JP2010255879A - Temperature adjusting device - Google Patents

Temperature adjusting device Download PDF

Info

Publication number
JP2010255879A
JP2010255879A JP2009103775A JP2009103775A JP2010255879A JP 2010255879 A JP2010255879 A JP 2010255879A JP 2009103775 A JP2009103775 A JP 2009103775A JP 2009103775 A JP2009103775 A JP 2009103775A JP 2010255879 A JP2010255879 A JP 2010255879A
Authority
JP
Japan
Prior art keywords
temperature
flow path
heat medium
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009103775A
Other languages
Japanese (ja)
Inventor
Koichi Ota
浩一 太田
Masuo Yoshioka
万寿男 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2009103775A priority Critical patent/JP2010255879A/en
Publication of JP2010255879A publication Critical patent/JP2010255879A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in a conventional temperature adjusting device that energy-saving is imperfect. <P>SOLUTION: In this temperature adjusting device which includes a proportional three-way valve 20 for supplying a part of a first heat medium of high temperature discharged from a compressor 18 to a heater 14, and supplying the cooler 16 with the remaining first heat medium of high temperature after cooling, adiabatically expanding and further cooling it, to adjust a temperature of the water as an object of temperature adjustment, passing through the heater 14 and the cooler 16 and stored in a storage tank 64, and a heat absorber 32 of a heat pump means for absorbing the heat of the first heat medium which is cooled and then adiabatically expanded by the heater 14 from the water stored in a storage tank 29 to improve a heating capacity of a heating machine 4, and in which the first heat mediums respectively passing through the cooler 16 and the heat absorber 32 are joined and resupplied to the compressor 18, a control part 22 is disposed to control the proportional three-way valve 20 so that the water as the object of temperature adjustment is adjusted to a prescribed temperature by changing a distribution ratio of the first heat medium of high temperature to be distributed to the heater 14 and the cooler 16, and the water passing through a condenser 26 and the heat absorber 32 is supplied for preliminary temperature adjustment of the water as the object of temperature adjustment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は温度調整装置に関する。   The present invention relates to a temperature control device.

通常、半導体装置の製造工程等の精密加工分野では、その殆どが温度及び湿度が制御されたクリーンルーム内に設置されている。
しかし、近年、精密加工分野でも、従来よりも更に加工精度の高い精密加工等が要求される工程が出現しつつある。
かかる高い精密加工等が要求される工程では、厳格に温度管理された精密工作機械が要求される。
この様な精密工作機械の温度調整に用いられる温度調整装置としては、例えば下記特許文献1には、図7に示す温度調整装置が提案されている。
図7に示す温度調整装置は、圧縮機100で圧縮されて加熱された高温の第1熱媒体の一部が加熱器102に供給される加熱流路と、高温の第1熱媒体の残余部が凝縮器104で冷却されてから第1膨張弁106で断熱的に膨張して更に冷却されて冷却器108に供給される冷却流路とが設けられ、ポンプ112によって貯留槽110に貯留されている温度調整対象の水が加熱器102と冷却器108とを通過して所定温度に調整されるように、高温の第1熱媒体が加熱流路と冷却流路とに分配され、且つ加熱流路と冷却流路との各々を通過した第1熱媒体が圧縮機100に再供給される温度調整装置である。
この温度調整装置では、圧縮機100から吐出された高温の第1熱媒体の一部を加熱流路側に分配すると共に、高温の第1熱媒体の残余部を冷却流路側に分配し、且つ加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な比例三方弁114と、加熱流路の加熱能力が向上するように、加熱器102で熱を放出して冷却されてから第2膨張弁116で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体としての水から吸熱する吸熱器118を具備するヒートポンプ手段と、比例三方弁114を制御し、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、加熱器102と冷却器108とを通過する温度調整対象の空気を所定温度に制御する制御部120とが設けられている。
Usually, in the precision processing field such as the manufacturing process of semiconductor devices, most of them are installed in a clean room in which temperature and humidity are controlled.
However, in recent years, in the precision processing field, processes requiring precision processing with higher processing accuracy than before have been emerging.
In processes that require such high precision machining, precision machine tools that are strictly temperature controlled are required.
As a temperature adjusting device used for adjusting the temperature of such a precision machine tool, for example, the following Patent Document 1 proposes a temperature adjusting device shown in FIG.
The temperature adjusting device shown in FIG. 7 includes a heating flow path in which a part of the high-temperature first heat medium compressed and heated by the compressor 100 is supplied to the heater 102, and a remaining portion of the high-temperature first heat medium. Is cooled by the condenser 104 and then adiabatically expanded by the first expansion valve 106, further cooled and supplied to the cooler 108, and stored in the storage tank 110 by the pump 112. The high temperature first heat medium is distributed to the heating flow path and the cooling flow path so that the water whose temperature is to be adjusted passes through the heater 102 and the cooler 108 and is adjusted to a predetermined temperature. In the temperature adjustment device, the first heat medium that has passed through each of the passage and the cooling passage is re-supplied to the compressor 100.
In this temperature adjusting device, a part of the high-temperature first heat medium discharged from the compressor 100 is distributed to the heating flow path side, and the remaining portion of the high-temperature first heat medium is distributed to the cooling flow path side and heated. Heat is released by the heater 102 so that the proportional three-way valve 114 capable of changing the distribution ratio of the high-temperature first heat medium distributed to the flow path and the cooling flow path and the heating capacity of the heating flow path are improved. A heat pump means including a heat absorber 118 that absorbs heat from water as a second heat medium, which is an external heat source, after the first heat medium that has been adiabatically expanded by the second expansion valve 116 and further cooled after cooling. The proportional three-way valve 114 is controlled to adjust the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, and the temperature adjustment target passing through the heater 102 and the cooler 108 is adjusted. And a controller 120 for controlling the air to a predetermined temperature. That.

国際公開第2008/078525号パンフレットInternational Publication No. 2008/078525 Pamphlet

図7に示す温度調整装置では、加熱器102と冷却器108とを通過して精密工作機械等のUSERに供給する水の温度を、目標温度に対して±0.1℃の精度で制御でき、且つ省エネルギーも図ることができる。
しかし、図7に示す温度調整装置では、凝縮器194とヒータポンプ手段の吸熱器118とを通過した水は、外部に排出されている。このため、凝縮器194で吸熱した熱量は、その一部が吸熱器118によって吸熱されているものの、大部分は廃棄されているため、省エネルギーが不完全である。
そこで、本発明は、省エネルギーが不完全な従来の温度調整装置の課題を解消し、更に一層の省エネルギーを図れる温度調整装置を提供することを目的とする。
In the temperature adjusting device shown in FIG. 7, the temperature of water supplied to the USER such as a precision machine tool through the heater 102 and the cooler 108 can be controlled with an accuracy of ± 0.1 ° C. with respect to the target temperature. In addition, energy saving can be achieved.
However, in the temperature adjusting device shown in FIG. 7, the water that has passed through the condenser 194 and the heat absorber 118 of the heater pump means is discharged to the outside. For this reason, although a part of the amount of heat absorbed by the condenser 194 is absorbed by the heat absorber 118, most of it is discarded, so that energy saving is incomplete.
Therefore, an object of the present invention is to provide a temperature adjusting device that can solve the problems of the conventional temperature adjusting device that is incomplete in energy saving and can achieve further energy saving.

本発明者等は、前記課題を解決すべく検討を重ねたところ、図7に示した温度調整装置の凝縮器194と吸熱器118とを通過した水の温度は、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配率が安定しているとき、所定温度で比較的安定しているため、凝縮器194と吸熱器118とを通過した水を、外部機器の温度調整用に用いることが可能であることを見出した。
すなわち、前記課題を解決するための手段としては、圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が加熱手段に供給される加熱流路と、前記高温の第1熱媒体の残余部が凝縮手段で冷却されてから第1膨張手段で断熱的に膨張して更に冷却されて冷却手段に供給される冷却流路とが設けられ、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に調整するように、前記高温の第1熱媒体が加熱流路と冷却流路とに分配され、且つ前記加熱流路と冷却流路との各々を通過した第1熱媒体が圧縮機に再供給される温度調整装置であって、前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、前記加熱流路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する制御部とが設けられ、且つ前記凝縮手段と吸熱手段とを通過した前記第2熱媒体が、外部機器の温度調整用又は前記温度調整対象の流体の予備温度調整用に供給される温度調整装置を提供できる。
この課題を解決するための手段において、凝縮手段と吸熱手段とを通過して温度調整した第2熱媒体と温度調整対象の流体とを供給する予備温度調整用の熱交換器を設けることによって、温度調整対象の流体を容易に予備温度調整できる。
As a result of repeated studies to solve the above problems, the present inventors have found that the temperature of water that has passed through the condenser 194 and the heat absorber 118 of the temperature adjustment device shown in FIG. When the distribution ratio of the high-temperature first heat medium distributed to each other is stable, it is relatively stable at a predetermined temperature, so that the water that has passed through the condenser 194 and the heat absorber 118 is adjusted to the temperature of the external device. It was found that it can be used for
That is, as means for solving the above problems, a heating flow path in which a part of the high-temperature first heat medium compressed and heated by a compressor is supplied to the heating means, and the high-temperature first heat medium A cooling flow path is provided that is cooled by the condensing means and then adiabatically expanded by the first expansion means and further cooled and supplied to the cooling means, and passes through the heating means and the cooling means. The high temperature first heat medium is distributed to the heating flow path and the cooling flow path, and passes through each of the heating flow path and the cooling flow path so as to adjust the temperature adjustment target fluid to a predetermined temperature. 1 is a temperature adjusting device in which a heat medium is re-supplied to the compressor, and distributes a part of the high-temperature first heat medium discharged from the compressor to the heating flow path side, and the high-temperature first heat The remaining part of the medium is distributed to the cooling flow path side and distributed to the heating flow and the cooling flow path. Distributing means capable of changing the distribution ratio of the high-temperature first heat medium, and the second expansion means adiabatically after the heat is released by the heating means and cooled so that the heating capacity of the heating flow path is improved. The first heat medium expanded and further cooled by the heat pump means including heat absorption means for absorbing heat from the second heat medium, which is an external heat source, controls the distribution means, and the heating flow path and the cooling flow path A controller for adjusting a distribution ratio of the high-temperature first heat medium distributed to the heating medium and controlling a fluid to be adjusted in temperature passing through the heating unit and the cooling unit to a predetermined temperature, and the condensing unit And the second heat medium that has passed through the heat absorbing means can be provided for temperature adjustment of an external device or for preliminary temperature adjustment of the fluid to be temperature adjusted.
In the means for solving this problem, by providing a heat exchanger for preliminary temperature adjustment for supplying the temperature-adjusted second heat medium and the temperature-adjusted fluid through the condensing means and the heat absorption means, Preliminary temperature adjustment can be easily performed for the fluid to be temperature adjusted.

また、前記課題を解決するための手段としては、圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が加熱手段に供給される加熱流路と、前記高温の第1熱媒体の残余部が凝縮手段で冷却されてから第1膨張手段で断熱的に膨張して更に冷却されて冷却手段に供給される冷却流路とが設けられ、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に調整するように、前記高温の第1熱媒体が加熱流路と冷却流路とに分配され、且つ前記加熱流路と冷却流路との各々を通過した第1熱媒体が圧縮機に再供給される温度調整装置であって、前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、前記加熱流路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、前記温度調整対象の流体から吸熱する吸熱手段を具備するヒートポンプ手段と、前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する制御部とが設けられ、且つ前記凝縮手段と吸熱手段とを通過した温度調整対象の流体が、前記加熱手段と冷却手段とに供給される温度調整装置を提供できる。   Further, as means for solving the above problems, a heating flow path in which a part of the high-temperature first heat medium compressed and heated by a compressor is supplied to the heating means, and the high-temperature first heat medium A cooling flow path is provided that is cooled by the condensing means and then adiabatically expanded by the first expansion means and further cooled and supplied to the cooling means, and passes through the heating means and the cooling means. The high temperature first heat medium is distributed to the heating flow path and the cooling flow path, and passes through each of the heating flow path and the cooling flow path so as to adjust the temperature adjustment target fluid to a predetermined temperature. 1 is a temperature adjusting device in which a heat medium is re-supplied to the compressor, and distributes a part of the high-temperature first heat medium discharged from the compressor to the heating flow path side, and the high-temperature first heat The remaining portion of the medium is distributed to the cooling flow path side and is distributed to the heating flow and the cooling flow path. A distribution means capable of changing a distribution ratio of the first heat medium, and a second expansion means for adiabatic after the heat is released by the heating means and cooled so that the heating capacity of the heating flow path is improved. The first heat medium that has been expanded and further cooled is distributed to the heat pump means having heat absorption means for absorbing heat from the temperature adjustment target fluid, the distribution means, and distributed to the heating flow path and the cooling flow path. A controller for adjusting the distribution ratio of the first high-temperature heat medium to control the temperature adjustment target fluid passing through the heating unit and the cooling unit to a predetermined temperature, and the condensing unit and the heat absorbing unit. It is possible to provide a temperature adjustment device in which the fluid to be temperature-adjusted that has passed through is supplied to the heating means and the cooling means.

本発明者らが提供した課題を解決する手段において、下記の好ましい態様を上げることができる。
制御部では、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を加熱流路側に高い加熱サイドとし、凝縮手段と吸熱手段とを通過した第2熱媒体を前記加熱流路と冷却流路とを通過して所定温度に調整した流体よりも低温に調整するように、分配手段を制御することによって、加熱流路と冷却流路とを通過して所定温度に調整した流体よりも低温の第2熱媒体を外部機器等に供給できる。
一方、制御部では、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を冷却流路側に高い冷却サイドとし、凝縮手段と吸熱手段とを通過した第2熱媒体を前記加熱流路と冷却流路とを通過して所定温度に調整された流体よりも高温に調整するように、分配手段を制御することによって、加熱流路と冷却流路とを通過して所定温度に調整した流体よりも高温の第2熱媒体を外部機器等に供給できる。
尚、温度調整対象の流体と第2熱媒体とを水とすることが好ましい。
In the means for solving the problems provided by the present inventors, the following preferred embodiments can be raised.
In the control unit, the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path is set to a high heating side on the heating flow path side, and the second heat medium that has passed through the condensation means and the heat absorption means is By controlling the distribution means so that the fluid is adjusted to a temperature lower than the fluid adjusted to a predetermined temperature through the heating channel and the cooling channel, the heating channel and the cooling channel are passed through to the predetermined temperature. The second heat medium having a temperature lower than that of the adjusted fluid can be supplied to an external device or the like.
On the other hand, in the control unit, the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path is set to a high cooling side on the cooling flow path side, and the second heat medium that has passed through the condensation means and the heat absorption means By passing the heating channel and the cooling channel through the heating channel and the cooling channel, the distribution means is controlled so that the fluid is adjusted to a temperature higher than the fluid adjusted to a predetermined temperature. A second heat medium having a temperature higher than that of the fluid adjusted to a predetermined temperature can be supplied to an external device or the like.
In addition, it is preferable that the fluid to be temperature adjusted and the second heat medium are water.

本発明者らが提供した温度調整装置によれば、加熱流路と冷却流路とを通過する温度調整対象の流体を目標温度に対して高精度に温度調整できる。
更に、ヒートポンプ手段の吸熱手段を設け、且つ凝縮手段と吸熱手段とを通過した第2熱媒体を外部機器の温度調整用又は温度調整対象の流体の予備温度調整用に用いることによって、圧縮機によって第1熱媒体に加えられたエネルギーを充分に利用でき、図7に示す温度調整装置よりも更に一層の省エネルギーを図ることができる。
また、凝縮手段と吸熱手段とに温度調整対象の流体を供給する場合には、温度調整対象の流体の予備温度調整を容易に行うことができ、且つ圧縮機によって第1熱媒体に加えられたエネルギーを充分に利用できる。
According to the temperature adjustment device provided by the present inventors, the temperature adjustment target fluid that passes through the heating channel and the cooling channel can be adjusted with high accuracy with respect to the target temperature.
Furthermore, by providing the heat absorption means of the heat pump means, and using the second heat medium that has passed through the condensation means and the heat absorption means for adjusting the temperature of the external device or adjusting the preliminary temperature of the fluid to be adjusted by the compressor, The energy applied to the first heat medium can be sufficiently utilized, and further energy saving can be achieved as compared with the temperature adjusting device shown in FIG.
Further, when supplying the temperature adjustment target fluid to the condensing means and the heat absorption means, the preliminary temperature adjustment of the temperature adjustment target fluid can be easily performed and added to the first heat medium by the compressor. Enough energy can be used.

本発明者等が提供した温度調整装置の一例を示す概略図である。It is the schematic which shows an example of the temperature control apparatus which the present inventors provided. 図1に示す温度調整装置に用いられている冷却水制御手段としての制御弁40の一例を説明する断面図である。It is sectional drawing explaining an example of the control valve 40 as a cooling water control means used for the temperature control apparatus shown in FIG. 図1に示す温度調整装置に用いられている分配手段の他の例を説明する説明図である。It is explanatory drawing explaining the other example of the distribution means used for the temperature control apparatus shown in FIG. 本発明者等が提供した温度調整装置の他の例を示す概略図である。It is the schematic which shows the other example of the temperature control apparatus which the present inventors provided. 本発明者等が提供した温度調整装置の他の例を示す概略図である。It is the schematic which shows the other example of the temperature control apparatus which the present inventors provided. 本発明者等が提供した温度調整装置の他の例を示す概略図である。It is the schematic which shows the other example of the temperature control apparatus which the present inventors provided. 従来の温度調整装置を説明する概略図である。It is the schematic explaining the conventional temperature control apparatus.

本発明者らが提供した温度調整装置の一例を説明する概略図を図1に示す。図1に示す温度調整装置では、工作機械等の外部機器(以下、単にUSERと称することがある)から戻って貯留槽64に貯留されている温度調整対象の水を、ポンプ66によって熱交換器50及び純水器52を経由して、冷却流路と加熱流路とに供給して、精密に温度調整した水をUSERに供給している。
かかる加熱流路を構成する加熱手段としての加熱器14と冷却流路を構成する冷却手段としての冷却器16とが設けられており、温度調整対象の水を冷却し加熱することによって精密に温度調整して、USERに供給する。
かかる加熱器14及び冷却器16には、第1熱媒体として、例えばプロパン、イソブタンやシクロペンタン等の炭化水素、フロン類、アンモニア、炭酸ガスが供給され、第1熱媒体の気化・液化によって温度調整対象の水を加熱・冷却して所定の温度に調整する。
この様な第1熱媒体は、圧縮機18によって圧縮・加熱されて高温(例えば70℃)の気体状となって吐出される。圧縮機18から吐出された高温の第1熱媒体を、分配手段としての比例三方弁20によって、加熱器14が設けられた加熱流路側と冷却器16が設けられた冷却流路側とに分配する。
この比例三方弁20では、加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との合計量が圧縮機18から吐出された高温の第1熱媒体量と等しくなるように分配する。
FIG. 1 is a schematic diagram for explaining an example of a temperature adjusting device provided by the present inventors. In the temperature adjusting device shown in FIG. 1, the water to be temperature adjusted that is returned from an external device (hereinafter simply referred to as USER) such as a machine tool and stored in the storage tank 64 is transferred to the heat exchanger by the pump 66. 50 and the deionizer 52 are supplied to the cooling flow path and the heating flow path, and the temperature-adjusted water is supplied to the USER.
A heater 14 as a heating means constituting the heating flow path and a cooler 16 as a cooling means constituting the cooling flow path are provided, and the temperature is adjusted precisely by cooling and heating water to be temperature adjusted. Adjust and supply to USER.
The heater 14 and the cooler 16 are supplied with, for example, hydrocarbons such as propane, isobutane and cyclopentane, chlorofluorocarbons, ammonia, and carbon dioxide as the first heat medium, and the temperature of the first heat medium is determined by vaporization and liquefaction. The water to be adjusted is heated and cooled to adjust to a predetermined temperature.
Such a first heat medium is compressed and heated by the compressor 18 and discharged in the form of a gas at a high temperature (for example, 70 ° C.). The high-temperature first heat medium discharged from the compressor 18 is distributed to the heating channel side provided with the heater 14 and the cooling channel side provided with the cooler 16 by the proportional three-way valve 20 serving as a distribution unit. .
In this proportional three-way valve 20, the total amount of the high temperature first heat medium distributed to the heating flow path side and the high temperature first heat medium distributed to the cooling flow path side is the high temperature first heat medium discharged from the compressor 18. Distribute to equal the amount.

かかる比例三方弁20は、制御部22によって制御されている。この制御部22では、温度調整した水をUSERに供給する供給配管に設けられた温度センサ24によって測定された測定温度と設定された設定温度と比較し、測定温度が設定温度と一致するように、加熱流路側と冷却流路側とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更し、加熱流路と冷却流路とに供給された温度調整対象の水を所定温度に調整する。
この「実質的に連続して変更」とは、比例三方弁20をステップ制御で駆動するとき、微視的には比例三方弁20がステップ的に駆動されているものの、全体的には連続して駆動されている場合を含む意味である。かかる制御部22に設定する設定温度は、任意に設定できるようにしてもよい。
冷却流路側に分配された高温の第1熱媒体は、凝縮手段としての凝縮器26によって冷却されてから膨張手段としての膨張弁28によって断熱的に膨張して更に冷却(例えば、10℃に冷却)される。冷却された第1熱媒体は、冷却器16に供給され、温度調整対象の水を冷却して所定温度に調整する。その際に、冷却器16に供給された第1熱媒体は水から吸熱して昇温される。
一方、加熱流路側に分配された高温の第1熱媒体は、加熱器14に直接供給され、冷却器16で冷却された温度調整対象の水を加熱して所定温度に調整する。その際に、高温の第1熱媒体は放熱して冷却されて凝縮液を含む第1熱媒体となる。
この様に、図1に示す温度調整装置では、冷却器16によって冷却された温度調整対象の水を加熱器14によって、温度調整対象の水の温度調整の精度を向上できる。
The proportional three-way valve 20 is controlled by the control unit 22. The control unit 22 compares the measured temperature measured by the temperature sensor 24 provided in the supply pipe that supplies the temperature-adjusted water to the USER with the set temperature so that the measured temperature matches the set temperature. The distribution ratio of the high-temperature first heat medium distributed to the heating flow path side and the cooling flow path side is substantially continuously changed, and the temperature adjustment target water supplied to the heating flow path and the cooling flow path is predetermined. Adjust to temperature.
This “substantially continuously changing” means that when the proportional three-way valve 20 is driven by step control, the proportional three-way valve 20 is microscopically driven stepwise, but is continuously continuous as a whole. This includes the case where it is driven. The set temperature set in the control unit 22 may be arbitrarily set.
The high temperature first heat medium distributed to the cooling flow path side is cooled by the condenser 26 as the condensing means and then adiabatically expanded by the expansion valve 28 as the expanding means, and further cooled (for example, cooled to 10 ° C.). ) The cooled first heat medium is supplied to the cooler 16 to cool the temperature adjustment target water and adjust it to a predetermined temperature. At that time, the first heat medium supplied to the cooler 16 is heated by absorbing heat from water.
On the other hand, the high-temperature first heat medium distributed to the heating channel side is directly supplied to the heater 14 and heats the temperature adjustment target water cooled by the cooler 16 to adjust it to a predetermined temperature. At that time, the high-temperature first heat medium is radiated and cooled to become the first heat medium containing the condensate.
As described above, in the temperature adjustment device shown in FIG. 1, the accuracy of temperature adjustment of the temperature adjustment target water can be improved by using the heater 14 for the temperature adjustment target water cooled by the cooler 16.

かかる凝縮器26には、加熱器14側に分配された高温の第1熱媒体を冷却する冷却水として、第2熱媒体として貯留槽29に貯留されている水をポンプ33によって供給している。かかる冷却水は、凝縮器26内で70℃程度の第1熱媒体によって30℃程度に加熱されて配管31から吐出される。この配管31から吐出された冷却水は、ヒートポンプ手段の吸熱手段としての吸熱器32に加熱源として供給される。
この吸熱器32には、加熱器14で放熱した第1熱媒体を、膨張弁34によって断熱的に膨張して更に冷却した10℃程度の第1熱媒体が供給されている。このため、吸熱器32では、凝縮器26で吸熱して30℃程度に昇温された冷却水と10℃程度に冷却された第1熱媒体との温度差に基づいて、第1熱媒体が冷却水から吸熱できる。
吸熱器32で冷却水から吸熱して昇温された第1熱媒体は、アキュームレータ36を経由して圧縮機18に供給される。このアキュームレータ36には、冷却器16に供給されて温度調整対象の水から吸熱した第1熱媒体も供給される。かかるアキュームレータ36は、液体成分を貯めてガス成分のみを圧縮機18に再供給できるタイプのアキュームレータであるため、確実に第1熱媒体のガス成分のみを圧縮機18に供給できる。
このアキュームレータ36としては、蓄圧器用タイプのアキュームレータを用いることができる。
尚、アキュームレータ36を設置しなくても、吸熱器32で空気流から吸熱して昇温された熱媒体と、冷却器16に供給されて温度調整対象の水から吸熱した第1熱媒体とを合流して、圧縮機18に再供給できればよい。
The condenser 26 is supplied with water stored in the storage tank 29 as the second heat medium by the pump 33 as cooling water for cooling the high-temperature first heat medium distributed to the heater 14 side. . The cooling water is heated to about 30 ° C. by the first heat medium of about 70 ° C. in the condenser 26 and is discharged from the pipe 31. The cooling water discharged from the pipe 31 is supplied as a heat source to a heat absorber 32 as a heat absorption unit of the heat pump unit.
The heat absorber 32 is supplied with a first heat medium at about 10 ° C., which is adiabatically expanded by the expansion valve 34 and further cooled by the first heat medium radiated by the heater 14. For this reason, in the heat absorber 32, based on the temperature difference between the cooling water that has absorbed heat in the condenser 26 and has been heated to about 30 ° C., and the first heat medium that has been cooled to about 10 ° C., Can absorb heat from cooling water.
The first heat medium that has been heated by absorbing heat from the cooling water by the heat absorber 32 is supplied to the compressor 18 via the accumulator 36. The accumulator 36 is also supplied with a first heat medium that is supplied to the cooler 16 and absorbs heat from the water whose temperature is to be adjusted. Since the accumulator 36 is a type of accumulator that can store the liquid component and re-supply only the gas component to the compressor 18, it can reliably supply only the gas component of the first heat medium to the compressor 18.
As this accumulator 36, an accumulator type accumulator can be used.
Even if the accumulator 36 is not installed, a heat medium that has been heated by absorbing heat from the air flow with the heat absorber 32 and a first heat medium that has been supplied to the cooler 16 and has absorbed heat from the water whose temperature is to be adjusted. It only has to be merged and re-supplied to the compressor 18.

図1に示す温度調整装置では、凝縮器26及び吸熱器32を通過した冷却水は熱交換器50に供給し、貯留槽64に貯留されている水の温度を純水器52に適した温度範囲に調整する。純水器52には、イオン交換樹脂が充填されており、所定の温度範囲となるように温度調整対象の水の温度を調整することによって、イオン交換樹脂の特性を充分に発揮できるからである。
ここで、凝縮器26及び吸熱器32を通過した冷却水は、温度調整装置が安定運転されているとき、つまり加熱器14と冷却器16とに分配する高温の第1熱媒体の分配比率が安定しているとき、安定した温度となる。
但し、その温度は、制御部22が加熱器14と冷却器16とに分配する高温の第1熱媒体の分配比率を、加熱器14側に高い加熱サイドに制御するか、或いは制御部22が加熱器14と冷却器16とに分配する高温の第1熱媒体の分配比率を、冷却器16側に高い冷却サイドに制御するかで異なる。
例えば、制御部22が高温の第1熱媒体の分配比率を加熱サイドに制御している場合には、凝縮器26と吸熱器32とを通過した水の温度は、加熱器14と冷却器16とを通過したUSERに供給される水の温度よりも低温となる。加熱器14及び膨張弁34を通過して冷却された第1熱媒体が供給される吸熱器32に、圧縮機18から高温の第1熱媒体が直接供給される凝縮器26よりも多くの第1熱媒体が供給されるためである。
一方、制御部22が高温の第1熱媒体の分配比率を冷却サイドに制御している場合には、凝縮器26と吸熱器32とを通過した水の温度は、加熱器14と冷却器16とを通過したUSERに供給される水の温度よりも高温となる。凝縮器26に吸熱器32よりも多くの第1熱媒体が供給されるためである。
尚、凝縮器26と吸熱器32とを通過した水の温度の目標温度に対する精度は、加熱器14と冷却器16とを通過した水の温度の目標温度に対する精度に比較して劣るが、温度調整対象の水を、純水器52に充填されているイオン交換樹脂の特性を発揮できる温度範囲とする予備温度調整用としては充分に用いることができる。
In the temperature adjustment device shown in FIG. 1, the cooling water that has passed through the condenser 26 and the heat absorber 32 is supplied to the heat exchanger 50, and the temperature of the water stored in the storage tank 64 is a temperature suitable for the pure water device 52. Adjust to range. This is because the deionizer 52 is filled with an ion exchange resin, and the characteristics of the ion exchange resin can be sufficiently exhibited by adjusting the temperature of the temperature adjustment target water so as to be within a predetermined temperature range. .
Here, the cooling water that has passed through the condenser 26 and the heat absorber 32 has a distribution ratio of the high-temperature first heat medium that is distributed to the heater 14 and the cooler 16 when the temperature adjusting device is stably operated, that is, the cooling water. When stable, the temperature is stable.
However, the temperature is controlled by the control unit 22 controlling the distribution ratio of the high-temperature first heat medium distributed to the heater 14 and the cooler 16 to a higher heating side on the heater 14 side, or by the control unit 22 The distribution ratio of the high-temperature first heat medium distributed to the heater 14 and the cooler 16 differs depending on whether the high cooling side is controlled on the cooler 16 side.
For example, when the control unit 22 controls the distribution ratio of the high-temperature first heat medium to the heating side, the temperature of the water that has passed through the condenser 26 and the heat absorber 32 is the heater 14 and the cooler 16. The temperature is lower than the temperature of the water supplied to the USER that has passed through. The heat absorber 32 to which the first heat medium cooled through the heater 14 and the expansion valve 34 is supplied is supplied to the heat absorber 32 more than the condenser 26 to which the high-temperature first heat medium is directly supplied from the compressor 18. This is because one heat medium is supplied.
On the other hand, when the control part 22 is controlling the distribution ratio of the high temperature 1st heat medium to the cooling side, the temperature of the water which passed the condenser 26 and the heat absorber 32 is the heater 14 and the cooler 16. It becomes higher than the temperature of the water supplied to the USER that passed through. This is because more first heat medium than the heat absorber 32 is supplied to the condenser 26.
The accuracy of the temperature of water that has passed through the condenser 26 and the heat absorber 32 with respect to the target temperature is inferior to the accuracy of the temperature of the water that has passed through the heater 14 and the cooler 16 with respect to the target temperature. The water to be adjusted can be used sufficiently for preliminary temperature adjustment within a temperature range in which the characteristics of the ion exchange resin filled in the pure water device 52 can be exhibited.

また、制御部22によって高温の第1熱媒体の分配比率が加熱サイド又は冷却サイドにあっても、凝縮器26及び吸熱器32を通過した冷却水を熱交換器50に供給することによって、温度調整対象の水を、純水器52に充填されているイオン交換樹脂の特性を充分に発揮できる温度範囲に調整できる。
図1に示す温度調整装置では、加熱器14で放熱した第1熱媒体を、膨張弁34によって断熱的に膨張して冷却しているが、膨張弁34での断熱膨張による冷却では、第1熱媒体と外部との間での熱の遣り取りはない。このため、断熱的に冷却された第1熱媒体は、外部から凝縮器26を経由して吸熱器32に供給された第2熱媒体としての冷却水から吸熱できる。
従って、圧縮機18から吐出される高温の第1熱媒体には、圧縮機18による圧縮動力エネルギーに、ヒートポンプ手段の吸熱器32によって外部熱源としての冷却水より吸熱したエネルギーを加えることができる。
更に、図1に示す温度調整装置では、外部から供給された冷却水が凝縮器26を経由して吸熱器32に供給されており、凝縮器26で除去した高温の第1熱媒体から除去したエネルギーの一部も、圧縮機18から吐出される高温の第1熱媒体に加えることができ、加熱流路の加熱能力を向上できる。
しかも、図1に示す温度調整装置では、凝縮器26及び吸熱器32を通過した冷却水を熱交換器50に供給して、温度調整対象の水を所定温度に調整している。このため、圧縮機18によって第1熱媒体に加えられたエネルギーを有効に利用でき、図7に示す温度調整装置よりも省エネルギーを更に一層向上できる。
In addition, even if the distribution ratio of the high-temperature first heat medium is on the heating side or the cooling side by the control unit 22, the cooling water that has passed through the condenser 26 and the heat absorber 32 is supplied to the heat exchanger 50. The water to be adjusted can be adjusted to a temperature range in which the characteristics of the ion exchange resin filled in the pure water device 52 can be sufficiently exhibited.
In the temperature adjusting device shown in FIG. 1, the first heat medium radiated by the heater 14 is adiabatically expanded and cooled by the expansion valve 34, but in the cooling by adiabatic expansion in the expansion valve 34, There is no exchange of heat between the heat medium and the outside. For this reason, the first heat medium cooled adiabatically can absorb heat from the cooling water as the second heat medium supplied from the outside to the heat absorber 32 via the condenser 26.
Therefore, energy absorbed from the cooling water as the external heat source by the heat absorber 32 of the heat pump means can be added to the compression power energy by the compressor 18 to the high-temperature first heat medium discharged from the compressor 18.
Further, in the temperature adjusting device shown in FIG. 1, the cooling water supplied from the outside is supplied to the heat absorber 32 via the condenser 26 and is removed from the high-temperature first heat medium removed by the condenser 26. Part of the energy can also be added to the high-temperature first heat medium discharged from the compressor 18, and the heating capacity of the heating channel can be improved.
Moreover, in the temperature adjusting device shown in FIG. 1, the cooling water that has passed through the condenser 26 and the heat absorber 32 is supplied to the heat exchanger 50 to adjust the temperature adjustment target water to a predetermined temperature. For this reason, the energy added to the first heat medium by the compressor 18 can be effectively used, and the energy saving can be further improved as compared with the temperature adjusting device shown in FIG.

図1に示す温度調整装置では、比例三方弁20によって加熱流路側に分配する高温の第1熱媒体と冷却流路側に分配する高温の第1熱媒体との分配比率を、USERに供給する水の温度に応じて実質的に連続して変更できる。
このため、図1に示す温度調整装置では、加熱流路及び冷却流路に高温の第1熱媒体が常時供給されており、加熱流路の加熱器14と冷却流路の冷却器16とを通過する温度調整対象の水の微小な負荷変動は、加熱流路と冷却流路とに分配する高温の第1熱媒体の分配比率を比例三方弁20によって直ちに微小調整することによって迅速に対応でき、応答性を向上できる。
その結果、加熱流路の加熱器14と冷却流路の冷却器16とを通過する温度調整対象の水の温度を設定温度に対して±0.1℃以下の精度で制御できる。
一方、凝縮器26及び吸熱器32を通過した冷却水の温度は、目標温度に対して±10℃程度の精度となるが、温度調整対象の水を純水器52に充填されているイオン交換樹脂の特性を充分に発揮し得る温度範囲に調整できる。
また、図1に示す温度調整装置では、上述した様に、加熱流路の加熱能力が向上され、且つ加熱流路と冷却手段とを含む流路のうち、分配手段としての比例三方弁20から冷却器16及び吸熱器32の各々を通過した第1熱媒体がアキュームレータ36で合流されるまでの加熱流路を含む流路と冷却流路を含む流路との各々が、流路的に独立して設けられている。このため、加熱器14と冷却器16とを通過する温度調整対象の水の設定温度を大幅に高くする場合でも、比例三方弁20によって高温の第1熱媒体の分配比率を冷却流路よりも加熱流路に分配する分配比率を大幅に高くして、温度調整対象の水を所定温度に迅速に調整できる。
In the temperature adjusting device shown in FIG. 1, the distribution ratio between the high-temperature first heat medium distributed to the heating flow path side and the high-temperature first heat medium distributed to the cooling flow path side by the proportional three-way valve 20 is supplied to the USER. The temperature can be changed substantially continuously according to the temperature.
For this reason, in the temperature control apparatus shown in FIG. 1, the high temperature 1st heat medium is always supplied to the heating flow path and the cooling flow path, and the heater 14 of the heating flow path and the cooler 16 of the cooling flow path are connected. The minute load fluctuation of the water to be adjusted for temperature adjustment can be quickly dealt with by immediately finely adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path by the proportional three-way valve 20. Can improve responsiveness.
As a result, the temperature of the temperature adjustment target water passing through the heater 14 of the heating channel and the cooler 16 of the cooling channel can be controlled with an accuracy of ± 0.1 ° C. or less with respect to the set temperature.
On the other hand, the temperature of the cooling water that has passed through the condenser 26 and the heat absorber 32 has an accuracy of about ± 10 ° C. with respect to the target temperature, but the ion-exchanger in which the water to be temperature adjusted is filled in the pure water device 52. It can be adjusted to a temperature range in which the characteristics of the resin can be fully exhibited.
Further, in the temperature adjusting device shown in FIG. 1, as described above, the heating capacity of the heating channel is improved, and the proportional three-way valve 20 serving as the distribution unit among the channels including the heating channel and the cooling unit is used. Each of the flow path including the heating flow path and the flow path including the cooling flow path until the first heat medium that has passed through each of the cooler 16 and the heat absorber 32 is joined by the accumulator 36 is independent of the flow path. Is provided. For this reason, even when the set temperature of the temperature adjustment target water passing through the heater 14 and the cooler 16 is significantly increased, the proportional three-way valve 20 allows the distribution ratio of the high-temperature first heat medium to be higher than that of the cooling flow path. The distribution ratio distributed to the heating channel can be significantly increased, and the temperature adjustment target water can be quickly adjusted to a predetermined temperature.

以上、説明してきた図1に示す温度調整装置では、凝縮器26に冷却水を供給する配管に、冷却水制御手段としての制御弁40が設けられている。この制御弁40は、圧縮機18の吐出圧が一定となるように制御されている。かかる制御弁40は、図2に示す様に、冷却水の流路内に設けられた弁部40aの開口部を開閉する弁体40bを具備する棒状部が設けられている。この棒状部は、その先端面が当接するバネ40cによって弁体40bが弁部40aの開口部を閉鎖する方向に付勢されている。また、棒状部の他端面は、圧縮機18から吐出された第1熱媒体の圧力が供給されるベローズ40dに当接し、棒状部をバネ40cの付勢力に抗して弁部40aの開口部を開放する方向に弁体40bを付勢している。   As described above, in the temperature adjusting apparatus shown in FIG. 1, the control valve 40 as the cooling water control means is provided in the pipe for supplying the cooling water to the condenser 26. The control valve 40 is controlled so that the discharge pressure of the compressor 18 is constant. As shown in FIG. 2, the control valve 40 is provided with a rod-like portion including a valve body 40 b that opens and closes an opening of a valve portion 40 a provided in the cooling water flow path. The rod-like portion is biased in a direction in which the valve body 40b closes the opening of the valve portion 40a by a spring 40c with which the tip end surface abuts. Further, the other end surface of the rod-shaped portion is in contact with the bellows 40d to which the pressure of the first heat medium discharged from the compressor 18 is supplied, and the rod-shaped portion is opened against the urging force of the spring 40c. The valve body 40b is urged in the direction to open the valve.

このため、圧縮機18の吐出圧がバネ40cの付勢力以上となったとき、ベローズ40dによって弁体40dが弁部40aの開口部を開放する方向に移動し、凝縮器26に供給される冷却水量が増加して、凝縮器26の冷却能力が向上される。このため、圧縮機18の吐出圧が低下する。
他方、圧縮機18の吐出圧がバネ40cの付勢力以下となったとき、弁体40dが弁部40aの開口部を閉じる方向に移動し、凝縮器26に供給される冷却水量が減少して、凝縮器26の冷却能力が低下する。このため、圧縮機18の吐出圧が高くなる。
この様に、圧縮機18の吐出圧を一定に保持することによって、温度調整装置を安定して運転できる。
ところで、加熱器14及び冷却器16を通過する温度調整対象の水の温度設定を大幅に昇温した場合、制御部22では、比例三方弁20の冷却流路側の吐出口の開度を全閉状態又は全閉状態に近い状態とすると共に、加熱流路側の吐出口を全開状態又は全開状態に近い状態とする。
また、温度調整対象の水の温度が低温である場合、加熱流路の加熱器14に供給された高温の第1熱媒体は、加熱器14で低温の水によって凝縮され、圧縮機18の吐出圧が所定圧よりも低圧となるため、制御弁40が閉じて凝縮器26に冷却水が供給されなくなる。
この様に、凝縮器26に冷却水が供給されなくなると、凝縮器26からヒートポンプ手段の吸熱器32に供給される冷却水も供給されなくなる。このため、吸熱器32が稼働停止状態となって、ヒートポンプ手段が機能しなくなる。
しかも、加熱器14で放熱して凝縮した第1熱媒体を膨張弁34で断熱的に膨張して冷却した第1熱媒体と冷却水との熱交換が行われず、吸熱器32が凍結するおそれがある。
For this reason, when the discharge pressure of the compressor 18 becomes equal to or greater than the urging force of the spring 40 c, the valve body 40 d is moved by the bellows 40 d in a direction to open the opening of the valve portion 40 a and the cooling supplied to the condenser 26 is performed. The amount of water increases and the cooling capacity of the condenser 26 is improved. For this reason, the discharge pressure of the compressor 18 decreases.
On the other hand, when the discharge pressure of the compressor 18 becomes equal to or less than the biasing force of the spring 40c, the valve body 40d moves in the direction of closing the opening of the valve portion 40a, and the amount of cooling water supplied to the condenser 26 decreases. The cooling capacity of the condenser 26 is reduced. For this reason, the discharge pressure of the compressor 18 becomes high.
In this way, the temperature adjusting device can be stably operated by keeping the discharge pressure of the compressor 18 constant.
By the way, when the temperature of the temperature adjustment target water passing through the heater 14 and the cooler 16 is significantly increased, the controller 22 fully closes the opening degree of the discharge port on the cooling flow path side of the proportional three-way valve 20. The discharge port on the heating flow path side is set to a fully open state or a state close to a fully open state.
In addition, when the temperature of the temperature adjustment target water is low, the high temperature first heat medium supplied to the heater 14 in the heating channel is condensed by the low temperature water in the heater 14 and discharged from the compressor 18. Since the pressure is lower than the predetermined pressure, the control valve 40 is closed and the cooling water is not supplied to the condenser 26.
In this way, when the cooling water is not supplied to the condenser 26, the cooling water supplied from the condenser 26 to the heat absorber 32 of the heat pump means is also not supplied. For this reason, the heat absorber 32 becomes an operation stop state, and a heat pump means stops functioning.
In addition, heat exchange between the first heat medium, which is radiated and condensed by the heater 14, is adiabatically expanded by the expansion valve 34 and cooled, and the cooling water is not performed, and the heat absorber 32 may freeze. There is.

このため、図1に示す温度調整装置では、吸熱器32への冷却水の供給手段として、制御弁40のバイパス配管に制御弁44を設けている。この制御弁44は、比例三方弁20の冷却流路側の吐出口の開度が全閉状態又は全閉状態に近い状態となり、加熱流路側の吐出口が全開状態又は全開状態に近い状態となったとき、制御部22からの信号によって開き、強制的に冷却水を凝縮器26に供給し、吸熱器32を稼働状態としている。
このため、加熱器14及び冷却器16を通過する温度調整対象の水の温度設定を大幅に昇温した場合や加熱器14及び冷却器16を通過する空気流が低温の場合の様に、冷却流路側に分配される高温の第1熱媒体の分配率がゼロ又はその近傍となったときでも、吸熱器32に所定量の冷却水を供給でき、吸熱器32の凍結を防止し且つヒートポンプ手段の機能を発揮させることができる。
圧縮機18の吐出圧が上昇し所定圧近傍に到達したとき、制御弁44を制御部22からの信号によって閉じる。その後は、制御弁40によって圧縮機18の吐出側の圧力が一定に保持されるように、凝縮器26に供給される冷却水の供給量を制御する。
For this reason, in the temperature adjusting device shown in FIG. 1, a control valve 44 is provided in the bypass piping of the control valve 40 as means for supplying cooling water to the heat absorber 32. In the control valve 44, the opening degree of the discharge port on the cooling channel side of the proportional three-way valve 20 is in a fully closed state or a state close to a fully closed state, and the discharge port on the heating channel side is in a fully open state or a state close to a fully open state. When this occurs, it opens by a signal from the control unit 22, forcibly supplies cooling water to the condenser 26, and the heat absorber 32 is in an operating state.
Therefore, when the temperature setting of the temperature adjustment target water passing through the heater 14 and the cooler 16 is significantly increased, or when the air flow passing through the heater 14 and the cooler 16 is low temperature, the cooling is performed. Even when the distribution ratio of the high-temperature first heat medium distributed to the flow path side becomes zero or in the vicinity thereof, a predetermined amount of cooling water can be supplied to the heat absorber 32 to prevent the heat absorber 32 from freezing and heat pump means. The function of can be demonstrated.
When the discharge pressure of the compressor 18 increases and reaches a predetermined pressure, the control valve 44 is closed by a signal from the control unit 22. Thereafter, the supply amount of the cooling water supplied to the condenser 26 is controlled so that the pressure on the discharge side of the compressor 18 is kept constant by the control valve 40.

また、図1に示す温度調整装置では、分配手段として比例三方弁20を用いているが、図3(a)に示す様に、2個の二方弁38a,38bを用いることができる。2個の二方弁38a,38bの各々は、制御部22によって制御されている。かかる第1制御部22によって、二方弁38a,38bの各々の開度を調整し、圧縮機18で圧縮・加熱された気体状の高温の第1熱媒体を加熱流路と冷却流路とに分配する分配比率を実質的に連続して調整し、加熱器14と冷却器16とを通過する温度調整対象の水を所定温度に制御する。その際に、加熱器14側に分配する高温の第1熱媒体量と冷却器16側に分配する高温の第1熱媒体量との合計量が、圧縮機18から吐出された高温の第1熱媒体量と等しくなるように、二方弁38a,38bの開度を調整して連続的に比例分配される。
その際に、二方弁38a,38bの各々は、図3(b)に示す様に、バルブ開度と流量との関係は直線状でない。このため、制御部22では、図3(b)に示す二方弁38a,38bの各々についての流量特性データを保持し、制御部22からは、二方弁38a,38bの各流量特性に基づいて各二方弁38a,38bへの開度信号を発信する。
ここで、「加熱流路と冷却流路とに分配する分配比率を実質的に連続して調整」或いは「分配比率を実質的に連続して調整」するとは、二方弁38a,38bをステップ制御によって駆動し、加熱流路と冷却流路との分配比率を調整する際に、二方弁38a,38bの開度が、微視的にはステップ的に駆動されて調整されているものの、全体として連続して駆動されて調整されている場合を含むことを意味する。
In the temperature adjusting device shown in FIG. 1, the proportional three-way valve 20 is used as the distributing means. However, as shown in FIG. 3A, two two-way valves 38a and 38b can be used. Each of the two two-way valves 38 a and 38 b is controlled by the control unit 22. The first control unit 22 adjusts the opening degree of each of the two-way valves 38a and 38b, and the gaseous high temperature first heat medium compressed and heated by the compressor 18 is heated and cooled. The distribution ratio to be distributed to the water is adjusted substantially continuously, and the temperature adjustment target water passing through the heater 14 and the cooler 16 is controlled to a predetermined temperature. At that time, the total amount of the high temperature first heat medium amount distributed to the heater 14 side and the high temperature first heat medium amount distributed to the cooler 16 side is the first high temperature discharged from the compressor 18. The opening of the two-way valves 38a and 38b is adjusted so as to be equal to the amount of heat medium, and is continuously proportionally distributed.
At that time, the relationship between the valve opening and the flow rate of each of the two-way valves 38a and 38b is not linear as shown in FIG. Therefore, the control unit 22 holds the flow rate characteristic data for each of the two-way valves 38a and 38b shown in FIG. 3B, and the control unit 22 determines the flow rate characteristics of the two-way valves 38a and 38b. Then, an opening degree signal is transmitted to each of the two-way valves 38a and 38b.
Here, “to adjust the distribution ratio distributed to the heating flow path and the cooling flow path substantially continuously” or “to adjust the distribution ratio substantially continuously” means that the two-way valves 38a and 38b are stepped. When driven by control and adjusting the distribution ratio between the heating channel and the cooling channel, the opening degree of the two-way valves 38a, 38b is microscopically driven and adjusted, It is meant to include the case of being continuously driven and adjusted as a whole.

図1〜図3に示す温度調整装置では、温度調整対象の水が貯留されている貯留槽64と異なる貯留槽29に貯留されている水を凝縮器26及び吸熱器32に供給しているが、図4に示す様に、凝縮器26及び吸熱器32に貯留槽64に貯留された温度調整対象の水を供給し、凝縮器26及び吸熱器32を通過した温度調整対象の水を純水器52に供給してもよい。
この様に、凝縮器26及び吸熱器32を通過した貯留槽64に貯留された温度調整対象の水の温度を、純水器52に充填されたイオン交換樹脂の特性を充分に発揮できる温度範囲に調整できる。
尚、図4に示す温度調整装置を構成する構成部材のうち、図1に示す温度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
In the temperature adjusting device shown in FIGS. 1 to 3, water stored in a storage tank 29 different from the storage tank 64 in which water to be temperature adjusted is stored is supplied to the condenser 26 and the heat absorber 32. As shown in FIG. 4, the temperature adjustment target water stored in the storage tank 64 is supplied to the condenser 26 and the heat absorber 32, and the temperature adjustment target water that has passed through the condenser 26 and the heat absorber 32 is purified water. It may be supplied to the container 52.
Thus, the temperature range in which the temperature of the temperature adjustment target water stored in the storage tank 64 that has passed through the condenser 26 and the heat absorber 32 can sufficiently exhibit the characteristics of the ion-exchange resin charged in the pure water device 52. Can be adjusted.
4 that are the same as those of the temperature adjusting device shown in FIG. 1 are given the same reference numerals as those in FIG. 1 and detailed description thereof is omitted. .

図1〜図4に示す温度調整装置では、温度調整対象の水の予備温度調整に、凝縮器26及び吸熱器32を直接又は間接的に利用しているが、図5に示す様に、凝縮器26及び吸熱器32を通過した水を外部機器に供給するようにしてもよい。
図5に示す温度調整装置では、貯留槽64に1st USERから戻った水を貯留し、この水を直接冷却器16及び加熱器14に供給して精密な温度調整をすると共に、2nd USERから戻った水を貯留する貯留槽29から凝縮器26及び吸熱器32に供給し、凝縮器26及び吸熱器32を通過した水を2nd USERに供給している。
尚、図5に示す温度調整装置を構成する構成部材のうち、図1に示す温度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
In the temperature adjusting device shown in FIGS. 1 to 4, the condenser 26 and the heat absorber 32 are directly or indirectly used for the preliminary temperature adjustment of the water to be temperature adjusted. As shown in FIG. You may make it supply the water which passed the container 26 and the heat absorber 32 to an external apparatus.
In the temperature control apparatus shown in FIG. 5, the water returned from the 1st USER is stored in the storage tank 64, and this water is directly supplied to the cooler 16 and the heater 14 to perform precise temperature adjustment and return from the 2nd USER. From the storage tank 29 that stores the water, the condenser 26 and the heat absorber 32 are supplied, and the water that has passed through the condenser 26 and the heat absorber 32 is supplied to the 2nd USER.
Note that, among the constituent members constituting the temperature adjusting device shown in FIG. 5, the same members as those of the temperature adjusting device shown in FIG. .

図1〜図5に示す温度調整装置では、凝縮器26及び吸熱器32に供給する流体として水を用いているが、図6に示す様に、凝縮器26及び吸熱器32に供給する流体として空気を用いてもよい。
図6に示す温度調整装置では、凝縮器26及び吸熱器32を収容するチャンバー60内に、ファン62によって空気を吸引することによって、凝縮器26及び吸熱器32を空気流が通過し、空気流を所定温度に調整できる。
尚、図6に示す温度調整装置を構成する構成部材のうち、図1に示す温度調整装置の構成部材と同一部材は、図1の符号と同一番号を付して、詳細な説明を省略する。
1 to 5, water is used as a fluid to be supplied to the condenser 26 and the heat absorber 32, but as a fluid to be supplied to the condenser 26 and the heat absorber 32 as shown in FIG. Air may be used.
In the temperature adjusting device shown in FIG. 6, air is passed through the condenser 26 and the heat absorber 32 by sucking air into the chamber 60 containing the condenser 26 and the heat absorber 32 by the fan 62. Can be adjusted to a predetermined temperature.
Of the constituent members constituting the temperature adjusting device shown in FIG. 6, the same members as the constituent members of the temperature adjusting device shown in FIG. .

14 加熱器
16 冷却器
18 圧縮機
20 比例三方弁
22 制御部
24 温度センサ
26 凝縮器
28,34 膨張弁
29,64 貯留槽
32,66 ポンプ
32 吸熱器
36 アキュームレータ
38a,38b 二方弁
40 制御弁
50 熱交換器
52 純水器
60 チャンバー
62 ファン
DESCRIPTION OF SYMBOLS 14 Heater 16 Cooler 18 Compressor 20 Proportional three-way valve 22 Control part 24 Temperature sensor 26 Condenser 28, 34 Expansion valve 29, 64 Storage tank 32, 66 Pump 32 Heat absorber 36 Accumulator 38a, 38b Two-way valve 40 Control valve 50 Heat exchanger 52 Pure water device 60 Chamber 62 Fan

Claims (9)

圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が加熱手段に供給される加熱流路と、前記高温の第1熱媒体の残余部が凝縮手段で冷却されてから第1膨張手段で断熱的に膨張して更に冷却されて冷却手段に供給される冷却流路とが設けられ、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に調整するように、前記高温の第1熱媒体が加熱流路と冷却流路とに分配され、且つ前記加熱流路と冷却流路との各々を通過した第1熱媒体が圧縮機に再供給される温度調整装置であって、
前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、
前記加熱流路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、
前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する制御部とが設けられ、
且つ前記凝縮手段と吸熱手段とを通過した前記第2熱媒体が、外部機器の温度調整用又は前記温度調整対象の流体の予備温度調整用に供給されることを特徴とする温度調整装置。
A heating flow path in which a part of the high temperature first heat medium compressed and heated by the compressor is supplied to the heating means, and a first portion after the remaining portion of the high temperature first heat medium is cooled by the condensation means. A cooling flow path that is adiabatically expanded by the expansion means, is further cooled, and is supplied to the cooling means, so that the temperature adjustment target fluid that passes through the heating means and the cooling means is adjusted to a predetermined temperature. The temperature adjustment is such that the high-temperature first heat medium is distributed to the heating flow path and the cooling flow path, and the first heat medium that has passed through each of the heating flow path and the cooling flow path is re-supplied to the compressor. A device,
A portion of the high temperature first heat medium discharged from the compressor is distributed to the heating flow path side, and the remaining portion of the high temperature first heat medium is distributed to the cooling flow path side, and the heating flow and cooling are distributed. A distribution means capable of changing a distribution ratio of the high-temperature first heat medium distributed to the flow path;
In order to improve the heating capacity of the heating flow path, the first heat medium that is cooled by releasing heat by the heating means and then adiabatically expanded by the second expansion means and further cooled is an external heat source. Heat pump means comprising heat absorption means for absorbing heat from a certain second heat medium;
Controlling the distribution means, adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, and adjusting the temperature adjustment target fluid that passes through the heating means and the cooling means. And a control unit for controlling to a predetermined temperature,
The temperature adjusting device is characterized in that the second heat medium that has passed through the condensing means and the heat absorbing means is supplied for temperature adjustment of an external device or preliminary temperature adjustment of the fluid to be temperature adjusted.
制御部では、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を加熱流路側に高い加熱サイドとし、凝縮手段と吸熱手段とを通過した第2熱媒体が前記加熱流路と冷却流路とを通過して所定温度に調整された流体よりも低温に調整されるように、分配手段を制御する請求項1記載の温度調整装置。   In the control unit, the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path is set to a high heating side on the heating flow path side, and the second heat medium that has passed through the condensation means and the heat absorption means is The temperature adjustment device according to claim 1, wherein the distribution means is controlled so as to be adjusted to a temperature lower than that of the fluid adjusted to a predetermined temperature through the heating channel and the cooling channel. 制御部では、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を冷却流路側に高い冷却サイドとし、凝縮手段と吸熱手段とを通過した第2熱媒体が前記加熱流路と冷却流路とを通過して所定温度に調整された流体よりも高温に調整されるように、分配手段を制御する請求項1記載の温度調整装置。   In the control unit, the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path is set to a high cooling side on the cooling flow path side, and the second heat medium that has passed through the condensation means and the heat absorption means is The temperature adjusting device according to claim 1, wherein the distribution means is controlled so as to be adjusted to a temperature higher than that of the fluid adjusted to a predetermined temperature through the heating channel and the cooling channel. 凝縮手段と吸熱手段とを通過した第2熱媒体と温度調整対象の流体とが供給される予備温度調整用の熱交換器が設けられている請求項1〜3のいずれか一項記載の温度調整装置。   The temperature according to any one of claims 1 to 3, further comprising a heat exchanger for preliminary temperature adjustment to which the second heat medium that has passed through the condensing means and the heat absorbing means and the fluid to be temperature adjusted are supplied. Adjustment device. 温度調整対象の流体と第2熱媒体とが、水である請求項1〜4のいずれか一項記載の温度調整装置。   The temperature adjusting device according to any one of claims 1 to 4, wherein the fluid to be temperature adjusted and the second heat medium are water. 圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が加熱手段に供給される加熱流路と、前記高温の第1熱媒体の残余部が凝縮手段で冷却されてから第1膨張手段で断熱的に膨張して更に冷却されて冷却手段に供給される冷却流路とが設けられ、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に調整するように、前記高温の第1熱媒体が加熱流路と冷却流路とに分配され、且つ前記加熱流路と冷却流路との各々を通過した第1熱媒体が圧縮機に再供給される温度調整装置であって、
前記圧縮機から吐出された高温の第1熱媒体の一部を前記加熱流路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却流路側に分配し、且つ前記加熱流と冷却流路とに分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、
前記加熱流路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却されてから第2膨張手段で断熱的に膨張されて更に冷却された第1熱媒体が、前記温度調整対象の流体から吸熱する吸熱手段を具備するヒートポンプ手段と、
前記分配手段を制御し、前記加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する制御部とが設けられ、
且つ前記凝縮手段と吸熱手段とを通過した温度調整対象の流体が、前記加熱手段と冷却手段とに供給されることを特徴とする温度調整装置。
A heating flow path in which a part of the high temperature first heat medium compressed and heated by the compressor is supplied to the heating means, and a first portion after the remaining portion of the high temperature first heat medium is cooled by the condensation means. A cooling flow path that is adiabatically expanded by the expansion means, is further cooled, and is supplied to the cooling means, so that the temperature adjustment target fluid that passes through the heating means and the cooling means is adjusted to a predetermined temperature. The temperature adjustment is such that the high-temperature first heat medium is distributed to the heating flow path and the cooling flow path, and the first heat medium that has passed through each of the heating flow path and the cooling flow path is re-supplied to the compressor. A device,
A portion of the high temperature first heat medium discharged from the compressor is distributed to the heating flow path side, and the remaining portion of the high temperature first heat medium is distributed to the cooling flow path side, and the heating flow and cooling are distributed. A distribution means capable of changing a distribution ratio of the high-temperature first heat medium distributed to the flow path;
In order to improve the heating capacity of the heating flow path, the first heat medium that is cooled by releasing heat by the heating means and then adiabatically expanded by the second expansion means and further cooled is used for the temperature adjustment. Heat pump means comprising heat absorbing means for absorbing heat from the target fluid;
Controlling the distribution means, adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path, and adjusting the temperature adjustment target fluid that passes through the heating means and the cooling means. And a control unit for controlling to a predetermined temperature,
The temperature adjusting device is characterized in that the temperature adjustment target fluid that has passed through the condensing means and the heat absorbing means is supplied to the heating means and the cooling means.
制御部では、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を加熱流路側に高い加熱サイドとし、凝縮手段と吸熱手段とを通過した第2熱媒体が前記加熱流路と冷却流路とを通過して所定温度に調整された流体よりも低温に調整されるように、分配手段を制御する請求項6記載の温度調整装置。   In the control unit, the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path is set to a high heating side on the heating flow path side, and the second heat medium that has passed through the condensation means and the heat absorption means is The temperature adjusting device according to claim 6, wherein the distribution means is controlled to be adjusted to a temperature lower than that of the fluid adjusted to a predetermined temperature through the heating channel and the cooling channel. 制御部では、加熱流路と冷却流路とに分配される高温の第1熱媒体の分配比率を冷却流路側に高い冷却サイドとし、凝縮手段と吸熱手段とを通過した第2熱媒体が前記加熱流路と冷却流路とを通過して所定温度に調整された流体よりも高温に調整されるように、分配手段を制御する請求項6記載の温度調整装置。   In the control unit, the distribution ratio of the high-temperature first heat medium distributed to the heating flow path and the cooling flow path is set to a high cooling side on the cooling flow path side, and the second heat medium that has passed through the condensation means and the heat absorption means is The temperature adjusting device according to claim 6, wherein the distribution means is controlled so as to be adjusted to a temperature higher than that of the fluid adjusted to a predetermined temperature through the heating channel and the cooling channel. 温度調整対象の流体と第2熱媒体とが、水である請求項6〜8のいずれか一項記載の温度調整装置。   The temperature adjusting device according to any one of claims 6 to 8, wherein the temperature adjustment target fluid and the second heat medium are water.
JP2009103775A 2009-04-22 2009-04-22 Temperature adjusting device Pending JP2010255879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009103775A JP2010255879A (en) 2009-04-22 2009-04-22 Temperature adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009103775A JP2010255879A (en) 2009-04-22 2009-04-22 Temperature adjusting device

Publications (1)

Publication Number Publication Date
JP2010255879A true JP2010255879A (en) 2010-11-11

Family

ID=43317004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103775A Pending JP2010255879A (en) 2009-04-22 2009-04-22 Temperature adjusting device

Country Status (1)

Country Link
JP (1) JP2010255879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140013A (en) * 2017-04-24 2019-12-18 횔러 엘렉트로리제르 게엠베하 How water electrolysis device works

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366781U (en) * 1986-10-18 1988-05-06
JPH04103571U (en) * 1991-02-15 1992-09-07 関西電力株式会社 Heat pump water heater
WO2008078525A1 (en) * 2006-12-27 2008-07-03 Orion Machinery Co., Ltd Device for precise temperature control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366781U (en) * 1986-10-18 1988-05-06
JPH04103571U (en) * 1991-02-15 1992-09-07 関西電力株式会社 Heat pump water heater
WO2008078525A1 (en) * 2006-12-27 2008-07-03 Orion Machinery Co., Ltd Device for precise temperature control

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140013A (en) * 2017-04-24 2019-12-18 횔러 엘렉트로리제르 게엠베하 How water electrolysis device works
KR20190140014A (en) * 2017-04-24 2019-12-18 횔러 엘렉트로리제르 게엠베하 How water electrolysis device works
JP2020518719A (en) * 2017-04-24 2020-06-25 ヘラー・エレクトロライザー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングHoeller Electrolyzer GmbH Method of operating water electrolysis device
KR102338591B1 (en) * 2017-04-24 2021-12-13 횔러 엘렉트로리제르 게엠베하 How Water Electrolyzer Works
US11384442B2 (en) 2017-04-24 2022-07-12 Hoeller Electrolyzer Gmbh Method for operating a water electrolysis device
KR102448821B1 (en) 2017-04-24 2022-09-28 횔러 엘렉트로리제르 게엠베하 How Water Electrolyzer Works

Similar Documents

Publication Publication Date Title
KR101453924B1 (en) Device for precise temperature control
TWI468632B (en) Temperature and humidity controller and method for controlling temperature and humidity
JP5098046B2 (en) Temperature control system
JP5205601B2 (en) Temperature and humidity control device
JP5266455B2 (en) Temperature control device
JP5099843B2 (en) Temperature and humidity control device
JP2010007961A (en) Temperature-humidity controller
JP2009115442A (en) Temperature adjusting device
JP2010255879A (en) Temperature adjusting device
JP5568728B2 (en) Temperature / humidity adjusting device and temperature / humidity adjusting method
JP4865758B2 (en) Temperature and humidity control device
KR102097783B1 (en) Adsorption type air conditioning apparatus for automotive vehicles
JP4790685B2 (en) Precision temperature control device
JP2011021830A (en) Temperature and humidity control device
JP2008309465A (en) Temperature control device
JP2009300049A (en) Temperature and humidity adjusting device
JP2009097750A (en) Precise temperature adjustment device
JP2010007958A (en) Temperature adjusting device
JP2009103436A (en) Precise temperature adjusting device
JP2009122357A (en) Device for regulating temperature of plate-like member
JP5223152B2 (en) Temperature control device
JP2009293834A (en) Temperature and humidity regulator
JP2010266118A (en) Temperature regulation apparatus
JP2010236700A (en) Temperature and humidity control device
JP2009115446A (en) Precision temperature adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016