JP4427871B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4427871B2
JP4427871B2 JP2000192137A JP2000192137A JP4427871B2 JP 4427871 B2 JP4427871 B2 JP 4427871B2 JP 2000192137 A JP2000192137 A JP 2000192137A JP 2000192137 A JP2000192137 A JP 2000192137A JP 4427871 B2 JP4427871 B2 JP 4427871B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
supply voltage
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000192137A
Other languages
English (en)
Other versions
JP2002015568A (ja
Inventor
吉郎 利穂
伊藤  豊
剛 橋本
記章 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2000192137A priority Critical patent/JP4427871B2/ja
Publication of JP2002015568A publication Critical patent/JP2002015568A/ja
Application granted granted Critical
Publication of JP4427871B2 publication Critical patent/JP4427871B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置において外部電源電圧の投入に応答して動作電源電圧が所定のレベルに到達するのを検出する技術に関し、例えば高集積化のために動作電圧が低電圧化されたDRAM(ダイナミック・ランダム・アクセス・メモリ)若しくはSDRAM(シンクロナス・ダイナミック・ランダム・アクセス・メモリ)などに適用して有効な技術に関するものである。
【0002】
【従来の技術】
半導体装置に電源電圧が投入されたとき、その電源電圧が一定電圧に到達するまで、内部回路の動作は安定しない。例えば、半導体メモリでは電源電圧投入の直後はチャージポンピング動作による基板バイアス電圧やワード線昇圧電圧などの内部電圧がまだ充分立ち上がらず、チップ内部が安定状態に達していない。このため、電源電圧が一定電圧に達した後に、内部回路を初期化して動作可能な状態にすることが必要になる。そこで、外部電源投入時に、動作電源電圧が所定電圧に到達したか否かを検出する電圧検出回路を採用することができる。従来の電圧検出回路は、容量回路が入力に接続され前記容量回路の初期状態に応答して非クランプ状態にされて動作電源電圧を出力可能なクランプ回路を有する。前記クランプ回路の入力側には、チャージトランジスタとディスチャージトランジスタが接続される。ディスチャージトランジスタは外部電源投入当初に非クランプ状態にされるところのクランプ回路の出力に応答してオフ状態を採る。動作電源電圧の上昇に比例してクランプ回路の入力はチャージトランジスタにより徐々にチャージされ、クランプ回路の入力がその論理閾値電圧を越えることによって当該クランプ回路はクランプ状態に反転され、これに応答して回路の接地電圧を出力する。クランプ回路の出力が動作電源電圧から回路の接地電圧へ変化するのに応答して、内部回路を初期化する。
【0003】
なお、投入された電源電圧が安定するのを検出する回路について記載された文献の例として特開平8−307225号公報がある。
【0004】
【発明が解決しようとする課題】
しかしながら、クランプ回路を用いた電圧検出回路では、電源ノイズの影響で半導体装置が初期化されず、不所望な動作モードに入ってしまう虞のあることが本発明者によって明らかにされた。例えば、動作電源が一旦立ち上がった後に、ノイズなどにより動作電源が低下して内部状態が一時的に不安定若しくは不確定な状態になり、そのまま動作電源電圧が回復したとき、前記クランプ回路が非クランプ状態に反転されなければ、内部回路は初期化されず、その不安定若しくは不確定な状態に起因して半導体装置がテストモードなどの不所望な動作モードに入ってしまう虞がある。この原因として、クランプ回路が非クランプ状態に初期化されるには、動作電源電圧が低下するだけでは済まず、当該クランプ回路の入力側に接続された容量回路が短時間に放電動作を完了しなければならない、ということが考えられる。
【0005】
本発明の別の目的はノイズ等による不所望な動作電源電圧の変動によって不所望な動作モードに入り難い半導体装置を提供することにある。
【0006】
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【0007】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0008】
すなわち、半導体装置は、動作電源電圧が所定のレベルに到達するのを検出して検出信号(PUPB)を反転させる電圧検出回路(33)を有し、前記検出信号の前記反転動作に応答して内部回路を初期化する。前記電圧検出回路は、動作電源電圧(VPERI)を受けてレベル一定の基準電圧(VREF)を生成しようとする基準電圧発生回路(35)と、動作電源電圧を分圧して分圧電圧(VSENSE)を形成し前記分圧電圧の立ち上がり速度が前記基準電圧の立ち上がり速度よりも遅くされる分圧回路(37)と、前記分圧電圧と基準電圧とを入力し前記分圧電圧が基準電圧を超えるまで電源電圧のレベル上昇に応答して立ち上がり変化され前記分圧電圧が基準電圧を超えた状態を検出して前記検出信号を立ち下がり変化させる差動増幅回路(36)とを有する。前記動作電源電圧は例えば外部電源電圧を降圧する降圧回路(30)の出力電圧であり、前記内部回路は前記動作電源電圧を入力して動作される回路である。
【0009】
電源電圧投入時、分圧回路による分圧電圧が動作電源電圧の立ち上がりに追従してレベル上昇される。基準電圧発生回路は、立ち上がり途上の動作電源電圧がある程度上昇したところで、一定の基準電圧を維持する。差動増幅回路は、基準電圧よりも遅い速度で立ち上がり変化される前記分圧電圧が基準電圧以上にされる状態を検出して出力を反転する。差動増幅回路の立ち下がり変化に応答して内部回路が初期化される。ノイズ等により動作電源電圧がレベル低下されると、このレベル低下に追従して先ず分圧電圧が徐々にレベル低下し、これに遅れて基準電圧のレベルが漸次低下される。動作電源電圧が回路の接地電圧に到達する前に動作電源電圧が再度レベル上昇に転じても、その上昇変化に追従して基準電圧は分圧電圧よりも比較的速くレベル上昇し、検出信号が立ち上がり変化を始め、途中で分圧電圧が基準電圧を超えたところで、再び検出信号が立ち下がり変化される。これにより、ノイズなどにより動作電源電圧が動作保証電圧を超えて不所望にレベル低下されたとき、動作電源電圧が再びレベル上昇に転じたときは内部回路の再初期化が行なわれ、半導体装置に不所望な動作モードが設定される事態を抑制することが可能になる。
【0010】
前記分圧回路は、例えば、ゲート電極にドレイン電極を接続したダイオード接続MOSトランジスタの直列回路と、前記MOSトランジスタの直列接続点に接続されたMOS容量と、を有して構成することが可能である。前記MOS容量は遅延成分として機能され、分圧動作速度を比較的遅くするように機能する。
【0011】
また、前記分圧回路は、複数個の分圧素子の直列回路と、前記分圧素子の直列接続点に接続された容量素子と、所定の分圧素子に並列接続され前記検出信号の立ち下がりに応答してオン状態を採って分圧電圧をレベル上昇させるスイッチ素子(63)と、を有して構成することが可能である。特にこれによれば、検出信号の反転後に分圧電圧がレベル上昇されるから、検出信号の反転直後における動作電源電圧の微小変動に対して検出信号の状態が特に安定化される。
【0012】
【発明の実施の形態】
図10には本発明に係る半導体装置の一例であるSDRAMのブロック図が示される。同図に示されるSDRAM1は、特に制限されないが、公知の半導体集積回路製造技術によって単結晶シリコンのような一つの半導体基板に形成される。このSDRAM1は、バンクAを構成するメモリアレイ10AとバンクBを構成するメモリアレイ10Bを備える。夫々のメモリアレイ10A,10Bは、マトリクス配置されたダイナミック型のメモリセルMCを備え、図に従えば、同一列に配置されたメモリセルMCの選択端子は列毎のワード線WLに結合され、同一行に配置されたメモリセルのデータ入出力端子は行毎に相補データ線BL,BLbに結合される。同図にはワード線と相補データ線は一部だけが代表的に示されているが、実際にはマトリクス状に多数配置されている。
【0013】
上記メモリアレイ10Aのワード線WLはロウデコーダ11Aによるロウアドレス信号のデコード結果に従って選ばれた1本がワードドライバ12Aによって選択レベルに駆動される。
【0014】
メモリアレイ10Aの相補データ線はセンスアンプ及びカラム選択回路13Aに結合される。センスアンプ及びカラム選択回路13Aにおけるセンスアンプは、メモリセルMCからのデータ読出しによって夫々の相補データ線に現れる微小電位差を検出して増幅する増幅回路である。それにおけるカラムスイッチ回路は、相補データ線を各別に選択して相補共通データ線14に導通させるためのスイッチ回路である。カラムスイッチ回路はカラムデコーダ15Aによるカラムアドレス信号のデコード結果に従って選択動作される。メモリアレイ10B側にも同様にロウデコーダ11B、ワードドライバ12B、センスアンプ及びカラム選択回路13B、そしてカラムデコーダ15Bが設けられている。上記相補共通データ線14はデータ入力バッファ16の出力端子及びデータ出力バッファ17の入力端子に接続される。データ入力バッファ16の入力端子及びデータ出力バッファ17の出力端子は16ビットのデータ入出力端子I/O0〜I/O15に接続される。
【0015】
アドレス入力端子A0〜A9から供給されるロウアドレス信号とカラムアドレス信号はカラムアドレスバッファ20とロウアドレスバッファ21にアドレスマルチプレクス形式で取り込まれる。供給されたアドレス信号は夫々のバッファが保持する。ロウアドレスバッファ21は、リフレッシュ動作モードではリフレッシュカウンタ22から出力されるリフレッシュアドレス信号をロウアドレス信号として取り込む。カラムアドレスバッファ20の出力はカラムアドレスカウンタ23のプリセットデータとして供給され、カラムアドレスカウンタ23は後述のコマンドなどで指定される動作モードに応じて、上記プリセットデータとしてのカラムアドレス信号、又はそのカラムアドレス信号を順次インクリメントした値を、カラムデコーダ15A,15Bに向けて出力する。
【0016】
コントローラ25は、特に制限されないが、外部制御信号として、クロック信号CLK、クロックイネーブル信号CKE、チップセレクト信号CSb(サフィックスbはそれが付された信号がローイネーブルの信号であることを意味する)、カラムアドレスストローブ信号CASb、ロウアドレスストローブ信号RASb、及びライトイネーブル信号WEb、及びデータイネーブル信号DQML,DQMUを制御信号バッファ27を介して入力する。更に、コントローラ25には図示を省略する信号経路を介してアドレス入力端子A0〜A9から制御データが供給される。コントローラ25は、それら信号のレベルや変化のタイミングなどに基づいてSDRAMの動作モード及び上記回路ブロックの動作を制御するための内部タイミング信号を形成するものであり、そのためのコントロールロジック(図示せず)とモードレジスタ26を備える。
【0017】
クロック信号CLKはSDRAM1のマスタクロックとされ、その他の外部入力信号は当該クロック信号CLKの立ち上がりエッジに同期して有意とされる。
【0018】
チップセレクト信号CSbはそのローレベルによってコマンド入力サイクルの開始を指示する。チップセレクト信号がハイレベルのとき(チップ非選択状態)その他の入力は意味を持たない。但し、後述するメモリバンクの選択状態やバースト動作などの内部動作はチップ非選択状態への変化によって影響されない。
【0019】
RASb,CASb,WEbの各信号は通常のDRAMにおける対応信号とは機能が相違され、後述するコマンドサイクルを定義するときに有意の信号とされる。
【0020】
クロックイネーブル信号CKEは次のクロック信号の有効性を指示する信号であり、当該信号CKEがハイレベルであれば次のクロック信号CLKの立ち上がりエッジが有効とされ、ローレベルのときは無効とされる。
【0021】
前記データイネーブル信号DQML,DQMUは、例えばリードモードにおいてデータ出力バッファ17に対するアウトプットイネーブルの制御を行う。その信号DQML,DQMUがハイレベルのとき、データ出力バッファ17は端子I/O0〜I/O15の全てを高出力インピーダンス状態にする。
【0022】
上記ロウアドレス信号は、クロック信号CLKの立ち上がりエッジに同期する後述のロウアドレスストローブ・バンクアクティブコマンドサイクルにおけるA0〜A8のレベルによって定義される。
【0023】
A9からの入力は、上記ロウアドレスストローブ・バンクアクティブコマンドサイクルにおいてバンク選択信号とみなされる。即ち、A9の入力がローレベルの時はメモリバンクAが選択され、ハイレベルの時はメモリバンクBが選択される。メモリバンクの選択制御は、特に制限されないが、選択メモリバンク側のロウデコーダのみの活性化、非選択メモリバンク側のカラムスイッチ回路の全非選択、選択メモリバンク側のみのデータ入力バッファ16及びデータ出力バッファ17への接続などの処理によって行うことができる。
【0024】
上記カラムアドレス信号は、クロック信号CLKの立ち上がりエッジに同期するリード又はライトコマンド(カラムアドレス・リードコマンド、カラムアドレス・ライトコマンド)サイクルにおけるA0〜A7のレベルによって定義される。そして、この様にして定義されたカラムアドレスはバーストアクセスのスタートアドレスとされる。
【0025】
次に、SDRAM1のコマンドを簡単に説明する。〔1〕モードレジスタセットコマンドは、上記モードレジスタ26をセットするためのコマンドである。このコマンドは、CSb,RASb,CASb,WEb=ローレベルによって当該コマンドが指定され、セットすべきデータ(レジスタセットデータ)はA0〜A9を介して与えられる(A0〜A9がコントローラ212へ伝達される経路は図示を省略してある)。レジスタセットデータは、特に制限されないが、バーストレングス、CASレイテンシー、ライトモードなどとされる。〔2〕ロウアドレスストローブ・バンクアクティブコマンは、ロウアドレスストローブの指示とA9によるメモリバンクの選択を有効にするコマンドであり、CSb,RASb=ローレベル、CASb,WEb=ハイレベルによって指示され、このときA0〜A8に供給されるアドレスがロウアドレス信号として取り込まれ、A9に供給される信号がメモリバンクの選択信号として取り込まれる。取り込動作は上述のようにクロック信号CLKの立ち上がりエッジに同期して行われる。〔3〕カラムアドレス・リードコマンは、バーストリード動作を開始するために必要なコマンドであると共に、カラムアドレスストローブの指示を与えるコマンドであり、CSb,CASb,=ロウレベル、RASb,WEb=ハイレベルによって指示され、このときA0〜A7に供給されるアドレスがカラムアドレス信号として取り込まれる。これによって取り込まれたカラムアドレス信号はバーストスタートアドレスとしてカラムアドレスカウンタ23に供給される。これによって指示されたバーストリード動作においては、その前にロウアドレスストローブ・バンクアクティブコマンドサイクルでメモリバンクとそれにおけるワード線の選択が行われており、当該選択ワード線のメモリセルが、クロック信号CLKに同期してカラムアドレスカウンタ23から出力されるアドレス信号に従って順次選択されて、データが連続的に読出される。連続的に読出されるデータ数は上記バーストレングスによって指定された個数とされる。その他に、カラムアドレス・ライトコマンド、プリチャージコマンド、オートリフレッシュコマンド等があるが、ここではその説明を省略する。
【0026】
図10に示されたSDRAMは、3.3Vのような外部電源電圧VDDを外部電源端子より受けるが、記憶容量増大のためにメモリアレイ10A,10BにおけるMOSトランジスタは小型化され、それによって、それらMOSトランジスタのゲート長の縮小化、ゲート酸化膜が薄膜化されているので、メモリアレイ10A,10Bにおける内部動作電圧は低電圧化され、例えば2.0Vのような降圧電圧VDLを動作電源とする。降圧電圧VDLは外部電源電圧VDDを降圧回路30で降圧して形成される。また、前記降圧回路30ではカラムアドレスデコーダ23、ロウデコーダ11A,11B及びコントローラ25等の周辺回路の動作電源VPERIも同様に降圧して形成する。動作電源VPERIは例えば2.5Vとされる。また、メモリセルから電荷信号の読み出し量を多くするため、ワード線の選択レベルは昇圧電圧VPPとされる。昇圧電圧VPPは、特に制限されないが、昇圧回路31で外部電源電圧VDDを昇圧して形成される。また、昇圧回路31は負の基板バイアス電圧VBBも形成する。
【0027】
前記SDRAM1において、外部電源電圧VDD投入の直後では、基板バイアス電圧VBB及びワード線昇圧電圧VPPがまだ充分立ち上がらず、同様に、前記内部動作電圧VDL,VPERIのレベルも充分に立ち上がらない。このため、外部電源電圧VDDが投入されて動作電源VPERIなどが一定電圧に達する前はメモリ回路の動作を開始させないようにする工夫を行なって、誤動作防止が図られている。以下、外部電源電圧VDDが投入された時、それが実用レベルにパワーアップされるまでの制御について説明する。
【0028】
図10においてSDRAM1は動作電源電圧検出回路33を有する。この動作電源電圧検出回路33はパワーアップ検出信号PUPBを出力する。詳細は後述するが、パワーアップ検出信号PUPBは、外部電源電圧VDDが投入されてから動作電源電圧VPERIが所定のレベルに到達するまでの期間に応ずる1ショットパルス信号とされる。以下の例では、動作電源電圧検出回路33が検出対象とする動作電源電圧は電圧VPERIを一例としている。パワーアップ検出信号PUPBは制御信号バッファ27及びコントローラ25に供給され、パワーアップ検出信号PUPBの1回のパルス変化、換言すれば、立ち下がり変化に応答して、制御信号バッファ27及びコントローラ25を初期化し、それ以前の信号入力状態を全てキャンセルする。これにより、SDRAM1の動作モードは、初期化後の制御信号バッファ27及びコントローラ25への入力状態によって決定される。
【0029】
図1には動作電源電圧検出回路(以下電圧検出回路とも記す)33の一例が示される。動作電圧検出回路33は、回路の接地電圧VSSに対する前記電源VPERIを動作電源とし、基準電圧発生回路35、差動増幅回路36、分圧回路37、及び容量回路38から成る。
【0030】
基準電圧発生回路35はゲート・ドレインが結合されたpチャネル型の所謂ダイオード接続MOSトランジスタ40、抵抗素子41、及びベース・エミッタが結合されたnpn型バイポーラトランジスタ42の直列回路によって構成され、電源VPERIが安定化したときバイポーラトランジスタ42のベース・エミッタ間電圧0.6Vを基準電圧VREFとして出力する。
【0031】
分圧回路37はゲート・ドレインが結合された所謂ダイオード接続MOSトランジスタ43,44,45の直列回路によって構成される。
【0032】
容量回路38はMOS容量素子46,47によって構成される。MOS容量素子46,47は、ゲートを一方の容量電極とし、ドレイン及びソースを他方の容量電極として構成され、前記MOSトランジスタ43,44,45の直列接続点にMOS容量素子46,47のゲートが接続される。MOS容量素子46,47は分圧回路37にとって遅延成分を構成し、動作電源電圧VPERIが上昇されるとき、分圧回路37による分圧電圧VSENSEの立ち上がり速度が前記基準電圧VREFの立ち上がり速度よりも遅くされるようになている。
【0033】
前記差動増幅回路36は、pチャンネル型差動入力MOSトランジスタ48,49に、nチャネル型MOSトランジスタ50,51によるカレントミラー負荷が接続され、それらにpチャンネル型定電流源MOSトランジスタ52を介して動作電流が供給されるように構成される。MOSトランジスタ49,51のコモンドレインには直列2段のCMOSインバータ53,54が接続され、CMOSインバータ54の出力が検出信号PUPBとされる。差動増幅回路36は、前記分圧電圧VSEVSEと基準電圧VREFとを入力し、前記分圧電圧VSENSEが基準電圧VREFを超えるまで電源電圧VPERIのレベル上昇に応答して立ち上がり変化され前記分圧電圧VSENSEが基準電圧VREFを超えた状態を検出して前記検出信号PUPBを立ち下がり変化させる。
【0034】
図2には図1の電圧検出回路33の等価回路が示される。抵抗分圧回路38は抵抗素子R1とR2の直列回路で構成され、基準電圧発生回路35は電流源IsとダイオードDodの直列回路で構成される。容量回路38には容量素子C1が設けられている。
【0035】
図3には電圧検出回路33におけるVPERI,VSENSE,VREFF,PUPBの各波形図が例示される。
【0036】
時刻t0に外部電源電圧VDDが投入されると、これを受けて降圧回路30が降圧動作を開始し、昇圧回路31が昇圧動作を開始する。降圧回路30から出力される動作電圧VPERIは動作電源電圧検出回路33に供給され、分圧回路37による分圧電圧VSENSEが動作電源電圧VPERIの立ち上がりに比例してレベル上昇される。基準電圧発生回路35は、立ち上がり途上の動作電源電圧VPERIがある程度上昇したところで、基準電圧VREFを一定電圧(0.6V)に維持する(時刻t1)。差動増幅回路36は、基準電圧VREFよりも遅い速度で立ち上がり変化される前記分圧電圧VSEVSEが基準電圧VREFに到達するまでの間、動作電圧VPERIの上昇に比例して検出信号PUPBのレベルを上昇させる。そして差動増幅回路36は、基準電圧VREFよりも遅い速度で立ち上がり変化される前記分圧電圧VSEVSEが基準電圧VREF以上にされる状態を検出すると、検出信号PUPBをローレベルに反転する(時刻t2)。このようにして検出信号PUPBは1ショットパルス変化される。検出信号PUPBを受ける制御信号バッファ27及びコントローラ25は、検出信号PUPBの立ち下がり変化に応答して初期化される。制御信号バッファ27はその後におけるCKEなどの外部入力信号の状態をコントローラ25に取り込んで、SDRAMの動作モードを決定させる。したがって、外部電源電圧VDDの投入直後に、動作電源電圧VPERIが不安定な段階におけるSDRAMの状態はキャンセルされ、電源が安定化した状態で動作を開始することができる。
【0037】
時刻t3から始る波形で例示されるように、ノイズ等により動作電源電圧VPERIがレベル低下され、例えば数m秒程度の比較的短い時間に0Vにされることを想定する。時刻t3から始るようにノイズなどにより動作電源電圧VPERIがレベル低下されると、このレベル低下に追従して先ず分圧電圧VSENSEが徐々にレベル低下し、これに遅れて基準電圧VREFのレベルが漸次低下される。動作電源電圧VPERIが回路の接地電圧VSSに到達した後、時刻t4から動作電源電圧が再度レベル上昇に転ずると、前記時刻t0からの動作波形と同じように、その上昇変化に追従して基準電圧VREFは分圧電圧VSENSEよりも比較的速くレベル上昇し、検出信号PUPBが立ち上がり変化を始め、途中で分圧電圧VSENSEが基準電圧VREFを超えたところで、再び検出信号PUPBが立ち下がり変化される。特に図示はしないが、動作電源電圧VPERIが回路の接地電圧VSSに到達する前に動作電源電圧VPERIが再度レベル上昇に転じても、その上昇変化に追従して基準電圧VREFは分圧電圧VSENSEよりも比較的速くレベル上昇し、検出信号PUPBが立ち上がり変化を始め、途中で分圧電圧VSENSEが基準電圧VREFを超えたところで、再び検出信号PUPBが立ち下がり変化される。
【0038】
これにより、ノイズなどにより動作電源電圧VPERIが動作保証電圧を超えて不所望にレベル低下されたとき、動作電源電圧VPERIが再びレベル上昇に転じたときは制御信号バッファ27及びコントローラ25の再初期化が行なわれ、半導体装置に不所望な動作モードが設定される事態を抑制することが可能になる。
【0039】
図4乃至図6には電圧検出回路33におけるVPERI,VSENSE,VREFF,PUPBのシミュレーション波形が例示される。動作電源電圧VPERIの不所望なレベル低下の度合いは図4、図5、図6に順に小さくなっている。図4において動作電源電圧VPERIが0V近辺まで低下してもVSENSE、VREFは0Vに達しておらず、図3の波形とは相違されているが、これは図4におけるVPERIのレベル低下時間が図3に比べて極めて短い為であり、電圧検出回路33にけるMOSトランジスタの寄生容量成分等による影響と理解されたい。動作電圧VPERIの変動幅が比較的小さい場合には図6に例示されるように検出信号PUPBに1ショットパルス変化を生じない。
【0040】
図7には電圧検出回路33の別の例が示される。図1との相違点は、分圧回路37を抵抗素子60,61の直列回路で構成し、直列接続点にMOS容量素子62を接続してある。その他の構成は図1と同じであり、その詳細な説明は省略する。図7の構成によっても上記同様、外部電源電圧VDDの投入直後の動作電源電圧VPERIが不安定な段階におけるSDRAMの状態をキャンセル(コントローラ25及び制御信号バッファ27を初期化)して、電源が安定化した状態で動作を開始させることができ、テストモード等の不所望な動作モードが設定されることもない。そして、ノイズなどにより動作電源電圧VPERIが動作保証電圧を超えて不所望にレベル低下されたとき、動作電源電圧VPERIが再びレベル上昇に転じたときは同じく、SDRAM1の再初期化が行なわれ、SDRAM1にテストモード等の不所望な動作モードが設定される事態を抑制することが可能になる。
【0041】
図8には電圧検出回路33の更に別の例が示される。図1との相違点は、所定のダイオード接続MOSトランジスタ43に並列接続され前記検出信号PUPBの立ち下がりに応答してオン状態を採って分圧電圧VSENSEをレベル上昇させるpチャネル型スイッチMOSトランジスタ63を追加した点である。特にこれによれば、図9の波形図に例示されるように、検出信号PUPBの反転後に分圧電圧VSENSEがレベル上昇されるから、検出信号PUPBのローレベルへの反転直後における動作電源電圧VPERIの微小変動に対して検出信号PUPBの状態を特に安定化させることが可能になる。この構成においても、図1と同様に、SDRAM1に対して動作電源VPERIが安定化した状態で動作を開始させることができ、また、ノイズなどにより動作電源電圧VPERIが動作保証電圧を超えて不所望にレベル低下されたときにも制御信号バッファ27及びコントローラ25が再初期化され、SDRAM1に不所望にテストモード等が設定されることも抑制することが可能である。
【0042】
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0043】
例えば、基準電圧発生回路はバイポーラトランジスタのベース・エミッタ電圧を利用する回路形式に限定されず、pチャンネル型MOSトランジスタとnチャンネル型MOSトランジスタとの閾値電圧の差を利用する回路形式など、その他の回路構成を採用してよい。また、差動増幅回路はnチャネル型差動入力MOSトランジスタを備える回路構成など、その他各種の回路を採用してよい。また、動作電源電圧は降圧電圧に限定されず、外部電源電圧それ自体、或いは外部電源電圧の昇圧電圧であってもよい。また、動作電圧検出回路による検出信号を受ける内部回路はコントローラ及び制御信号バッファに限定されず、初期化を要するその他適宜の回路であってよい。本発明はSDRAMやDRAMのようなメモリLSI(半導体装置)だけでなく、フラッシュメモリなどの電気的に書換え可能なメモリLSI、マイクロプロセッサやマイクロコンピュータなどのロジックLSI等の種種の半導体装置に適用することが可能である。
【0044】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
【0045】
すなわち、外部電源電圧の投入直後の動作電源電圧が不安定な段階における半導体装置の状態をキャンセルして、電源が安定化した状態で動作を開始させることができ、また、ノイズなどにより動作電源電圧が動作保証電圧を超えて不所望にレベル低下されたとき、動作電源電圧が再びレベル上昇に転じたときは内部回路の再初期化が行なわれ、半導体装置に不所望な動作モードが設定される事態を抑制することが可能である。
【図面の簡単な説明】
【図1】本発明に係る半導体装置が備える動作電源電圧検出回路の一例を示す回路図である。
【図2】図1の動作電源電圧検出回路の等価回路である。
【図3】図1の動作電源電圧検出回路におけるVPERI,VSENSE,VREFF,PUPBの波形図である。
【図4】動作電源電圧検出回路におけるVPERI,VSENSE,VREFF,PUPBのシミュレーション波形を示す第1の波形図である。
【図5】動作電源電圧検出回路におけるVPERI,VSENSE,VREFF,PUPBのシミュレーション波形を示す第2の波形図である。
【図6】動作電源電圧検出回路におけるVPERI,VSENSE,VREFF,PUPBのシミュレーション波形を示す第3の波形図である。
【図7】動作電源電圧検出回路として分圧回路に抵抗素子を用いた別の例を示す回路図である。
【図8】動作電源電圧検出回路として分圧比変更可能な分圧回路を用いた別の例を示す回路図である。
【図9】図8の動作電源電圧検出回路におけるVPERI,VSENSE,VREFF,PUPBの波形図である。
【図10】本発明に係る半導体装置の一例であるSDRAMのブロック図である。
【符号の説明】
1 SDRAM
25 コントローラ
27 制御信号バッファ
33 動作電源電圧検出回路
PUPB 検出信号
VPERI 動作電源電圧
VREF 基準電圧
VSENSE 分圧電圧
VDD 外部電源電圧
VSS 接地電圧
35 基準電圧発生回路
36 差動増幅回路
37 分圧回路
38 容量回路
46,47 容量素子
63 スイッチMOSトランジスタ

Claims (3)

  1. 動作電源電圧が所定のレベルに到達するのを検出して検出信号を反転させる電圧検出回路を有し、前記検出信号の前記反転動作に応答して内部回路を初期化する半導体装置であって、
    前記電圧検出回路は、前記動作電源電圧を受けて閾値電圧に対応したレベル一定の基準電圧を生成しようとするトランジスタを含む基準電圧発生回路と、前記動作電源電圧を分圧して前記基準電圧の生成後に前記基準電圧よりも高い分圧電圧を形成し前記分圧電圧の立ち上がり速度が前記基準電圧の立ち上がり速度よりも遅くされる分圧回路と、前記分圧電圧と基準電圧とを入力し前記分圧電圧が基準電圧を超えるまで電源電圧のレベル上昇に応答して立ち上がり変化され前記分圧電圧が基準電圧を超えた状態を検出して前記検出信号を立ち下がり変化させる前記差動増幅回路と、を有し、
    前記分圧回路は、ゲート電極にドレイン電極を接続したダイオード接続MOSトランジスタの直列回路と、前記MOSトランジスタの直列接続点に接続されたMOS容量と、を有して成るものであることを特徴とする半導体装置。
  2. 前記分圧回路は、複数個の分圧素子の直列回路と、前記分圧素子の直列接続点に接続された容量素子と、所定の分圧素子に並列接続され前記検出信号の立ち下がりに応答してオン状態を採って分圧電圧をレベル上昇させるスイッチ素子と、を有して成るものであることを特徴とする請求項1記載の半導体装置。
  3. 前記動作電源は外部電源電圧を降圧する降圧回路の出力電圧であり、前記内部回路は前記動作電源を入力して動作される回路であることを特徴とする請求項1または請求項2記載の半導体装置。
JP2000192137A 2000-06-27 2000-06-27 半導体装置 Expired - Fee Related JP4427871B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000192137A JP4427871B2 (ja) 2000-06-27 2000-06-27 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192137A JP4427871B2 (ja) 2000-06-27 2000-06-27 半導体装置

Publications (2)

Publication Number Publication Date
JP2002015568A JP2002015568A (ja) 2002-01-18
JP4427871B2 true JP4427871B2 (ja) 2010-03-10

Family

ID=18691310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192137A Expired - Fee Related JP4427871B2 (ja) 2000-06-27 2000-06-27 半導体装置

Country Status (1)

Country Link
JP (1) JP4427871B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446770B2 (ja) 2009-11-20 2014-03-19 株式会社リコー 電圧検出回路

Also Published As

Publication number Publication date
JP2002015568A (ja) 2002-01-18

Similar Documents

Publication Publication Date Title
JP5041631B2 (ja) 半導体記憶装置
US6021082A (en) Semiconductor memory device including an internal power supply circuit having standby and activation mode
US6504789B2 (en) Semiconductor memory device
JP2006012388A (ja) ダイナミックランダムアクセスメモリアレイの電力を低減するための方法および集積回路装置
JP2955156B2 (ja) 半導体装置
US7193920B2 (en) Semiconductor memory device
TW200402726A (en) Semiconductor memory device
JP2002231000A (ja) 半導体記憶装置
US5327026A (en) Self-timed bootstrap decoder
KR100438237B1 (ko) 테스트 회로를 갖는 반도체 집적 회로
US5703829A (en) Synchronous type semiconductor memory device which can be adapted to high frequency system clock signal
JPH06150646A (ja) 半導体メモリ
JPH11273346A (ja) 半導体装置
CN114726348B (zh) 半导体装置、延迟电路和相关方法
US6310825B1 (en) Data writing method for semiconductor memory device
JP2013004136A (ja) 半導体装置
JP3880195B2 (ja) 半導体装置及びデータ処理システム
KR0154755B1 (ko) 가변플레이트전압 발생회로를 구비하는 반도체 메모리장치
JP4427871B2 (ja) 半導体装置
US7668032B2 (en) Refresh operation of memory device
JP3242564B2 (ja) 昇圧回路を有する記憶装置及び昇圧回路制御方法
JP2001297584A (ja) 半導体記憶装置の昇圧回路
US6262931B1 (en) Semiconductor memory device having voltage down convertor reducing current consumption
US6608797B1 (en) Automatic delay technique for early read and write operations in synchronous dynamic random access memories
JP2001184866A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees