JP4429831B2 - 負荷装置 - Google Patents

負荷装置 Download PDF

Info

Publication number
JP4429831B2
JP4429831B2 JP2004209015A JP2004209015A JP4429831B2 JP 4429831 B2 JP4429831 B2 JP 4429831B2 JP 2004209015 A JP2004209015 A JP 2004209015A JP 2004209015 A JP2004209015 A JP 2004209015A JP 4429831 B2 JP4429831 B2 JP 4429831B2
Authority
JP
Japan
Prior art keywords
hydrogen
load device
electrode
aqueous solution
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004209015A
Other languages
English (en)
Other versions
JP2005159286A (ja
Inventor
豊嗣 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsumi Corp
Original Assignee
Tatsumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsumi Corp filed Critical Tatsumi Corp
Priority to JP2004209015A priority Critical patent/JP4429831B2/ja
Priority to CA002486661A priority patent/CA2486661C/en
Priority to CNB2004100868453A priority patent/CN100351640C/zh
Priority to US10/977,296 priority patent/US7298166B2/en
Priority to AU2004224951A priority patent/AU2004224951B2/en
Priority to ES04077994T priority patent/ES2378884T3/es
Priority to EP04077994A priority patent/EP1528401B1/en
Priority to AT04077994T priority patent/ATE537460T1/de
Publication of JP2005159286A publication Critical patent/JP2005159286A/ja
Application granted granted Critical
Publication of JP4429831B2 publication Critical patent/JP4429831B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/02Liquid resistors
    • H01C10/025Electrochemical variable resistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Adjustable Resistors (AREA)
  • Testing Relating To Insulation (AREA)

Description

本発明は、例えば交流発電機やその他の電源の電気負荷試験に使用される負荷試験装置や、コージェネレーションシステムの負荷安定のために用いられる負荷装置に関するものである。
電力を必要とする施設(建物)、例えば工場、デパート、電算ビル、医療機関、商業ビル、水道局等においては、停電時であっても安定的な電力供給が要求されている。このため、一般にこのような施設においては、三相交流発電機等の自家用発電機を設置して、停電時に自家用発電機を稼働させて施設内に電力を供給できるような措置が取られ、これにより、停電時においても電力を安定的に供給できるようになっている。
このような自家用発電機は常時運転操作されるものではなく、あくまで緊急停電時に限られるものであり、しかもそのときには確実に稼働することが要求される。このため、自家用発電機が緊急停電時に正常に運転出来るよう、日頃から定期的に負荷試験を行うことが要求される。
この自家用発電機の負荷試験の方法としては、自家用発電機を実際に稼働させて電力を生成し、施設に設置されて実際に電力を使用する機器(室内の照明、クーラー等の電力消費機器)に前記生成した電力を供給して行うことが好ましい。しかしながら、当該負荷試験は長時間に及ぶことも多く、また、十数回に及ぶ発電機電源の入り切り試験並びに急激な電力の容量増大試験もあるため、施設に設置された電力消費機器を使用して負荷試験を行うのは困難である。
従って、実際には、発電機の容量に見合った容量を有する負荷抵抗を備えた負荷試験用の抵抗装置(負荷試験装置)を使用して、自家用発電機の負荷試験を行っている。
この負荷試験装置が備える抵抗器としては、水抵抗器が広く用いられている。水抵抗器は、コンクリート又は木わくからなる水槽中に電極を挿入し、その挿入量又は極間隔を加減して負荷を調整するもので、通常は給水しながら負荷の安定を図ると共に、蒸発した水を補い、水温を調節している。
このような水抵抗器を用いた負荷試験装置として、従来より、図11に示すような負荷試験装置1が知られている(例えば、特許文献1参照。)。
この負荷試験装置1は、三本の円筒型電極2a、2a、2aを備える水抵抗器2と、冷却水を供給する冷却水供給源3と、イオン交換樹脂を備える純水手段4と、を有している。
水抵抗器2は、水が貯留された貯留槽2bを備え、貯留槽2bに貯留された水Mの中に円筒型電極2aが浸漬されている。この円筒型電極2aは、試験対象となる発電機(図示せず)に接続されている。また、貯留槽2bの上部には流出口2cが設けられており、貯留槽2b内の水Mが一定の高さを保持するようになっている。
更に、冷却水供給源3は、供給パイプ5を介して貯留槽2bと接続されており、冷却水供給源3からの冷却水を貯留槽2b内に補給できるようになっている。この供給パイプ5は、冷却水供給源3から直接に貯留槽2bに通じる第一パイプ部5aと、純粋手段4を介して貯留槽2bに通じる第二パイプ部5bと、を備えている。
このような構成を有する従来の負荷試験装置1により負荷試験を行う場合には、貯留槽2b内の水の固有抵抗を所定の範囲内に調整して負荷試験を行う。すなわち、冷却水供給源3から直接供給される水と、純粋手段4を介し高い固有抵抗を有する水とを混合することにより、貯留槽2b内の水Mの固有抵抗を所定の範囲内に調整するものである。
特開平08−321408号公報(第2−3頁、図1)
近年では省エネルギーが重要な課題となっており、その規模や種類を問わずあらゆる電気設備で省電力化を行う必要性が増してきている。
しかしながら、従来の負荷試験装置1では、水抵抗器2における電力ロス、排熱処理の困難性の問題があった。すなわち、水抵抗器2では電力を熱として消費するためこの電力が利用されず、電力が無駄になってしまう。特に、負荷試験は年間を通じて種々の発電設備で行われており、現状では有効利用されない電力量の総計が膨大になってしまっている、という問題があった。
更に、従来の負荷試験装置1では、発生した熱の処理(排熱処理)が大きな問題となっていた。すなわち、負荷試験装置1では、水抵抗器2において電力が熱に変換されるため、水Mの温度が上昇してしまう。このため、貯留槽2b内に冷却水を大量に注入して水Mの水温上昇を抑制していた。しかしながら、このようにして水温上昇を防止する場合、大量の冷却水を必要とし、しかも発生した温水の処理が困難である、という問題があった。
これは、例えばコージェネレーションシステムの負荷を安定させるための負荷安定装置にも共通の課題であった。すなわち、コージェネレーションシステムの負荷安定装置においても、電力が排熱として消費されてしまっている、という問題があった。
本発明は、このような課題を解決するためになされたものであり、電源の負荷試験装置やコージェネレーションシステムの負荷安定装置で用いられる負荷装置において消費される電力を有効利用すると共に、排熱処理に係る負担を抑制することを目的とする。
前記課題を解決するため、請求項1に記載された発明は、試験対象電源に接続される整流器と該整流器に接続された抵抗器とを備え、前記試験対象電源の負荷試験を行うための負荷装置であって、前記抵抗器が、電解質水溶液を貯留する貯留槽と前記電解質水溶液内に浸漬された電極部材とを備え、前記整流器からの直流のプラス極を前記貯留槽に接続すると共に、前記直流のマイナス極を前記電極部材に接続し、該電極部材周辺の上方に、大気と遮蔽された第一の空間を形成する水素捕集部材を設けたことを特徴とする負荷装置である。
このように構成された請求項1に記載のものは、前記抵抗器が、電解質水溶液を貯留する貯留槽と、前記電解質水溶液内に浸漬された電極部材と、を備え、前記整流器からの直流のプラス極を前記貯留槽に接続すると共に前記直流のマイナス極を前記電極部材に接続したため、前記電源の負荷試験や負荷の安定化に際し、前記抵抗器で前記電解質水溶液を電気分解することができる。
そして、電極部材周辺の上方に、大気と遮蔽された第一の空間を形成する水素捕集部材を設けたため、前記電極部材から発生する水素を、前記水素捕集部材により前記第一の空間に容易に捕集することができる。
従って、この負荷装置によれば、前記抵抗器で消費される電力を用いて水素を捕集することができ、電力の有効利用を図ることができる。
しかも、前記抵抗器における消費電力を水の電気分解に用いるためほとんど熱に変換されず、前記電解質水溶液の温度上昇を抑えることができ、冷却水使用量の低減を図ることができる。
また、請求項2に記載された発明は、前記整流器を複数備え、該複数の整流器に対応する複数の前記電極部材を備えることを特徴とする請求項1に記載の負荷装置である。
このように構成された請求項2に記載のものは、前記整流器を複数備え、該複数の整流器に対応する複数の前記電極部材を備えるため、前記試験対象電源の規模や試験内容に応じて使用する整流器の数を適宜選択すれば、前記電極部材に適当な電流を流すことができ、前記電解質水溶液の電気分解をより効率的に行うことができる。
また、請求項3に記載された発明は、前記水素捕集部材に捕集された水素を貯蔵する水素貯蔵手段を備えることを特徴とする請求項1又は請求項2に記載の負荷装置である。
このように構成された請求項3に記載のものは、前記水素捕集部材に捕集された水素を貯蔵する水素貯蔵手段を備えるため、必要なときまで水素を貯蔵することができ、捕集した水素活用の自由度が向上する。
また、請求項4に記載された発明は、前記水素貯蔵手段が、水素吸蔵合金を有することを特徴とする請求項3に記載の負荷装置である。
このように構成された請求項4に記載のものは、前記貯蔵手段が水素吸蔵合金を有するため、大量の水素を高密度で吸収することができ、また、水素の吸蔵・放出を容易に行うことができる。従って、発生した水素活用の自由度が、更に向上する。
また、請求項5に記載された発明は、前記水素捕集部材の外側に、前記電極部材を取り囲むイオン交換膜部材が設けられたことを特徴とする請求項1乃至4のいずれか1項に記載の負荷装置である。
このように構成された請求項5に記載のものは、前記水素捕集部材の外側に、前記電極部材を取り囲むイオン交換膜部材が設けられたため、前記電極部材によって電気分解された水から発生する酸素と水素とが前記イオン交換膜部材によって分離され、混ざり合うことを防止できる。そのため、より純度の高い水素を捕集することができる。
また、請求項6に記載された発明は、前記電極部材の前記電解質水溶液内に浸漬された部分が中空網目筒状に形成されていることを特徴とする請求項1乃至5のいずれか1項に記載の負荷装置である。
このように構成された請求項6に記載のものは、前記電極部材の前記電解質水溶液内に浸漬された部分が中空網目筒状に形成されているため、前記電極部材の表面積が大きくなり、水の電気分解を促進することができる。そのため、より多くの水素を得ることが可能となる。
また、請求項7に記載された発明は、前記プラス極を前記貯留槽の側壁に接続すると共に、前記側壁の内側上方に、大気と遮蔽された第二の空間を形成する酸素捕集部材を設けたことを特徴とする請求項1乃至6のいずれか1項に記載の負荷装置である。
このように構成された請求項7に記載のものは、前記プラス極を前記貯留槽の側壁に接続するため、陽極として機能する前記貯留槽から発生する酸素のほとんどを前記側壁から発生させることができる。そして、この側壁の内側上方に、大気と遮蔽された第二の空間を形成する酸素捕集部材を設けたため、前記側壁から発生した酸素を前記酸素捕集部材で容易に捕集することができる。
また、請求項8に記載された発明は、前記酸素捕集部材が前記電解質水溶液の上方を覆う上壁部と、該上壁部から下方に延在されて前記電解質水溶液に浸漬する浸漬部とを備えたプラス極であることを特徴とする請求項7に記載の負荷装置である。
このように構成された請求項8に記載のものは、前記酸素捕集部材が前記電解質水溶液の上方を覆う上壁部と、該上壁部から下方に延在されて前記電解質水溶液に浸漬する浸漬部とを備えたプラス極であるため、前記酸素捕集部材が酸素を捕集するだけでなく、この酸素捕集部材が陽極として機能することができる。そのため、さらに水の電気分解が促進されて多くの酸素を捕集することができる。
また、請求項9に記載された発明は、前記酸素捕集部材が前記貯留槽と同極にされ、前記上壁部は前記水素捕集部材と同等の材質によって形成され、前記浸漬部の前記電解質水溶液に浸漬した部分は中空網目筒状に形成されたことを特徴とする請求項8に記載の負荷装置である。
このように構成された請求項9に記載のものは、前記酸素捕集部材が前記貯留槽と同極にされ、前記上壁部は前記水素捕集部材と同等の材質によって形成されたため、前記酸素捕集部材が陽極として機能し、より多くの酸素を発生させることができる。また、前記浸漬部の前記電解質水溶液に浸漬した部分が中空網目筒状に形成されたため、前記浸漬部の表面積が大きくなって、さらに水の電気分解が促進され、多くの酸素を捕集することができる。
請求項1に記載の発明によれば、前記抵抗器が、電解質水溶液を貯留する貯留槽と、前記電解質水溶液内に浸漬された電極部材と、を備え、前記整流器からの直流のプラス極を前記貯留槽に接続すると共に前記直流のマイナス極を前記電極部材に接続したため、前記電源の負荷試験に際し、前記抵抗器で前記電解質水溶液を電気分解することができる。
そして、電極部材周辺の上方に、大気と遮蔽された第一の空間を形成する水素捕集部材を設けたため、前記電極部材から発生する水素を、前記水素捕集部材により前記第一の空間に容易に捕集することができる。
従って、この負荷装置によれば、前記抵抗器で消費される電力を用いて水素を捕集することができ、電力の有効利用を図ることができる。
しかも、前記抵抗器における消費電力を水の電気分解に用いるためほとんど熱に変換されず、前記電解質水溶液の温度上昇を抑えることができ、冷却水使用量の低減を図ることができる。
また、請求項2に記載された発明によれば、前記整流器を複数備え、該複数の整流器に対応する複数の前記電極部材を備えるため、前記試験対象電源の規模や試験内容に応じて使用する整流器の数を適宜選択すれば、前記電極部材に適当な電流を流すことができ、前記電解質水溶液の電気分解をより効率的に行うことができる。
また、請求項3に記載された発明によれば、前記水素捕集部材に捕集された水素を貯蔵する水素貯蔵手段を備えるため、必要なときまで水素を貯蔵することができ、捕集した水素活用の自由度が向上する。
また、請求項4に記載された発明によれば、前記貯蔵手段が水素吸蔵合金を有するため、大量の水素を高密度で吸収することができ、また、水素の吸蔵・放出を容易に行うことができる。従って、発生した水素活用の自由度が、更に向上する。
また、請求項5に記載された発明によれば、前記水素捕集部材の外側に、前記電極部材を取り囲むイオン交換膜部材が設けられたため、前記電極部材によって電気分解された水から発生する酸素と水素とが前記イオン交換膜部材によって分離され、混ざり合うことを防止できる。そのため、より純度の高い水素を捕集することができる。
また、請求項6に記載された発明によれば、前記電極部材の前記電解質水溶液内に浸漬された部分が中空網目筒状に形成されているため、前記電極部材の表面積が大きくなり、水の電気分解を促進することができる。そのため、より多くの水素を得ることが可能となる。
また、請求項7に記載された発明によれば、前記プラス極を前記貯留槽の側壁に接続するため、陽極として機能する前記貯留槽から発生する酸素のほとんどを前記側壁から発生させることができる。そして、この側壁の内側上方に、大気と遮蔽された第二の空間を形成する酸素捕集部材を設けたため、前記側壁から発生した酸素を前記酸素捕集部材で容易に捕集することができる。
また、請求項8に記載された発明によれば、前記酸素捕集部材が前記電解質水溶液の上方を覆う上壁部と、該上壁部から下方に延在されて前記電解質水溶液に浸漬する浸漬部とを備えたプラス極であるため、前記酸素捕集部材が酸素を捕集するだけでなく、この酸素捕集部材が陽極として機能することができる。そのため、さらに水の電気分解が促進されて多くの酸素を捕集することができる。
また、請求項9に記載された発明によれば、前記酸素捕集部材が前記貯留槽と同極にされ、前記上壁部は前記水素捕集部材と同等の材質によって形成されたため、前記酸素捕集部材が陽極として機能し、より多くの酸素を発生させることができる。また、前記浸漬部の前記電解質水溶液に浸漬した部分が中空網目筒状に形成されたため、前記浸漬部の表面積が大きくなって、さらに水の電気分解が促進され、多くの酸素を捕集することができる。
本発明を実施するための形態を、実施例に基づいて説明する。
本発明の実施例を、図を参照しつつ説明する。
図1に示すように、本実施例の負荷装置10は、試験対象電源としての交流発電機12に接続される整流装置14と、整流装置14に接続された抵抗器20と、水素貯蔵手段としての水素貯蔵装置40と、を備えている。
交流発電機12は、例えば工場や商業ビル等の施設に設けられ、通常の送電が停止した場合等に稼働させられて当該施設の停電を防止するものである。ここでは、負荷装置10は、このような交流発電機12の負荷試験を行う負荷試験機として用いられている。
整流装置14は、交流電源12からの交流を直流に変換する複数の整流器14a、14a・・を備えている。そして、この複数の整流器14a、14a・・のそれぞれがスイッチング装置14b、14b・・を介して交流発電機12と接続される構成となっている。
また、図2及び図3に示すように、抵抗器20は、電解質水溶液Lが貯留された貯留槽22と、抵抗器20の上方から垂下された電極管(電極部材)24と、を備えている。
貯留槽22は、上面が開口すると共に底壁22a及び側壁22bを有し、この内部に電解質水溶液Lが貯留される構成となっている。更に、貯留槽22にはフローティング(図示せず)を有する液位検出器22cと液温検出器22dが設けられており、これにより、電解質水溶液Lの液位及び液温を検出することができるようになっている。
また、貯留槽22には、電解質水溶液Lの冷却装置26と、減少した水分を補給する水補給装置28とが設けられている。この水補給装置28には純水器28cが設けられており、供給される水の異物を排除して水の固有抵抗を一定に保つことができることになっている。この純水器28cより水を純水とすることは、特に高い電圧が印加される場合には好適である。
冷却装置26は、一端が側壁22bに他端が底壁22aに接続された循環パイプ26aと、電解質水溶液Lを循環させる循環ポンプ26bと、循環パイプ26aに介装されたラジエータ26cと、ラジエータ26cを送風するラジエータファン26dと、を備えている。この冷却装置26は、液温検出器22dと接続され、液温検出器22dからの検出信号が入力されるようになっている。
そして、抵抗器20では、電解質水溶液Lを循環させると共にラジエータファン26dを駆動させ、電解質水溶液Lをラジエータ26cで放熱して液温上昇を防ぐようになっている。特に、冷却装置26に所定値以上の検出信号が入力されたときは、ラジエータファン26dの回転数及び循環水量を増加させ、電解質水溶液Lの温度が所定値より低く保持されるようになっている。
また、水補給装置28は、一端が水供給源(図示せず)に接続され他端が循環パイプ26aに接続された供給パイプ28aと、供給パイプ28aに介装された電磁弁28bとを備えている。
電磁弁28bは、液位検出器22cと電気的に接続され、液位検出器22cからの検出信号が入力されるようになっている。これにより電磁弁28bの開閉が制御され、貯留槽22内の電解質水溶液Lを、所定の液位に保つことができるようになっている。
他方、電極管24は例えばステンレス等の電導性材料からなり、図4(a)に示すように、その一部が電解質水溶液L内に浸漬された中空円筒形状となっている。この電極管24は、複数の整流器14a、14a・・に対応して複数設けられており、各々の電極管24の上端にはフランジ24aが設けられている。各フランジ24aには、図1に示したように、対応する整流器14aからの直流のマイナス(−)極が接続され、これにより、電極管24が陰極として機能するように構成されている。
更に、電極管24周辺の上方には、フランジ24aにボルト25によって固定された水素捕集部材30が設けられている。水素捕集部材30は、電気絶縁性を有すると共に所定の耐水性、耐熱性等を有する材料からなり、このような材料としては、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、メラミン樹脂等から適宜好適なものを選択することができる。また、水素捕集部材30をFRP(Fiber Reinforced Plastics)で構成すれば、耐熱性、耐薬品性が高く、軽量で強度が高いものとすることができる。
この水素捕集部材30は、下面が開口した直方体形状を呈してその下端30aが電解質水溶液L内に没入され、これにより、大気と遮蔽された空間(第一の空間)A1が形成されている。
更に、電極管24の直上には、断面略逆U字状を呈する椀状の接合部材24bが設けられている。図4(b)に示すように、この接合部材24bは、水素捕集部材30及びフランジ24aに設けられた貫通孔24c、24c・・により、その内部が空間A1と連通した状態となっている。
また、貯留槽22は、図1及び図3に示したように、側壁22bの上端に整流器14aからの直流のプラス(+)極が接続されている。この貯留槽22は、例えばステンレス等の電導性材料からなり、これにより、貯留槽22が陽極として機能するように構成されている。
更に、側壁22bの内側上方には、絶縁材料からなり、断面略逆L字状の酸素捕集部材32が設けられている。この酸素捕集部材32は、その下端32aが電解質水溶液L内に没入され、これにより、大気と遮蔽された空間(第二の空間)A2が形成されている。
この酸素捕集部材32には、酸素取出口32bが設けられており、これにより、空間Aに滞留した酸素を酸素貯蔵容器(図示せず)に貯蔵できるようになっている。
また、水素貯蔵装置40は水抵抗器20で発生した水素H2を貯蔵するためのものであり、図1に示したように、送気管36を介して接合部材24bに接続された水素吸蔵器42と、貯蔵水素を取り出すための水素ディスペンサーユニット44と、を備えている。
水素吸蔵器42は、例えばTiMnVFeやTiCrV、NaAlH4等の水素吸蔵合金(メタル・ハイドライド)と、水素吸蔵器42内の温度を調整する温度調整手段42aと、を有している。
そして、温度調整手段42aで水素吸蔵器42内の温度を下げることにより前記水素吸蔵合金に水素H2を吸蔵させ、これにより、水素捕集部材30により捕集された水素H2を、接合部材24b、送気管36を介し、水素貯蔵装置40に貯蔵することができるようになっている。
また、水素ディスペンサーユニット44には、圧縮装置や流量計、充填ホース等(図示せず)が適宜設けられ、圧力等を使用用途に適合させて貯蔵した水素を取り出すことができるようになっている。
そして、水素貯蔵装置40では、温度調整手段42aにより、水素吸蔵器42内の温度を上昇させて水素吸蔵合金から水素H2を放出させ、水素ディスペンサーユニット44に送ることができるようになっている。
次に、このような構成を有する負荷装置10の作用について、負荷試験方法に沿って説明する。
まず、例えば劇場や工場、ポンプ場、商用ビル等に設置されている試験対象電源としての交流発電機12を、負荷装置10の整流装置14に接続する。
そして、交流発電機12の規模や試験内容に応じて、適当な数のスイッチング装置14b、14b・・をオンにする。このようにすれば、オンにしたスイッチング装置14bの数に対応する整流器14aに電流を流す(通電する)ことができ、通電された整流器14aに対応する電極管24に電流が流れる。これにより、抵抗器20の抵抗による負荷を用いて交流発電機12の負荷試験を行うことができる。
ここで、本発明の負荷装置10は、抵抗器20が、電解質水溶液Lを貯留する貯留槽22と、電解質水溶液L内に浸漬された電極管24と、を備えている。そして、整流器14aからの直流のプラス極を貯留槽22に接続すると共に前記直流のマイナス極を電極管24に接続したため、交流発電機12の負荷試験に際し、抵抗器20で電解質水溶液Lを電気分解することができる。
すなわち、負荷装置10は、前記直流のプラス極に接続された貯留槽22を陽極として機能させ、前記直流のマイナス極に接続された電極管24を陰極として機能させることにより、貯留槽22から酸素O2を発生させ、電極管24から水素H2を発生させることができる。
また、負荷装置10には、複数の整流器14a、14a・・のマイナス極に一対一で接続される複数の電極管24、24・・が設けられているため、交流発電機12の規模や試験内容に応じて使用する整流器14aの数を適宜選択することができる。そして、これにより電極管24に適当な電流を流すことができ、電解質水溶液Lの電気分解をより効率的に行うことができる。
更に、本発明の負荷装置10は、電極管24周辺の上方に、大気と遮蔽された空間A1を形成する水素捕集部材30を設けたため、電極管24から発生した水素H2を、水素捕集部材30により空間A1に容易に捕集すると共に、大気への熱の放散を抑制することができる。
従って、この負荷装置10によれば、抵抗器20で消費される電力を用いて水素H2を捕集することができ、抵抗器20で消費される電力の有効利用を図ることができる。すなわち、従来の負荷試験装置では、水抵抗器により電力を熱として消費していたためこの電力が利用されていなかったが、本発明では水抵抗器で消費される電気エネルギーを化学エネルギーに変換し、これを有効利用することができる。
更には、本発明の負荷装置10では、抵抗器20で消費される電力のほとんどを水の電気分解に用いるため、電解質水溶液Lの温度上昇を微少に留めることができる。従って、水温上昇を防止するための大量の冷却水等を必要とせず、極めて容易に排熱処理を行うことができる。
そして、水素貯蔵装置40で、水素捕集部材30に捕集された水素H2を貯蔵する。すなわち、温度調整手段42aで水素吸蔵器42内を冷却し、これにより、送気管36を介して水素吸蔵器42に送気された水素H2を水素吸蔵合金に吸蔵させる。
また、この水素H2を使用する場合には、温度調整手段42aで水素吸蔵器42内を加温して水素吸蔵合金に吸蔵された水素H2を放出させ、ディスペンサーユニット44を介して車両や燃料電池等の水素供給対象物に供給させる。
このように、水素吸蔵合金に抵抗器20で発生した水素H2を吸蔵させれば、容易に貯蔵することができると共にその放出も容易となり、水素活用の自由度を向上させることができる。しかも、水素吸蔵合金は、大量の水素を高密度で吸収することができ、更に、爆発性の高い水素を安定的に吸蔵しておくことができるため輸送も容易となり、より実用的なものである。
また、整流器14aからの直流のプラス極に接続された貯留槽22は陽極として機能するため、貯留槽22からは酸素O2が発生する。特に本実施例では、前記プラス極を側壁22bに接続するため、電気分解により発生する酸素O2のほとんどが側壁22bから発生する。
ここで、本実施例の負荷装置10は、側壁22bの内側上方に、大気と遮蔽された空間A2を形成する酸素捕集部材32が設けられているため、側壁22bから発生した酸素O2を容易に捕集することができる。そして、この空間Aに滞留した酸素O2は、酸素取出口32bを介して前記酸素貯蔵容器(図示せず)に貯蔵される。
このように、負荷装置10によれば、電解質水溶液Lの電気分解により発生した酸素O2も容易に捕集することができ、酸素O2の有効利用を図ることができる。
(応用例1)
図5は、前記実施例の応用例1を示したものである。なお、実施例1と同一乃至均等な部位については同じ符号を用い、詳細な説明は省略する。
図5に示すように、施設Bには、試験対象電源としての交流発電機12と、バッテリ13aを備えるUPS(Uninterruptible Power Systems:無停電電源装置)13と、が設けられている。そして、この交流発電機12及びUPS13を用いることにより、停電などの電源障害時には施設B全体に交流が供給されるようになっている。
また、負荷装置110は、施設B内、或いは施設Bの近傍に設置されるいわゆる常設型(据置型)となっており、専ら施設Bの交流発電機12及びUPS13の負荷試験を行うために設けられている。
負荷装置110の抵抗器20は、整流装置14を介して交流発電機12と接続されており、抵抗器20に整流装置14からの直流が流れるようになっている。これにより、交流発電機12の負荷試験を行うことができるようになっている。
更に、抵抗器20は、整流装置14を介してUPS13に接続され、これにより、UPS13の負荷試験を行うことができるようになっている。そして、UPS13からの交流は整流装置14で直流に変換され、この直流が抵抗器20に供給されるようになっている。
このようにすれば、負荷装置110を用いて、交流を発生させる交流発電機12だけでなく、UPS13、及び直流を発生させるバッテリ13aの負荷試験を行うことができる。
また、本応用例1では、水素貯蔵装置140が、水素圧縮機142a及び高圧ガス容器142bを備える水素貯蔵器142と、圧力制御装置144a及び充填ホース144bを備えるディスペンサーユニット144と、を有している。
すなわち、負荷装置110は、抵抗器20で捕集した水素H2を水素圧縮機142aで圧縮し高圧ガス容器142bに貯蔵することができるようになっている。そして、ディスペンサーユニット144は、貯蔵された水素H2を充填ホース144bを介して水素自動車Vに充填できるようになっている。
このように、本応用例1では、負荷装置110を常設型(据置型)としたため、ポンプ場や工場等、特に大型の交流発電機(試験対象電源)12やUPS(試験対象電源)が設けられている施設Bに好適なものである。
そして、負荷装置110は、抵抗器20で消費される電力を、水素H2を捕集することにより化学エネルギーに変換することができ、抵抗器20で消費される電力の有効利用を図ることができる。すなわち、従来の負荷装置では、水抵抗器により電力を熱として消費していたためこの電力が利用されていなかったが、本発明では水抵抗器で消費される電気エネルギーを化学エネルギーに変換し、これを有効利用することができる。
また、このような常設型の負荷装置110を多数の施設に設置すれば、設置数に応じて
有効利用できる電気エネルギーの量も増え、温暖化の抑制により寄与することができる。
更に、負荷装置110は、この水素H2を水素自動車Vに供給しているため、地球温暖化や大気汚染を低減することができる。すなわち、水素は燃焼後は一酸化炭素、炭化水素、窒素酸化物等をほとんど排出せず、水のみを生成するため、非常に清潔な燃料と考えられる。しかも、従来は経済的に水素を生産することが困難と考えられていたが、本発明によれば、従来は利用されていなかった抵抗器での消費電力を用いて、水素を発生させて捕集するため、安価に且つ容易に水素を生産することができる。
(応用例2)
図6は、前記実施例の応用例2を示したものである。なお、前記実施例又は応用例2と同一乃至均等な部位については同じ符号を用い、詳細な説明は省略する。
図6に示すように、応用例2の負荷装置210は、交流発電機12に接続される整流装置14と、整流装置14に接続された抵抗器20と、抵抗器20で捕集された水素H2を貯蔵する水素貯蔵装置240と、を備えている。そして、この水素貯蔵装置240は水素吸蔵器42から構成され、温度調整手段42a及び水素吸蔵合金42bを備えている。
更に、この負荷装置210は、例えばトラック等の車両V1に積載されており、移動可能となっている。
このように、負荷装置210を移動可能に構成すれば、車両V1により負荷装置210を所望の施設に移送することができ、負荷装置210を様々な施設で用いることができる。従って、従来、負荷試験において熱に変換させられて消費されていた電力を、より有効な利用を図ることができる。
しかも、負荷装置210は、車両V1に積載した水素貯蔵装置240が水素吸蔵合金42bを有している。従って、抵抗器20で発生した水素H2を短時間で吸蔵して安定させることができるため、特に移動型の負荷装置として好適である。
また、水素吸蔵合金42bとして、TiMnVFeやTiCrV等を採用すれば、ほぼ常温・常圧での吸蔵が可能となり、移送における安全性をより高めることができる。
(応用例3)
図7〜図10は、前記実施例の応用例3を示したものである。なお、実施例1及び応用例1,2と同一乃至均等な部位については同じ符号を用い、詳細な説明は省略する。
図7〜図10に示すように、水素捕集部材30の外側には、電解質水溶液L内に浸漬したイオン交換膜部材34が取り付けられている。
イオン交換膜部材34は、上方が開放した直方体形状を呈しており、水素捕集部材30の下方に配設された電極管24を取り囲んでいる。また、このイオン交換膜部材34の上端部34aは、図10に示すように、ボルト/ナットBNによって水素捕集部材30の電解質水溶液Lに向けて延在された側面部30bに固定されている。
なお、イオン交換膜部材34の上端部34aは、電解質水溶液Lから突出しており、大気中に露出している。
また、イオン交換膜部材34は、陽イオンまたは陰イオンを選択的に透過させるものであり、ここでは電極管24から発生する水素Hとなる水素イオンを透過させない陰イオン交換膜である。
さらに、図7〜図10に示す電極管24は、電導性を有する例えばステンレス等の金属からなり、両端が開放した中空管形状を呈している。そして、この電極管24の電解質水溶液Lに浸漬された中間部から下端部にかけた部分は、多数の孔29を有する網目形状となっている(図10参照)。
一方、酸素捕集部材32は、図10に示すように、電解質水溶液Lの上方を覆う上壁部32cと、上壁部32cから下方に向けて延在された浸漬部32dとを備えている。
上壁部32cは、貯留槽22の側壁22bと水素捕集部材30との間に架け渡されており、側壁22b近傍に酸素取出口32bが設けられている。また、この上壁部32cは水素捕集部材30と同等の材質である絶縁部材によって形成されている。
浸漬部32dは、酸素取出口32bと水素捕集部材30との間に配設され、ボルト/ナットBNによって上壁部32cに固定されている。また、この浸漬部32dは、電導性を有する例えばステンレス等の金属からなり、中空管形状を呈している。そして、下端32aが電解質水溶液L内に浸漬し、この浸漬部32dの電解質水溶液Lに浸漬した部分は、多数の孔32eを有する網目形状となっている。
さらに、ここでは図示していないが、浸漬部32dは貯留槽22の側壁22bと電気的に接続されており、貯留槽22と同極、つまり陽極(プラス極)として機能するように構成されている。
このように、水素捕集部材30の外側に、電極管24を取り囲むイオン交換膜部材34を設けたため、電極管24から発生する水素Hとなる水素イオンは、イオン交換膜部材34を透過することができない。一方、貯留槽22の側壁22aや酸素捕集部材32の浸漬部32dから発生する酸素となる酸素イオンもイオン交換膜部材34を透過することができない。
そのため、電気分解された水から発生する酸素と水素とがこのイオン交換膜部材34によって分離され、混ざり合うことを防止でき、より純度の高い水素及び酸素を捕集することができる。
また、電極管24の電解質水溶液L内に浸漬された部分が多数の孔29を有する中空網目筒状に形成されているため、電極管24の表面積を大きくすることができる。これにより、水の電気分解を促進することができ、より多くの水素を得ることが可能となる。
さらに、酸素捕集部材32が電解質水溶液Lの上方を覆う上壁部32cと、この上壁部32cから下方に延在されて電解質水溶液Lに浸漬する浸漬部32dとを備えるとともに、浸漬部32dが貯留槽22と同極となるプラス極として機能するため、酸素捕集部材32が酸素を捕集するだけでなく、プラス極として機能して水の電気分解をさらに促進することができる。そして、より多くの酸素を発生させ捕集することが可能となる。
また、浸漬部32dの電解質水溶液Lに浸漬した部分が多数の孔32eを有する中空網目筒状に形成されたため、この浸漬部32dの表面積が大きくなって、さらに水の電気分解が促進され、多くの酸素を捕集することができる。
以上、本発明の負荷装置の実施例を、その応用例を含めて説明してきたが、具体的な構成はこの実施例に限らず、この発明の要旨を逸脱しない範囲の設計の変更があってもこの発明に含まれる。
例えば、前記実施例では電極部材を電極管24で構成しているが、必ずしも管状でなくても良く、適宜選択することができる。
また、貯留槽や電極部材を白金めっきしてもよい。このようにすれば、貯留槽や電極部材の耐久性を高めることができる。
更に、水温計や液位計等は、必ずしも設けなければならないものではない。例えば、本発明の負荷装置は、抵抗器での消費電力を水の電気分解に利用して発熱量が少ないため、冷却装置を適当に稼働させておくだけで電解質水溶液の温度上昇を防止することも可能である。
本発明の実施例に係る負荷装置を模式的に示した構成図である。 本発明の実施例に係る負荷装置が備える抵抗器の平面図である。 図2におけるSA−SA線に沿った断面模式図である。 (a)は、図2におけるSB−SB線に沿った断面図であり、(b)は図4(a)におけるSC−SC線に沿った断面模式図である。 本発明の実施例に係る負荷装置の応用例1を模式的に示した構成図である。 本発明の実施例に係る負荷装置の応用例2を模式的に示した構成図である。 本発明の実施例に係る負荷装置の応用例3を模式的に示した構成図である。 図7に示す応用例3の負荷装置が備える抵抗器の平面図である。 図8におけるSD−SD線に沿った断面模式図である。 図8におけるSE−SE線に沿った断面図である。 従来の負荷装置を模式的に示した構成図である。
符号の説明
10、110、210 負荷装置
12 交流発電機(試験対象電源)
13 UPS(試験対象電源)
14 整流装置
14a(整流器)
20 抵抗器
22 貯留槽
22b 側壁
24 電極管(電極部材)
30 水素捕集部材
32 酸素捕集部材
40、140、240 水素貯蔵装置(水素貯蔵手段)
42b 水素吸蔵合金
L 電解質水溶液
A1 空間(第一の空間)
A2 空間(第二の空間)
2 水素
2 酸素

Claims (9)

  1. 試験対象電源に接続される整流器と該整流器に接続された抵抗器とを備え、前記試験対象電源の負荷試験を行うための負荷装置であって、
    前記抵抗器が、電解質水溶液を貯留する貯留槽と前記電解質水溶液内に浸漬された電極部材とを備え、
    前記整流器からの直流のプラス極を前記貯留槽に接続すると共に、前記直流のマイナス極を前記電極部材に接続し、
    該電極部材周辺の上方に、大気と遮蔽された第一の空間を形成する水素捕集部材を設けたことを特徴とする負荷装置。
  2. 前記整流器を複数備え、該複数の整流器に対応する複数の前記電極部材を備えることを特徴とする請求項1に記載の負荷装置。
  3. 前記水素捕集部材に捕集された水素を貯蔵する水素貯蔵手段を備えることを特徴とする請求項1又は請求項2に記載の負荷装置。
  4. 前記水素貯蔵手段が、水素吸蔵合金を有することを特徴とする請求項3に記載の負荷装置。
  5. 前記水素捕集部材の外側には、前記電極部材を取り囲むイオン交換膜部材が設けられたことを特徴とする請求項1乃至4のいずれか1項に記載の負荷装置。
  6. 前記電極部材は、前記電解質水溶液内に浸漬された部分が中空網目筒状に形成されていることを特徴とする請求項1乃至5のいずれか1項に記載の負荷装置。
  7. 前記プラス極を前記貯留槽の側壁に接続すると共に、前記側壁の内側上方に、大気と遮蔽された第二の空間を形成する酸素捕集部材を設けたことを特徴とする請求項1乃至6のいずれか1項に記載の負荷装置。
  8. 前記酸素捕集部材は、前記電解質水溶液の上方を覆う上壁部と、該上壁部から下方に延在されて前記電解質水溶液に浸漬する浸漬部とを備えたプラス極であることを特徴とする請求項7に記載の負荷装置。
  9. 前記酸素捕集部材は前記貯留槽と同極にされ、前記上壁部は前記水素捕集部材と同等の材質によって形成され、前記浸漬部の前記電解質水溶液に浸漬した部分は中空網目筒状に形成されたことを特徴とする請求項8に記載の負荷装置。
JP2004209015A 2003-10-29 2004-07-15 負荷装置 Expired - Lifetime JP4429831B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004209015A JP4429831B2 (ja) 2003-10-29 2004-07-15 負荷装置
CA002486661A CA2486661C (en) 2003-10-29 2004-10-27 Loading device
US10/977,296 US7298166B2 (en) 2003-10-29 2004-10-28 Loading device
CNB2004100868453A CN100351640C (zh) 2003-10-29 2004-10-28 负载装置
AU2004224951A AU2004224951B2 (en) 2003-10-29 2004-10-29 Loading device
ES04077994T ES2378884T3 (es) 2003-10-29 2004-10-29 Dispositivo de carga de prueba
EP04077994A EP1528401B1 (en) 2003-10-29 2004-10-29 Test loading device
AT04077994T ATE537460T1 (de) 2003-10-29 2004-10-29 Belastungstestvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003369487 2003-10-29
JP2004209015A JP4429831B2 (ja) 2003-10-29 2004-07-15 負荷装置

Publications (2)

Publication Number Publication Date
JP2005159286A JP2005159286A (ja) 2005-06-16
JP4429831B2 true JP4429831B2 (ja) 2010-03-10

Family

ID=34425406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209015A Expired - Lifetime JP4429831B2 (ja) 2003-10-29 2004-07-15 負荷装置

Country Status (8)

Country Link
US (1) US7298166B2 (ja)
EP (1) EP1528401B1 (ja)
JP (1) JP4429831B2 (ja)
CN (1) CN100351640C (ja)
AT (1) ATE537460T1 (ja)
AU (1) AU2004224951B2 (ja)
CA (1) CA2486661C (ja)
ES (1) ES2378884T3 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200464122Y1 (ko) 2010-08-25 2012-12-12 (주) 테크로스 선박용 전해 수처리 시스템

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228519B1 (de) * 2008-06-12 2015-11-11 Siemens Aktiengesellschaft Physikalische Test-Vorrichtung für ein Inselkraftwerk und Inbetriebsetzung eines Inselkraftwerks
JP5366327B2 (ja) * 2010-09-01 2013-12-11 株式会社辰巳菱機 液体使用型負荷装置
CN102426092B (zh) * 2011-09-20 2013-11-20 哈尔滨工程大学 一种基于氢气泡流动显示技术的边界层可视化试验装置
KR101413141B1 (ko) * 2013-01-21 2014-07-01 가부시키가이샤다쓰미료키 부하시험기
WO2015075761A1 (ja) * 2013-11-20 2015-05-28 株式会社辰巳菱機 負荷試験装置
CN106768491A (zh) * 2017-01-08 2017-05-31 北京工业大学 一种单电池发热功率测试装置及方法
JP7198619B2 (ja) * 2017-09-28 2023-01-04 株式会社Lixil ガス回収装置
WO2021020044A1 (ja) 2019-08-01 2021-02-04 株式会社辰巳菱機 負荷試験装置
CN114207453B (zh) * 2019-08-01 2024-03-19 株式会社辰巳菱机 负载试验装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB155457A (en) * 1919-12-31 1920-12-23 Isaac Harris Levin Improvements in electrolytic apparatus
GB155157A (en) 1920-03-11 1920-12-16 Thomas Cook Improvements in baling presses
US3065156A (en) * 1961-08-29 1962-11-20 Organon Electrolytic ph regulator
US3341441A (en) * 1964-01-07 1967-09-12 Ionics Method for preventing scale buildup during electrodialysis operation
US3376501A (en) * 1966-12-09 1968-04-02 Varian Associates Cell for determining the conductivity of liquids entrained in porous media
US3652431A (en) * 1970-03-12 1972-03-28 Julian Louis Reynolds Method of operating an electrolysis cell for the production of gases under hydrostatic pressure
JPS517244B1 (ja) * 1971-05-26 1976-03-06
US4085028A (en) * 1974-11-21 1978-04-18 Electro-Chlor Corporation Electrolytic chlorination device
US4058446A (en) * 1976-11-29 1977-11-15 The United States Of America As Represented By The Secretary Of The Navy Anodic stripping voltammetry system and combination electrode assembly therefore
US4391841A (en) * 1980-03-28 1983-07-05 Kollmorgen Technologies Corporation Passivation of metallic equipment surfaces in electroless copper deposition processes
CN85106383A (zh) * 1985-08-24 1987-05-20 米歇尔·本萨多恩 电解质循环液体电阻变阻器
US4755267A (en) * 1986-06-03 1988-07-05 Pennwalt Corporation Methods and apparatus for protecting metal structures
US4853621A (en) * 1987-03-05 1989-08-01 Kouken Co., Ltd. Water resistance load system
US5250924A (en) * 1991-11-05 1993-10-05 Tatsumi Corporation Power supply testing system for non-utility power generators and so on
JPH08321408A (ja) * 1995-05-26 1996-12-03 Meidensha Corp 水抵抗器
JPH11135308A (ja) * 1997-10-28 1999-05-21 Ksi Engineering:Kk 液体抵抗器
US6652431B1 (en) * 1999-08-24 2003-11-25 Ernest M. Mattox Squat exercise hook harness
US6516905B1 (en) * 2001-08-24 2003-02-11 Ballard Power Systems Ag Vehicle with a fuel cell system and method for operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200464122Y1 (ko) 2010-08-25 2012-12-12 (주) 테크로스 선박용 전해 수처리 시스템

Also Published As

Publication number Publication date
ES2378884T3 (es) 2012-04-18
AU2004224951A1 (en) 2005-05-19
EP1528401A1 (en) 2005-05-04
US20050093522A1 (en) 2005-05-05
JP2005159286A (ja) 2005-06-16
US7298166B2 (en) 2007-11-20
ATE537460T1 (de) 2011-12-15
EP1528401B1 (en) 2011-12-14
CN100351640C (zh) 2007-11-28
AU2004224951B2 (en) 2009-12-10
CA2486661C (en) 2009-05-19
CA2486661A1 (en) 2005-04-29
CN1629649A (zh) 2005-06-22

Similar Documents

Publication Publication Date Title
Koponen Review of water electrolysis technologies and design of renewable hydrogen production systems
JP4429831B2 (ja) 負荷装置
JP2020502773A (ja) モジュール式のスケーラブルなフロー電池システム
US9059441B2 (en) Device for storing and restoring electrical energy
JP2019090087A (ja) 電解槽及び水素製造装置
JP5366327B2 (ja) 液体使用型負荷装置
BR112013023255B1 (pt) sistema de suprimento de potência híbrido independente para um aparelho elétrico, e unidade e método para gerenciamento do sistema
KR20110042149A (ko) 입수식 살균수 발생 장치
CN104320006A (zh) 一种海上柔性直流输电系统换流站
JP6721537B2 (ja) 水素電解製造用電解液タンク、水素電解製造用電解装置、および水素製造システム
JP5415168B2 (ja) 水電解システム
WO2019215639A2 (en) Solar water heating system
JP5893637B2 (ja) 水素−酸素ガス発生装置
JP7229476B2 (ja) 水素発生システム
JPH0950820A (ja) 燃料電池システム、燃料電池及び水素貯留システム
JP2004197211A (ja) 水素・酸素混合ガス発生装置
JPH11283648A (ja) 燃料電池装置
JP4010165B2 (ja) 高圧水素の製造装置及びその製法
JP2005243326A (ja) ハイブリッド電源システム
KR20180123549A (ko) 컨테이너형 전지
KR100872427B1 (ko) 연료전지의 연료통 교체시기 알림장치 및 그 알림방법
JPH11102717A (ja) 固体高分子型可搬式燃料電池装置
US20240047715A1 (en) An energy storage device
US20240072312A1 (en) Battery Management System Control Circuitry
JP5895736B2 (ja) 2次電池型燃料電池システム及びそれを備えた給電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4429831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term