constant temperature and constant humidity
JPH09189460A (en) * 1996-01-09 1997-07-22 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2002048380A (en) * 2000-08-01 2002-02-15 Yamatake Corp Air conditioner and method therefor
JP2005282938A (en) * 2004-03-29 2005-10-13 Orion Mach Co Ltd Cooling device
JP2006207856A (en) * 2005-01-25 2006-08-10 Sanki Eng Co Ltd Air conditioner for conditioning outside air
WO2008078525A1 (en) * 2006-12-27 2008-07-03 Orion Machinery Co., Ltd Device for precise temperature control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728545Y2 (en) * 1986-10-18 1995-06-28 ダイキン工業株式会社 Liquid temperature controller
JP2898866B2 (en) * 1993-11-12 1999-06-02 鹿島建設株式会社 Double coil heat pump package air conditioner
TW234736B (en) * 1993-12-16 1994-11-21 Orion Machinery Co Ltd Construction of dehumidifier for cooled type compressed air
JP3615301B2 (en) * 1996-03-28 2005-02-02 西淀空調機株式会社 Heat pump for hot water supply
JPH10300126A (en) * 1997-04-21 1998-11-13 Orion Mach Co Ltd Apparatus for supplying air of constant temperature and constant humidity
JP2003269805A (en) 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd Marine refrigerating unit
JP2006343052A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Simultaneous cooling and heating multi-air conditioner
JP4954665B2 (en) * 2005-10-19 2012-06-20 三機工業株式会社 Proportional control method and apparatus for two-fluid water spray nozzle.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197048A (en) * 1975-02-22 1976-08-26
JPS63259707A (en) * 1987-04-16 1988-10-26 Tabai Esupetsuku Kk Method and device for obtaining constant temperature and constant humidity
JPH09189460A (en) * 1996-01-09 1997-07-22 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2002048380A (en) * 2000-08-01 2002-02-15 Yamatake Corp Air conditioner and method therefor
JP2005282938A (en) * 2004-03-29 2005-10-13 Orion Mach Co Ltd Cooling device
JP2006207856A (en) * 2005-01-25 2006-08-10 Sanki Eng Co Ltd Air conditioner for conditioning outside air
WO2008078525A1 (en) * 2006-12-27 2008-07-03 Orion Machinery Co., Ltd Device for precise temperature control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492605A1 (en) * 2009-10-23 2012-08-29 Hitachi High-Technologies Corporation Gas temperature/humidity regulation method and gas supply device
EP2492605A4 (en) * 2009-10-23 2013-08-21 Hitachi High Tech Corp Gas temperature/humidity regulation method and gas supply device
JP2011112352A (en) * 2009-11-30 2011-06-09 Orion Machinery Co Ltd Temperature and humidity adjusting device
JP2011127884A (en) * 2009-12-21 2011-06-30 Orion Machinery Co Ltd Temperature/humidity control device and method
JP2013122350A (en) * 2011-12-12 2013-06-20 Orion Machinery Co Ltd Temperature and humidity adjusting device
JPWO2013115073A1 (en) * 2012-02-01 2015-05-11 国立大学法人 東京大学 Energy saving device and energy saving method using self-heat regeneration
EP2762793A1 (en) * 2013-02-01 2014-08-06 Technische Hochshule Mittelhessen Device for regulating air humidity

Also Published As

Publication number Publication date
JP2013167437A (en) 2013-08-29
JP5343231B2 (en) 2013-11-13
TW200949175A (en) 2009-12-01
CN101990617A (en) 2011-03-23
JPWO2009125776A1 (en) 2011-08-04
KR101516772B1 (en) 2015-05-04
TWI468632B (en) 2015-01-11
KR20110016861A (en) 2011-02-18
CN101990617B (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5343231B2 (en) Temperature and humidity control device
JP4435278B2 (en) Precision temperature control device and precision temperature control method
JP2002206834A (en) Indirect evaporative cooling device
JP5205601B2 (en) Temperature and humidity control device
JP5099843B2 (en) Temperature and humidity control device
JP4960292B2 (en) Temperature and humidity control device
JP2010007961A (en) Temperature-humidity controller
JP4865758B2 (en) Temperature and humidity control device
JP2011021830A (en) Temperature and humidity control device
JP5568728B2 (en) Temperature / humidity adjusting device and temperature / humidity adjusting method
JP2009300049A (en) Temperature and humidity adjusting device
JP2010007957A (en) Temperature controller
JP2009122357A (en) Device for regulating temperature of plate-like member
JP2010007955A (en) Temperature controller
JP2000230897A (en) Thermostatic apparatus and thermostatic humidifying apparatus
JP2009293834A (en) Temperature and humidity regulator
JP6047726B2 (en) Temperature and humidity control device
JP2010236700A (en) Temperature and humidity control device
JP2008309465A (en) Temperature control device
JP2009293833A (en) Temperature and humidity regulator
JP5428021B2 (en) Temperature and humidity control device
JP6047725B2 (en) Temperature and humidity control device
JP2010007958A (en) Temperature adjusting device
JP2010255879A (en) Temperature adjusting device
KR100554022B1 (en) Apparatus for vaporization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112885.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507251

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107021886

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09729381

Country of ref document: EP

Kind code of ref document: A1