JP4790685B2 - Precision temperature control device - Google Patents
Precision temperature control device Download PDFInfo
- Publication number
- JP4790685B2 JP4790685B2 JP2007261336A JP2007261336A JP4790685B2 JP 4790685 B2 JP4790685 B2 JP 4790685B2 JP 2007261336 A JP2007261336 A JP 2007261336A JP 2007261336 A JP2007261336 A JP 2007261336A JP 4790685 B2 JP4790685 B2 JP 4790685B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat medium
- heating
- cooling
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 claims description 188
- 238000001816 cooling Methods 0.000 claims description 138
- 238000009826 distribution Methods 0.000 claims description 92
- 239000002826 coolant Substances 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 22
- 238000003860 storage Methods 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 239000000498 cooling water Substances 0.000 description 40
- 230000007423 decrease Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000000110 cooling liquid Substances 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- -1 chlorofluorocarbons Chemical compound 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
Description
本発明は精密温度調整装置に関し、更に詳細には加熱手段が設けられた加熱回路と冷却手段が設けられた冷却回路とに供給する熱媒体の供給量を調整し、加熱手段と冷却手段とを通過する温度調整対象の流体温度を調整する精密温度調整装置に関する。 The present invention relates to a precise temperature control device, and more specifically, adjusts the supply amount of a heat medium supplied to a heating circuit provided with a heating means and a cooling circuit provided with a cooling means. The present invention relates to a precise temperature adjusting device that adjusts the temperature of a fluid to be passed through.
通常、半導体装置の製造工程等の精密加工分野では、その殆どが温度制御されたクリーンルーム内に設置されている。
しかし、近年、精密加工分野でも、従来よりも更に加工精度の高い精密加工等が要求される工程が出現しつつある。
かかる高い精密加工等が要求される工程では、通常、クリーンルームの温度変化よりも更に小さな温度変化の環境であることが要求される。このため、高い精密加工等が要求される工程は、精密な温度管理がなされている空間ユニット内に設けられる。
この様な空間ユニットの温度調整に用いられる温度調整装置としては、例えば下記特許文献1に図9に示す温度調整装置が記載されている。
図9に示す温度調整装置には、圧縮機100、三方弁102、凝縮器104及び膨張弁106及び冷却器108から成る冷却回路と、圧縮機100、三方弁102、加熱器110及び膨張弁106から成る加熱回路とが設けられている。
冷却器108と加熱器110とによって、ファン112から吹き出す温度調整対象の空気流の温度が調整される。
Usually, in the precision processing field such as a semiconductor device manufacturing process, most of them are installed in a temperature-controlled clean room.
However, in recent years, in the precision processing field, processes requiring precision processing with higher processing accuracy than before have been emerging.
In a process that requires such high precision processing, it is usually required that the temperature change environment is smaller than that of a clean room. For this reason, a process requiring high precision processing or the like is provided in a space unit in which precise temperature management is performed.
As a temperature adjusting device used for adjusting the temperature of such a space unit, for example, the temperature adjusting device shown in FIG.
9 includes a cooling circuit including a compressor 100, a three-way valve 102, a condenser 104, an expansion valve 106, and a cooler 108, a compressor 100, a three-way valve 102, a heater 110, and an expansion valve 106. And a heating circuit comprising:
The cooler 108 and the heater 110 adjust the temperature of the air flow to be temperature adjusted blown out from the fan 112.
かかる温度調整装置では、圧縮機100で圧縮された高温の第1熱媒体を三方弁102によって、冷却回路と加熱回路とに分配する。冷却回路側に分配された高温の第1熱媒体は、凝縮器104で冷却・凝縮される。この冷却・凝集された熱媒体は、膨張弁106によって断熱的に膨張されて更に冷却され、冷却器108に供給される。冷却器108では、ファン112から吹き出す温度調整対象の空気流を冷却しつつ吸熱して昇温された熱媒体は圧縮機100に供給される。
一方、加熱回路側に分配された高温の第1熱媒体は加熱器110に供給され、冷却器108で冷却された温度調整対象の空気流を加熱して所望の温度に調整する。この様に、加熱器110において、冷却器108で冷却された温度調整対象の空気流を加熱しつつ放熱して降温された熱媒体は、膨張弁106及び冷却器108を通過して圧縮機100に供給される。
On the other hand, the high temperature first heat medium distributed to the heating circuit side is supplied to the heater 110, and the air flow to be temperature adjusted cooled by the cooler 108 is heated and adjusted to a desired temperature. In this manner, in the heater 110, the heat medium that has been radiated and cooled while heating the air flow to be temperature-cooled that has been cooled by the cooler 108 passes through the expansion valve 106 and the cooler 108, and passes through the compressor 100. To be supplied.
図9に示す温度調整装置では、圧縮機100で圧縮された高温の第1熱媒体の全量が膨張弁106を通過して断熱的に膨張されて冷却され、冷却器108に供給されるため、ファン112から吹き出す温度調整対象の空気流を冷却する冷却エネルギー量は一定である。
一方、三方弁102によって加熱回路側に分配する高温の第1熱媒体量を調整することによって、冷却器108で冷却された温度調整対象の空気流に対する加熱器110での加熱量を調整できる。
従って、冷却器108及び加熱器110を通過する温度調整対象の空気流の温度を調整でき、精密な温度管理がなされている空間ユニット内の温度管理を狭い温度範囲で行うことは可能である。
しかし、図9に示す温度調整装置では、圧縮機100で圧縮された高温の第1熱媒体の全量が膨張弁106を通過して断熱的に膨張されて冷却され、冷却器108に供給されるため、ファン112から吹き出す温度調整対象の空気流に対する温度調整は、専ら加熱器110に供給する圧縮機100で圧縮された高温の第1熱媒体量によって行われる。
In the temperature adjusting device shown in FIG. 9, the entire amount of the high-temperature first heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108. The amount of cooling energy for cooling the temperature-controlled air flow blown out from the fan 112 is constant.
On the other hand, by adjusting the high-temperature first heat medium amount distributed to the heating circuit side by the three-way valve 102, the heating amount in the heater 110 with respect to the air flow to be temperature-adjusted cooled by the cooler 108 can be adjusted.
Therefore, it is possible to adjust the temperature of the air flow to be temperature adjusted that passes through the cooler 108 and the heater 110, and it is possible to perform temperature management in the space unit in which precise temperature management is performed in a narrow temperature range.
However, in the temperature control apparatus shown in FIG. 9, the entire amount of the high-temperature first heat medium compressed by the compressor 100 passes through the expansion valve 106, is adiabatically expanded and cooled, and is supplied to the cooler 108. Therefore, the temperature adjustment for the air flow to be adjusted from the fan 112 is performed exclusively by the high-temperature first heat medium amount compressed by the compressor 100 supplied to the heater 110.
このため、冷却器108及び加熱器110を通過する温度調整対象の空気流の設定温度を大幅に高くする場合には、温度調整対象の空気流に対する加熱量が不足する。
従って、冷却器108及び加熱器110を通過する温度調整対象の空気流の設定温度を大幅に高くした場合、温度調整対象の空気流の温度が設定温度に到達しなかったり、設定温度に到達するまでに著しく時間がかかることがある。
この様な、図9に示す温度調整装置の加熱量不足を補うべく、図10に示す様に、補助電気ヒータ114を設けることが考えられるが、エネルギー的に無駄である。
更に、図9及び図10に示す温度調整装置では、加熱回路と冷却回路とに分配された高温の第1熱媒体の分配比率が表示されず、温度調整装置の作動状況が容易に把握できず管理上問題であった。
そこで、本発明では、温度調整対象の流体に対する加熱能力が不足し、且つ加熱回路と冷却回路とに分配された高温の熱媒体の分配比率が表示されずに作動状況が視認でき難い従来の温度調整装置の課題を解決し、温度調整対象の流体に対する加熱能力を向上できると共に、省エネルギーを図ることができ、且つ加熱回路と冷却回路とに分配された高温の熱媒体の分配比率が表示される精密温度調整装置を提供することにある。
For this reason, when the set temperature of the air flow to be temperature adjusted passing through the cooler 108 and the heater 110 is significantly increased, the heating amount for the air flow to be temperature adjusted is insufficient.
Therefore, when the set temperature of the air flow subject to temperature adjustment passing through the cooler 108 and the heater 110 is significantly increased, the temperature of the air flow subject to temperature adjustment does not reach the set temperature or reaches the set temperature. May take a long time to complete.
In order to make up for such a shortage of the heating amount of the temperature adjusting device shown in FIG. 9, it may be possible to provide the auxiliary electric heater 114 as shown in FIG. 10, but this is wasteful in terms of energy.
Furthermore, in the temperature adjusting device shown in FIGS. 9 and 10, the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit is not displayed, and the operating status of the temperature adjusting device cannot be easily grasped. It was an administrative problem.
Therefore, in the present invention, the conventional temperature in which the heating capacity for the fluid whose temperature is to be adjusted is insufficient, and the operating condition is difficult to visually recognize without displaying the distribution ratio of the high-temperature heat medium distributed between the heating circuit and the cooling circuit. Solves the problems of the adjusting device, improves the heating capacity for the fluid to be temperature adjusted, saves energy, and displays the distribution ratio of the high-temperature heat medium distributed between the heating circuit and the cooling circuit It is to provide a precision temperature control device.
本発明者等は、前記課題を達成するには、冷却回路と加熱回路とを設けること、冷却手段及び加熱手段を通過する温度調整対象の流体に対する冷却量と加熱量とを変更可能な分配手段を設けること、加熱回路の加熱能力を向上すべく、低温の部分から温度の高い部分へ熱を移動できるヒートポンプ手段を設けること、及び加熱回路と冷却回路とに分配された高温の熱媒体の分配比率を表示する表示部を設けることが有効であると考え検討した結果、本発明に到達した。
すなわち、本発明は、圧縮機で圧縮されて加熱された高温の第1熱媒体の一部が加熱手段に供給される加熱回路と、前記高温の第1熱媒体の残余部が凝縮手段で冷却されてから第1膨張手段で断熱的に膨張して更に冷却されて冷却手段に供給される冷却回路とが設けられ、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に調整するように、前記高温の第1熱媒体が加熱回路と冷却回路とに分配され、且つ前記加熱回路と冷却回路との各々を通過した第1熱媒体が合流して圧縮機に再供給される精密温度調整装置であって、前記高温の第1熱媒体の一部を前記加熱回路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却回路側に分配し、且つ前記加熱回路と冷却回路との各々に分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、前記分配手段を制御し、前記加熱回路と冷却回路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する温度制御部と、 前記加熱回路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却してから第2膨張手段で断熱的に膨張して更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、前記加熱回路側に分配された高温の第1熱媒体の分配比率と前記冷却回路側に分配された高温の第1熱媒体の分配比率とを表示する表示部とが設けられていることを特徴とする精密温度調整装置にある。
In order to achieve the above object, the present inventors provide a cooling circuit and a heating circuit, and a distribution unit capable of changing a cooling amount and a heating amount with respect to a temperature adjustment target fluid passing through the cooling unit and the heating unit. Providing heat pump means capable of transferring heat from a low temperature part to a high temperature part in order to improve the heating capacity of the heating circuit, and distributing a high temperature heat medium distributed to the heating circuit and the cooling circuit As a result of considering that it is effective to provide a display unit for displaying the ratio, the present invention has been achieved.
That is, the present invention provides a heating circuit in which a part of the high-temperature first heat medium compressed and heated by the compressor is supplied to the heating means, and the remaining portion of the high-temperature first heat medium is cooled by the condensing means. And a cooling circuit that is adiabatically expanded by the first expansion means and further cooled and supplied to the cooling means, and the temperature adjustment target fluid that passes through the heating means and the cooling means is brought to a predetermined temperature. The hot first heat medium is distributed to the heating circuit and the cooling circuit, and the first heat medium that has passed through each of the heating circuit and the cooling circuit is joined and re-supplied to the compressor. A precise temperature control device that distributes a portion of the high temperature first heat medium to the heating circuit side, distributes a remaining portion of the high temperature first heat medium to the cooling circuit side, and heats the heating circuit. Distribution ratio of high temperature first heat medium distributed to each of circuit and cooling circuit A distribution means capable of changing the rate; and the distribution means is controlled to adjust the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit to pass through the heating means and the cooling means A temperature control unit that controls a fluid to be adjusted to a predetermined temperature, and heat so that the heating circuit releases heat and then adiabatic with a second expansion unit so that the heating capacity of the heating circuit is improved. The distribution ratio of the heat pump means having heat absorption means for the first heat medium that has been expanded and further cooled to absorb heat from the second heat medium that is an external heat source, and the high-temperature first heat medium distributed to the heating circuit side And a display unit for displaying a distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side.
かかる本発明において、加熱回路と冷却回路とを含む回路のうち、分配手段から第1熱媒体が合流されるまでの回路を、回路的に独立して設けることによって、温度調整対象の流体の温度調整幅を広くできる。
この加熱回路と冷却回路とに高温の第1熱媒体を分配する分配手段としては、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配比率を実質的に連続して変更可能な分配手段を用いることによって、温度調整対象の流体の温度調整を更に一層精密調整できる。
この「実質的に連続して変更可能な分配手段」とは、分配手段として二方弁又は比例三方弁を用い、二方弁又は比例三方弁がステップ制御で駆動が制御されているとき、二方弁又は比例三方弁は微視的にはステップ的に駆動されているものの、全体的には連続的に駆動されている場合を含むことを意味する。
In the present invention, among the circuits including the heating circuit and the cooling circuit, the circuit until the first heat medium is merged from the distribution means is provided independently in terms of circuit, so that the temperature of the fluid to be temperature-adjusted The adjustment range can be widened.
The distribution means for distributing the high temperature first heat medium to the heating circuit and the cooling circuit can change the distribution ratio of the high temperature first heat medium distributed to the heating circuit and the cooling circuit substantially continuously. By using the distribution means, the temperature adjustment of the temperature adjustment target fluid can be adjusted more accurately.
This “substantially changeable distribution means” means that a two-way valve or a proportional three-way valve is used as the distribution means, and when the two-way valve or the proportional three-way valve is driven by step control, This means that the three-way valve or the proportional three-way valve is microscopically driven stepwise, but includes a case where it is driven continuously as a whole.
かかる分配手段としては、圧縮機からの高温の第1熱媒体を加熱回路側と冷却回路側とに分岐する分岐配管の各々に設けた二方弁を用い、温度制御部として、前記二方弁の各々の開度を調整し、前記加熱回路と冷却回路とに分配される高温の第1熱媒体の分配比率を調整して、加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する温度制御部を用い、前記温度制御部には、前記二方弁の各々の開度と流量との関係が記憶されている記憶部と、前記記憶部に記憶された二方弁の各々の開度と流量との関係から、表示部に表示する加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを演算する演算部とを具備することによって、加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを表示部に容易に表示できる。
或いは、分配手段として、加熱回路側に分配する高温の第1熱媒体と冷却回路側に分配する高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、加熱回路側吐出口の開度と冷却回路側吐出口の開度を調整して、前記高温の第1熱媒体を比例分配する比例三方弁を用い、且つ温度制御部として、前記比例三方弁の加熱回路側吐出口の開口度と冷却回路側吐出口の開口度とを調整して、加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する温度制御部を採用し、前記温度制御部に、前記比例三方弁の加熱回路側吐出口の開口度と冷却回路側吐出口の開口度とから、表示部に表示する加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを演算する演算部とを具備することにより、熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを表示部に容易に表示できる。
As such a distribution means, a two-way valve provided in each of the branch pipes for branching the high temperature first heat medium from the compressor to the heating circuit side and the cooling circuit side is used, and the two-way valve is used as the temperature control unit. And adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit, the fluid to be temperature-adjusted passing through the heating means and the cooling means is predetermined. A temperature control unit that controls the temperature is used, and in the temperature control unit, a storage unit that stores a relationship between an opening degree and a flow rate of each of the two-way valves, and a two-way valve stored in the storage unit The distribution ratio of the high temperature first heat medium distributed to the heating circuit side displayed on the display unit and the distribution ratio of the high temperature first heat medium distributed to the cooling circuit side from the relationship between the opening degree and the flow rate of each And a high-temperature first distributed to the heating circuit side. It can be easily displayed on the display unit and a distribution ratio of the first heat medium of high temperature which are distributed and the distribution ratio of the medium to the cooling circuit side.
Alternatively, as the distribution means, the total amount of the high temperature first heat medium distributed to the heating circuit side and the high temperature first heat medium distributed to the cooling circuit side is the amount of the high temperature first heat medium discharged from the compressor. Adjusting the opening degree of the heating circuit side outlet and the opening degree of the cooling circuit side outlet so as to be equal, using a proportional three-way valve that proportionally distributes the high temperature first heat medium, and as a temperature control unit, Temperature control that adjusts the opening degree of the heating circuit side discharge port and the opening degree of the cooling circuit side discharge port of the proportional three-way valve to control the temperature adjustment target fluid passing through the heating unit and the cooling unit to a predetermined temperature. The temperature control unit is provided with a high temperature distributed to the heating circuit side displayed on the display unit from the opening degree of the heating circuit side discharge port and the opening degree of the cooling circuit side discharge port of the proportional three-way valve. The distribution ratio of the first heat medium and the high temperature first heat medium distributed to the cooling circuit side By providing a calculation unit that calculates the distribution ratio, the distribution ratio of the high temperature first heat medium distributed to the heat circuit side and the distribution ratio of the high temperature first heat medium distributed to the cooling circuit side are obtained. It can be easily displayed on the display unit.
これらの表示部には、加熱手段と冷却手段とを通過した温度調整対象の流体の現在温度と設定温度とを切り替えて表示する温度表示部と、前記設定温度を所望温度に設定する設定部とを設けることによって、精密温度調整装置の操作パネルの小型化を図ることができる。
かかる表示部には、複数のLEDを設け、加熱回路側と冷却回路側との各々の分配比率をLEDの点灯によって表示することによって、現在の加熱回路側と冷却回路側との各分配比率を一目で把握できる。
また、第2熱媒体として、外部から加熱又は冷却されることなく供給された第2熱媒体を用いることが、省エネルギーの観点から好ましい。
更に、冷却回路の凝縮手段に供給されて高温の第1熱媒体を冷却する冷却媒体とヒートポンプ手段の吸熱手段に供給される第2熱媒体とを、同一熱媒体とし、前記凝縮手段に供給してからヒートポンプ手段の吸熱手段に供給することによって、凝縮手段で除去された高温の第1熱媒体の熱を有効利用でき好ましい。
These display units include a temperature display unit for switching and displaying a current temperature and a set temperature of a temperature adjustment target fluid that has passed through the heating unit and the cooling unit, and a setting unit for setting the set temperature to a desired temperature. By providing this, it is possible to reduce the size of the operation panel of the precision temperature control device.
The display unit is provided with a plurality of LEDs, and the respective distribution ratios on the heating circuit side and the cooling circuit side are displayed by lighting the LEDs, so that the current distribution ratios on the heating circuit side and the cooling circuit side are indicated. You can grasp at a glance.
Moreover, it is preferable from a viewpoint of energy saving to use the 2nd heat medium supplied without being heated or cooled from the outside as a 2nd heat medium.
Further, the cooling medium supplied to the condensing means of the cooling circuit for cooling the high temperature first heat medium and the second heat medium supplied to the heat absorbing means of the heat pump means are made the same heat medium and supplied to the condensing means. Then, it is preferable that the heat of the high-temperature first heat medium removed by the condensing means can be effectively used by supplying it to the heat absorbing means of the heat pump means.
本発明に係る精密温度調整装置では、加熱回路の加熱手段と冷却回路の冷却手段との各々に、圧縮機から吐出された高温の第1熱媒体が供給される。更に、分配手段によって、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配比率を変更して、加熱手段と冷却手段とを通過する温度調整対象の流体に対する加熱量と冷却量とを容易に調整できる。
しかも、本発明の精密温度調整装置では、ヒートポンプ手段を設けている。このヒートポンプ手段は、低温の部分から温度の高い部分へ熱を移動できる手段であるため、圧縮機によって圧縮されて加熱された高温の第1熱媒体(温度の高い部分)のうち、加熱回路の加熱手段で熱を放出して冷却してから第2膨張手段で断熱的に膨張して更に冷却した第1熱媒体を、ヒートポンプ手段を構成する吸熱手段によって、外部熱源の第2熱媒体(温度の低い部分)から吸熱し昇温して圧縮機に戻すことができる。
このため、本発明の精密温度調整装置では、圧縮機から吐出される高温の第1熱媒体(温度の高い部分)には、圧縮機による圧縮動力エネルギーに、ヒートポンプ手段によって外部熱源の第2熱媒体(温度の低い部分)から吸熱されたエネルギーを加えることができ、高温の第1熱媒体が供給される加熱手段の加熱能力を向上できる。
従って、本発明の精密温度調整装置では、加熱手段と冷却手段とを通過する温度調整対象の流体の微小な負荷変動は、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配比率を微小調整することによって迅速に対応でき、応答性の向上を図ることができる。
また、加熱手段と冷却手段とを通過する温度調整対象の流体の設定温度を大幅に高くする場合でも、高温の第1熱媒体の分配比率を冷却回路よりも加熱回路に分配する分配比率を大幅に高くすることによって、温度調整対象の流体を所定温度に調整できる。
この様に、本発明の精密温度調整装置では、補助電気ヒータ等の補助ヒータの不要化或いは小型化を図っても、温度調整対象の流体を所定温度に調整でき、省エネルギーを図ることができる。
更に、加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを表示する表示部を設けているため、現在の温度調整装置の作動状況を容易に把握でき、温度調整装置の管理上都合がよい。
In the precision temperature control apparatus according to the present invention, the high temperature first heat medium discharged from the compressor is supplied to each of the heating means of the heating circuit and the cooling means of the cooling circuit. Further, the distribution means changes the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit, so that the heating amount and the cooling amount for the temperature adjustment target fluid passing through the heating means and the cooling means are changed. Can be adjusted easily.
In addition, the precise temperature control apparatus of the present invention is provided with heat pump means. Since this heat pump means is a means that can transfer heat from a low temperature part to a high temperature part, among the high temperature first heat medium (high temperature part) that is compressed and heated by the compressor, The first heat medium, which has been cooled by releasing heat by the heating means and then adiabatically expanded by the second expansion means and further cooled, is converted into a second heat medium (temperature) of the external heat source by the heat absorption means constituting the heat pump means. Heat absorption from the lower part) and the temperature can be returned to the compressor.
For this reason, in the precise temperature control apparatus of the present invention, the high-temperature first heat medium (high temperature part) discharged from the compressor is supplied with the compression power energy by the compressor and the second heat of the external heat source by the heat pump means. Energy absorbed from the medium (part where the temperature is low) can be added, and the heating capability of the heating means to which the high-temperature first heat medium is supplied can be improved.
Therefore, in the precise temperature control apparatus of the present invention, the minute load fluctuation of the temperature adjustment target fluid passing through the heating means and the cooling means is a distribution ratio of the high temperature first heat medium distributed to the heating circuit and the cooling circuit. It is possible to respond quickly by finely adjusting and improve responsiveness.
In addition, even when the set temperature of the temperature adjustment target fluid that passes through the heating means and the cooling means is significantly increased, the distribution ratio for distributing the distribution ratio of the high-temperature first heat medium to the heating circuit rather than the cooling circuit is greatly increased. By making the temperature higher, the temperature adjustment target fluid can be adjusted to a predetermined temperature.
As described above, in the precise temperature adjustment device of the present invention, even if an auxiliary heater such as an auxiliary electric heater is not required or downsized, the fluid to be temperature adjusted can be adjusted to a predetermined temperature, and energy can be saved.
Further, since the display unit for displaying the distribution ratio of the high-temperature first heat medium distributed to the heating circuit side and the distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side is provided, the current temperature The operating status of the adjusting device can be easily grasped, which is convenient for management of the temperature adjusting device.
本発明に係る精密温度調整装置の一例を図1に示す。図1に示す精密温度調整装置は、工作機械等に用いられる冷却液の精密温度調整装置である。この冷却液の精密温度調整装置では、インバータによって所定回転数で回転するように制御されている圧縮機10で圧縮されて吐出された高温の第1熱媒体は分配手段12によって加熱回路と冷却回路とに分配される。かかる加熱回路と冷却回路との各回路を通過した第1熱媒体は、合流されて圧縮機10に再供給される。この加熱回路と冷却回路とを含む回路のうち、分配手段12から第1熱媒体が合流するまでの回路は、回路的に独立して設けられている。
図1に示す圧縮機10で圧縮する第1熱媒体としては、例えばプロパン、イソブタンやシクロペンタン等の炭化水素、フロン類、アンモニア、炭酸ガスが供給され、熱媒体の気化・液化によって温度調整対象の冷却液を加熱・冷却して所定の温度に調整する。
かかる分配手段12には、高温の第1熱媒体を加熱回路側と冷却回路側とに分岐する分岐配管の各々に二方弁12a,12bが設けられている。この二方弁12a,12bは、各々の開度を制御し、加熱回路側に分配する高温の第1熱媒体と冷却回路側に分配する高温の第1熱媒体との合計量が圧縮機10から吐出された高温の第1熱媒体量と等しくなるように、高温の第1熱媒体を比例分配する温度制御部15が設けられている。かかる温度制御部15では、後述する様に、精密温度調整装置の出口の冷却液の温度を測定する温度センサ22からの信号に基づいて、二方弁12a,12bの各開度を制御し、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配率を実質的に連続に変更して、冷却液を所定温度に調整する。
ここで、「実質的に変更」とは、二方弁12a,12bの各々をステップ制御で駆動するとき、微視的には二方弁12a,12bがステップ的に駆動されているものの、全体的には連続して駆動されている場合を含む意味である。
かかる二方弁12a,12bの各々は、図2に示す様に、バルブ開度と流量との関係は直線状でない。このため、温度制御部12cでは、図2に示す二方弁12a,12bの各々についての流量特性データを保持し、温度制御部12cからは、二方弁12a,12bの各流量特性に基づいて各二方弁12a,12bへの開度信号を発信する。
An example of the precision temperature control apparatus according to the present invention is shown in FIG. The precision temperature control apparatus shown in FIG. 1 is a precision temperature control apparatus for coolant used in machine tools and the like. In this cooling liquid precise temperature adjusting device, the high-temperature first heat medium compressed and discharged by the compressor 10 controlled to rotate at a predetermined rotational speed by an inverter is supplied to the heating circuit and the cooling circuit by the distribution means 12. And distributed. The first heat medium that has passed through each of the heating circuit and the cooling circuit is joined and re-supplied to the compressor 10. Of the circuits including the heating circuit and the cooling circuit, the circuits from the distribution unit 12 to the first heat medium merge are provided independently from each other.
As the first heat medium to be compressed by the compressor 10 shown in FIG. 1, for example, hydrocarbons such as propane, isobutane and cyclopentane, chlorofluorocarbons, ammonia and carbon dioxide gas are supplied, and the temperature is adjusted by vaporization / liquefaction of the heat medium. The coolant is heated and cooled to adjust to a predetermined temperature.
The distribution means 12 is provided with two-way valves 12a and 12b in each branch pipe that branches the high-temperature first heat medium to the heating circuit side and the cooling circuit side. The two-way valves 12a and 12b control the opening degree of the two-way valves 12a and 12b, and the total amount of the high temperature first heat medium distributed to the heating circuit side and the high temperature first heat medium distributed to the cooling circuit side is the compressor 10. A temperature control unit 15 that proportionally distributes the high-temperature first heat medium is provided so as to be equal to the amount of the high-temperature first heat medium discharged from. As will be described later, the temperature control unit 15 controls the degree of opening of each of the two-way valves 12a and 12b based on a signal from the temperature sensor 22 that measures the temperature of the coolant at the outlet of the precision temperature adjusting device. The distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit is changed substantially continuously to adjust the coolant to a predetermined temperature.
Here, “substantially change” means that when each of the two-way valves 12a and 12b is driven by step control, the two-way valves 12a and 12b are microscopically driven stepwise. Specifically, it means that it is continuously driven.
In each of the two-way valves 12a and 12b, the relationship between the valve opening and the flow rate is not linear as shown in FIG. Therefore, the temperature control unit 12c holds the flow rate characteristic data for each of the two-way valves 12a and 12b shown in FIG. 2, and the temperature control unit 12c is based on the flow rate characteristics of the two-way valves 12a and 12b. An opening signal is transmitted to each two-way valve 12a, 12b.
圧縮機10から吐出された高温の第1熱媒体の一部が分配された加熱回路には、高温の第1熱媒体が供給される加熱手段としての加熱器14が設けられている。この加熱器14には、貯留槽24に貯留されているUSERから戻った、温度調整対象としての冷却液がポンプ26によって供給され、分配された高温の第1熱媒体によって加熱される。
また、冷却回路には、分配された高温の第1熱媒体を、冷却する凝縮手段として、高温の第1熱媒体を凝縮する凝縮器16と、凝縮器16によって冷却された第1熱媒体を断熱的に膨張して更に冷却する第1膨張手段としての膨張弁18と、更に冷却された第1熱媒体が供給される冷却器20とが設けられている。冷却器20には、加熱器14によって加熱された温度調整対象の冷却液が供給され、この冷却液を、所定温度に冷却された第1熱媒体によって冷却して所定温度に調整する。
この様に、加熱器14と冷却器20とを通過した冷却液は、温度制御部12cに設定した温度に調整されて、USERに送液される。
かかる加熱回路及び冷却回路には、ヒートポンプ手段の吸熱手段としての加熱用熱交換器28が設けられている。この加熱用熱交換器28には、加熱器14で放熱して冷却されてから第2膨張手段としての膨張弁30で断熱的に膨張されて更に冷却された第1熱媒体と、冷却回路に設けられた凝縮器16に冷却用媒体として供給されて、高温の第1熱媒体の熱を吸熱して昇温された第2熱媒体としての冷却水とが供給され、昇温された冷却水から吸熱した第1熱媒体はアキュームレータ31に戻り圧縮機10に供給される。このアキュームレータ31には、冷却器20で冷却水から吸熱した第1熱媒体も供給される。かかるアキュームレータ31としては、蓄圧器用タイプのアキュームレータを用いた。
尚、アキュームレータ31を設置しなくても、加熱用熱交換器28で冷却水から吸熱して昇温された第1熱媒体と、冷却器20で温度調整対象としての冷却液から吸熱した第1熱媒体とを合流して、圧縮機10に再供給できればよい。
In the heating circuit in which a part of the high-temperature first heat medium discharged from the compressor 10 is distributed, a heater 14 is provided as a heating unit to which the high-temperature first heat medium is supplied. Cooling liquid as a temperature adjustment target returned from the USER stored in the storage tank 24 is supplied to the heater 14 by the pump 26 and heated by the distributed high-temperature first heat medium.
The cooling circuit includes a condenser 16 that condenses the high-temperature first heat medium as a condensing unit that cools the distributed high-temperature first heat medium, and a first heat medium cooled by the condenser 16. An expansion valve 18 serving as a first expansion means that expands adiabatically and further cools, and a cooler 20 to which a cooled first heat medium is supplied are provided. The cooling device 20 is supplied with the temperature adjustment target coolant heated by the heater 14, and the coolant is cooled to the predetermined temperature by the first heat medium cooled to the predetermined temperature.
In this manner, the coolant that has passed through the heater 14 and the cooler 20 is adjusted to the temperature set in the temperature control unit 12c, and is sent to the USER.
The heating circuit and the cooling circuit are provided with a heat exchanger 28 for heating as heat absorption means of the heat pump means. The heating heat exchanger 28 includes a first heat medium that is radiated and cooled by the heater 14 and then adiabatically expanded by an expansion valve 30 as a second expansion means and further cooled, and a cooling circuit. Cooling water that is supplied to the condenser 16 provided as a cooling medium and supplied with cooling water as the second heating medium that has been heated by absorbing the heat of the high-temperature first heating medium The first heat medium that has absorbed the heat returns to the accumulator 31 and is supplied to the compressor 10. The accumulator 31 is also supplied with a first heat medium that has absorbed heat from the cooling water by the cooler 20. As the accumulator 31, an accumulator type accumulator was used.
Even if the accumulator 31 is not installed, the first heat medium that has been heated by absorbing heat from the cooling water by the heat exchanger 28 for heating and the first heat medium that has absorbed heat from the cooling liquid as the temperature adjustment target by the cooler 20. What is necessary is just to join the heat medium and re-supply the compressor 10.
図1に示す精密温度調整装置では、加熱器14で放熱した第1熱媒体を、膨張弁30によって断熱的に膨張して冷却しているが、膨張弁30での断熱膨張による冷却では、第1熱媒体と外部との間での熱の遣り取りはない。このため、断熱的に冷却された第1熱媒体は、外部から凝縮器16を経由して加熱用熱交換器28に供給された第2熱媒体としての冷却水から吸熱できる。
従って、圧縮機10から吐出される高温の第1熱媒体には、圧縮機10による圧縮動力エネルギーに、ヒートポンプ手段の加熱用熱交換器28によって外部から供給された第2熱媒体としての冷却水より吸熱したエネルギーを加えることができる。更に、図1に示す精密温度調整装置では、外部から供給された冷却水が凝縮器16を経由して加熱用熱交換器28に供給されており、凝縮器16で除去した高温の第1熱媒体から除去したエネルギーの一部も、圧縮機10から吐出される高温の第1熱媒体に加えることができる。その結果、加熱回路の加熱能力を向上できる。その結果、補助ヒータ等の他の加熱手段を用いることを不要化或いは小型化できる。
In the precise temperature control apparatus shown in FIG. 1, the first heat medium radiated by the heater 14 is adiabatically expanded and cooled by the expansion valve 30, but in the cooling by adiabatic expansion in the expansion valve 30, 1 There is no heat exchange between the heat medium and the outside. For this reason, the first heat medium cooled adiabatically can absorb heat from the cooling water as the second heat medium supplied to the heating heat exchanger 28 via the condenser 16 from the outside.
Therefore, the high-temperature first heat medium discharged from the compressor 10 includes the cooling water as the second heat medium supplied from the outside by the heat exchanger 28 for heating of the heat pump means to the compression power energy by the compressor 10. More endothermic energy can be added. Furthermore, in the precise temperature control apparatus shown in FIG. 1, the cooling water supplied from the outside is supplied to the heating heat exchanger 28 via the condenser 16, and the high-temperature first heat removed by the condenser 16. Part of the energy removed from the medium can also be applied to the high temperature first heat medium discharged from the compressor 10. As a result, the heating capacity of the heating circuit can be improved. As a result, the use of other heating means such as an auxiliary heater can be eliminated or downsized.
かかる図1に示す精密温度調整装置では、凝縮器16に供給される冷却水の配管途中に、圧縮機10の吐出側の圧力が一定に保持されるように、凝縮器16に供給される冷却水の供給量を制御する冷却媒体制御手段としての制御弁32が設けられている。この制御弁32は、圧縮機10の吐出圧が一定となるように制御されている。
つまり、圧縮機10の吐出圧が所定圧以上となったとき、制御弁32の開度が大きくなり、凝縮器16に供給される冷却水量が増加して、凝縮器16の冷却能力が向上される。このため、圧縮機10の吐出圧が低下する。他方、圧縮機10の吐出圧が所定圧以下となったとき、制御弁32の開度が小さくなり、凝縮器16に供給される冷却水量が減少して、凝縮器16の冷却能力が低下する。このため、圧縮機10の吐出圧が高くなる。
この様に、圧縮機10の吐出圧を一定に保持することによって、温度調整装置を安定して運転できる。また、凝縮器16に冷却水量が必要以上に供給され、系外に排出されないように調整できる。
In the precision temperature control apparatus shown in FIG. 1, the cooling supplied to the condenser 16 so that the pressure on the discharge side of the compressor 10 is kept constant during the piping of the cooling water supplied to the condenser 16. A control valve 32 is provided as a cooling medium control means for controlling the supply amount of water. The control valve 32 is controlled so that the discharge pressure of the compressor 10 is constant.
That is, when the discharge pressure of the compressor 10 exceeds a predetermined pressure, the opening degree of the control valve 32 increases, the amount of cooling water supplied to the condenser 16 increases, and the cooling capacity of the condenser 16 is improved. The For this reason, the discharge pressure of the compressor 10 falls. On the other hand, when the discharge pressure of the compressor 10 becomes a predetermined pressure or less, the opening degree of the control valve 32 becomes small, the amount of cooling water supplied to the condenser 16 decreases, and the cooling capacity of the condenser 16 decreases. . For this reason, the discharge pressure of the compressor 10 becomes high.
In this manner, the temperature adjusting device can be stably operated by keeping the discharge pressure of the compressor 10 constant. Moreover, it can adjust so that the amount of cooling water may be supplied to the condenser 16 more than needed, and it may not discharge | emit out of the system.
ところで、温度制御部15に接続されている設定・表示部17の温度設定を大幅に昇温した場合、温度制御部15では、二方弁12bを全閉状態又は全閉状態に近い状態とすると共に、二方弁12aを全開状態又は全開状態に近い状態とし、加熱回路側に殆どの高温の第1熱媒体を分配する。
しかし、加熱回路の加熱器14に供給された高温の第1熱媒体は加熱器14で凝縮され、圧縮機10の吐出圧が所定圧よりも低圧となるため、制御弁32が閉じて凝縮器16に冷却水が供給されなくなる。
この様に、凝縮器16に冷却水が供給されなくなると、凝縮器16からヒートポンプ手段の加熱用熱交換器28に供給される冷却水も供給されなくなる。このため、加熱用熱交換器28が稼働停止状態となって、ヒートポンプ手段が機能しなくなる。
しかも、加熱器14で放熱して冷却・凝縮されてから膨張弁30で断熱的に膨張して更に冷却した第1熱媒体と冷却水との熱交換が行われず、加熱用熱交換器28が凍結するおそれがある。
この点、図1に示す精密温度調整装置では、加熱用熱交換器28への冷却水の供給手段として、制御弁32のバイパス配管34に制御弁36を設けている。この制御弁36は、二方弁12aが全開状態又は全開状態に近い状態(或いは、二方弁12bが全閉状態又は全閉状態に近い状態)となったとき、温度制御部15からの信号によって開き、強制的に冷却水を凝縮器16に供給し、加熱用熱交換器28を稼働状態としている。
このため、設定・表示部17の温度設定を大幅に昇温した場合の様に、冷却回路側に分配される高温の第1熱媒体の分配率がゼロ又はその近傍となったときでも、加熱用熱交換器28に所定量の冷却水を供給でき、加熱用熱交換器28の凍結を防止し且つヒートポンプ手段の機能を発揮させることができる。
圧縮機10の吐出圧が上昇し所定圧近傍に到達したとき、制御弁36を温度制御部15からの信号によって閉じる。その後は、制御弁32によって圧縮機10の吐出側の圧力が一定に保持されるように、凝縮器16に供給される冷却水の供給量を制御する。
By the way, when the temperature setting of the setting / display unit 17 connected to the temperature control unit 15 is significantly increased, the temperature control unit 15 sets the two-way valve 12b to a fully closed state or a state close to a fully closed state. At the same time, the two-way valve 12a is set to a fully open state or a state close to a fully open state, and most of the high temperature first heat medium is distributed to the heating circuit side.
However, the high-temperature first heat medium supplied to the heater 14 of the heating circuit is condensed by the heater 14, and the discharge pressure of the compressor 10 becomes lower than a predetermined pressure. Therefore, the control valve 32 is closed and the condenser No cooling water is supplied to 16.
In this way, when the cooling water is not supplied to the condenser 16, the cooling water supplied from the condenser 16 to the heating heat exchanger 28 of the heat pump means is also not supplied. For this reason, the heat exchanger 28 for heating becomes an operation stop state, and a heat pump means stops functioning.
In addition, heat exchange between the first heat medium and the cooling water that has been radiated and cooled and condensed by the heater 14 and then expanded adiabatically by the expansion valve 30 and further cooled is not performed. There is a risk of freezing.
In this regard, in the precise temperature control apparatus shown in FIG. 1, a control valve 36 is provided in the bypass pipe 34 of the control valve 32 as means for supplying cooling water to the heat exchanger 28 for heating. The control valve 36 receives a signal from the temperature control unit 15 when the two-way valve 12a is in a fully open state or a state close to a full open state (or when the two-way valve 12b is in a fully closed state or a state close to a fully closed state). The cooling water is forcibly supplied to the condenser 16 and the heating heat exchanger 28 is in an operating state.
For this reason, even when the temperature setting of the setting / display unit 17 is significantly increased, even when the distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side becomes zero or in the vicinity thereof, the heating is performed. A predetermined amount of cooling water can be supplied to the heat exchanger 28, so that the heating heat exchanger 28 can be prevented from freezing and the function of the heat pump means can be exhibited.
When the discharge pressure of the compressor 10 increases and reaches a predetermined pressure, the control valve 36 is closed by a signal from the temperature control unit 15. Thereafter, the amount of cooling water supplied to the condenser 16 is controlled so that the pressure on the discharge side of the compressor 10 is kept constant by the control valve 32.
図1に示す精密温度調整装置の温度制御部15は、図3に示す様に、設定・表示部17が接続されている。この設定・表示部17は、加熱回路側に分配された高温の第1熱媒体の分配比率(圧縮機10から吐出される高温の第1熱媒体に対する比率をいう。以下、単に分配比率と称することがある。)と冷却回路側に分配された高温の第1熱媒体の分配比率とを表示する表示部17aと、冷却水の設定温度を所望温度に設定する設定部17bとが設けられている。
この設定・表示部17は、図4に示す様に、精密温度調整装置に設けられた操作パネル21に設けられている。図4に示す操作パネル21の表示部17aには、上下二段に表示が設けられており、上段の表示が加熱回路側に分配された高温の第1熱媒体の分配比率を表示するLED表示部19aであり、下段の表示が冷却回路側に分配された高温の第1熱媒体の分配比率を表示するLED表示部19bである。かかるLED表示部19a,19bは、加熱回路側に分配された高温の第1熱媒体の分配比率と前記冷却回路側に分配された高温の第1熱媒体の分配比率とを複数のLEDが棒状に点灯して表示する。このLEDは、外観半円状に点灯されるように、表示部の略半分が遮蔽されている。
更に、設定・表示部17には、加熱器14と冷却器20とを通過した冷却水の現在温度と設定温度とを切り替えて表示する温度表示部17cと、この設定温度を所望温度に設定する設定部17bとが設けられている。設定部17bを操作し、設定温度を変更する際には、温度表示部17cには、現在温度から設定温度に自動的に変更される。
As shown in FIG. 3, a setting / display unit 17 is connected to the temperature control unit 15 of the precision temperature control apparatus shown in FIG. The setting / display unit 17 is a distribution ratio of the high-temperature first heat medium distributed to the heating circuit side (refers to a ratio to the high-temperature first heat medium discharged from the compressor 10; hereinafter, simply referred to as distribution ratio). And a display unit 17a for displaying the distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side, and a setting unit 17b for setting the set temperature of the cooling water to a desired temperature. Yes.
As shown in FIG. 4, the setting / display unit 17 is provided on an operation panel 21 provided in the precision temperature adjusting device. The display unit 17a of the operation panel 21 shown in FIG. 4 is provided with two upper and lower displays, and the upper display displays an LED display that displays the distribution ratio of the high-temperature first heat medium distributed to the heating circuit side. The lower display is an LED display unit 19b that displays the distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side. In the LED display portions 19a and 19b, a plurality of LEDs are arranged in a bar shape with the distribution ratio of the high-temperature first heat medium distributed to the heating circuit side and the distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side. Lights up to display. In this LED, approximately half of the display unit is shielded so that it is turned on in a semicircular appearance.
Further, the setting / display unit 17 switches between the current temperature and the set temperature of the cooling water that has passed through the heater 14 and the cooler 20, and sets the set temperature to a desired temperature. A setting unit 17b is provided. When operating the setting unit 17b to change the set temperature, the temperature display unit 17c is automatically changed from the current temperature to the set temperature.
図3及び図4に示す設定・表示部17は、図3に示す様に、温度制御部15の演算部15aに接続されており、設定部17bで設定した設定温度は演算部15aを経由して表示部17aの温度表示部17cに表示される。また、温度センサ22で測定された加熱器14と冷却器20とを通過した冷却水の現在温度も、演算部15aを経由して温度表示部17cに表示される。
かかる演算部15aでは、温度センサ22で測定された加熱器14と冷却器20とを通過した冷却水の現在温度と設定部17bで設定された設定温度との比較と、記憶部15bに記憶されている二方弁12a,12bの各開度と流量との関係(図2)とを基にして、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配比率を演算する。この際に、演算部15aでは、加熱回路側に分配される高温の第1熱媒体量と冷却回路側に分配される高温の第1熱媒体量との合計量が圧縮機10から吐出される高温の第1熱媒体量と等しくなるように、二方弁12a,12bの各開度を決定し、二方弁12a,12bの各々に出力する。
この様に、演算部15aでは、二方弁12a,12bの各開度を制御し、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配率を実質的に連続して変更し、加熱器14と冷却器20とを通過した冷却液を所定温度に調整する。更に、演算部15aでは、演算した加熱回路と冷却回路とに分配する高温の第1熱媒体の分配比率を温度表示部17cに表示する。
また、演算部15aでは、演算部15aで演算した結果、二方弁12aが全開状態又は全開状態に近い状態(或いは、二方弁12bが全閉状態又は全閉状態に近い状態)となったとき、制御弁36を開く信号を発信し、強制的に冷却水を凝縮器16に供給して加熱用熱交換器28を稼働状態としている。
The setting / display unit 17 shown in FIGS. 3 and 4 is connected to the calculation unit 15a of the temperature control unit 15 as shown in FIG. 3, and the set temperature set by the setting unit 17b passes through the calculation unit 15a. Is displayed on the temperature display portion 17c of the display portion 17a. Further, the current temperature of the cooling water that has passed through the heater 14 and the cooler 20 measured by the temperature sensor 22 is also displayed on the temperature display unit 17c via the calculation unit 15a.
In the calculation unit 15a, the current temperature of the cooling water that has passed through the heater 14 and the cooler 20 measured by the temperature sensor 22 is compared with the set temperature set by the setting unit 17b, and stored in the storage unit 15b. The distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit is calculated based on the relationship between the opening degree and the flow rate of the two-way valves 12a and 12b (FIG. 2). At this time, in the calculation unit 15a, the total amount of the high-temperature first heat medium amount distributed to the heating circuit side and the high-temperature first heat medium amount distributed to the cooling circuit side is discharged from the compressor 10. The openings of the two-way valves 12a and 12b are determined so as to be equal to the high-temperature first heat medium amount and output to the two-way valves 12a and 12b.
As described above, the calculation unit 15a controls the respective opening degrees of the two-way valves 12a and 12b and substantially continuously changes the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit. The coolant that has passed through the heater 14 and the cooler 20 is adjusted to a predetermined temperature. Further, the calculation unit 15a displays the calculated distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit on the temperature display unit 17c.
Moreover, in the calculating part 15a, as a result of calculating in the calculating part 15a, the two-way valve 12a became a fully open state or a state close to a fully open state (or the two-way valve 12b was in a fully closed state or a state close to a fully closed state). At this time, a signal for opening the control valve 36 is transmitted, and the cooling water is forcibly supplied to the condenser 16 so that the heat exchanger 28 for heating is in an operating state.
図1に示す精密温度調整装置では、その加熱回路の加熱能力をヒートポンプ手段の設置によって向上でき、且つ二方弁12a,12bによって加熱回路側に分配する高温の第1熱媒体と冷却回路に分配する高温の第1熱媒体との分配比率を、冷却器20から吐出された冷却液の温度に応じて実質的に連続して変更できる。
このため、図1に示す精密温度調整装置では、加熱回路及び冷却回路に高温の第1熱媒体が常時供給されており、加熱回路の加熱器14と冷却回路の冷却器20とを通過する温度調整対象の冷却液の微小な負荷変動は、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配比率を二方弁12a,12bによって直ちに微小調整することによって迅速に対応でき、応答性を向上できる。
その結果、加熱回路の加熱器14と冷却回路の冷却器20とを通過する温度調整対象の冷却液の温度を設定温度に対して±0.1℃以下の精度で制御できる。
In the precision temperature control apparatus shown in FIG. 1, the heating capacity of the heating circuit can be improved by installing a heat pump means, and the two-way valves 12a and 12b distribute the heat to the first heat medium and the cooling circuit distributed to the heating circuit side. The distribution ratio with the high temperature first heat medium to be performed can be changed substantially continuously according to the temperature of the coolant discharged from the cooler 20.
For this reason, in the precise temperature control apparatus shown in FIG. 1, the high temperature first heat medium is always supplied to the heating circuit and the cooling circuit, and the temperature that passes through the heater 14 of the heating circuit and the cooler 20 of the cooling circuit. A minute load fluctuation of the coolant to be adjusted can be quickly dealt with by quickly finely adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit by the two-way valves 12a and 12b. Can be improved.
As a result, the temperature of the coolant to be adjusted that passes through the heater 14 of the heating circuit and the cooler 20 of the cooling circuit can be controlled with an accuracy of ± 0.1 ° C. or less with respect to the set temperature.
また、図1に示す温度調整装置では、上述した様に、加熱回路の加熱能力が向上され、且つ加熱回路と冷却手段とを含む回路のうち、分配手段としての二方弁12a,12bから冷却器20及び加熱用熱交換器28の各々を通過した第1熱媒体がアキュームレータ31で合流されるまでの回路が、回路的に独立して設けられている。このため、加熱器14と冷却器20とを通過する温度調整対象の冷却液の設定温度を大幅に高くする場合でも、二方弁12a,12bによって高温の第1熱媒体の分配比率を冷却回路よりも加熱回路に分配する分配比率を大幅に高くして、温度調整対象の冷却液を所定温度に迅速に調整できる。
更に、図1に示す温度調整装置では、加熱回路の加熱能力が向上され、補助ヒータ等の他の加熱手段を用いることを要しないため、補助ヒータ等を設けた温度調整装置に比較して、大幅な省エネルギーを図ることができる。
Further, in the temperature adjusting device shown in FIG. 1, as described above, the heating capacity of the heating circuit is improved, and cooling is performed from the two-way valves 12a and 12b serving as distribution means in the circuit including the heating circuit and the cooling means. Circuits until the first heat medium that has passed through each of the heat exchanger 20 and the heating heat exchanger 28 are joined by the accumulator 31 are provided independently from each other. For this reason, even when the set temperature of the coolant to be adjusted that passes through the heater 14 and the cooler 20 is significantly increased, the distribution ratio of the high-temperature first heat medium is reduced by the two-way valves 12a and 12b in the cooling circuit. As a result, the distribution ratio distributed to the heating circuit can be significantly increased, and the coolant to be temperature adjusted can be quickly adjusted to a predetermined temperature.
Furthermore, in the temperature adjusting device shown in FIG. 1, since the heating capacity of the heating circuit is improved and it is not necessary to use other heating means such as an auxiliary heater, compared with a temperature adjusting device provided with an auxiliary heater or the like, Significant energy savings can be achieved.
図1に示す精密温度調整装置では、分配手段として二方弁12a,12bを設けていたが、図5に示す様に、比例三方弁38を用いてもよい。この比例三方弁38は、加熱回路側に分配する高温の第1熱媒体と冷却回路側に分配する高温の第1熱媒体との合計量が圧縮機から吐出された高温の第1熱媒体量と等しくなるように、加熱回路側吐出口の開度と冷却回路側吐出口の開度を調整して、高温の第1熱媒体を比例分配するものである。この比例三方弁38も、温度制御部15によって制御されている。
かかる温度制御部15の演算部15aでは、温度センサ22で測定された加熱器14と冷却器20とを通過した冷却水の現在温度と設定部17bで設定された設定温度との比較基づいて、比例三方弁38の加熱回路側吐出口の開口度と冷却回路側吐出口の開口度とを演算し、その結果を比例三方弁38に発信する。
この様に、演算部15aでは、比例三方弁38を制御し、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配率を連続的に変更して、加熱器14と冷却器20とを通過した温度調整対象の冷却液を所定温度に調整する。
更に、演算部15aでは、比例三方弁38の加熱回路側吐出口の開口度と冷却回路側吐出口の開口度とから、加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを演算し、温度表示部17cに表示する。
In the precision temperature control apparatus shown in FIG. 1, the two-way valves 12a and 12b are provided as the distributing means, but a proportional three-way valve 38 may be used as shown in FIG. The proportional three-way valve 38 has a total amount of the high temperature first heat medium distributed to the heating circuit side and the high temperature first heat medium distributed to the cooling circuit side, and the high temperature first heat medium amount discharged from the compressor. The opening degree of the heating circuit side discharge port and the opening degree of the cooling circuit side discharge port are adjusted so as to be equal to, and the high temperature first heat medium is proportionally distributed. This proportional three-way valve 38 is also controlled by the temperature control unit 15.
In the calculation unit 15a of the temperature control unit 15, based on a comparison between the current temperature of the cooling water that has passed through the heater 14 and the cooler 20 measured by the temperature sensor 22 and the set temperature set by the setting unit 17b, The opening degree of the heating circuit side discharge port and the opening degree of the cooling circuit side discharge port of the proportional three-way valve 38 are calculated, and the result is transmitted to the proportional three-way valve 38.
In this way, the arithmetic unit 15a controls the proportional three-way valve 38 to continuously change the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit, so that the heater 14 and the cooler 20 The temperature adjustment target coolant that has passed through is adjusted to a predetermined temperature.
Further, in the calculation unit 15a, the distribution ratio and cooling of the high-temperature first heat medium distributed to the heating circuit side based on the opening degree of the heating circuit side discharge port and the opening degree of the cooling circuit side discharge port of the proportional three-way valve 38. The distribution ratio of the high-temperature first heat medium distributed to the circuit side is calculated and displayed on the temperature display unit 17c.
図1は冷却液の温度調整を施す温度調整装置について説明しているが、空気用の温度調整装置についても本発明を適用できる。その一例を図6に示す。図6に示す空気用の温度調整装置では、圧縮機40で圧縮された高温の第1熱媒体は分配手段42によって加熱回路と冷却回路とに分配される。この加熱回路に設けられた加熱器44と冷却回路に設けられた冷却器46とは、空間ユニット48内に設けられている。かかる加熱器44と冷却器46とに温度調整対象の空気流が通過するようにファン49が設けられている。
かかる加熱回路と冷却回路とに圧縮機40で圧縮された高温の第1熱媒体を分配する分配手段42には、高温の第1熱媒体を加熱回路側と冷却回路側とに分岐する分岐配管の各々に二方弁42a,42bが設けられている。この二方弁42a,42bは、各々の開度を制御し、加熱回路側に分配する高温の第1熱媒体と冷却回路側に分配する高温の第1熱媒体との合計量が圧縮機40から吐出された高温の第1熱媒体量と等しくなるように、高温の第1熱媒体を比例分配する温度制御部43が設けられている。かかる温度制御部43には、図3に示す温度制御部15と同様に、演算部43aと記憶部43bとが設けられている。この温度制御部43では、温度調整された空気流が吐出されるファン49の吐出側に設けられた温度センサ52からの信号に基づいて、二方弁42a,42bの各開度を制御し、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配率を実質的に連続して変更し、空間ユニット48内に吸込まれた空気流を所定温度に調整する。
FIG. 1 illustrates a temperature adjusting device that adjusts the temperature of the coolant, but the present invention can also be applied to a temperature adjusting device for air. An example is shown in FIG. In the temperature control device for air shown in FIG. 6, the high-temperature first heat medium compressed by the compressor 40 is distributed to the heating circuit and the cooling circuit by the distribution means 42. A heater 44 provided in the heating circuit and a cooler 46 provided in the cooling circuit are provided in the space unit 48. A fan 49 is provided so that the air flow subject to temperature adjustment passes through the heater 44 and the cooler 46.
The distribution means 42 that distributes the high-temperature first heat medium compressed by the compressor 40 to the heating circuit and the cooling circuit has a branch pipe that branches the high-temperature first heat medium into the heating circuit side and the cooling circuit side. Each is provided with a two-way valve 42a, 42b. The two-way valves 42a and 42b control the degree of opening, and the total amount of the high-temperature first heat medium distributed to the heating circuit side and the high-temperature first heat medium distributed to the cooling circuit side is the compressor 40. A temperature control unit 43 that proportionally distributes the high-temperature first heat medium is provided so as to be equal to the amount of the high-temperature first heat medium discharged from. Similar to the temperature control unit 15 shown in FIG. 3, the temperature control unit 43 is provided with a calculation unit 43a and a storage unit 43b. The temperature control unit 43 controls the opening degrees of the two-way valves 42a and 42b based on a signal from the temperature sensor 52 provided on the discharge side of the fan 49 from which the temperature-adjusted air flow is discharged. The distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit is changed substantially continuously, and the air flow sucked into the space unit 48 is adjusted to a predetermined temperature.
加熱回側に分配された高温の第1熱媒体は、加熱器44に直接供給され、空間ユニット48内に吸引された外気を加熱し、その際に、高温の第1熱媒体は放熱して冷却される。
一方、冷却回路側に分配された高温の第1熱媒体は、凝縮器50によって冷却され、更に第1膨張手段としての膨張弁52によって断熱膨張して更に冷却される。断熱膨張して冷却された第1熱媒体は、冷却器46に供給される。
冷却器46に供給された第1熱媒体は、空間ユニット48内に吸込まれて加熱器44によって加熱された空気流を冷却し、所定の温度に温度調整する。その際に、冷却器46に供給された第1熱媒体は空気流から吸熱する。
冷却回路に設けられた凝縮器50には、外部から加熱又は冷却されることなく配管51を経由して第2熱媒体としての冷却水が供給されている。かかる冷却水は、凝縮器50内で高温の第1熱媒体によって加熱されて配管54から排出される。この配管54から排出された冷却水は、ヒートポンプ手段の加熱用熱交換器57に加熱源として供給される。
この加熱用熱交換器57には、加熱器44で放熱して冷却してから膨張弁58によって断熱膨張されて更に冷却された低温の第1熱媒体が供給される。このため、加熱用熱交換器57では、凝縮器50を経由して供給された冷却水から、加熱器44で放熱し更に断熱膨張して冷却された低温の第1熱媒体が吸熱して昇温される。
昇温された第1熱媒体は、アキュームレータ60に供給される。このアキュームレータ60には、冷却器46に供給され、空間ユニット48内に吸込まれた流体から吸熱した第1熱媒体も供給され、加熱用熱交換器57を通過した第1熱媒体と合流されて、圧縮機40に再供給される。このアキュームレータ60は、液体成分を貯めてガス成分のみを圧縮機10に確実に再供給できるタイプのアキュームレータである。このため、アキュームレータ60の設置によって、圧縮機40に供給する第1熱媒体の状態を安定させることができる。
The high-temperature first heat medium distributed to the heating circuit is directly supplied to the heater 44 and heats the outside air sucked into the space unit 48. At this time, the high-temperature first heat medium dissipates heat. To be cooled.
On the other hand, the high-temperature first heat medium distributed to the cooling circuit side is cooled by the condenser 50, further adiabatically expanded by the expansion valve 52 as the first expansion means, and further cooled. The first heat medium cooled by adiabatic expansion is supplied to the cooler 46.
The first heat medium supplied to the cooler 46 cools the air flow sucked into the space unit 48 and heated by the heater 44, and the temperature is adjusted to a predetermined temperature. At that time, the first heat medium supplied to the cooler 46 absorbs heat from the air flow.
Cooling water as the second heat medium is supplied to the condenser 50 provided in the cooling circuit via the pipe 51 without being heated or cooled from the outside. The cooling water is heated by the high temperature first heat medium in the condenser 50 and discharged from the pipe 54. The cooling water discharged from the pipe 54 is supplied as a heating source to the heating heat exchanger 57 of the heat pump means.
The heating heat exchanger 57 is supplied with a low-temperature first heat medium that is radiated and cooled by the heater 44 and then adiabatically expanded by the expansion valve 58 and further cooled. For this reason, in the heat exchanger 57 for heating, the low-temperature first heat medium that has been radiated by the heater 44 and further adiabatically expanded and cooled from the cooling water supplied via the condenser 50 absorbs heat and rises. Be warmed.
The first heat medium whose temperature has been raised is supplied to the accumulator 60. The accumulator 60 is also supplied with the first heat medium that is supplied to the cooler 46 and absorbs heat from the fluid sucked into the space unit 48, and is merged with the first heat medium that has passed through the heat exchanger 57 for heating. , And re-supplied to the compressor 40. The accumulator 60 is a type of accumulator that can store a liquid component and reliably supply only the gas component to the compressor 10. For this reason, the state of the first heat medium supplied to the compressor 40 can be stabilized by installing the accumulator 60.
この様に、図6に示す温度調整装置でも、その加熱回路の加熱能力をヒートポンプ手段の設置によって向上でき、且つ二方弁42a,42bによって加熱回路側に分配する高温の第1熱媒体と冷却回路に分配する高温の第1熱媒体との分配比率を、加熱器44と冷却器46とを通過した温度調整対象の空気流の温度に応じて実質的に連続して変更できる。
このため、図6に示す精密温度調整装置では、加熱回路及び冷却回路に高温の第1熱媒体が常時供給されており、加熱器44と冷却器46とを通過する温度調整対象の空気流の微小な負荷変動は、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配比率を二方弁42a,42bによって直ちに微小調整することによって迅速に対応でき、応答性を向上できる。
その結果、加熱回路の加熱器44と冷却回路の冷却器46とを通過する温度調整対象の空気流の温度を設定温度に対して±0.1℃以下の精度で制御でき、図6に示す温度調整装置が設置された空間ユニット48の温度変化をクリーンルームの温度変化よりも小さくでき、精密加工が要求される工程を設置できる。
As described above, even in the temperature adjusting device shown in FIG. 6, the heating capacity of the heating circuit can be improved by installing the heat pump means, and the high-temperature first heat medium distributed to the heating circuit side by the two-way valves 42a and 42b and the cooling. The distribution ratio of the high-temperature first heat medium distributed to the circuit can be changed substantially continuously in accordance with the temperature of the air flow to be temperature adjusted that has passed through the heater 44 and the cooler 46.
For this reason, in the precise temperature control apparatus shown in FIG. 6, the first heat medium having a high temperature is constantly supplied to the heating circuit and the cooling circuit, and the air flow of the temperature adjustment target that passes through the heater 44 and the cooler 46 is controlled. Minute load fluctuations can be quickly dealt with by quickly finely adjusting the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit by the two-way valves 42a and 42b, thereby improving the responsiveness.
As a result, it is possible to control the temperature of the temperature-controlled air flow passing through the heater 44 of the heating circuit and the cooler 46 of the cooling circuit with an accuracy of ± 0.1 ° C. or less with respect to the set temperature, as shown in FIG. The temperature change of the space unit 48 in which the temperature adjusting device is installed can be made smaller than the temperature change of the clean room, and a process requiring precision machining can be installed.
また、図6に示す温度調整装置では、上述した様に、加熱回路の加熱能力が向上され、且つ加熱回路と冷却手段とを含む回路のうち、分配手段としての二方弁42a,42bから冷却器46及び加熱用熱交換器57の各々を通過した第1熱媒体がアキュームレータ60で合流されるまでの回路が、回路的に独立して設けられている。このため、加熱器44と冷却器46とを通過する温度調整対象の空気流の設定温度を大幅に高くする場合でも、二方弁42a,42bによって高温の第1熱媒体の分配比率を冷却回路よりも加熱回路に分配する分配比率を大幅に高くして、温度調整対象の冷却液を所定温度に迅速に調整できる。
その結果、例えば、図10に示す温度調整装置では、その温度設定範囲が20〜26℃程度であるが、図6に示す温度調整装置では、その温度設定範囲を18〜35℃と大幅に拡大できる。
更に、図6に示す温度調整装置では、加熱回路の加熱能力が向上され、補助ヒータ等の他の加熱手段を用いることを要しないため、図10に示す補助ヒータ114を設けた温度調整装置に比較して、大幅な省エネルギーを図ることができる。
例えば、図10に示す補助ヒータ114を設けた温度調整装置では、全消費エネルギーの内訳は、圧縮機100が18%、補助ヒータ114が69%、及び送風機112が13%である。この点、図6に示す温度調整装置では、補助ヒータ114の消費エネルギーをカットできる。
このため、吐出量が20m3/min程度の水冷式空調機に、図10に示す温度調整装置の方式を適用した場合には、最大消費電力が11.7KWであったが、図6に示す温度調整装置の方式を適用すると、最大消費電力を2.4KW程度とすることができる。
Further, in the temperature adjusting device shown in FIG. 6, as described above, the heating capacity of the heating circuit is improved, and cooling is performed from the two-way valves 42a and 42b serving as distribution means among the circuits including the heating circuit and the cooling means. Circuits until the first heat medium that has passed through each of the heat exchanger 46 and the heating heat exchanger 57 are joined by the accumulator 60 are provided independently from each other. For this reason, even when the set temperature of the air flow to be temperature adjusted passing through the heater 44 and the cooler 46 is significantly increased, the distribution ratio of the high-temperature first heat medium is reduced by the two-way valves 42a and 42b in the cooling circuit. As a result, the distribution ratio distributed to the heating circuit can be significantly increased, and the coolant to be temperature adjusted can be quickly adjusted to a predetermined temperature.
As a result, for example, in the temperature adjusting device shown in FIG. 10, the temperature setting range is about 20 to 26 ° C., but in the temperature adjusting device shown in FIG. 6, the temperature setting range is greatly expanded to 18 to 35 ° C. it can.
Further, in the temperature adjusting device shown in FIG. 6, the heating capacity of the heating circuit is improved and it is not necessary to use other heating means such as an auxiliary heater. Therefore, the temperature adjusting device provided with the auxiliary heater 114 shown in FIG. In comparison, significant energy saving can be achieved.
For example, in the temperature control apparatus provided with the auxiliary heater 114 shown in FIG. 10, the breakdown of the total energy consumption is 18% for the compressor 100, 69% for the auxiliary heater 114, and 13% for the blower 112. In this regard, the temperature adjustment device shown in FIG. 6 can cut the energy consumption of the auxiliary heater 114.
For this reason, when the system of the temperature control apparatus shown in FIG. 10 is applied to a water-cooled air conditioner with a discharge rate of about 20 m 3 / min, the maximum power consumption is 11.7 KW, but it is shown in FIG. When the temperature control system is applied, the maximum power consumption can be reduced to about 2.4 KW.
また、図6に示す温度調整装置には、凝縮器50に冷却媒体を供給する配管51に、冷媒制御手段としての制御弁62が設けられている。この制御弁62は、圧縮機40の吐出圧が一定となるように制御されている。
つまり、圧縮機40の吐出圧が一定値以上となったとき、制御弁62の開度が大きくなり、凝縮器50に供給される冷却媒体量が増加して、凝縮器50の冷却能力が向上される。このため、圧縮機40の吐出圧が低下する。他方、圧縮機40の吐出圧が一定値以下となったとき、制御弁62の開度が小さくなり、凝縮器50に供給される冷却媒体量が減少して、凝縮器50の冷却能力が低下する。このため、圧縮機40の吐出圧が高くなる。
この様に、圧縮機40の吐出圧を一定に保持することによって、温度調整装置を安定して運転できる。
In the temperature adjusting device shown in FIG. 6, a control valve 62 as a refrigerant control means is provided in a pipe 51 that supplies a cooling medium to the condenser 50. The control valve 62 is controlled so that the discharge pressure of the compressor 40 is constant.
That is, when the discharge pressure of the compressor 40 exceeds a certain value, the opening degree of the control valve 62 increases, the amount of the cooling medium supplied to the condenser 50 increases, and the cooling capacity of the condenser 50 is improved. Is done. For this reason, the discharge pressure of the compressor 40 falls. On the other hand, when the discharge pressure of the compressor 40 becomes a certain value or less, the opening degree of the control valve 62 decreases, the amount of the cooling medium supplied to the condenser 50 decreases, and the cooling capacity of the condenser 50 decreases. To do. For this reason, the discharge pressure of the compressor 40 becomes high.
In this way, the temperature adjusting device can be stably operated by keeping the discharge pressure of the compressor 40 constant.
ところで、空気用の温度調整装置では、温度制御部43に接続されている設定・表示部45の温度設定を大幅に昇温することが頻繁に行われることがある。この様に、設定・表示部45の温度設定を大幅に昇温すると、温度制御部43では、二方弁42bを全閉状態又は全閉状態に近い状態とすると共に、二方弁42aを全開状態又は全開状態に近い状態とし、加熱回路側に殆どの高温の第1熱媒体を分配する。
この際に、加熱回路の加熱器44に供給された高温の第1熱媒体は加熱器44で凝縮され、圧縮機40の吐出圧が所定圧よりも低圧となるため、制御弁62が閉じて凝縮器50に冷却水が供給されなくなる。
この様に、凝縮器50に冷却水が供給されなくなると、凝縮器50からヒートポンプ手段を構成する加熱用熱交換器56に供給される冷却水も供給されなくなる。このため、加熱用熱交換器56が稼働停止状態となって、ヒートポンプ手段が機能しなくなる。
しかも、加熱器44で放熱して凝縮した熱媒体を膨張弁58で断熱的に膨張して冷却された熱媒体と冷却水との熱交換が行われず、加熱用熱交換器56が凍結するおそれがある。
この点、図6に示す精密温度調整装置では、加熱用熱交換器56への冷却水の供給手段として、制御弁62のバイパス配管64に制御弁66を設けている。この制御弁66は、二方弁42aが全開状態又は全開状態に近い状態(或いは、二方弁42bが全閉状態又は全閉状態に近い状態)となったとき、温度制御部43からの信号によって開き、強制的に冷却水を凝縮器16に供給し、加熱用熱交換器56を稼働状態としている。
このため、温度制御部43に接続されている設定・表示部45の温度設定を大幅に昇温した場合の様に、冷却回路側に分配される高温の第1熱媒体の分配率がゼロ又はその近傍となったときでも、加熱用熱交換器56に所定量の冷却水を供給でき、加熱用熱交換器56の凍結を防止し且つヒートポンプ手段の機能を発揮させることができる。
圧縮機40の吐出圧が上昇し所定圧近傍に到達したとき、制御弁66を温度制御部43からの信号によって閉じる。その後は、制御弁66によって圧縮機40の吐出側の圧力が一定に保持されるように、凝縮器50に供給される冷却水の供給量を制御する。
By the way, in the temperature adjustment device for air, it is frequently performed that the temperature setting of the setting / display unit 45 connected to the temperature control unit 43 is significantly increased. As described above, when the temperature setting of the setting / display unit 45 is significantly increased, the temperature control unit 43 sets the two-way valve 42b to a fully closed state or a state close to the fully closed state, and fully opens the two-way valve 42a. The state is close to the fully open state, and most of the high-temperature first heat medium is distributed to the heating circuit side.
At this time, the high temperature first heat medium supplied to the heater 44 of the heating circuit is condensed by the heater 44, and the discharge pressure of the compressor 40 becomes lower than a predetermined pressure, so that the control valve 62 is closed. The cooling water is not supplied to the condenser 50.
Thus, when the cooling water is not supplied to the condenser 50, the cooling water supplied from the condenser 50 to the heating heat exchanger 56 constituting the heat pump means is also not supplied. For this reason, the heat exchanger 56 for heating becomes an operation stop state, and a heat pump means stops functioning.
In addition, the heat medium that has dissipated heat and condensed by the heater 44 is expanded in an adiabatic manner by the expansion valve 58 and heat exchange between the cooled heat medium and the cooling water is not performed, and the heat exchanger 56 for heating may freeze. There is.
In this regard, in the precise temperature adjustment apparatus shown in FIG. 6, a control valve 66 is provided in the bypass pipe 64 of the control valve 62 as means for supplying cooling water to the heat exchanger 56 for heating. The control valve 66 receives a signal from the temperature control unit 43 when the two-way valve 42a is in a fully open state or a state close to a fully open state (or when the two-way valve 42b is in a fully closed state or a state close to a fully closed state). The cooling water is forcibly supplied to the condenser 16 and the heating heat exchanger 56 is in an operating state.
For this reason, the distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side is zero, as in the case where the temperature setting of the setting / display unit 45 connected to the temperature control unit 43 is significantly increased. Even in the vicinity, a predetermined amount of cooling water can be supplied to the heating heat exchanger 56, the freezing of the heating heat exchanger 56 can be prevented, and the function of the heat pump means can be exhibited.
When the discharge pressure of the compressor 40 increases and reaches a predetermined pressure, the control valve 66 is closed by a signal from the temperature control unit 43. Thereafter, the amount of cooling water supplied to the condenser 50 is controlled so that the pressure on the discharge side of the compressor 40 is kept constant by the control valve 66.
かかる図6に示す精密温度調整装置でも、図5に示す比例三方弁38を用いてもよい。この比例三方弁38は、加熱回路側に分配する高温の第1熱媒体と冷却回路側に分配する高温の第1熱媒体との合計量が圧縮機40から吐出される高温の第1熱媒体量と等しくなるように、高温の第1熱媒体を比例分配するものである。かかる比例三方弁38も、ファン49の吐出側に設けられた温度センサ52からの信号に基づいて温度制御部43によって制御されており、加熱回路と冷却回路とに分配する高温の第1熱媒体の分配率を連続的に変更できる。
また、図6に示す温度調整装置では、凝縮器50に冷却水を供給する配管51に設けた制御弁62のバイパス配管64に制御弁66を設けているが、図7に示す様に、バイパス配管64を設け、常時、加熱用熱交換器56が稼働できる最小流量の冷却水を供給できるように、オリフィス68を設けてもよい。
尚、温度制御部43及び設定・表示部45の構成は、図3に示す温度制御部15及び設定・表示部17と同一構成であるため、図3に温度制御部43及び設定・表示部45の構成部材の番号を括弧書で記載した。
The proportional temperature control apparatus shown in FIG. 6 may also use the proportional three-way valve 38 shown in FIG. The proportional three-way valve 38 includes a high temperature first heat medium in which a total amount of the high temperature first heat medium distributed to the heating circuit side and the high temperature first heat medium distributed to the cooling circuit side is discharged from the compressor 40. The high temperature first heat medium is proportionally distributed so as to be equal to the amount. The proportional three-way valve 38 is also controlled by the temperature control unit 43 based on a signal from the temperature sensor 52 provided on the discharge side of the fan 49, and the high-temperature first heat medium distributed to the heating circuit and the cooling circuit. The distribution ratio can be changed continuously.
Further, in the temperature adjusting device shown in FIG. 6, the control valve 66 is provided in the bypass pipe 64 of the control valve 62 provided in the pipe 51 for supplying the cooling water to the condenser 50. However, as shown in FIG. The piping 68 may be provided, and the orifice 68 may be provided so that the cooling water with the minimum flow rate at which the heating heat exchanger 56 can be always operated can be supplied.
The temperature control unit 43 and the setting / display unit 45 have the same configuration as the temperature control unit 15 and the setting / display unit 17 shown in FIG. The numbers of the constituent members are described in parentheses.
以上、説明した図1〜図7に示す温度調整装置に用いた設定・表示部17のLED表示部19a,19bでは、図4に示す様に、加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを複数のLEDが棒状に点灯して表示しているが、図8に示す様に、一対のLEDが点灯して表示してもよい。図8に示す設定・表示部17のLED表示部19a,19bでは、加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率との変化に応じて、点灯する一対のLEDが左右方向に移動する。
この場合、点灯表示する部位のLEDまで、表示部19aに複数個並設されているLEDでは左側から右側方向に、表示部19bに複数個並設されているLEDでは右側から左側方向に、例えば0.5秒程度の間隔で順次点灯させて到達するようにしてもよい。この様に、複数個並設されているLEDを順次点灯させて到達するように構成すると、いわゆる「フラッシャー」的な表示効果が得られ、ユーザは体感的に表示内容を認識でき、ユニークで且つ効果的な設定・表示部17とすることができる。
As described above, in the LED display portions 19a and 19b of the setting / display portion 17 used in the temperature adjusting apparatus shown in FIGS. 1 to 7, as shown in FIG. 4, the high temperature first heat distributed to the heating circuit side. The distribution ratio of the medium and the distribution ratio of the high temperature first heat medium distributed to the cooling circuit side are displayed with a plurality of LEDs lit in a bar shape, but a pair of LEDs are lit as shown in FIG. May be displayed. In the LED display sections 19a and 19b of the setting / display section 17 shown in FIG. 8, the distribution ratio of the high temperature first heat medium distributed to the heating circuit side and the distribution of the high temperature first heat medium distributed to the cooling circuit side. In accordance with the change from the ratio, the pair of LEDs that are lit move in the left-right direction.
In this case, from the left side to the right side for a plurality of LEDs arranged on the display unit 19a up to the LED of the part to be lit, for example, from the right side to the left side for a plurality of LEDs arranged on the display unit 19b, for example, You may make it reach | attain by lighting one by one at intervals of about 0.5 second. In this way, if a plurality of LEDs arranged side by side are sequentially turned on to reach, a so-called “flasher” display effect can be obtained, and the user can recognize the display contents sensibly, unique and An effective setting / display unit 17 can be obtained.
10,40 圧縮機
12,42 分配手段
12a,12b,42a,42b 二方弁
12c,42c 温度制御部
14,44 加熱器
15,43 温度制御部
16,50 凝縮器
17,45 設定・表示部
18,30,52,58 膨張弁
20,46 冷却器
22,52 温度センサ
24 貯留槽
26 ポンプ
28,56 加熱用熱交換器
31,60 アキュームレータ
32,36,62,66 制御弁
34,64 バイパス配管
38 比例三方弁
40 空間ユニット
49 ファン
10, 40 Compressor 12, 42 Distributing means 12a, 12b, 42a, 42b Two-way valve 12c, 42c Temperature controller 14, 44 Heater 15, 43 Temperature controller 16, 50 Condenser 17, 45 Setting / display unit 18 , 30, 52, 58 Expansion valve 20, 46 Cooler 22, 52 Temperature sensor 24 Storage tank 26 Pump 28, 56 Heat exchanger 31, 60 Accumulator 32, 36, 62, 66 Control valve 34, 64 Bypass piping 38 Proportional three-way valve 40 Spatial unit 49 Fan
Claims (9)
前記高温の第1熱媒体の一部を前記加熱回路側に分配すると共に、前記高温の第1熱媒体の残余部を冷却回路側に分配し、且つ前記加熱回路と冷却回路との各々に分配される高温の第1熱媒体の分配比率を変更可能な分配手段と、
前記分配手段を制御し、前記加熱回路と冷却回路とに分配される高温の第1熱媒体の分配比率を調整して、前記加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する温度制御部と、
前記加熱回路の加熱能力が向上するように、前記加熱手段で熱を放出して冷却してから第2膨張手段で断熱的に膨張して更に冷却された第1熱媒体が、外部熱源である第2熱媒体から吸熱する吸熱手段を具備するヒートポンプ手段と、
前記加熱回路側に分配された高温の第1熱媒体の分配比率と前記冷却回路側に分配された高温の第1熱媒体の分配比率とを表示する表示部とが設けられていることを特徴とする精密温度調整装置。 A heating circuit in which a part of the high temperature first heat medium compressed and heated by the compressor is supplied to the heating means, and the first expansion after the remaining portion of the high temperature first heat medium is cooled by the condensation means A cooling circuit that is adiabatically expanded by the means, further cooled and supplied to the cooling means, and adjusts the temperature adjustment target fluid that passes through the heating means and the cooling means to a predetermined temperature. A precision temperature control device in which a high-temperature first heat medium is distributed to a heating circuit and a cooling circuit, and the first heat medium that has passed through each of the heating circuit and the cooling circuit merges and is re-supplied to the compressor. There,
A part of the high temperature first heat medium is distributed to the heating circuit side, a remaining part of the high temperature first heat medium is distributed to the cooling circuit side, and distributed to each of the heating circuit and the cooling circuit. Distribution means capable of changing the distribution ratio of the high-temperature first heat medium to be performed;
The distribution means is controlled to adjust the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit, so that the temperature adjustment target fluid that passes through the heating means and the cooling means has a predetermined temperature. A temperature control unit for controlling
In order to improve the heating capability of the heating circuit, the first heat medium that is cooled by releasing heat by the heating means and then adiabatically expanding by the second expansion means is further an external heat source. Heat pump means comprising heat absorbing means for absorbing heat from the second heat medium;
A display unit is provided for displaying a distribution ratio of the high-temperature first heat medium distributed to the heating circuit side and a distribution ratio of the high-temperature first heat medium distributed to the cooling circuit side. A precise temperature control device.
温度制御部が、前記二方弁の各々の開度を調整し、前記加熱回路と冷却回路とに分配される高温の第1熱媒体の分配比率を調整して、加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する温度制御部であって、
前記温度制御部には、前記二方弁の各々の開度と流量との関係が記憶されている記憶部と、前記記憶部に記憶された二方弁の各々の開度と流量との関係から、表示部に表示する加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを演算する演算部とを具備する請求項1〜3のいずれか一項記載の精密温度調整装置。 The distribution means is a two-way valve provided in each branch pipe that branches the high-temperature first heat medium from the compressor into the heating circuit side and the cooling circuit side,
The temperature control unit adjusts the opening degree of each of the two-way valves, adjusts the distribution ratio of the high-temperature first heat medium distributed to the heating circuit and the cooling circuit, and sets the heating unit and the cooling unit. A temperature control unit that controls a fluid to be adjusted for temperature control to a predetermined temperature,
In the temperature control unit, a storage unit storing a relationship between the opening degree and the flow rate of each of the two-way valves, and a relationship between each opening degree and the flow rate of the two-way valve stored in the storage unit. And a calculation unit for calculating a distribution ratio of the high temperature first heat medium distributed to the heating circuit side displayed on the display unit and a distribution ratio of the high temperature first heat medium distributed to the cooling circuit side. The precision temperature control apparatus as described in any one of Claims 1-3.
且つ温度制御部が、前記比例三方弁の加熱回路側吐出口の開口度と冷却回路側吐出口の開口度とを調整して、加熱手段と冷却手段とを通過する温度調整対象の流体を所定温度に制御する温度制御部であって、
前記温度制御部には、前記比例三方弁の加熱回路側吐出口の開口度と冷却回路側吐出口の開口度とから、表示部に表示する加熱回路側に分配された高温の第1熱媒体の分配比率と冷却回路側に分配された高温の第1熱媒体の分配比率とを演算する演算部とを具備する請求項1〜3のいずれか一項記載の精密温度調整装置。 The total amount of the high temperature first heat medium distributed to the heating circuit side and the high temperature first heat medium distributed to the cooling circuit side by the distribution means becomes equal to the amount of the high temperature first heat medium discharged from the compressor. The proportional three-way valve that proportionally distributes the high temperature first heat medium by adjusting the opening degree of the heating circuit side outlet and the opening degree of the cooling circuit side outlet,
In addition, the temperature control unit adjusts the opening degree of the heating circuit side discharge port and the opening degree of the cooling circuit side discharge port of the proportional three-way valve so that the temperature adjustment target fluid passing through the heating unit and the cooling unit is predetermined. A temperature control unit for controlling the temperature,
The temperature control unit includes a high temperature first heat medium distributed to the heating circuit side displayed on the display unit based on the opening degree of the heating circuit side discharge port and the opening degree of the cooling circuit side discharge port of the proportional three-way valve. The precision temperature control apparatus as described in any one of Claims 1-3 which comprises the calculating part which calculates the distribution ratio of these, and the distribution ratio of the high temperature 1st heat medium distributed to the cooling circuit side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007261336A JP4790685B2 (en) | 2007-10-04 | 2007-10-04 | Precision temperature control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007261336A JP4790685B2 (en) | 2007-10-04 | 2007-10-04 | Precision temperature control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009092271A JP2009092271A (en) | 2009-04-30 |
JP4790685B2 true JP4790685B2 (en) | 2011-10-12 |
Family
ID=40664431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007261336A Active JP4790685B2 (en) | 2007-10-04 | 2007-10-04 | Precision temperature control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4790685B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009122357A (en) * | 2007-11-14 | 2009-06-04 | Orion Mach Co Ltd | Device for regulating temperature of plate-like member |
CN106016465A (en) * | 2016-06-29 | 2016-10-12 | 四川依米康环境科技股份有限公司 | Variable frequency fluorine pump air conditioner |
JP7353923B2 (en) * | 2019-11-08 | 2023-10-02 | Ckd株式会社 | Temperature control system and integrated temperature control system |
CN115727559B (en) * | 2022-11-17 | 2024-01-26 | 安徽金禾实业股份有限公司 | Combined type refrigerating ice machine for diketene production |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2918636B2 (en) * | 1990-06-19 | 1999-07-12 | バブコツク日立株式会社 | Boiler operating status display |
JP3145158B2 (en) * | 1991-12-25 | 2001-03-12 | 株式会社鷺宮製作所 | Temperature controller |
JPH11237135A (en) * | 1998-02-24 | 1999-08-31 | Fujitsu General Ltd | Air conditioner |
JP2002277138A (en) * | 2001-03-15 | 2002-09-25 | Usui Internatl Ind Co Ltd | Temperature adjusting device for thermal medium fluid |
JP3972860B2 (en) * | 2003-05-15 | 2007-09-05 | ダイキン工業株式会社 | Refrigeration equipment |
JP2006075700A (en) * | 2004-09-08 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Alkali ion water generator |
JP2006097950A (en) * | 2004-09-29 | 2006-04-13 | Matsushita Electric Ind Co Ltd | Heat pump water heater |
JP2007187027A (en) * | 2006-01-11 | 2007-07-26 | Chugoku Electric Power Co Inc:The | Cogeneration system |
-
2007
- 2007-10-04 JP JP2007261336A patent/JP4790685B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009092271A (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4875714B2 (en) | Precision temperature control device | |
US9500375B2 (en) | Heat pump and method for controlling the same | |
JP2020185829A (en) | On-vehicle temperature control device | |
US12103353B2 (en) | Thermal management system | |
WO2011108068A1 (en) | Air-conditioning hot-water-supplying system | |
CN110567183B (en) | Air conditioner and defrosting control method thereof | |
JP2006023006A (en) | Refrigeration facility | |
JP4790685B2 (en) | Precision temperature control device | |
KR101754685B1 (en) | Heat pump type speed heating apparatus | |
JP5098046B2 (en) | Temperature control system | |
JP3598604B2 (en) | Heat transfer device | |
JP6980089B2 (en) | Air conditioner | |
JP2015218944A (en) | Refrigeration system | |
JP2009115442A (en) | Temperature adjusting device | |
WO2015083392A1 (en) | Heat pump device | |
JP2019078501A (en) | Air conditioning system | |
JP2010255994A (en) | Heat pump type air conditioner with hot-water supply function | |
JP2015124910A (en) | Hot water supply air conditioning system | |
JP2020041770A (en) | Heat pump type hot water supply air conditioning device | |
JP2006220332A (en) | Composite type air conditioner | |
JP2010007957A (en) | Temperature controller | |
JP2010007962A (en) | Temperature controller | |
JP2006220335A (en) | Composite type air conditioner | |
JP2009122357A (en) | Device for regulating temperature of plate-like member | |
JP2009097750A (en) | Precise temperature adjustment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110712 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4790685 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |